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Abstract

Evolutionary algorithms are general, randomized search heuristics that are influ-
enced by many parameters. Though evolutionary algorithms are assumed to be
robust, it is well-known that choosing the parameters appropriately is crucial for
success and efficiency of the search. It has been shown in many experiments, that
non-static parameter settings can be by far superior to static ones but theoretical
verifications are hard to find. We investigate a very simple evolutionary algo-
rithm and rigorously prove that employing dynamic parameter control can greatly
speed-up optimization.

1 INTRODUCTION

Evolutionary algorithms are a class of general, randomized search heuristics that can be
applied to many different tasks. They are controlled by a number of different parameters
which are crucial for success and efficiency of the search. Though rough guidelines mainly
based on empirical experience exist, it remains a difficult task to find appropriate settings.
One way to overcome this problem is to employ non-static parameter control. Bäck (Bäck
1998) distinguishes three different ways of non-static parameter control: dynamic parameter
control is the simplest variant. The parameters are set according to some (maybe random-
ized) scheme, that depends on the number of generations. In adaptive parameter control
the control scheme can take the individuals and their function values encountered so far
also into account. Finally, when self-adaptive parameter control is used, the parameters
are evolved by application of the same search operators as used by evolutionary algorithms,
namely mutation, crossover, and selection. All three variants are used in practice, but there



is little theoretically confirmed knowledge about them. This holds especially as far as op-
timization of discrete objective functions is concerned. In the field of evolution strategies
(Schwefel 1995) on continuous domains some theoretical studies are known (Beyer 1996;
Rudolph 1999).

Here, we concentrate on the exact maximization of fitness functions f : {0, 1}n → R by means
of a very simple evolutionary algorithm. In its basic form it uses static parameter control, of
course, and is well-known as (1+1) EA ((1+1) evolutionary algorithm) (Mühlenbein 1992;
Rudolph 1997; Droste, Jansen, and Wegener 1998b; Garnier, Kallel, and Schoenauer 1999).
In Section 2 we introduce the (1+1) EA. In Section 3 we consider a modified selection
scheme that is parameterized and subject to dynamic parameter control. We employ a
simplified mutation operator leading to the Metropolis algorithm (Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller 1953) in the static and to simulated annealing (Kirkpatrick,
Gelatt, and Vecchi 1983) in the dynamic case. For an appropriate fitness function serving
as an example we prove that appropriate dynamic parameter control schemes can reduce
the average time needed for optimization from exponential to polynomial compared to an
optimal static setting. In Section 4 we employ a very simple dynamic parameter control of
the mutation probability and show how this enhances the robustness of the algorithm: in
cases where already a static setting is efficient it typically slows down the optimization only
by the factor logn. Furthermore, we prove for an appropriately chosen fitness function f
that it efficiently optimizes f which cannot be achieved using the most recommended static
choice for the mutation probability. On the other hand, we present a function where this
special dynamic variant of the (1+1) EA is by far outperformed by its static counterpart.
In Section 5 we finish with some concluding remarks.

2 THE (1+1) EA

Theoretical results about evolutionary algorithms are in general difficult to obtain. This
is mainly due to their stochastic character. Especially, crossover leads to the analysis
of quadratical dynamic systems, which is of extreme difficulty (Rabani, Rabinovich, and
Sinclair 1998). Therefore, it is a common approach to consider simplified evolutionary
algorithms, which (hopefully) still contain interesting, typical, and important features of
evolutionary algorithms in general. The maybe simplest and best known such algorithm
is the so-called (1+1) evolutionary algorithm ((1+1) EA). It has been subject to intense
research, Mühlenbein (1992), Rudolph (1997), Droste, Jansen, and Wegener (1998b), and
Garnier, Kallel, and Schoenauer (1999) are just a few examples. It can be formally defined
as follows, where f : {0, 1}n → R is the objective function to be maximized:

Algorithm 1 ((1+1) EA).
1. Choose p(n) ∈ (0; 1/2].
2. Choose x ∈ {0, 1}n uniformly at random.
3. Create y by flipping each bit in x independently with probability p(n).
4. If f(y) ≥ f(x), set x := y.
5. Continue at line 3.

The probability p(n) is called the mutation probability. The usual and recommended static
choice is p(n) = 1/n (Bäck 1993), which implies that on average one bit is flipped in each
generation. All the studies mentioned above investigate the case p(n) = 1/n. In the next
section we modify the selection in line 4 such that with some probability strings y with
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f(y) < f(x) are accepted, too. In Section 4 we modify the (1+1) EA by changing the
mutation probability p(n) in each step.

3 DYNAMIC PARAMETER CONTROL IN SELECTION

In this section we compare a variant of the (1+1) EA which uses a simplified mutation
operator and a probabilistic selection mechanism. Mutation consists of flipping exactly one
randomly chosen bit. While this makes an analysis much easier, the selection is now more
complicated: if the new search point is y and the old one x, the new point y is selected with
probability min(1, αf(y)−f(x)), where the selection parameter α is an element of [1,∞[. So
worsenings are now accepted with some probability, which decreases for large worsenings,
while improvements are always accepted.

The only parameter for which we consider static and non-static settings is the selection
parameter α. To avoid any misunderstandings we present the algorithm more formally now.

Algorithm 2.
1. Set t := 1. Choose x ∈ {0, 1}n uniformly at random.
2. Create y by flipping one randomly (under the uniform distribution) chosen bit of x.
3. With probability min{1, α(t)f(y)−f(x)} set x := y.
4. Set t := t+ 1. Continue at line 2.

The function α : N → [1;∞[ is usually denoted as selection schedule. If α(t) is constant with
respect to t the algorithm is called static, otherwise dynamic. We compare static variants
of this algorithm with dynamic ones with respect to the expected running time, i. e., the
expected number of steps the algorithms make until f(x) is the maximum of f for the first
time.

We note that choosing a fixed value for α yields the Metropolis algorithm (see Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller (1953)), while otherwise we get a simulated an-
nealing algorithm, where the neighborhood of a search point consists of all points with Ham-
ming distance one. Hence, our approach can also be seen as a step to answer the question
raised by Jerrum and Sinclair (1997): Is there a natural cooling schedule (which corresponds
to our selection schedule), such that simulated annealing outperforms the Metropolis algo-
rithm for a natural problem? There are various attempts to answer this question (see Jerrum
and Sorkin (1998) and Sorkin (1991)). In particular, Sorkin (1991) proves that simulated
annealing is superior to the Metropolis algorithm on a carefully designed fractal function.
He proves his results using the method of rapidly mixing Markov chains (see Sinclair (1993)
for an introduction). Note, that our proof has a much simpler structure and is easier to
understand. Furthermore, we derive our results using quite elementary methods. Namely,
our proofs do mainly use Markov bounds.

