Residual Algorithms:

Reinforcement Learning with Function Approximation

Leemon Baird
Department of Computer Science
U.S. Air Force Academy, CO 80840-6234
baird@cs.usafa.af.mil
http://kirk .usafa.af.mil/~baird

ABSTRACT

A number of reinforcement learning algorithms have
been developed that are guaranteed to converge to the
optimal solution when used with lookup tables. It is
shown, however, that these algorithms can -easily
become unstable when implemented directly with a
general function-approximation system, such as a
sigmoidal multilayer perceptron, a radial-basis-
function system, a memory-based learning system, or
even a linear function-approximation system. A new
class of algorithms, residual gradient algorithms, is
proposed, which perform gradient descent on the mean
squared Bellman residual, guaranteeing convergence.
I shown, however, that they may learn very slowly
in some cases. A larger class of algorithms, residual
algorithms, is proposed that has the guaranteed
convergence of the residual gradient algorithms, yet
can retain the fast learning speed of direct algorithms.
In fact, both direct and residual gradient algorithms are
shown to be special cases of residual algorithms, and it
is shown that residual algorithms can combine the
advantages of each approach. The direct, residual
gradient, and residual forms of value iteration, Q-
learning, and advantage learning are all presented.
Theoretical analysis is given explaining the properties
these algorithms have, and simulation results are given
that demonstrate these properties.

1 INTRODUCTION

A wide range of optimal control problems can be
viewed as Markov Decision Problems (MDPs), which
are systems that change state stochastically, with the
probability distribution for each transition determined
by the current state, and the action chosen by a
learning system. A number of reinforcement learning
algorithms have been proposed that are guaranteed to
learn a policy, a mapping from states to actions, such
that performing those actions in those states maximizes
the expected, total, discounted reinforcement received:

Vv

DR, M

where R; is the reinforcement received at time ¢, <> is
the expected value over all stochastic state transitions,
and v is the discount factor, a constant between zero
and one that gives more weight to near-term
reinforcement, and that guarantees the sum will be
finite for bounded reinforcement. In general, these
reinforcement learning systems have been analyzed for
the case of an MDP with a finite number of states and
actions, and for a learning system containing a lookup
table, with separate entries for each state or state-action
pair. Lookup tables typically do not scale well for
high-dimensional MDPs with a continuum of states
and actions (the curse of dimensionality), so a general
function-approximation system must typically be used,
such as a sigmoidal, multi-layer perceptron, a radial-
basis-function network, or a memory-based-learning
system. In the following sections, various methods are
analyzed that combine reinforcement learning
algorithms with function approximation systems.
Algorithms such as Q-learning or value iteration are
guaranteed to converge to the optimal answer when
used with a lookup table. An obvious method for
combining them with function-approximation systems,
which is called the direct algorithm here, can be
implemented, but direct Q-learning or direct value
iteration can fail to converge to an answer. A new
class of algorithms, residual gradient algorithms, are
shown to always converge, but residual gradient Q-
learning and residual gradient value iteration may
converge very slowly in some cases. Finally, a new
class of algorithms, residual algorithms, are proposed.
It will be shown that direct and residual gradient
algorithms are actually special cases of residual
algorithms, and that residual algorithms can be easily
found such that residual Q-learning or residual value
iteration have both guaranteed convergence, and
converge quickly on problems for which residual
gradient algorithms converge slowly.

)

Figure 1. The star problem

2 ALGORITHMS FOR LOOKUP TABLES

Perhaps the simplest form of reinforcement learning
problem is the task of learning the value function for a
Markov chain, which is a degenerate MDP for which
there is only one possible action to choose from in each
state. Such problems are often solved using algorithms
based upon dynamic programming (Bertsekas 87),
which involves storing information associated with
each state, then updating the information in one state
based upon the information in subsequent states. For
predicting the outcome of a Markov chain, an obvious
learning algorithm is an incremental form of value
iteration, which is defined as:

V(x)«<——R+yV(x"))

Update (2) represents the learning that occurs after
observing a transition from state x to state x' with
immediate reinforcement of R. The value of the earlier
state, V(x), is modified to be closer to the value of the
expression on the right side, R+yV(x'), with the rate of
learning controlled by a learning rate o. For this
particular type of MDP, if each V(x) is a separate entry
i lookup table, then update (2) is also equivalent to
three other reinforcement learning algorithms: 7D(0)
(Sutton 88), Q-learning (Watkins 89), and advantage
learning (Baird 95). If an implementation of update
(2) fails to converge in some cases, then all of these
other algorithms also fail to converge in some cases,
and so it is important to find an algorithm that can
solve this simple MDP using general function-
approximation systems.

