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Abstract

Systems that learn from examples often create a
disjunctive concept definition. Small disjuncts
are those disjuncts which cover only a few
training examples. The problem with small
disjuncts is that they are more error prone than
large disjuncts. This paper investigates the
reasons why small disjuncts are more error prone
than large disjuncts. It shows that when there are
rare cases within a domain, then factors such as
attribute noise, missing attributes, class noise and
training set size can result in small disjuncts
being more error prone than large disjuncts and
in rare cases being more error prone than
common cases. This paper also assesses the
impact that these error prone small disjuncts and
rare cases have on inductive learning (i.e., on
error rate). One key conclusion is that when low
levels of attribute noise are applied only to the
training set (the ability to learn the correct
concept is being evaluated), rare cases within a
domain are primarily responsible for making
learning difficult.

1. INTRODUCTION
Many systems that learn from examples create a
disjunctive concept definition. The coverage, or size, of
each disjunct is defined as the number of training cases
that it correctly classifies. Small disjuncts are those
disjuncts which cover only a few training cases. The
problem with small disjuncts is that they often have a
much higher error rate than large disjuncts and are
therefore considered error prone (Holte, Acker & Porter,
1989). Furthermore, although small disjuncts may
individually cover only a few examples, collectively they
can cover a significant percentage (e.g., 20%) of the total
examples. Thus, they cannot be disregarded if a high
level of predictive accuracy is to be achieved.

Small disjuncts, however, are not inherently more error
prone than large disjuncts. This paper will show that
when there are rare cases within a domain, factors such as
attribute noise, missing attributes, class noise and training
set size can cause small disjuncts to be error prone. This
paper will also show that the rare cases within a domain
are themselves error prone (i.e., they have a higher error
rate than the common cases). Rare cases are defined as
those cases which occur relatively infrequently within a
domain. Finally, this paper will assess the impact that
error prone rare cases and small disjuncts have on learning
(i.e., on error rate).

It is important to understand the relationship between rare
cases and small disjuncts. Rare cases exist in the
underlying population from which training and test cases
are chosen, while small disjuncts are a consequence of
learning. Rare cases tend to cause small disjuncts to be
formed during learning. Thus, it is more appropriate to
talk about the problem with rare cases than the problem
with small disjuncts, since the former exists independent
of the inductive learning system being used. This paper
examines the effect of small disjuncts on learning, as well
as the effect of rare cases on learning, so that the results in
this paper can be related to previous work in the field
(previous work has focused exclusively on small
disjuncts).

2. BACKGROUND
Several papers have investigated the problem of small
disjuncts (see Holte, et al., 1989; Quinlan, 1991; Ali &
Pazzani, 1992; Danyluk & Provost, 1993; Weiss, 1994),
however none have provided a comprehensive explanation
of why small disjuncts are error prone. Rather, previous
work has concentrated on determining the effect of small
disjuncts on inductive learning. One exception, however,
is the work of Holte and colleagues (1989), which showed
that bias can cause small disjuncts to be error prone. Also
of interest, Danyluk and Provost (1993) asserted that, in
the domain they were studying, learning from noisy data
was hard due to a difficulty in distinguishing between



noise and true exceptions, especially since errors in
measurement and classification often occur systematically
rather than randomly. Weiss (1994) investigated a variant
of this assertion where the errors were generated by
random class noise (i.e., no systematic errors were
introduced).

This paper extends the work presented in Weiss (1994). It
utilizes artificial domains over which greater experimental
control can be exerted and investigates the effect that
systematic and random attribute noise have on learning
with small disjuncts.

3. WHY ARE SMALL DISJUNCTS SO
ERROR PRONE?

Although it is well known that small disjuncts are more
error prone than large disjuncts, the only current
explanation for this behavior is the effect of bias (Holte, et
al., 1989). This section will explain how attribute noise,
missing attributes, class noise and training set size can
interact with rare cases within a domain to cause error
prone small disjuncts and error prone rare cases. Bias will
not be discussed since it has already been studied in detail
(Holte, et al., 1989). However, it should be noted that all
of the factors studied in this paper are associated with a
domain, while bias is a property of a specific inductive
learner.