In the following we will present some equations for the expected number of steps the static
algorithm needs to find a maximum. If we can bound the value of α(t), these equations will
be also helpful to bound the expected number of steps in the dynamic case. We assume
that our objective functions are symmetric and have their only global maximum at the all
ones bit string (1, . . . , 1). A symmetric function f : {0, 1}n → R depends on the number of
ones in the input only.

So, when trying to maximize a symmetric function, the expected number of steps the al-
gorithm needs to reach the maximum depends only on the number of ones the actual bit
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string x contains, but not on their positions. Therefore, we can model the process by a
Markov chain with exactly n+ 1 states. Let the random variable Ti (for i ∈ {0, . . . , n}) be
the random number of steps Algorithm 2 with constant α needs to reach the maximum for
the first time, when starting in a bit string with i ones. As the initial bit string is chosen
randomly with equal probability, the expected value of the number T of steps, the whole
algorithm needs, is

E (T ) =
n∑

i=0

(
n
i

)
2n

· E (Ti) .

Hence, by bounding E (Ti) for all i ∈ {0, . . . , n} we can bound E (T ). As the algorithm can
only change the number of ones in its actual bit string by one, the number Ti of steps to
reach the maximum (1, . . . , 1) is the sum of the numbers T+

j of steps to reach j + 1 ones,
when starting with j ones, over all j ∈ {i, . . . , n− 1}.
Let p+

i resp. p−i be the transition probability, that the algorithm goes to a state with i+ 1
resp. i− 1 ones when being in a state with i ∈ {0, . . . , n} ones. Then the following lemma
is an immediate consequence.

Lemma 3. The expected number E
(
T+

i

)
of steps to reach a state with i + 1 ones for the

first time, when starting in a state with i ∈ {1, . . . , n− 1} ones, is

E
(
T+

i

)
=

1
p+

i

+
p−i
p+

i

· E (
T+

i−1

)
.

Proof. When being in a state with i ∈ {1, . . . , n− 1} ones, the number of ones can increase,
decrease or stay the same. This leads to the following equation:

E(T+
i ) = p+

i · 1 + p−i · (1 + E(T+
i−1) + E(T+

i )
)
+

(
1− p+

i − p−i
) · (1 + E(T+

i )
)

⇔ p+
i · E(T+

i ) = 1 + p−i · E(T+
i−1)

⇔ E(T+
i ) =

1
p+

i

+
p−i
p+

i

·E(T+
i−1).

Using this recursive equation to determine E
(
T+

i

)
, we can derive the following lemma by

induction:

Lemma 4. The expected number E
(
T+

i

)
of steps to reach a state with i + 1 ones for the

first time, when starting in a state with i ∈ {1, . . . , n− 1} ones, is for all j ∈ {1, . . . , i}:

E
(
T+

i

)
=

(
j−1∑
k=0

∏k−1
l=0 p

−
i−l∏k

l=0 p
+
i−l

)
+

∏j−1
l=0 p

−
i−l∏j−1

l=0 p
+
i−l

· E (
T+

i−j

)
.

Proof. The equation can be proven by induction over j. For j = 1 it is just Lemma 3.
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Assuming that it is valid for j, we can prove it for j + 1 in the following way:

E(T+
i ) =

(
j−1∑
k=0

∏k−1
l=0 p

−
i−l∏k

l=0 p
+
i−l

)
+

∏j−1
l=0 p

−
i−l∏j−1

l=0 p
+
i−l

·E(T+
i−j)

=

(
j−1∑
k=0

∏k−1
l=0 p

−
i−l∏k

l=0 p
+
i−l

)
+

∏j−1
l=0 p

−
i−l∏j−1

l=0 p
+
i−l

·
(

1
p+

i−j

+
p−i−j

p+
i−j

·E(T+
i−j−1)

)

=

(
j−1∑
k=0

∏k−1
l=0 p

−
i−l∏k

l=0 p
+
i−l

)
+

∏j−1
l=0 p

−
i−l∏j

l=0 p
+
i−l

+
∏j

l=0 p
−
i−l∏j

l=0 p
+
i−l

· E(T+
i−j−1)

=

(
j∑

k=0

∏k−1
l=0 p

−
i−l∏k

l=0 p
+
i−l

)
+

∏j
l=0 p

−
i−l∏j

l=0 p
+
i−l

· E(T+
i−(j+1)).

Since E
(
T+

0

)
= 1/p+

0 , we get for the case j = i:

Corollary 5. The expected number E
(
T+

i

)
of steps to reach a state with i+ 1 ones, when

starting in a state with i ∈ {1, . . . , n− 1} ones, is:

E
(
T+

i

)
=

(
i−1∑
k=0

∏k−1
l=0 p

−
i−l∏k

l=0 p
+
i−l

)
+

∏i−1
l=0 p

−
i−l∏i−1

l=0 p
+
i−l

· 1
p+
0

=
i∑

k=0

∏k−1
l=0 p

−
i−l∏k

l=0 p
+
i−l

=
i∑

k=0

1
p+

k

·
i∏

l=k+1

p−l
p+

l

.

Using these results we now show that there exists a function Valley : {0, 1}n → R, such
that Algorithm 2 using an appropriate selection schedule with decreasing probability for
accepting worsenings needs only polynomial expected time, while setting α constant implies
exponential expected time, independent of the choice of α. We do this by showing that
the running time with a special increasing selection schedule is polynomial with very high
probability, so that all the remaining cases have only exponentially small probability and
cannot influence the result by more than a constant.

Intuitively, the function Valley should have the following properties: With a probability
that is bounded below by a positive constant we start with strings where it is necessary to
accept worsenings. In the late steps of maximization the acceptance of worsenings increases
the maximization time. We will show that the following function fulfills these intuitive
concepts to a sufficient extent.
Definition 6. The function Valley : {0, 1}n → R is defined by (w. l. o. g. n is even):

Valley :=
{

n/2− ‖x‖1 for ‖x‖1 ≤ n/2,
7n2 ln(n)− n/2 + ‖x‖1 for ‖x‖1 > n/2,

where ‖x‖1 denotes the number of ones in x.
Theorem 7. The expected number of steps until Algorithm 2 with constant α(t) = α reaches
the maximum of Valley for the first time is

Ω

((√
α

4

)n

+
(

1
α

+ 1
)n

)
= Ω(1.179n)

for all choices of α ∈ [1,∞[.