3 DIRECT ALGORITHMS

If the MDP has a finite number of states, and each V(x)
is represented by a unique entry in a lookup table, and
each possible transition is experienced an infinite
number of times during learning, then update (2) is

guaranteed to converge to the optimal value function as
the learning rate oo decays to zero at an appropriate
rate. The various states can be visited in any order
during learning, and some can be visited more often
than others, yet the algorithm will still converge if the
learning rates decay appropriately (Watkins, Dayan
92). If V(x) was represented by a function-
approximation system other than a lookup table, update
(2) could be implemented directly by combining it with
the backpropagation algorithm (Rumelhart, Hinton,
Williams 86). For an input x, the actual output of the
function-approximation system would be V(x), the
“desired output” used for training would be R+yV(x'),
and all of the weights would be adjusted through
gradient descent to make the actual output closer to the
desired output. For any particular weight w in the
function-approximation system, the weight change
would be:

aV(x)
ow

Equation (3) is exactly the TD(0) algorithm, by
definition. It could also be called the direct
implementation of incremental value iteration, Q-
learning, and advantage learning. The direct
algorithm reduces to the original algorithm when used
with a lookup table. Tesauro (90,92)has shown very
good results by combining TD(0) with backpropagation
(and also using the more general TD(A)). Since it is
guaranteed to converge for the lookup table, this
approach might be expected to also converge for
general function-approximation systems.
Unfortunately, this is not the case, as is illustrated by
the MDP shown in figure 1. In figure 1, there are six
states, and the value of each state is given by the linear
combination of two weights. Every transition yields a
reinforcement of zero. During training, each possible
transition is observed equally often. The function-
approximation system is simply a lookup table, with
one additional entry giving generalization. This is an

Aw = a(R+yV(x') - V(x)) 3)

extremely benign form of function-approximation
system. It is linear, it is general (can represent any
value function over those states), the state vectors are
linearly independent, and all have the same magnitude
(1-norm, 2-norm, or infinity-norm). Furthermore, it
has the desirable property that using backpropagation
to change the value in one state will cause neighboring
states to change by at most two-thirds as much.
Therefore, this system exhibits only mild
generalization. If one wished to extend the Watkins
and Dayan proofs to function-approximation systems,
this would appear to be an ideal system for which
convergence to optimality could be guaranteed for the
direct method. However, that is not the case.

If the weight w() were not being used, then the weights
and values would all converge to zero, which is the
correct answer. However, in this example, if all
weights are initially positive, and V(6) is initially much
larger than all of the other values, then all of the values
will grow without bound. This is due to the fact that
when the first five values are lower than the value of
their successor, yV(6), and V(6) is higher than the
value of its successor, yV(6), then wy is increased five
times for every time that it is decreased, so it will rise
rapidly. Of course, we will fall, but more slowly,
because it is updated less frequently. The net effect
then is that all of the values and all of the weights go to
positive infinity, except for wg, which goes to negative
infinity.

4 RESIDUAL GRADIENT ALGORITHMS

It is unfortunate that a reinforcement learning
algorithm can be guaranteed to converge for lookup
tables, yet be unstable for function-approximation
systems that have even a small amount of
generalization. Algorithms have been proved to
converge for quadratic function-approximation systems
(Bradtke 93), but it would be useful to find an
algorithm that converges for any function-
approximation system. To find an algorithm that is
more stable than the direct algorithm, it is useful to
specify the exact goal for the learning system. For the
problem of prediction on a deterministic Markov chain,
the goal can be stated as finding a value function such
that, for any state x and its successor state x', with a
transition yielding immediate reinforcement R, the
value function will satisfy the Bellman equation:

V(x) = (R+yV(x')))

For a system with a finite number of states, the optimal
value function is the unique function that satisfies the
Bellman equation. For a given value function V, and a

given state x, the Bellman residual is defined to be the
difference between the two sides of the Bellman
equation. The mean squared Bellman residual for an
MDP with n states is therefore defined to be:

