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Abstract 
 
In Programming by Example [PBE, also sometimes called "Programming by 
Demonstration"] systems, the system records actions performed by a user in the interface, 
and produces a generalized program that can be used later in analogous examples. A key 
issue is how to describe the actions and objects selected by the user, which determines 
what kind of generalizations will be possible. When the user selects a graphical object on 
the screen, most PBE systems describe the object using properties of the underlying 
application data.  For example, if the user selects a link on a web page, the PBE system 
might represent the selection based on the link's HTML properties. 
 
In this article, we explore a different, and radical, approach -- using visual properties of 
the interaction elements themselves, such as size, shape, color, and appearance of 
graphical objects -- to describe user intentions. Only recently has the speed of image 
processing made feasible real-time analysis of screen images by a PBE system.  We have 
not yet fully realized the goal of a complete PBE system using visual generalization, but 
we feel the approach is important enough to warrant presenting the idea.  
 
Visual information can supplement information available from other sources and opens 
up the possibility of new kinds of generalizations not possible from the application data 
alone.  In addition, these generalizations can map more closely to the intentions of users, 
especially beginning users, who rely on the same visual information when making 
selections.  Finally, visual generalization can sometimes remove one of the worst 
stumbling-blocks preventing the use of PBE with commercial applications, that is, 
reliance on application APIs. When necessary, PBE systems can work exclusively from 
visual appearance of applications, and do not need explicit cooperation from the 
application's API.  

 

If you can see it, you should be able to program it 
 
Every Programming by Example system has what Halbert [1] calls the "data description 
problem" – when the user selects an object on the screen, what do they mean by it? 
Depending on how you describe an object, it could result in very different effects the next 
time you run the procedure recorded and generalized by the system. During a 
demonstration to a PBE system, if you select an icon for a file foo.bar in a desktop file 
system, did you mean (1) Just that specific file and no other? (2) Any file whose name is 
foo.bar? (3) Any icon that happened to be found at the location (35, 122) where you 
clicked? etc.  



 
Most systems deal with this issue by mapping the selection on to the application's data 
model [a set of files, e-mail messages, circles and boxes in a drawing, etc]. They then 
permit generalizations on the properties of that data [file names, message senders, etc.].  
But sometimes the user's intuitive description of an object might depend on the actual 
visual properties of the screen elements themselves – regardless of whether these 
properties are explicitly represented in the application's command set. Our proposal is to 
use these visual properties to permit PBE systems to do "visual generalization".  
 
For an example of why visual generalization might prove useful, suppose we want to 
write a program to save all the links on a Web page that have not been followed by the 
user at a certain point in time. 
 

 
 

Figure 1. Can we write a program to save all the unfollowed links? 

 
 
If the Netscape browser happened to have an operation “Move to next unfollowed link”, 
available as a menu option or in its API, we might be able to automate the activity using 
a macro recorder such as Quickeys. But unfortunately, Netscape does not have this 
operation [nor does it even have a “Move to the next link” operation]. Even if we had 
access to the HTML source of the page, we still wouldn’t know which links had been 
followed by the user. This is a general problem for PBE systems in interfacing to almost 
all applications.  Interactive applications make it easy for users to carry out procedures, 
and do not expect to be treated as a subroutine by an external system. 
 
This example shows the conceptual gap between a user's view of an application and its 
underlying programmable functionality.  Bridging this gap can be extremely difficulty for 
a PBE system--its representation of user actions may be a complete mismatch for the 
user's actual intentions.  But perhaps we are looking at this problem from the wrong 
perspective.  From the user's point of view, the functionality of an interactive application 
is defined by its user interface.  The interface has been carefully developed to cover 



specific tasks, to communicate through appropriate abstractions, to accommodate the 
cognitive, perceptual, and physical abilities of the user.  A PBE system might gain 
significant benefits if it could work in the same medium as a user, if it could process the 
visual environment with all its information. This is the key insight we explore in this 
article.   

What does visual generalization buy us? 
Let's imagine a PBE system that incorporates techniques to process a visual interactive 
environment, to extract information potentially relevant to the user's intentions.  What 
does the system gain from these capabilities? 
 
• Integration into existing environments.  Historically, most PBE systems have been 

built on top of isolated research systems, rather than commercial applications.  Some 
have been promising, but haven not been adopted because of the difficulty of 
integration.  A visual PBE system, independent of source code and API constraints, 
could potentially reach an unlimited audience. 

• Consistency.  Independence of an application's source code or API also gives a PBE 
system flexibility.  Similar applications often have similar appearance and behavior; 
for example, users switch between Web browsers with little difficulty.  A visual PBE 
system could take advantage of functional and visual consistency to operate across 
similar applications with little or no modification. 