Attribute noise will be considered first. Small disjuncts
(by definition) individually classify fewer training cases
correctly than large disjuncts; therefore they are expected
to classify fewer test cases correctly. When attribute noise
is introduced, it corrupts some of the original noise-free
cases, making them look like other cases. During
training, this means that even low levels of attribute noise
can cause common cases to overwhelm rare cases. For
example, if a case with binary attribute vector 11111
occurs 100 times more frequently than one with 01111,
then 2% attribute noise will cause the former case to
"obscure" or "overwhelm" the latter and, if they have
different classes, the wrong subconcept will be learned.
Furthermore, if during learning some generalization
occurs, then a common case can overwhelm a rare case
even when the attribute vectors do not match exactly.
Consequently, rare cases will have a higher error rate than
common cases.

During testing, a case will be misclassified for one of two
reasons. The first reason is that noise corrupted the test
case to look like another, for which a different
classification was learned. In this situation, the resulting
misclassifications will tend to be distributed evenly
throughout the disjuncts, independent of the coverage of
the disjunct (this assumption is based on the noise model
being used; see Section 5). The second reason is that the
wrong classification was learned for the test case during
training. Referring to the above example, it is because
01111 is overwhelmed by 11111. However, all we know
about 11111 is that it needs to be more common than
01111. Thus, these misclassifications will still be spread

out with respect to disjunct size—at least to some degree.
Thus, although each disjunct will tend to have roughly the
same number of misclassified cases, small disjuncts will
have fewer correctly classified cases and hence be more
error prone than large disjuncts.

Missing attributes will also cause rare cases and small
disjuncts to be error prone. With an attribute missing,
some previously distinct cases will now appear identical.
Consequently, the classification that is learned will be
determined by which cases occur most frequently. Hence,
rare cases will be more error prone than common cases.
Small disjuncts will also be error prone because the
misclassifications will tend to be distributed independent
of disjunct size.

Class noise has a fundamentally different effect than does
attribute noise on rare cases and small disjuncts. During
training, class noise does not cause one case to look like
another (i.e., attribute vectors to overlap). However, if the
level of class noise is sufficiently high, then the wrong
class may be learned—with this being much more likely
for rare cases and those disjuncts which cover few cases.
For example, with 40% class noise it is more likely that
the wrong class will be learned for a disjunct that covers
10 cases than one that covers 1000 cases—in the former
case there is a greater statistical chance that more than
50% of the training cases are corrupted. A similar
argument holds for rare cases. The effect of class noise on
the test set is independent of disjunct size or how rare a
case is—n% class noise tends to increase the error rate by
n%. So, class noise during testing will result in errors
which will be distributed evenly throughout the disjuncts.
Since small disjuncts classify fewer test cases correctly
than large disjuncts, this will result in small disjuncts
being more error prone. However, unlike the effect of
attribute noise, this effect may only be significant at high
levels of noise.

Training set size also has an impact on learning. Rare
cases will have a higher error rate than common cases
since they are less likely to be found in the training set.
The small disjuncts will tend to be more error prone
because they cover fewer correct cases than large
disjuncts.

4. THE PROBLEM DOMAINS
To allow the impact of rare cases on learning to be easily
assessed, artificial domains are used. This makes it
possible to construct domains with and without rare cases,
and in which these rare cases are easily identified.
Another advantage of using artificial domains is that they
make it possible to start off "clean"—with no noise,
missing attributes or inconsistent cases within a domain,
and in which 100% predictive accuracy is possible.

Each domain has five binary attributes and a binary class.
The class is determined by a parity function which
computes the class based on whether there is even or odd
parity or by a voting function which computes the class
based on whether the attributes contain more 0’s or 1’s.



Each domain is defined by selecting one of these two
functions to compute the class and then selecting a
distribution of cases. Since one purpose of this paper is to
examine how rare cases affect learning, two distributions
were designed—a uniform distribution which contains no
rare cases and a skewed distribution which contains a
mixture of rare and common cases. The name of each
domain corresponds to the name of the function used to
compute the class: prefixed by eq if the uniform
distribution is used and no prefix if the skewed
distribution is used.

For the uniform distribution, each of the 32 (25) distinct
cases will occur with the same frequency. The skewed
distribution was designed so that: 1) it contains common
cases, rare cases and cases in between these two extremes
and 2) the rare cases collectively cover a significant
percentage of the overall cases. This type of distribution
has been seen in existing domains, including the KPa7KR
chess endgame domain (Holte, et al., 1989), the NYNEX
MAX domain (Danyluk & Provost, 1993) and the
Wisconsin breast cancer domain (Weiss, 1994).