5



Proof. The idea of the proof is that for large α, i. e., small probability of accepting worsen-
ings, the expected time to come from state n/2 − 1 to state n/2 is exponential, while for
small α the expected time to come from state n− 1 to state n is exponential.

When we take a look at the function Valley for all x with ||x||1 < n/2, we see, that it
behaves like −OneMax with respect to Algorithm 2 with a static choice of α. So, if p+

j

resp. p−j is the probability of increasing the number of ones resp. decreasing the number of
ones by one, when the actual x contains exactly j ones, we have for all j ∈ {0, . . . , n/2− 1}

p+
j =

n− j

α · n and p−j =
j

n
.

Hence, using Corollary 5, we get for E(T+
i ), the expected number of steps until we reach a

bit string with i+ 1 ones, when starting with a bit string with i < n/2 ones:

E(T+
i ) =

i∑
k=0

1
p+

k

·
i∏

l=k+1

p−l
p+

l

=
i∑

k=0

α · n
n− k

·
i∏

l=k+1

l

n
· α · n
n− l

=
i∑

k=0

αi−k+1 · n

n− k
· i! · (n− i− 1)!
k! · (n− k − 1)!

=
i∑

k=0

αi−k+1 ·
(
n
k

)
(
n−1

i

) . (1)

So E(T+
n/2−1) can be lower bounded in the following way

E(T+
n/2−1) =

n/2−1∑
k=0

αn/2−k ·
(
n
k

)
(

n−1
n/2−1

) ≥ αn/2(
n−1

n/2−1

) ≥ αn/2

2n
. (2)

Hence, E(T+
n/2−1) is Ω

((√
α/4

)n)
. So for α ≥ 4+ ε (where ε > 0) this results in an expo-

nential lower bound for E(T+
n/2−1), implying this bound for E(Ti) for all i ∈ {0, . . . , n/2−1}.

Because this is at least a constant fraction of all bit strings, we have an exponential lower
bound for the expected number of steps for any static choice of α with α ≥ 4 + ε.

In the following we want to show an exponential lower bound for the expected number
of steps E(Tn−1) for α < 4 + ε. When α is small, worsenings are accepted with large
probability, so that we can expect E(Tn−1) to be large. To lower bound E(Tn−1) we use
Lemma 4. Because we have for all i ∈ {n/2 + 2, . . . , n− 1}:

p+
i =

n− i

n
and p−i =

i

n · α,

we can lower bound E(T+
n−1) by:

E(T+
n−1) ≥

n/2−3∑
k=0

∏k−1
l=0 p

−
n−1−l∏k

l=0 p
+
n−1−l

=
n/2−3∑
k=0

∏n−1
l=n−k p

−
l∏n−1

l=n−k−1 p
+
l

=
n/2−3∑
k=0

∏n−1
l=n−k

l
n·α∏n−1

l=n−k−1
n−l
n

=
n/2−3∑
k=0

n

αk
· (n− 1)!
(n− k − 1)! · (k + 1)!

=
n/2−3∑
k=0

(
n

k+1

)
αk

= α ·
n/2−2∑
k=1

(
n
k

)
αk

≥ α ·
((

1
α + 1

)n−4

2
− 1

)
= Ω

((
1
α

+ 1
)n−4

)
.
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Hence, for all i ∈ {0, . . . , n/2− 1} the expected value of Ti is

E(Ti) = Ω

((√
α

4

)n

+
(

1
α

+ 1
)n−4

)
,

which is exponential for all choices of α ∈ [1;∞[. As the fraction of bit strings with at
most n/2 − 1 ones is bounded below by a positive constant, the expected running time is
exponential for all α. Numerical analysis leads to the result that this is Ω(1.179n).

Intuitively, one can perform better on Valley, if the selection schedule works as follows:
in the beginning, worsenings are accepted with probability almost one, so that the actual
point x is almost making a random walk, until its number of ones increases to n/2 + 1. As
the difference between the function values for n/2 + 1 and n/2 ones is so large, it is very
unlikely that the number of ones of the actual x will fall below n/2 + 1, assuming α(t) > 1
at this point of time. Hence, if the probability of accepting worsenings decreases after some
carefully chosen number of steps, the maximum (1, . . . , 1) should be reached quickly:

Theorem 8. With probability 1 − O(n−n) the number of steps until Algorithm 2 with the
selection schedule

α(t) := 1 +
t

s(n)

reaches the maximum of Valley for the first time is O(n · s(n)) for any polynomial s
with s(n) ≥ 2en4 logn. Furthermore, the expected number of steps until this happens is
O(n · s(n)), if we set α(t) := 1 for t > 2n.

Proof. The basic idea of the proof is to split the run of Algorithm 2 into two phases of
predefined length. We show that with very high probability a state with at least n/2 + 1
ones is reached within the first phase, and all succeeding states have at least n/2 + 1 ones,
too. Furthermore, with very high probability the optimum is reached within the second
phase. Finally, we upper bound the expected number of steps in the case, that any of these
events do not happen.

The first phase has length s(n)/n+2en3 logn. We want to upper bound the expected number
of steps in the first phase Algorithm 2 takes to reach a state with at least n/2 + 1 ones.
For that purpose we upper bound E

(
T+

i

)
for all i ∈ {0, . . . , n/2}. We do not care what

happens during the first s(n)/n steps. After that, we have α(t) ≥ 1 + 1/n. Pessimistically
we assume that the current state at step t = s(n)/n contains at most n/2 ones.

We use equation (1) of Theorem 7, which is valid for i ∈ {0, . . . , n/2− 1}.

E
(
T+

i

)
=

i∑
j=0

αi−j+1 ·
(
n
j

)
(
n−1

i

) =
i∑

j=0

αj+1 ·
(

n
i−j

)
(
n−1

i

)
=

i∑
j=0

αj+1 · n!
(i− j)! · (n− i+ j)!

· i! · (n− 1− i)!
(n− 1)!