E=1S[(R+yv()-vo] 5)

X

If the Bellman residual is nonzero, then the resulting
policy will be suboptimal, but for a given level of
Bellman residual, the degree to which the policy yields
suboptimal reinforcement can be bounded (Williams,
Baird 93). This suggests it might be reasonable to
change the weights in the function-approximation
system by performing gradient descent on the mean
squared Bellman residual, E. This could be called the
residual gradient algorithm. To do this for a
deterministic MDP, after a transition from a state x to a
state x', with reinforcement R, a weight w would
change according to:

Aw = —a[R+yV(x') -V (x)]
[LV(x) - £V ()]

For a system with a finite number of states, E is zero if
and only if the value function is optimal. Therefore,
performing gradient descent on E guarantees that E
will eventually converge to a local minimum. This
type of an algorithm could be called a residual gradient
algorithm and, unlike the direct algorithms, residual
gradient algorithms have guaranteed convergence of
the mean squared Bellman residual. Furthermore if
the function-approximation system is general enough
to represent any value function, and there is a
differentiable mapping from value functions to the
corresponding weight vectors, then the residual
gradient algorithm is guaranteed to converge to the
optimal answer.

(6)

Although residual gradient algorithms have guaranteed
convergence, that does not necessarily mean that they
will always learn as quickly as direct algorithms.
Applying the direct algorithm to the example in figure
2 causes state 5 to quickly converge to zero. State 4
then quickly converges to zero, then state 3, and so on.
Information flows purely from later states to earlier
states, so the initial value of wy, its behavior over
time, has no effect on the speed at which V(5)
converges to zero. Applying the residual gradient
algorithm to figure 1 results in much slower learning.
For example, if initially ws=0 and w4=10, then when
learning from the transition from state 4 to state 5, the
direct algorithm would simply decrease wy, but the

(HHHHAH L

Figure 2. The hall problem.

residual gradient algorithm would both decrease wy
and increase ws. Thus the residual gradient algorithm
causes information to flow both ways, with information
flowing in the wrong direction moving slower than
information flowing in the right direction by a factor of
y. If y is close to 1.0, then it would be expected that
residual gradient algorithms would learn very slowly
on the problem in figure 2.

S RESIDUAL ALGORITHMS

Direct algorithms can be fast but unstable, and residual
gradient algorithms can be stable but slow. Direct
algorithms attempt to make each state match its
successors, but ignore the effects of generalization
during learning. Residual gradient algorithms take
into account the effects of generalization, but attempt
to make each state match both its successors and its
predecessors. These effects can be seen more easily by
considering epoch-wise training, where a weight
change is calculated for every transition once, then
weight changes are summed and the weights are
changed appropriately. In this case, the total weight
change after one epoch for the direct method and the
residual gradient method, respectively, are:

AW, = —a Y [R+1V(x) = V()= Vy V(D] D)

AW, = —a [R+yV(x) -V ()]
* ®)
[VarV () -V V]

In these equations, W, AW, and the gradients of V(x)
and V(x') are all vectors, and the summation is over all
states that are updated. If some states are updated
more than once per epoch, then the summation should
include those states more than once. The advantages
of each algorithm can then be seen graphically.

Figure 3 shows a situation in which the direct method
will cause the residual to decrease (left) and one in
which it causes the residual to increase (right). The
latter is a case in which the direct method may not
converge. In figure 4, the residual gradient vector
shows the direction of steepest descent on the mean
squared Bellman residual. The dotted line represents

the hyperplane that is perpendicular to the gradient.
Any weight change vector that lies to the left of the
dotted line will result in a decrease in the mean
squared Bellman residual, E. Any vector lying along
the dotted line results in no change, and any vector to
the right of the dotted line results in an increase in E.
If an algorithm always decreases E, then clearly E must
converge. If an algorithm sometimes increases E, then
it becomes more difficult to predict whether it will
converge. A reasonable approach, therefore, might be
to change the weights according to a weight-change
vector that is as close as possible to AW, so as to learn
quickly, while still remaining to the left of the dotted
line, so as to remain stable.

AW
d
AW,

Figure 3. Epoch-wise weight-change vectors

for direct and residual gradient algorithms
AW
rg

—_

Figure 4. Weight-change vectors for direct,
residual gradient, and residual algorithms.