Table 1 shows how the skewed distribution is formed by
dividing the 32 distinct cases unequally into five bands
and then duplicating the cases in each band by the
specified amount. There are a total of 96 cases. The
training and test sets are formed by randomly selecting
cases (with replacement) from the resulting distribution.
Each case in band 5 is rare (selected only 1/96 of the
time), but collectively these cases cover 1/6 of the total
cases. To ensure that comparisons between the uniform
and skewed distributions are meaningful, distinct cases
were assigned to each band so that the class distributions
are identical for each band (i.e., 50-50). Had this not been
done, the experiments could be biased since a band which
contains cases with an uneven class distribution (e.g., 80-
20) would be easier to learn from.

Table 1: Distribution of Cases_ _________________________________
Band # distinct cases Dup. factor_ __________________________________ _________________________________

1 2 16
2 2 8
3 4 4
4 8 2
5 16 1_ _________________________________ 
































5. THE EXPERIMENTS
Experiments were run to determine the behavior of small
disjuncts and rare cases. For each experiment, five
independent runs were performed and the results averaged
together. For the experiments focusing on small disjuncts,
the cases for each run were randomly drawn from the
distribution described in Table 1. These cases were then
divided into a training and a test set, which were then fed
into C4.5, a program for inducing decision trees from a set
of preclassified training examples (Quinlan, 1993). C4.5
was modified by the author to to collect statistics relating

to disjunct size and to disable the default pruning strategy,
since pruning might obscure the small disjuncts in the
underlying concept definition. The same method was
used for the experiments focusing on the rare cases,
except that five test sets were used instead of one—with
each test set containing cases from only one of the five
bands described in Table 1. This makes it possible to
compare the error rates of rare and common cases.

Although the cases from the problem domains were
initially noise-free, most of the experiments added some
form of noise. Noise was applied to either the class label
or to all of the attributes, in either a random or systematic
fashion. N% random noise signifies that, with probability
N/100, a value is randomly selected from the remaining
alternatives (Quinlan, 1986). A very simple model of
systematic noise is used in which noise only corrupts
values in one direction. For example, 5% systematic
attribute noise means that each attribute value of 0 is
corrupted to a 1 with probability .05, but a 1 is never
corrupted to a 0.1

Noise can be applied to the training set, test set or both
sets. For the majority of experiments, either attribute
noise was applied to both sets or class noise was applied
to the training set (it does not make sense to apply class
noise to the test set, since it is the class label that the
learner is trying to predict). Frequently, however, when
the effects of noise are studied, noise is applied to the
training set but not to the test set (Quinlan, 1986). What
is being studied in this case is the ability to learn the
correct concept when noise is present. Table 2
summarizes the experimental parameters.

Table 2: Experimental Parameters_ __________________________________________
Parameter Values_ ___________________________________________ __________________________________________

Domain parity, eqparity, voting, eqvote_ __________________________________________
Noise:

level varies (0%-40%)
type attribute, class
model random, systematic
applied to training set, test set, both_ __________________________________________

Training set size 1000 (varies in Section 6.4)_ __________________________________________
Test set size 2000_ __________________________________________
Pruning strategy no pruning_ __________________________________________ 




































__________________

1. This does not imply that the noise we are attempting to model has a
random component. Imagine a domain with a binary class which
depends on whether the measured voltage is > 5 volts, and where the
voltmeter consistently (systematically) adds 1 volt to the true voltage.
Each case will be misclassified only if the true voltage is between 4-5
volts. The systematic noise causes the value to be corrupted in one
direction only, based on the statistical likelihood of the voltage being
within the 4-5 volt range.



6. RESULTS AND DISCUSSION
This section presents the results of the experiments
described in Section 5. These results show how learning
from a domain which contains rare cases is affected by the
following factors: random and systematic attribute noise
(Section 6.1), missing attributes (Section 6.2), class noise
(Section 6.3), and training set size (Section 6.4). Within
each subsection, results are presented which demonstrate
that the rare cases and small disjuncts are error prone,
followed by results which demonstrate their impact on
learning (i.e., on the overall error rate).