=
i∑

j=0

αj+1 ·
(

i
j

)
(
n−i+j

j

) · n

n− i

As the last expression decreases with decreasing i, it follows that E
(
T+

i

) ≤ E
(
T+

i+1

)
for

all i ∈ {0, . . . , n/2− 1}. Since the length of the first phase is s(n)/n+ 2en3 logn, we have
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α(t) ≤ 1 + 2/n during the first phase. Using this and setting i = n/2− 1, we get

E
(
T+

n/2−1

)
≤

n/2−1∑
j=0

(
1 +

2
n

)j+1
(
n/2−1

j

)
(
n/2+1+j

j

) · n

n/2 + 1
≤ 2

n/2−1∑
j=0

e = en.

Hence, by using Lemma 3 we can upper bound E
(
T+

n/2

)
by

E
(
T+

n/2

)
=

1
(n/2)/n

+
(n/2)/n
(n/2)/n

· E
(
T+

n/2−1

)
≤ 2 + en.

So, the expected number of steps until a bit string with more than n/2 ones is reached is
bounded above by

(n/2) · en+ 2 + en ≤ en2.

We use the Markov inequality and see, that the probability of not reaching a state with
more than n/2 ones within 2en2 steps is at most 1/2. Our analysis is independent of the
current bit string at the beginning of such a subphase of length 2en2. So, we can consider
the 2en3 logn steps in the first phase as n logn independent subphases of length 2en2 each.
Hence, the probability of not reaching a state with more than n/2 ones within the first phase
is O(n−n).

Assume that Algorithm 2 reaches a bit string with more than n/2 ones at some step t with
t ≥ s(n)/n. This yields α(t) ≥ 1 + 1/n. Let p(n) be some polynomial. The probability to
reach a bit string with at most n/2 ones within p(n) steps is bounded above by

p(n) · n/2 + 1
n · (1 + 1/n)7n2 ln n

<
p(n)
e4n lnn

= O(n−n)

where the last equality follows since p(n) is a polynomial. We conclude that after once
reaching a bit string with more than n/2 ones, for polynomially bounded number of steps
the number of ones is larger than n/2, too, with probability 1− O(n−n). Hence, after the
first phase the probability of not being in a state with more than n/2 ones is O(n−n).

Now we consider the succeeding second phase, which ends with t = n · s(n), which is
polynomially bounded. Therefore, we neglect the case that during the second phase a bit
string with at most n/2 ones is reached. We saw above, that this case has probability
O(n−n).

We want to prove that with very high probability the optimum is reached within the second
phase. In order to do so we upper bound the expected number of steps Algorithm 2 needs to
reach the optimum. We do not care about the beginning of phase 2 and consider only steps
with t ≥ (n − 1)s(n). Then we have α(t) ≥ n. Due to the length of the second phase, we
have α(t) ≤ n+ 1, too. Using equation (2) of Theorem 7, we can upper bound E

(
T+

n/2−1

)
in the following way.

E
(
T+

n/2−1

)
≤

n/2−1∑
j=0

(n+ 1)n/2−j ·
(
n
j

)
(

n−1
n/2−1

) ≤
n/2−1∑

j=0

(
n

j

)
nn−j ≤ (1 + n)n

Hence, we can upper bound E
(
T+

n/2

)
by

E
(
T+

n/2

)
=

1
(n/2)/n

+
(n/2)/n
(n/2)/n

· E
(
T+

n/2−1

)
≤ 2 + (1 + n)n
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and E
(
T+

n/2+1

)
by

E
(
T+

n/2+1

)
≤ 1

(n/2− 1)/n
+

(n/2 + 1)/(n · n7n2 ln n)
(n/2− 1)/n

· E
(
T+

n/2

)
≤ 2n

n− 2
+

n+ 2
2n7n2 ln(n)+1

· 2n
n− 2

((1 + n)n + 2) ≤ 7.

Using Lemma 4 for j = i− n/2− 1, we get for all i ∈ {n/2 + 2, . . . , n− 1}

E
(
T+

i

)
=


i−n/2−2∑

j=0

∏j−1
k=0 p

−
i−k∏j

k=0 p
+
i−k


 +

∏i−n/2−2
k=0 p−i−k∏i−n/2−2
k=0 p+

i−k

· E
(
T+

n/2+1

)

≤

i−n/2−2∑

j=0

∏i
k=i−j+1 p

−
k∏i

k=i−j p
+
k


 +

∏i
k=n/2+2 p

−
k∏i

k=n/2+2 p
+
k

· 7.

As Valley behaves like OneMax for all states with at least n/2 + 2 ones with respect to
Algorithm 2, we have p+

k = (n− k)/n and p−k = k/(nα/t). Hence, we get

E
(
T+

i

) ≤

i−n/2−2∑

j=0

∏i
k=i−j+1 k/(n · n)∏i
k=i−j(n− k)/n


 +

∏i
k=n/2+2 k/(n · n)∏i
k=n/2+2(n− k)/n

· 7

=


i−n/2−2∑

j=0

n−2j · i!/(i− j)!
n−j−1 · (n− i+ j)!/(n− i− 1)!


 +

n−2i+n+2 · i!/(n/2 + 1)!
n−i+n/2+1 · (n/2− 2)!/(n− i− 1)!

· 7

=


i−n/2−2∑

j=0

n1−j ·
(

i
j

)
(n− i) · (n−i+j

j

)

 +

(n/2− 1) · ( n
n/2+1

) · nn/2+1

(n− i) · (n
i

) · ni
· 7.

To upper bound the second term, we derive the following for all i ∈ {0, . . . , n− 2}.

(n− i) ·
(
n

i

)
· ni ≤ (n− (i+ 1)) ·

(
n

i+ 1

)
· ni+1

⇐⇒ n− i

n− i− 1
· n!
i! · (n− i)!

· (i+ 1)! · (n− i− 1)!
n!

≤ n

⇐⇒ i+ 1
n− i− 1

≤ n, which is valid for all i ∈ {0, . . . , n− 2}.

Hence, we get the following upper bound for E
(
T+

i

)
, as i is at least n/2 + 2:

E
(
T+

i

) ≤

i−n/2−2∑

j=0

n1−j ·
(

i
j

)
(n− i) · (n−i+j

j

)

 + 7.

So, by upper bounding E
(
T+

n−1

)
, we get an upper bound for E

(
T+

i

)
for all i ∈ {n/2 +

2, . . . , n− 1}:

E
(
T+

n−1

) ≤ n ·

n/2−3∑

j=0

(
1
n

)j

·
(
n−1

j

)
(
j+1

j

)

 + 7 ≤ n ·


n/2−3∑

j=0

(
1
n

)j (
n

j

)
 + 7

≤ n · (1 + 1/n)n + 7 ≤ en+ 7 ≤ 2en

9



Hence, for all i ∈ {n/2+ 1, . . . , n} the value of E (Ti) can be upper bounded by en2. Using
the Markov inequality, this implies that after 2en2 steps the probability that the optimum
is not reached is upper bounded by 1/2. Considering the s(n) ≥ 2en4 logn steps as at least
n2 logn independent subphases of length 2en2 each, implies that the optimum is reached
with probability 1−O(n−n). Altogether we proved that the optimum is reached within the
first n · s(n) steps with probability 1−O(n−n).