This weighted average of a direct algorithm with a
residual gradient algorithm could have guaranteed
convergence, because AW,. causes E to decrease, and
might be expected to be fast, because AW, lies as close
as possible to AW ;. Actually, the closest stable vector
to AW could be found by projecting AW ; onto the
plane perpendicular to AW,.,, which is represented by
the dotted line. But the resulting vector would be
collinear with AW,, so AW, should learn just as
quickly for appropriate choices of learning rate. AW,
is simpler to calculate, and so appears to be the most
useful algorithm to use. For a real number ¢ between 0
and 1, AW,.is defined to be:

AW, = (1-)AW, + AW, ©)

This algorithm is guaranteed to converge for an
appropriate choice of ¢. The algorithm causes the
mean squared residual to decrease monotonically (for
appropriate ¢), but it does not follow the negative
gradient, which would be the path of steepest descent.
Therefore, it would be reasonable to refer to the
algorithm as a residual algorithm, rather than as a
residual gradient algorithm. A residual algorithm is
defined to be any algorithm in the form of equation (9),
where the weight change is the weighted average of a
residual gradient weight change and a direct weight
change. By this definition, both direct algorithms and
residual gradient algorithms are special cases of
residual algorithms.

An important question is how to choose ¢
appropriately. One approach is to treat it as a constant,
like the learning rate constant. Just as a learning rate
constant can be chosen to be as high as possible
without causing the weights to blow up, so ¢ can be
chosen as close to 0 as possible without the weights
blowing up. A ¢ of 1 is guaranteed to converge, and a
¢ of 0 might be expected to learn quickly if it can learn
at all. However, this may not be the best approach. It
requires an additional parameter to be chosen by trial
and error, and it ignores the fact that the best ¢ to use
initially might not be the best ¢ to use later, after the
system has learned for some time.

Fortunately, it is easy to calculate the ¢ that ensures a
decreasing mean squared residual, while bringing the
weight change vector as close to the direct algorithm as
possible. To accomplish this, simply use the lowest ¢
possible (between zero and one) such that:

AW, -AW, >0 (10)

As long as the dot product is positive, the angle
between the vectors will be acute, and the weight
change will result in a decrease in E. A ¢ that creates
a stable system, in which E is monotonically
decreasing, can be found by requiring that the two
vectors be orthogonal, then adding any small, positive
constant € to ¢ to convert the right angle into an acute
angle:

AW, - AW, =0
((1-0)AW, +9AW,)-AW, =0
AW, - AW,

= 11
AW, - AW, — AW, AW, (an

If this equation yields a ¢ outside the range [0,1], then
the direct vector does make an acute angle with the
residual gradient vector, so a ¢ of 0 should be used for
maximum learning speed. If the denominator of ¢ is
zero, this either means that £ is at a local minimum, or
else it means that the direct algorithm and the residual
gradient algorithm yield weight-change vectors
pointing in the same direction. In either case,a ¢ of 0
is acceptable. If the equation yields a ¢ between zero
and one, then this is the ¢ that causes the mean squared
Bellman residual to be constant. Theoretically, any ¢
above this value will ensure convergence. Therefore, a
practical implementation of a residual algorithm
should first calculate the numerator and denominator
separately, then check whether the denominator is
zero. If the denominator is zero, then ¢=0. If it is not,
then the algorithm should evaluate equation (11),
including the addition of a small constant €, then check
whether the resulting ¢ lies in the range [0,1]. A ¢
outside this range should be clipped to lie on the
boundary of this range.

The above defines residual algorithms in general. For
the specific example used in equations (7) and (8), the
corresponding residual algorithm would be:

AW, = (1-0)AW, + AW,
=-(—(I))O_E[R +yV(x") - V(x)I—VWV(x)]

x

~¢a B [R+yV(x) - VO [VarV(x) - Vi V()]
= -a Y [R+1V () -V [V 1V (x) -V V()] (12)
To implement this in an incremental manner, rather

than epoch-wise, the change in a particular weight w
after observing a particular state transition would be:

Aw = —a[R+yV(x') -V(x)]
[ov V() -2V ()]

It is interesting that the residual algorithm turns out to
be identical to the residual gradient algorithm in this
case, except that one term is multiplied by ¢.