6.1 ATTRIBUTE NOISE

Sections 6.1.1 and 6.1.2 present the experiments in which
random and systematic attribute noise (respectively) are
applied to both the training and test sets. Section 6.1.3
presents the experiments where attribute noise is applied
to either the training or the test set.

6.1.1 Random Attribute Noise

Experiments were run with varying levels of random
attribute noise applied to both the training and test sets.
Due to the large training set size which was used, all
distinct cases were trained on. This was done to isolate
the impact that noise has on learning from the impact that
training with an incomplete training set has on learning.

When 5% attribute noise was applied to the parity
domain, the error rate increased as cases became
increasingly rare. More specifically, the error rates for
bands 1-5 were: 15.53%, 16.67%, 20.30%, 22.86% and
36.01%, respectively. This finding clearly demonstrates
that rare cases are more error prone than common cases.
Figure 1 shows that, for the same experiment, the parity
domain also has error prone small disjuncts: the
cumulative error rate decreases with increasing coverage
and at low coverages a greater percentage of errors than
cases are seen. Note that the curves are cumulative with
respect to coverage, because at coverage n the various
quantities are measured on the cases which are covered by
disjuncts in the range 0-n.2 When the same experiments
were run for the eqparity domain, the curves representing
the cumulative cases and cumulative errors overlapped
almost exactly and the error rate remained constant.

Since a major concern of this paper is the error prone
nature of small disjuncts, it would be useful to know at
what coverages errors are concentrated. A new statistic,
called error factor, can concisely present this information.
Error factor is a function of disjunct size and is defined as
the cumulative percentage of the total errors divided by

__________________

2. Since the cumulative error rate is being plotted (as opposed to the
error rate at each specific coverage band), the differences in error rate
appear smaller than they really are. For example, in Figure 1 the
error rate of the cases covered by disjuncts with size 100-200 is
11.8%.

the cumulative percentage of the total cases. For example,
an error factor of 2 at coverage 100 means that, between
coverage 0-100, twice as many errors were seen than
expected if coverage had no effect on error rate. Figure 2
shows the error factor for the domains used in this paper
(note that the error factor is undefined until some cases are
covered). Figure 2 demonstrates that small disjuncts are
more error prone than large disjuncts. Namely, when
there is a skewed distribution of cases (i.e., parity and
voting), small disjuncts are more error prone than large
disjuncts (error factor > 1), but when the distribution is
uniform, this is not true (or much less true). Thus,
random attribute noise causes small disjuncts to be more
error prone than large disjuncts when there are rare cases
in a domain.
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Figure 2: Error Factor with 5% Attribute Noise

The impact that attribute noise has on learning can be
assessed by comparing the error rates for the skewed and
uniform distributions. However, to fully understand this
comparison, it is useful to first examine what happens as
increasing levels of noise are applied to a domain—in this
case, the parity domain. Figure 3 shows us that the error
factor decreases as the noise level increases. This is
because, at high noise levels, a greater percentage of the
errors are contributed by the large disjuncts. This is not
very surprising since they collectively cover more cases
than the small disjuncts. This is clearly demonstrated by
Figure 4, which shows how the errors are distributed by
coverage.
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Table 3, which compares the results of learning with and
without rare cases, demonstrates the impact that rare cases
and attribute noise have on learning. Note that as the
noise level increases, rare cases become less responsible
for learning with noise being difficult (Figure 4 shows
why this is so). In fact, at high noise levels, the skewed
distribution performs better than the uniform distribution,
probably because it is still able to perform well on the
common cases. Although the impact of small disjuncts is
greatest at the 2% noise level, one is still not able to
conclude that at this level rare cases/small disjuncts are
responsible for making learning difficult (when random
attribute noise is applied to both training and test sets).