In order to derive the upper bound on the expected number of steps we consider the case
that the optimum is not reached. This has probability O(n−n). We use the additional
assumption that α(t) = 1 holds for t > 2n. We do not care what else happens until t > 2n

holds. Then we have α(t) = 1. This implies that the algorithm performs a pure random
walks, so the expected number of steps in this case is upper bounded by O(2n) (Garnier,
Kallel, and Schoenauer 1999). This yields that the contribution in case of a failure to the
expected number of steps is

O(2n) ·O(n−n) = O(1)

to the expected running time. Altogether, we see that the expected running time is upper
bounded by O(n · s(n)).

4 DYNAMIC PARAMETER CONTROL IN MUTATION

In this section we present a variant of the (1+1) EA that uses a very simple dynamic
variation scheme for the mutation probability p(n). The key idea is to try all possible
mutation probabilities. Since we do not want to have too many steps where no bit flips
at all, we consider 1/n to be a reasonable lower bound: using p(n) = 1/n implies that
on average one bit is flipped in one mutation. As for the (1+1) EA we use 1/2 as an
upper bound for the choice of p(n). Furthermore, we do not want to try too many different
mutation probabilities, since each try is a potential waste of time. Therefore, we double
the mutation probability in each step, which yields a range of �logn� different mutation
probabilities.

Algorithm 9.
1. Choose x ∈ {0, 1}n uniformly at random.
2. p(n) := 1/n.
3. Create y by flipping each bit in x independently with probability p(n).
4. If f(y) ≥ f(x), set x := y.
5. p(n) := 2p(n). If p(n) > 1/2, set p(n) := 1/n.
6. Continue at line 3.

First of all, we demonstrate that the dynamic version has a much better worst case perfor-
mance than the (1+1) EA with fixed mutation probability p(n) = 1/n. It is known (Droste,
Jansen, and Wegener 1998a) that for some functions the (1+1) EA with p(n) = 1/n needs
Θ(nn) steps for optimization.

Theorem 10. For any function f : {0, 1}n → R the expected number of steps Algorithm 9
needs to optimize f is upper bounded by 4n logn.

Proof. Algorithm 9 uses �logn� different values for the mutation probability p(n), all from
the interval [1/n; 1/2]. In particular, for each d ∈ [1/n; 1/4] we have that some mutation
probability p(n) ∈ [d; 2d] is used every �logn�-th step. Using d = 1/4 yields that in each
�logn�-th step we have p(n) ≥ 1/4. In these steps, the probability to create a global
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maximum as child y in mutation is lower bounded by (1/4)n. Thus, each �logn�-th step
with probability at least 4−n a global maximum is reached. Therefore, the expected number
of steps needed for optimization is upper bounded by 4n logn.

Note, that depending on the value of n better upper bounds are possible. If n is a power of
2, p(n) = 1/2 is one of the values used and we have 2n logn as an upper bound. This is a
general property of Algorithm 9: depending on the value of n different values for p(n) are
used which can yield different expected running times.

Of course, using the (1+1) EA with the static choice p(n) = 1/2 achieves an expected
running time O(2n) for all functions. But, for each function with a unique global optimum
the expected running time equals 2n. For Algorithm 9 such dramatic running times on
simple functions are usually not the case. We consider examples, namely the functions
OneMax and LeadingOnes and the class of all linear functions.
Definition 11. The function OneMax : {0, 1}n → R is defined by OneMax(x) := ‖x‖1

for all x ∈ {0, 1}n. The function LeadingOnes : {0, 1}n → R is defined by

LeadingOnes(x) :=
n∑

i=1

i∏
j=1

xj

for all x ∈ {0, 1}n.

The expected running time of the (1+1) EA with p(n) = 1/n is Θ(n logn) for OneMax

and Θ(n2) for LeadingOnes (Droste, Jansen, and Wegener 1998a).
Theorem 12. The expected running time of Algorithm 9 on the function LeadingOnes is
Θ(n2 logn). Furthermore, there are two constants 0 < c1 < c2 such that with probability 1−
e−Ω(n) Algorithm 9 optimizes the function LeadingOnes within T steps where c1n2 logn ≤
T ≤ c2n

2 logn holds.

Proof. Assume that the current string x of Algorithm 9 contains exactly i leading ones, i. e.,
LeadingOnes(x) = i. Then, there is at least one mutation that flips the (i + 1)-th bit
in x and increases the function value by at least 1. This mutation has probability at least
(1/n)(1 − 1/n)n−1 > 1/(en) for p(n) = 1/n. This is the case each �logn�-th step. In all
other steps the number of leading ones cannot decrease. Thereby, ignoring all other steps
can only increase the number of generations before the global maximum is reached. We
have en logn as upper bound for the expected waiting time for one improvement. After at
most n improvements the global maximum is reached. This leads to O(n2 logn) as upper
bound for the expected running time. The probability that after 2en steps with mutation
probability p(n) = 1/n the number of leading ones is not increased by at least one is upper
bounded by 1/2. For optimization of LeadingOnes at most n such increasements can be
necessary. We apply Chernoff bounds (Hagerup and Rüb 1989) and get that with probability
1 − e−Ω(n) all necessary increasements occur within 3en2 steps with mutation probability
p(n) = 1/n. Therefore, with probability 1− e−Ω(n) after 3en2 log n generations the unique
global optimum is reached.