• New sources of information.  Most importantly, some kinds of visual information 
may be difficult or impossible to obtain through other means. Furthermore, this 
information is generally closely related to the user's understanding of an application. 

 
These are all benefits to the developers of a PBE system, but they apply equally well to 
the users of a PBE system. In the Netscape example, a visual PBE system would be able 
to run on top of the existing browser, without requiring the use of a substitute research 
system.  Because Netscape has the convention of displaying the followed links in red and 
the unfollowed links in blue, a user might specify the "Save the next unfollowed link" 
action in visual terms as “Move to the next line of blue text, then invoke the Save Link 
As operation”.  This specification exploits a new, visual source of information.  Finally, 
the general consistency between browsers should allow the same system to work with 
both Netscape and Microsoft Internet Explorer, a much trickier proposition for API-based 
systems. 
 
Providing a visual processing capability raises some novel challenges for a PBE system: 
 
• Image processing: How can a system extract visual information at the image 

processing level in practice?  This processing must happen in an interactive system, 
interleaved with user actions and observation of the system, which raises significant 
efficiency issues. This an issue of the basic technical feasibility of a visual approach 
to PBE.  Our experience with VisMap, below, shows that real-time analysis of the 
screen is feasible on today's high-end machines. 

• Information management: How can a system process low-level visual data to infer 
high-level information relevant to user intentions?  For example, a visual object under 
the mouse pointer might be represented as a rectangle, a generic window region, or a 



window region specialized for some purpose, such as illustration.  A text box with a 
number in it might be an element of a fill-in form, a table in a text document, or a cell 
in a spreadsheet.  This concern is also important for generalization from low-level 
events to the abstractions they implement: is the user simply clicking on a rectangle 
or performing a confirmation action?  

• Brittleness: How can a system deal gracefully with visual variations that are beyond 
the scope of a solution? In the Netscape example of collecting unfollowed links, users 
may, in fact, change the colors which Netscape uses to display followed vs. 
unfollowed links, thereby perhaps obsoleting a previously recorded procedure.  A 
link may in fact extend over more than a single line of text, so that the mapping 
between lines and links is not exact. Similar blue text might appear in a GIF image 
and be inadvertently captured by the procedure. And, if the program is visually 
parsing the screen, links that do not appear because they are below the current 
scrolling position will not be included. Out of sight, out of mind! Though the latter 
problem might be cured by programming a loop which scrolled through the page as 
the user would. It puts most of these problems in a novel light if we observe that they 
can be difficult even for a human to solve.  Almost everyone has been fooled now and 
then by advertising graphics that camouflage themselves as legitimate interface 
objects; without further information (such as might be provided by an API call) a 
visual PBE system cannot hope to do better. 

 

Low-level visual generalization: Just the pixels, ma'am 
 
Potter’s work on pixel-based data access pioneered the approach of treating the screen 
image as the source for generating descriptions for generalization. The TRIGGERS 
system [7] performs exact pattern matching on screen pixels to infer information that is 
otherwise unavailable to an external system. A “trigger” is a condition/action pair. For 
example, triggers are defined for such tasks as surrounding a text field with a rounded 
rectangle in a drawing program, shortening lines so that they intersect an arbitrary shape, 
and converting text to a bold typeface. The user defines a trigger by stepping through a 
sequence of actions in an application, adding annotations for the TRIGGERS system 
when appropriate. Once a set of triggers have been defined, the user can activate them, 
iteratively and exhaustively, to carry out their actions. 
 
Several strategies can be used to process visual pixel information so that it can be used to 
generalize computer programs.  The strategy used by TRIGGERS is to compute locations 
of exact patterns within the screen image.  For example, suppose a user records a mouse 
macro that modifies a URL in order to display the next higher directory in a web browser.   
Running the macro can automate this process, but only for the one specific URL because 
the mouse locations are recorded with fixed coordinates.  However, this macro can be 
generalized by using pixel pattern matching on the screen image.  The pattern to use is 
what a user would look for if doing the task manually: the pixel pattern of a slash 
character.  Finding the second to the last occurrence of this pattern gives a location from 
which the macro can begin the macro's mouse drag, which generalizes the macro so that 
it will work with most URLs. 
 



Step 1 -  Select URL text field:

Step 2 -  Start mouse drag to select deepest directory:

Step 3 -  Finish mouse drag:

Step 4 -  Press backspace to delete the selection:

 
 
 

 
 

Figure 2.  Steps in a mouse macro to move a browser up one directory, and selecting a 
pixel pattern that can generalize the macro. 