Table 3: Impact of Random Attribute Noise
_ ____________________________________________________

Noise Error rate (%) Delta Error rate (%) Delta
level parity/eqparity voting/eqvote_ _____________________________________________________ ____________________________________________________
2% 10.03/8.77 13.4% 4.07/3.58 12.8%_ ____________________________________________________
3% 14.78/13.35 10.2% 6.00/5.73 4.6%_ ____________________________________________________
5% 21.08/20.06 5.0% 9.08/8.66 4.7%_ ____________________________________________________
10% 32.34/35.76 -10.0% 15.53/15.44 0.6%_ ____________________________________________________
20% 41.09/48.98 -17.5% 26.61/27.27 -2.4%_ ____________________________________________________ 








































































6.1.2 Systematic Noise

Danyluk and Provost (1993) stated that it was the
combination of small disjuncts and systematic noise
which made learning difficult in the NYNEX MAX
domain. Based on this assertion, the experiments

involving random attribute noise presented in Section
6.1.1 were repeated using systematic attribute noise. The
results were very similar to those for random attribute
noise and, in the interest of space, are not all presented
here. Table 4 demonstrates the impact that systematic
attribute noise has on learning with rare cases. While
there are some differences between these results and the
ones for random attribute noise, it still cannot be said that
rare cases/small disjuncts are responsible for making
learning difficult.

Table 4: Impact of Systematic Attribute Noise
_ _____________________________________________________

Noise Error rate (%) Delta Error rate (%) Delta
level parity/eqparity voting/eqvote_ ______________________________________________________ _____________________________________________________
2% 5.13/4.72 8.3% 2.68/2.04 27.1%_ _____________________________________________________
3% 7.40/7.17 3.2% 3.36/2.87 15.7%_ _____________________________________________________
5% 12.33/11.38 8.0% 6.04/4.36 16.2%_ _____________________________________________________
10% 19.42/20.37 -4.8% 8.96/8.58 4.3%_ _____________________________________________________
20% 28.33/35.78 -23.0% 15.32/19.83 -25.7%_ _____________________________________________________ 








































































6.1.3 The Two Effects of Attribute Noise

Noise can be thought of as having two distinct, albeit
interacting, effects (Weiss, 1994). Noise applied to the
training set prevents the correct concept definition from
being learned, while noise applied to the test set causes
the correct concept definition, had it been learned, to
misclassify some test cases.3 Applying noise to the
training and test sets separately allows these two effects to
be measured separately, leading to a clearer understanding
of how noise affects learning, especially with rare cases.

In the previous experiments, noise was applied to both the
training and test sets. This section demonstrates what
occurs when noise is applied to only one of these sets. As
mentioned earlier, when noise is applied to only the
training set, then the ability to learn the correct concept
definition is being evaluated. Although the situation
where noise is applied only to the test set is not studied as
frequently, it arises whenever steps are taken to clean up
the training data.

Tables 5 and 6 show the results of the experiments where
noise was applied to the training set or the test set. Note
that the results from the experiments for random and
systematic noise should not be directly compared since,
with the same noise level, systematic noise corrupts only
half as many values (see Section 5). However, both sets
of results indicate that rare cases make it much more
difficult to learn the correct concept definition (i.e., learn
when noise is applied only to the training set) at all but the
highest levels of noise. In fact, in this situation rare cases
are primarily responsible for learning being difficult.
Tables 5 and 6 also show that when attribute noise was
applied to the test set, the impact of learning with rare

__________________

3. Note, however, that if noise in the training set prevents the correct
concept definition from being learned, then noise in the test set can
actually improve the predictive accuracy.



cases was not very significant—the error rates are high
regardless of which distribution was used. We can now
explain why rare cases only make it slightly harder to
learn when noise is applied to both the training and test
sets. When rare cases exist within a domain, the presense
of noise in the training set has a big effect, but the
presense of noise in the test set has very little effect—but
the test component contributes the majority of the errors.

Table 5: Two Effects of Random Attribute Noise
_ _________________________________________________________

Noise Noise Error rate (%) Delta Error rate (%) Delta
applied to level parity/eqparity voting/eqvote_ __________________________________________________________ _________________________________________________________

training set 5% 6.33/0 >100% 1.80/0 >100%_ _________________________________________________________
10% 12.02/6.37 61.4% 3.81/0 >100%_ _________________________________________________________
20% 26.66/30.69 -14% 7.05/1.87 >100%_ __________________________________________________________ _________________________________________________________

test set 5% 21.29/20.62 3.2% 9.00/8.64 4.1%_ _________________________________________________________
10% 33.51/33.82 -0.9% 16.33/15.98 2.2%_ _________________________________________________________
20% 46.17/45.55 1.4% 27.05/26.38 2.5%_ _________________________________________________________ 