The lower bound can be proved in a similar way as for the (static) (1+1) EA with p(n) = 1/n
(Droste, Jansen, and Wegener 1998a). The main ideas that are additionally needed are that
the varying mutation probabilities do not substantially enlarge the probability to enlarge
the function value and that the number of enlargements in one phase can be controlled.
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Assume that the current string x contains exactly i leading ones, i. e., LeadingOnes(x) = i
and that i < n − 1 holds. We have xi+1 = 0 in this case. It is obvious that the n −
i − 1 bits xi+2, xi+3, . . . , xn are all totally random, i. e., for all y ∈ {0, 1}n−i−1 we have
Prob (xi+1xi+2 · · ·xn = y) = 2−n+i+1. We consider a run of Algorithm 9 and start our
considerations at the first point of time where LeadingOnes(x) ≥ n/2 holds. We know that
for each constant δ > 0, we have that the probability that LeadingOnes(x) > (1 + δ)n/2
holds at this point of time is upper bounded by e−Ω(n). The probability to increase the
function value in one generation is upper bounded by

(1− p(n))LeadingOnes(x) · p(n) ≤ (1− p(n))n/2 · p(n).
We consider a subphase of length �logn�, such that all �log n� different mutation probabil-
ities are used within this phase. The probability for increasing the function value in one
such subphase is upper bounded by

�log n�−1∑
i=0

2i

n
·
(
1− 2i

n

)n/2

<
1
n

∞∑
i=0

2i · e−2i−1 ≤ β

n
,

where β is a positive constant.

We say that a generation is successful, if the function value is increased. The probability to
increase the function value by at least k > 0 in a successful generation equals 2−k+1. There-
fore, the probability to increase the function value by at least 2t in t successful generations
is upper bounded by 2−t. We conclude that with probability at least 1− e−Ω(n) there have
to be at least ((1 − δ)/4)n successful generations before the global optimum is reached.

We consider a slightly modified random process. In this new process after a successful gener-
ation the next �logn� generations are guaranteed not to be successful. By this modification
it follows that in each subphase there is at most one successful generation. We note that
this modified process may need longer to reach the global optimum. But the number of ad-
ditional generations needed is upper bounded by n �log n�, since after at most n successful
generations, the global optimum is surely reached. Obviously, the probability to increase
the function value in one subphase is bounded above by β/n for the modified process, too.
We conclude that with probability 1− e−Ω(n) within ((1 − δ)/(8β))n2 subphases there are
at most ((1− δ)/4)n successful generations.

Therefore, with probability 1−e−Ω(n) Algorithm 9 does not reach the global optimum within

1− δ

8β
n2 �logn� − n �logn�

generations. Since δ and β are constants with 0 < δ < 1 and β > 0 we see that Ω
(
n2 logn

)
generations are needed with probability 1− e−Ω(n).

Theorem 13. The expected running time of Algorithm 9 on the function OneMax is upper
bounded by O(n log2 n). The expected running time of Algorithm 9 on an arbitrary linear
function is bounded by O(n2 logn).

Sketch of Proof: For OneMax we partition {0, 1}n into the sets

Fi := {x ∈ {0, 1}n | OneMax(x) = i} .
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For a linear function f with f(x) = w0 +w1x1 +w2x2 + · · ·+wnxn (we can assume without
loss of generality w0 = 0, w1 ≥ w2 ≥ · · · ≥ wn) we use the partition

F ∗
i := {x ∈ {0, 1}n | w1 + · · ·+ wi ≤ f(x) < w1 + · · ·+ wi+1} .

Note that for all i > j we have OneMax(xi) > OneMax(xj) (f(yi) > f(yj)) for all
xi ∈ Fi, xj ∈ Fj (yi ∈ F ∗

i , yj ∈ F ∗
j ). For OneMax there are n − i mutations of a single

bit to leave Fi. For f , there is 1 mutation of a single bit to leave F ∗
i . Therefore, in steps

with p(n) = 1/n we have at least probability
(
n−i
1

)
(1/n)(1 − 1/n)n−1 ≥ (n − i)/(en) to

leave Fi and at least probability (1/n)(1 − 1/n)n−1 ≥ 1/(en) to leave F ∗
i . This is the case

each �logn�-th step. Again, all other steps cannot do any harm, so by ignoring them we
can only increase the number of steps needed for optimization. This leads to an upper

bound on the expected running time of logn
(

n∑
i=1

en/i

)
= O(n log2 n) for OneMax and

logn
(

n∑
i=1

en

)
= O(n2 log n) for f .

The exact asymptotic running time of Algorithm 9 on OneMax and on arbitrary linear
functions is still unknown. For linear functions one may conjecture an upper bound of
O(n log2 n). We see that Algorithm 9 is by far faster than the (1+1) EA with p(n) = 1/n
in the worst case and only by a factor logn slower in typical cases, where already the (1+1)
EA with the static choice p(n) = 1/n is efficient. Of course, these are not enough reasons
to support Algorithm 9 as a “better” general optimization heuristic than the (1+1) EA
with p(n) = 1/n fixed. Now, we present an example where the dynamic variant by far
outperforms the static choice p(n) = 1/n and finds a global optimum with high probability
in a polynomial number of generations.

We construct a function that serves as an example with the following properties. There is
a kind of path to a local optimum, such that the path is easy to find and to follow with
mutation probability 1/n and a local maximum is quickly found. Then, there is a kind of gap
to all points with maximal function value, that can only be reached via a direct mutation.
For such a direct mutation many bits (in the order of logn) have to flip simultaneously. This
is unlikely to happen with p(n) = 1/n. But raising the mutation probability to a value in
the order of (log n)/n gives a good probability for this final step to a global optimum. Since
Algorithm 9 uses both probabilities each �logn�-th step, it has a good chance to quickly
follow the path to the local maximum and jump over the gap to a global one.

Definition 14. Let n = 2k be large enough, such that n/ logn > 8. First, we define a
partition of {0, 1}n into five sets, namely

L1 := {x ∈ {0, 1}n | n/4 < ‖x‖1 < 3n/4} ,
L2 := {x ∈ {0, 1}n | ‖x‖1 = n/4} ,
L3 :=

{
x ∈ {0, 1}n | ∃i ∈ {0, 1, . . . , (n/4)− 1} : x = 1i0n−i

}
,

L4 :=

{
x ∈ {0, 1}n | (‖x‖1 = logn) ∧

(
2 log n∑
i=1

xi = 0

)}
, and

L0 := {0, 1}n \ (L1 ∪ L2 ∪ L3 ∪ L4) ,

where 1i0n−i denotes the string with i consecutive ones followed by n− i consecutive zeros.
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The function PathToJump : {0, 1}n → R is defined by

PathToJump(x) :=




n− ‖x‖1 if x ∈ L1,

(3/4)n+
n/4∑
i=1

xi if x ∈ L2,

2n− i if x ∈ L3 and x = 1i0n−i,
2n+ 1 if x ∈ L4,

min{‖x‖1, n− ‖x‖1} if x ∈ L0.