13)

To find the marginally-stable ¢ using equation (16), it
is necessary to have an estimate of the epoch-wise
weight-change vectors. These can be approximated by
maintaining two scalar values, w, and Wrgs associated
with each weight w the function-approximation
system. These will be traces, averages of recent
values, used to approximate AW, and AWrg,
respectively. The traces are updated according to:

wy (1= ww, -y [R+V(x)-V(0)]
[-VwV]

w, <——(1-ww,, —u[R+yV(x)-V(x)]
[V V () =V V()]

where L is a small, positive constant that governs how
fast the system forgets. At any given time, a stable ¢ for
use in equation (13) can be found that ensures
convergence while perhaps maintaining fast learning,
by using equation (16):

(16)

6 STOCHASTIC MDPS AND MODELS

The residual algorithm for incremental value iteration
in equations (13) and (16) was derived assuming a
deterministic MDP. This algorithm does not require
that model of the MDP be known, and it has
guaranteed convergence to a local minimum of the
mean squared Bellman residual. If the MDP were
nondeterministic, then the algorithm would still be
guaranteed to converge, but it might not converge to a
local minimum of the mean squared Bellman residual,
as was noted by Werbos (1990). This might still be a
useful algorithm, however, because the weights will
still converge, and the error in the resulting policy may
be small if the MDP is only slightly nondeterministic
(deterministic with only a small amount of added
randomness).

For a nondeterministic MDP, convergence to a local
minimum of the Bellman residual is only guaranteed
by using equation (17), which also reduces to (13) in
the case of a deterministic MDP:

Aw = —a[R+yV(x,") -V (x)]
[ov 2V (x,) - £V ()]

Given a state x, it is necessary to generate two
successor states, x;” and x,’, each drawn independently
from the distribution defined by the MDP. This is
necessary because an unbiased estimator of the product
of two random variables can be obtained by
multiplying two independently-generated unbiased
estimators. These two independently successor states
are easily generated if a model of the MDP is known or
is learned. It is also possible to do this without a

a7)

15)

model, by storing a number of state-successor pairs that
are observed, and learning in a given state only after it
has been visited twice. This might be particularly
useful in a situation where the learning system controls
the MDP during learning. If the learning system can
intentionally perform actions to return to a given state,
then this might be an effective learning method. In
any case, it is never necessary to learn the type of
detailed, mathematical model of the MDP that would
be required by backprop through time, and it is never
necessary to perform the types of integrals over
successor states required by value iteration. It appears
that residual algorithms often do not require models of
any sort, and on occasion will require only a partial
model, which is perhaps the best that can be done
when working with completely-general function-
approximation systems.

7 MDPS WITH MULTIPLE ACTIONS

Residual algorithms can also be derived for
reinforcement learning on MDPs that provide a choice
of several actions in each state. The derivation process
is the same. Start with a reinforcement learning
algorithm that has been designed for use with a lookup
table, such as Q-learning. Find the equation that is the
counterpart of the Bellman equation. This should be
an equation whose unique solution is the optimal
function that is to be learned. For example, the
counterpart of the Bellman equation for Q-learning is:
O(x.11) = <R +y max O(x' ./)> (17)
For a given MDP with a finite number of states and
actions, there is a unique solution to equation (17),
which is the optimal Q-function. The equation should
be arranged such that the function to be learned
appears on the left side, and everything else appears on
the right side. The direct algorithm is just
backpropagation, where the left side is the output of the
network, and the right side is used as the "desired
output" for learning. Given the counterpart of the
Bellman equation, the mean squared Bellman residual
is the average squared difference between the two sides
of the equation. The residual gradient algorithm is
simply gradient descent on E, and the residual
algorithm is a weighted sum of the direct and residual
gradient algorithms, as defined in equation (9).

8 RESIDUAL ALGORITHM SUMMARY

Most reinforcement learning algorithms that have been
suggested for prediction or control have associated
equations that are the counterparts of the Bellman

Table 1. Four reinforcement learning algorithms, the counterpart of the Bellman equation for
each, and each of the corresponding residual algorithms..