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

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Table 6: Two Effects of Systematic Attribute Noise
_ _________________________________________________________

Noise Noise Error rate (%) Delta Error rate (%) Delta
applied to level parity/eqparity voting/eqvote_ __________________________________________________________ _________________________________________________________

training set 5% 0.98/0 >100% 0.79/0 >100%_ _________________________________________________________
10% 3.54/0 >100% 4.21/0 >100%_ _________________________________________________________
20% 10.19/0.68 >100% 7.98/9.60 -18.4%_ __________________________________________________________ _________________________________________________________

test set 5% 11.71/11.48 2.0% 5.59/4.66 18.1%_ _________________________________________________________
10% 18.98/20.24 -6.4% 10.82/9.26 15.5%_ _________________________________________________________
20% 29.12/33.44 -13.7% 19.98/17.93 10.8%_ _________________________________________________________ 





















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

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

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





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


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










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6.2 MISSING ATTRIBUTES

Learning is affected when the available set of attributes is
insufficient to correctly classify each case. Experiments
were run with the first attribute removed from all of the
cases in the two domains, but the class was still computed
using all five attributes. Figure 5 shows that the missing
attribute causes error prone small disjuncts, while Table 7
shows that it also causes error prone rare cases. Although
no experiments were run to compare the effect of missing
attributes on the skewed and uniform distributions, the
results are expected to be consistent with those for
learning with attribute noise (see Table 3).
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Figure 5: Effect of Missing Attribute on Error Factor

Table 7: Effect of Missing Attribute on Test Bands
_ ____________________________________________________

Domain Band 1 Band 2 Band 3 Band 4 Band 5_ _____________________________________________________ ____________________________________________________
Parity 0% 0% 0% 30% 85%_ ____________________________________________________
Voting 0% 0% 0% 25% 25%_ ____________________________________________________ 
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6.3 CLASS NOISE

Experiments were run to determine how class noise
affects learning with rare cases. Figure 6 and Table 8
show what happened when random class noise was
applied to the training set of the voting domain. The
results (most of which are not shown here due to space
limitations) demonstrate that class noise is much less of a
factor than attribute noise in causing error prone rare cases
and error prone small disjuncts. The results demonstrate
that class noise only becomes a factor when it exceeds
30%.4 This assumes that class noise is only applied to the
training set. When class noise was applied to both the
training and test sets, the resulting error rate was always
within 3% of the level of class noise. However, as
mentioned earlier, it really only makes sense to apply
class noise to the training set, since the purpose of
learning is to to predict the class of the test cases. Class
noise has a very different impact on learning with rare
cases than does attribute noise. When the noise level gets
high enough for there to be a significant impact on
learning (at the 40% noise level), the skewed distribution
generally outperforms the uniform distribution, most
likely due to the common cases. Thus, rare cases do not
make learning particularly susceptible to class noise,
although they do make learning susceptible to attribute
noise (as was shown in Section 6.1).
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Figure 6: Impact of Class Noise

Table 8: Effect of Class Noise on Test Bands
_ _______________________________________________________

Noise level Band 1 Band 2 Band 3 Band 4 Band 5_ ________________________________________________________ _______________________________________________________
30% 0% 0% 0% 5% 10%_ _______________________________________________________
40% 0% 0% 10% 17.5% 36.25%_ _______________________________________________________ 
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4. Had the training set size been smaller, the small disjuncts would have
covered fewer cases, in which case class noise may have been a
factor at a lower noise level (see the explanation of how class noise
affects learning with small disjuncts in Section 3).



6.4 TRAINING SET SIZE

For the experiments described in the previous sections, the
training set size was sufficiently large so as to include
each of the 32 distinct cases in the training set. The
experiments in this section use a variety of training set
sizes in order to determine what effect training set size has
on learning. The following training set sizes were used:
8, 17, 34, 68, 125, 250, 500, and 1000. Table 9 shows
that, for training set size 125, rare cases are more error
prone than common cases. This finding also holds true for
the other training set sizes.