Theorem 15. The probability that the (1 + 1) EA with p(n) = 1/n needs a superpolynomial
number of steps to optimize PathToJump converges to 1.

Proof. With probability exponentially close to 1 the initial string belongs to L1 ∪ L2 ∪ L3.
Thus, L0 is never entered. All global maxima belong to L4 and have Hamming distance at
least logn to all points in L1 ∪L2 ∪L3. The probability for a mutation of at least logn bits
simultaneously is bounded above by

(
n

logn

) (
1
n

)log n

≤ 1
(log n)!

.

Therefore, the probability that such a mutation occurs in nO(1) steps is upper bounded by
nO(1)/((logn)!) and converges to 0.

We remark that Theorem 15 can be generalized to all mutation probabilities substantially
different from (logn)/n.

Theorem 16. The expected number of steps until Algorithm 9 finds a global optimum of
the function PathToJump is bounded above by O(n2 logn).

Proof. We define levels Fi of points with the same function value by

Fi := {x ∈ {0, 1}n | PathToJump(x) = i} .

Note, that there are less than 2n+ 2 different levels Fi with Fi �= ∅. Algorithm 9 can enter
these levels only in order of increasing function values. For each level Fi we derive a lower
bound for the probability to reach some x′ ∈ Fj with j > i in one subphase, i. e., a lower
bound on the probability

qi := max


min




∑
x′∈ ⋃

j>i

Fj

(
2k

n

)H(x,x′) (
1− 2k

n

)n−H(x,x′)

| x ∈ Fi


 | 0 ≤ k ≤ �logn�


 ,

where H(x, x′) denotes the Hamming distance between x and x′. Clearly, a lower bound
q′i ≤ qi yields an upper bound of 1/q′i on the expected number of subphases until Algorithm 9
leaves Fi and reaches another level. By summing up the upper bounds for all Fi, i ≤ 2n,
we get an upper bound on the expected running time.

We distinguish four different cases with respect to i.
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Case 1: i ∈ {0, 1, . . . , (3/4)n− 1}
We have x ∈ L0 ∪ L1, so it is sufficient to mutate exactly one of at least n/4 different bits
to increase the function value. This implies

qi ≥
(
n/4
1

)
1
n

(
1− 1

n

)n−1

= Ω(1)

for this case. So we have O(n) as upper bound for the expected number of subphases the
algorithm spends in this part of the search space.

Case 2: i ∈ {(3/4)n, . . . , n− 1}
We have x ∈ L2, it is ‖x‖1 = n/4. Among the bits x1, x2, . . . , xn/4 there are i− (3/4)n bits
with value 1. Among the other bits there are n − i bits with value 1. In order to increase
the function value it is sufficient to mutate exactly one of the (n/4)− (i− (3/4)n) = n− i
bits with value 0 in the first part of x and exactly one of the n− i bits with value 1 in the
second part of x simultaneously. Therefore, we have

qi ≥ (n− i)2
(

1
n

)2 (
1− 1

n

)n−2

= Ω

((
n− i

n

)2
)

as lower bound and

n−1∑
i=(3/4)n

(
n

n− i

)2

= O
(
n2

)

as upper bound on the expected number of subphases Algorithm 9 spends in L2.

Case 3: i ∈ {n, . . . , 2n− 1}
We have x = 12n−i0i−n ∈ L3. Obviously, it is sufficient to mutate exactly the most right
bit with value 1 to increase the function value. This yields

qi ≥ 1
n

(
1− 1

n

)n−1

= Ω
(

1
n

)

as lower bound on the probability and O
(
n2

)
as upper bound on the expected number of

subphases until Algorithm 9 leaves this part of the search space.

Case 4: i = 2n
In order to increase the function value it is necessary and sufficient that exactly logn bits,
which all do not belong to the first 2 logn positions in x mutate simultaneously. This yields

qi ≥
(
n− 2 logn

logn

)
p(n)log n (1− p(n))n−log n

where we can choose p(n) ∈ {
1/n, 2/n, . . . , 2�log n�/n

}
to maximize this lower bound. It is

easy to see, that one should choose p(n) = Θ((logn)/n) in order to maximize the bound.
Therefore, we set p(n) := (c logn)/n for some positive constant c and discuss the value of c
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later. This yields

qi ≥
(
n− 2 logn

logn

) (
c logn
n

)log n (
1− c logn

n

)n−log n

≥
(
n− 2 logn

logn

)log n (
c logn
n

)log n (
1− c logn

n

)n (
1− c logn

n

)− log n

=
(
1− 2 logn

n

)log n

clog n ·Ω
((

1
n

)c/ ln 2
)

·Ω(1)

= Ω
(
n(log c)−c/ ln 2

)
as lower bound on the probability and n(c/ ln 2)−log c as upper bound on the number of
subphases for this final mutation to a global optimum. Obviously, (c/ ln 2)− log c becomes
minimal for c = 1. Unfortunately, it is not guaranteed that the value (logn)/n is used as
mutation probability. Nevertheless, it is clear that for each d with 0 < d < n/(2 logn) every
�logn�-th generation a value from the interval [(d log n)/n; (2d logn)/n] is used as mutation
probability p(n). We choose d = ln 2 and get O

(
n1−log ln 2

)
= O

(
n1.53

)
as upper bound on

the expected number of subphases needed for the final step.

Altogether, we have O
(
n2

)
as an upper bound on the expected number of subphases before

Algorithm 9 reaches the global optimum. As each subphase contains �logn� generations,
we have O

(
n2 logn

)
as upper bound on the expected running time.

We note, that the probability, that the optimum is not reached within O(n3 logn) steps is
exponentially small.

One may speculate that this dynamic variant of the (1+1) EA is always by at most a
factor logn slower than its static counterpart given that the fixed value p(n) is used by
Algorithm 9, i. e., we have p(n) = 2t/n for some t ∈ {1, . . . , �(log n)− 1�}. The reason
for this speculation is clear: the fixed value of p(n) the (static) (1+1) EA uses is tried
by Algorithm 9 in each �logn�-th step. But this speculation is wrong. Our proof idea is
roughly speaking the following. In principle, Algorithm 9 can follow the same paths as
the (1+1) EA with p(n) = 1/n fixed. But if in some distance to the followed path there
are so-called traps that once they are entered are difficult to leave, Algorithm 9 may be
inferior. Due to the fact that it often uses mutation probabilities much larger than 1/n, it
has a much larger chance to reach traps that have a not too large distance to the path. In
the following, we define an example function denoted by PathWithTrap and prove that
the (1+1) EA with p(n) = 1/n is with high probability by far superior to Algorithm 9.
One important ingredient of the definition of PathWithTrap are long paths introduced
by Horn, Goldberg, and Deb (1994).