Reinforcement Counterpart of Bellman Equation (top)
Learning Weight Change for Residual Algorithm (bottom)
Algorithm
TD(0) V(x) = (R+yV(x))

Aw, = —a(R+ V(&)= V) gy £ V(X)) = £ V(x)

Value Iteration

V(x)=max(R+yV(x'))
Aw, = —a(max (R+yV(x)) = V(x))(¢-&max(R+yV(x')) - £ V(x))

Q-learning

O(x,u) = <R +Y max o(x',u)>
Aw, = —a(R+ymax O(x', .u') = QCx.) (¢ 5 max O(x',) - - Q(xw))

A(x.) = <R +y™ max A(x)>§ +(1=L)ymax A(x,u')

Advantage Aw, = —oc((R +y " max A(x', ,u'))ﬁ +(1-4)max A(x,u') - A(x,u))

Learning

'(q)y ML max A(x', ,u')4 + (1 -)L max A(x,u)—iA(x,u))

ow aw

equation. The optimal functions that the learning
system should learn are also unique solutions to the
Bellman equation counterparts. Given the Bellman
equation counterpart for a reinforcement learning
algorithm, it is straightforward to derive the associated
direct, residual gradient, and residual algorithms. As
can be seen from Table 1, all of the residual algorithms
can be implemented incrementally except for residual
value iteration. Value iteration requires that an
expected value be calculated for each possible action,
then the maximum to be found. For a system with a
continuum of states and actions, a step of value
iteration with continuous states would require finding
the maximum of an uncountable set of integrals. This
is clearly impractical, and appears to have been one of
the motivations behind the development of Q-learning.
Table 1 also shows that for a deterministic MDP, all of
the algorithms can be implemented without a model,
except for residual value iteration. This may simplify
the design of a learning system, since there is no need
to learn a model of the MDP. Even if the MDP is
nondeterministic, the residual algorithms can still be
used without a model, by observing x'y, then using
x'9=x'1. That approximation still ensures convergence,
but it may force convergence to an incorrect policy,
even if the function-approximation system is initialized
to the correct answer, and the initial mean squared
Bellman residual is zero. If the nondeterminism is

merely a small amount of noise in a control system,
then this approximation may be useful in practice. For
more accurate results, it is necessary that x'y and x'y be
generated independently. This can be done if a model
of the MDP is known or learned, or if the learning
system stores tuples (x,u,x'), and then changes the
weights only when two tuples are observed with the
same x and u. Of course, even when a model of the
MDP must be learned, only two successor states need
to be generated; there is no need to calculate large
sums or integrals as in value iteration.

9 SIMULATION RESULTS

Figure 5 shows simulation results. The solid line
shows the learning time for the star problem in figure
1, and the dotted line show the learning time for the
hall problem in figure 2. In the simulation, the direct
method was unable to solve the star problem, and the
learning time appears to approach infinity as ¢
approaches approximately 0.1034. The optimal
constant ¢ appears to lie between 0.2 and 0.3. The
adaptive ¢ was able to solve the problem in time close
to the optimal time, while the final value of ¢ at the
end was approximately the same as the optimal
constant ¢. For the hall problem from figure 2, the
optimal algorithm is the direct method, ¢ =0. In this
case, the adaptive ¢ was able to quickly reach ¢=0, and
therefore solved the problem in close to optimal time.

In each case, the learning rate was optimized to two
significant digits, through exhaustive search. Each
data point was calculated by averaging over 100 trials,
each with different initial random weights. For the
adaptive methods, the parameters p=0.001 and £=0.1
were used, but no attempt was made to optimize them.
When adapting, ¢ initially started at 1.0, the safe value
corresponding to the pure residual gradient method.

9000 —

8000 —

7000 —

6000 —
@
a
% Star otiem
2 5000 - & Sta (adadtive ot
E -~ = Hdl rolem
e © Hdl (adantive PH)
2 4000 —
£
H
z

3000 —

2000 ~

1000 —

(o3
0
0 01 02 03 04 05 06 07 08 09 1
Phi

Figure 5. Simulation results for two MDPs

The lines in figure 5 clearly show that the direct
method can be much faster than pure residual gradient
algorithms in some cases, yet can be infinitely slower
in others. The square and triangle, representing the
residual gradient algorithm with adaptive ¢,
demonstrate that the algorithm is able to automatically
adjust to the problem at hand and still achieve near-
optimal results, at least for these two problems.