While the error factor is defined as a function of coverage,
Figure 7 only plots the error factor at the point at which
50% of the errors have been seen. This is done so that a
separate curve is not needed for every training set size,
while still providing a good indication of where the errors
are concentrated. The curves do not extend further along
the x-axis because the error factor is meaningless when
predictive accuracy reaches 100% (i.e., there are no
errors). Figure 7 shows that, for the skewed distributions,
the larger training set sizes cause small disjuncts to be
more error prone than large disjuncts, while the effect is
minimal for the uniform distributions.

Table 9: Effect of Training Set Size 125 on Test Bands
_ ____________________________________________________

Domain Band 1 Band 2 Band 3 Band 4 Band 5_ _____________________________________________________ ____________________________________________________
Parity 0% 0% 0% 12.5% 26.25%_ ____________________________________________________
Voting 0% 0% 0% 2.5% 15%_ ____________________________________________________ 
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Figure 7: Effect of Training Set Size on Error Factor

Figure 8 shows that the skewed distributions
outperformed the uniform distributions when the training
set size was small, but that the opposite was true when the
training set size was large, with a crossover point in the
middle. This occurs because the skewed distribution has
an advantage when the training set size is small, since the
common cases are still likely to get trained on, but a
disadvantage when the training set size is large, because
the rare cases may still not get trained on. So, as the
training set size grows, rare cases/small disjuncts become
increasingly responsible for the errors—and this is exactly
what Figure 7 shows.
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Figure 8: Impact of Training Set Size

7. FUTURE RESEARCH
There are several next steps which suggest themselves.
Some "real world" domains should be tested to see if they
yield similar results, even though interpreting the results
from these domains would be difficult (see Section 4).
Some real world domains were used by Weiss (1994), but
only the effect of random class noise was examined.

In order to separate the effect of training set size from the
effects of noise and missing attributes, the training set size
was chosen to be very large relative to the number of
distinct cases (except for the experiments described in
Section 6.4). Future research should try to determine if
the results in this paper hold for smaller training sets.

The noise model described in Section 5 is critical to this
paper—a different noise model may have led to different
results. Empirical support for this noise model, or for an
alternate model, would be useful. Also, the results in this
paper failed to demonstrate that when learning with rare
cases/small disjuncts, systematic noise is any more
problematic than random noise. Future research should
continue to investigate the different impact that systematic
noise has on learning.

This paper examined how one characteristic of problem
domains, the presence of rare cases, affects learning.
More emphasis was placed on studying this domain
characteristic than on a specific inductive learning system.
Perhaps this can be viewed as a profitable future research
direction. It may permit a better understanding of the
learning task, and allow us to better understand the
strengths and weaknesses of the various learning systems
which currently exist.

8. CONCLUSION
This paper demonstrated that attribute noise, missing
attributes, class noise and training set size can each cause
rare cases and small disjuncts to be more error prone than
common cases and large disjuncts, respectively. It also
provided a theoretical reason for this behavior. This paper
demonstrated that when any of these factors, with the



exception of class noise, are present, then rare cases
within a domain make inductive learning more difficult.
With attribute noise, this difficulty is greatest at low noise
levels—at higher noise levels, the impact that noise has on
the common cases/large disjuncts dominates. When low
levels of attribute noise are applied to both the training
and test sets, rare cases make learning only slightly more
difficult. However, when low levels of attribute noise are
applied only to the training set (the ability to learn the
correct noise-free concept is being evaluated), then rare
cases within a domain are primarily responsible for
making learning difficult. High levels of class noise were
required to cause rare cases and small disjuncts to be error
prone. However, in this situation the rare cases only had a
minimal impact on learning.

The effect of training set size on learning depends on
whether the domain includes rare and common cases. For
large training set sizes, learning from a skewed
distribution is more difficult than learning from a uniform
distribution, but below a certain training set size, the
opposite is true.

This paper also provides insight into the relationship
between rare cases and small disjuncts, as well as how
each of these should be defined. Rare cases and small
disjuncts may need to be defined in relative terms if we
want them to be predictors of error prone behavior. That
is, in the experiments described in this paper, rare cases
and small disjuncts turn out to be error prone only because
there are common cases and large disjuncts. If we
constructed a domain which contained, in an absolute
sense, only rare cases and small disjuncts, then the factors
described in this paper would not cause these to be error
prone. One possible way of defining small disjuncts is in
terms of error factor—for example, small disjuncts could
be defined as those disjuncts for which the error factor is
above some threshold value.
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