 
 
Even though this macro program affects data such as characters, strings, URLs, and web 
pages, the program's internal data is only low-level pixel patterns and screen coordinates.  
It is the use within the rich GUI context that gives higher-level meaning to the low-level 
data.  The fact that a low-level program can map so simply to a much higher-level 
meaning attests to how conveniently the visual information of a GUI is organized for 
productive work.  [7] gives more examples.  The advantage of this strategy is that the 
low-level data and operators of the programming system can map to many high-level 
meanings, even ones not originally envisioned by the programming system developer.  
The disadvantage is that high-level internal processing of the information is difficult, 
since the outside context is required for most interpretation. 
 
Another system that performs data access at the pixel level is Yamamoto's AutoMouse 
[9], which can search the screen for rectangular pixel patterns and click anywhere within 
the pattern.  Copies of the patterns can be arranged on a document and connected to form 
simple visual programs.  Each pattern can have different mouse and keyboard actions 
associated with it. 



High-level visual generalization: What you see is what you record 
 
Zettlemoyer and St. Amant's VisMap  [10] is in some ways a conceptual successor to 
TRIGGERS.  VisMap is a programmable set of sensors, effectors, and skeleton 
controllers for visual interaction with off-the-shelf applications. Sensor modules take 
pixel-level input from the display, run the data through image processing algorithms, and 
build a structured representation of visible interface objects.  Effector modules generate 
mouse and keyboard gestures to manipulate these objects.  VisMap is designed as a 
programmable user model, an artificial user with which developers can explore the 
characteristics of a user interface. 
 
VisMap is not, by itself, a Programming by Example system. But it does demonstrate that 
visual generalization is practical in an interface, and we hope to apply its approach in a 
full PBE system. VisMap translates the pixel information to data types that have more 
meaning outside of the GUI context.  For example, building on VisMap we have 
developed VisSolitaire, a simple visual application that plays Microsoft Windows 
Solitaire.  VisMap translates the pixel information to data types that represent the state of 
a generic game of Solitaire. This state provides input to an AI planning system that plays 
a reasonable game of solitaire, from the starting deal to a win or loss. It does not use an 
API or otherwise have any cooperation from Microsoft Solitaire.  
 
VisSolitaire's control cycle alternates between screen parsing and generalized action.  
VisSolitaire processes the screen image to identify cards and their positions. When the 
cards are located, a visual grammar characterizes them based on relative location and 
visual properties.  In this way the system can identify the stacks of cards that form the 
stock, tableau, and foundation, as well as classify each card based on visual identification 
of its suit and rank, as shown below. 
 

 
 



 
 
 

Figure 3. VisSolitaire source data and visual processing results 

 
 
A bottom-up pattern recognition process is interleaved with a top-down interpretation of 
the visual patterns.  Key to the effectiveness of the system is the loose coupling between 
these two components.  The strategic, game-playing module represents its actions in 
general terms, such as "Move any ace that is on top of a tableau pile to an empty 
foundation slot." The visual processing component maps this command to the specific 
state of the Solitaire application: "Move the ace of spades to the second foundation slot". 
VisSolitaire , like a human solitaire player, relies on the layout of the cards to guide its 
actions, rather than depending entirely on the visual representations of the cards alone. 
 
VisMap's recognition of cards is one illustration of an application-specific visual 
recognition procedure that can be used in visual generalization. 
 



To make a visual recognition approach work for PBE in general, we may have to define 
visual grammars that describe the meaning of particular interface elements or the visual 
language of particular applications.  For example, if we understand that the format of a 
monthly calendar is a grid of boxes, each box representing the date, and lines within the 
boxes representing particular appointments, we can infer the properties of a Now-Up-to-
Date Appointment object. 

 
It is also possible that there are other properties of the appointment object [such as the 
duration of the appointment] which are not represented in the visual display, so we may 
not be able to infer them from the screen representation alone.  Developing the 
application display format grammars is time-consuming work for expert developers, not 
for end users. However, the effort for a particular application can be amortized over all 
the uses of that application.  The model of the application need not be complete; it may 
only capture those aspects of the application data of current interest.  
 
One way to utilize the results of this kind of processing in a programming by example 
system is to adopt a similar approach to Tatlin [5], which inferred user actions by polling 
applications for their state periodically and compared successive states to determine user 
actions. Tatlin used the examinability of the application data models for the spreadsheet 
Excel and calendar program Now Up-to-Date via the Applescript inter-process 
communication language.  In the scenario below, a user copies information from a 
calendar and pastes it into a spreadsheet. Tatlin “sees” that the data pasted into the 
spreadsheet is the same as was selected in the calendar and infers the transfer operation. 
 

 



 

Figure 4. Tatlin can infer copying data from a calendar to a spreadsheet 

 
If we developed descriptions of the visual interface of the calendar and the spreadsheet, 
we could do the same simply by analyzing the screen image, even without access to the 
underlying application data.  
 