10 CONCLUSIONS

A new class of algorithms, residual algorithms, has
been proposed for performing reinforcement learning
with function approximation systems. The
shortcomings of both direct and residual gradient
algorithms have been shown. It has also been shown,
both analytically and in simulation, that direct and
residual gradient algorithms are special cases of
residual algorithms, and that residual algorithms can
be found that combine the beneficial properties of both.
This allows reinforcement learning to be combined
with general function-approximation systems, with fast
learning, while retaining guaranteed convergence.

Acknowledgments

This research was supported by the Department of
Computer Science, U.S. Air Force Academy, and by
Task 2312R102 of the Life and Environmental
Sciences Directorate of the United States Office of
Scientific Research. This work benefited greatly from
many stimulating conversations with Rich Sutton,
Mance Harmon, Harry Klopf, Gabor Bartha, Jim
Morgan, and particularly Ron Williams, who first
noted the slow convergence of pure residual gradient
algorithms.

References

Baird, L. C. (1995). Advantage Learning. To be
published as a U.S. Air Force technical report by the
Department of Computer Science, U.S. Air Force
Academy.

Bertsekas, D. P. (1987). Dynamic Programming:
Deterministic and Stochastic Models. Englewood
Cliffs, NJ: Prentice-Hall.

Bradtke, S. J (1993). Reinforcement learning applied
to linear quadratic regulation. Proceedings of the
Fifth Conference on Neural Information Processing
Systems (pp.295-302). Morgan Kaufmann.

Rumelhart, D., Hinton, G., & Williams, R. (1986).
Learning representations by back-propagating errors.
Nature. 323, 9 October, 533-536.

Sutton, R. S. (1988). Learning to predict by the
methods of temporal differences. Machine Learning, 3,
9-44.

Tesauro, G. (1990). Neurogammon: A neural-network
backgammon program. Proceedings of the
International Joint Conference on Neural Networks 3
(pp- 33-40). San Diego, CA.

Tesauro, G. (1992). Practical issues in temporal
difference learning. Machine Learning, 8(3/4), 257-
2717.

Watkins, C. J. C. H. (1989). Learning from delayed
rewards. Doctoral thesis, Cambridge University,
Cambridge, England.

Watkins, C. J. C. H., & Dayan, P. (1992). Technical
note: Q-learning. Machine Learning, 8(3/4),279-292.

Werbos, P. J. (1990). Consistency of HDP Applied to a
Simple Reinforcement Learning Problem. Neural
Networks 3,179-189.

Williams, R. J., and Baird, L. C. (1993). Tight
Performance Bounds on Greedy Policies Based on
Imperfect Value Functions. Northeastern University
Technical Report NU-CCS-93-14, November.

Errata 15 Jul 95

This paper contains 3 corrections of errors that appeared in the original version, as published in the proceedings of
the Machine Learning Conference, 1995. I appreciate Mance Harmon pointing out the formatting problems that
are fixed here, Justin Boyan pointing out that figure 1 was incorrect (fixed by adding the coefficients of 2), and
Geoff Gordon pointing out that a sentence on page 3, column 2, paragraph 2 was incorrect (which was fixed by
changing "continuous" to "differentiable"). Also, an additional example was added for the conference
presentation. A modified star problem showed an MDP rather than a Markov chain:

In this MDP, every transition receives zero reinforcement, and each state has two actions, one represented by a
solid line, and one represented by a dotted line. In all states, the solid action transitions to state 6, and the dotted
action transitions to one of the states 1 through 5, chosen randomly with uniform probability. During training, a
fixed stochastic policy is used to ensure sufficient exploration. In every state, the solid action is chosen with
probability 1/6, and the dotted action is chosen with probability 5/6. This ensures that every state-action pair is
explored infinitely often, and that each of the solid Q values is updated equally often. If the solid Q-values start
larger than the dotted Q-values, and the trasition from state 6 to itself starts out as the largest of the solid Q-values,
then all weights, Q-values, and values will diverge to infinity. This is true for both epoch-wise and incremental
learning, and even for small learning rates or slowly decreasing learning rates. This example demonstrates that for
a simple MDP with a linear function approximator able to represent all possible Q-functions, the Q-values can
diverge, even when training on trajectories. None of the Q-learning or TD(0) theorems can guarantee convergence
of Q-learning in this case, but residual Q-learning is guaranteed to converge with epoch-wise training.