Research by others gives further evidence of the potential of visual generalization.  Lakin 
[4] built several programming environments around an object-oriented graphical editor, 
Vmacs. He used a recognition procedure on the visual relations between objects to attach 
semantics to sketched objects, which implemented a kind of visual generalization. 
Notably, the grammars used to drive the recognition procedure were themselves 
represented visually in Vmacs itself. A kind of visual generalization was used by 
Kurlander [2] to automate search-and-replace procedures. But while Lakin and Kurlander 
were able to directly access the visual properties of objects in their own purpose-built 
graphical editors, we are proposing to extract the same kind of visual properties directly 
from pixel-level analysis of the screen.  
 
 

Introducing novel generalizations: Generalizing on grids 
 
Visual generalization opens us the possibility of having different kinds of generalizations 
than are possible by generalizing from the properties of the underlying application data.  
As an example of a kind of useful generalization not possible with data-based 
approaches, consider that it might be possible to convey the general notion of a grid, so 
that procedures might be iterated throughout the elements of a grid. 
 
The idea of a grid can be expressed purely with visual relations, i.e. 
 

You start at one object, then move right until you find the next, and so on, 
until there are no more objects to the right. Then return to the object in the 
beginning of the row, move down one object, then start moving to the right 
again. Keep doing each row until you can’t move down any more. 

 
Once you have the “idea” of a grid, you can apply it in a wide variety of applications. 
The same program could work whether operating on daily schedules in a calendar, 
program, icons in a folder window, tables in Netscape, etc. 
 



 
 

 
 



 
 

Figure 5. Examples of Grids in a Calendar, the Finder and Netscape 

 
For this to work, the definition of “move to the next object to the left” and “move to the 
next object down” may need to be redefined for each application. But given the ability to 
do so, we can make real the user’s perception that all grids are basically the same, despite 
the artificial barriers that separately programmed applications place against this 
generalization. 



 

Conclusion: The opportunities and challenges of Visual Generalization 
 
We can ask several questions when exploring a new perspective such as that offered by a 
visual generalization approach.  How can it contribute in a way that other existing 
perspectives are unable to?  Existing techniques such as Apple Events and OLE 
Automation can sometimes provide powerful perspectives from which to build programs.  
Adding a new perspective to a system can increase the user interface complexity 
significantly.  If there is a large overlap in the range of information, then the new form of 
the information must provide some advantage---as can be demonstrated with Triggers 
and VisMap. 
 
What new challenges are raised by the new perspective, and what tools can address the 
challenges?  Triggers has the challenge of accurately specifying pixel patterns and 
distances that are cryptic when viewed out of context.  It addresses this challenge using 
the Desktop Blanket, a technique for allowing direct manipulation widgets to float above 
the screen pixels of the display.  VisMap has the challenge of inferring high-level 
features from low-level pixel data.  It addresses this challenge using a two-stage 
translation process.  The first stage works bottom-up and identifies low-level features.  
The second stage works top down and infers high-level features from the low-level 
features. 
 
Can complete solutions be built within the perspective?  Such solutions may indicate the 
potential for an elegant special purpose system.  Working from one perspective, it has 
potential to have a simple elegant interface.  Triggers show a small set of functionality 
that can automate non trivial tasks.  More work has to be done, however, to show that a 
significant user group can make use of this functionality.  
 
How can we integrate the perspective with other perspectives?  The Triggers-IV system 
described in [8] addresses these issues by showing how the Desktop Blanket can be 
added to a conventional programming language.  VisMap already has a textual interface 
that can easily be integrated with textual programming languages that use other 
techniques.  
 
Our current intuitions about the design of a visual generalization system for PBE lean 
toward a broad-based approach that applies pixel-level operators, as in Triggers, where 
appropriate, but also generates higher-level information inferred from the pixel data, as in 
VisMap. If the user knows what a particular piece of information looks like on the 
screen, but does not know how to describe it, then a low-level pixel based approach may 
be the best choice.  If displayed information needed by a program is not provided by 
formal techniques and its visual appearance is complicated, then a high-level pixel-based 
approach may be the best solution. If the program needs efficient access to large data 
structures in an application, then the user can choose a technique such as OLE 
Automation or Apple Events, provided the application provides the necessary support. 
 



Other issues for complete integration in applications include the granularity of event 
protocols, styles of interaction with the user, and parallelism considerations [5]. Event 
granularity determines the level of abstraction at which a visual system interacts with an 
interface. For example, should mouse movements be included in the information 
exchanged? If not all mouse movements, then which ones are important? Issues of 
parallelism can enter the picture when the system and the user both try to manipulate the 
same interface object. 
 
We believe that the opportunities and challenges of Visual Generalization will be a 
fruitful new direction for Programming by Example in the future. It might turn out, that 
when it comes to graphical interfaces, beauty may indeed be only skin deep.  
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