Definition 17. For n ∈ N and k ∈ N with k > 1 and (n−1)/k ∈ N we define the long k-path
of dimension n Pn

k as a sequence of |Pn
k | strings inductively. For n = 1 we set P 1

k := (0, 1).
Let the long k-path of dimension n− k Pn−k

p = (v1, . . . , vl) be well-defined. Then we define
S0 := (0kv1, . . . , 0k, vl), S1 := (1kvl, . . . , 1kv1), Bn

k := (0k−11vl, 0k−212vl, . . . , 01k−1vl). We
obtain Pn

k as concatenation of S0, B
n
k , S1.

Long k-paths have some structural properties that make them a helpful tool. A proof for
the following lemma can be found in (Rudolph 1997).

16



Lemma 18. Let n, k ∈ N be given such that the long k-path of dimension n is well-defined.
All |Pn

k | = (k + 1)2(n−1)/k − k + 1 points in Pn
k are different. For all i ∈ {1, 2, . . . , k − 1}

we have, that if x ∈ Pn
k has at least i successors on the path, then the i-th successor has

Hamming distance i to x and all other successors of x have Hamming distances different
from i.

Definition 19. For k ∈ N with k > 20 we define the function PathWithTrap : {0, 1}n →
R as follows. Let n := 2k, j := 3k2 + 1. Let pi denote the i-th point of the long k-path of
dimension j. We define a partition of {0, 1}n into seven sets P0, . . . , P6.

P1 := {x ∈ {0, 1}n | 7n/16 < ‖x‖1 ≤ 9n/16}
P2 := {x ∈ {0, 1}n | ‖x‖1 = 7n/16}

P3 :=


x ∈ {0, 1}n | (√

n < ‖x‖1 < 7n/16
)∧


j+

√
n∑

i=j+1

xi =
√
n







P4 :=
{
x ∈ {0, 1}n | ∃i ∈ {

1, 2, . . . ,
√
n
}
: x = 0j1i0n−i−j

}
P5 :=


x ∈ {0, 1}n |

(
x1x2 · · ·xj ∈ P j

k

)
∧


 n∑

i=j+1

xi = 0







P6 :=


x ∈ {0, 1}n |

(
x1x2 · · ·xj ∈ P j

k

)
∧


 j+k∑

i=j+1

xi = 0


 ∧


 n∑

i=j+1

xi = k







P0 := {0, 1}n \ (P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6)

Given this partition we define

PathWithTrap(x) :=




n− ‖x‖1 if x ∈ P1,

n− ‖x‖1 +
j+

√
n∑

i=j+1

xi if x ∈ P2,

2n− ‖x‖1 if x ∈ P3,
4n− i if (x ∈ P4) ∧

(
x = 0j1i0n−i−j

)
,

4n+ 2i if (x ∈ P5) ∧
(
x1 · · ·xj = pi ∈ P j

k

)
,

4n+ 2
∣∣∣P j

k

∣∣∣ − 1 if x ∈ P6,
min {‖x‖1, n− ‖x‖1} /3 if x ∈ P0,

for all x ∈ {0, 1}n.

Obviously, there is a unique string xopt with maximal function value under PathWithTrap:
This string is equal to the very last point of P j

k on the first j bits and is all zero on the
other bits. Moreover, for all x0 ∈ P0, x1 ∈ P1, x2 ∈ P2, x3 ∈ P3, x4 ∈ P4, x5 ∈ P5 \ {xopt},
x6 ∈ P6 and x7 = xopt we have

0 ≤ i < j ≤ 7 ⇒ PathWithTrap(xi) < PathWithTrap(xj).

The main idea behind the definition of the function PathWithTrap is the following. There
is a more or less easy to follow path leading to the global optimum xopt. The length of the

17



path is Θ(n3 logn), so that both algorithms follow the path for a quite long time. In some
sense parallel to this path there is an area of points, P6, that all have second best function
value. The Hamming distance between these points and the path is about logn. Therefore,
it is very unlikely that this area is reached using a mutation probability of 1/n. On the
other hand, with varying mutation probabilities “jumps” of length logn do occur and this
area can be reached. Then, only a direct jump to xopt is accepted. But, regardless of the
mutation probability, the probability for such a mutation is very small. In this sense we call
P6 a trap. Therefore, it is at least intuitively clear, that the (1+1) EA is more likely to be
successful on PathWithTrap than Algorithm 9.

Theorem 20. The (1+1) EA with mutation probability p(n) = 1/n finds the global optimum
of PathWithTrap with probability 1− e−Ω(log n log log n) within O(n4 log2 n log logn) steps.

Sketch of Proof: With probability 1 − e−Ω(n) the initial string x belongs to P1. Then, no
string in P0 can ever be reached. For all x ∈ {0, 1}n \ (P0 ∪ P6) and all y ∈ P6 we have that
the Hamming distance between x and y is lower bounded by logn. The probability for a
mutation of at least logn bits simultaneously is upper bounded by

(
n

logn

) (
1
n

)log n

≤ 1
(log n)!

= e−Ω(log n log log n).

Therefore, with probability 1 − e− log n log log n P6 is not reached within nO(1) steps. Under
the assumption that P6 is not reached one can in a way similar to the proof of Theorem 16
consider levels of equal fitness values and prove that with high probability the (1+1) EA
with p(n) = 1/n reaches the global optimum fairly quickly.

Theorem 21. Algorithm 9 does not find the global optimum of PathWithTrap within
nO(1) steps with probability 1− e−Ω(log2 n).

Sketch of Proof: The proof of the lower bound for Algorithm 9 is much more involved than
the proof of the upper bound for the (1+1) EA.

Again, with probability 1− e−Ω(n) the initial bit string belongs to P1 and P0 will never be
entered. For all x ∈ P1 ∪ P2 ∪ P3 we have that all strings y ∈ P5 have Hamming distance
at least

√
n/2. Therefore, for all mutation probabilities the probability to reach P5 from

somewhere in P1 ∪P2 ∪P3 (thereby “skipping” P4) within nO(1) steps is upper bounded by
e−Ω(

√
n log n). We conclude that some string in P4 is reached before the global optimum is

reached with high probability.

It is not too hard to see that with probability 1− e−Ω(log2 n) within nO(1) steps no mutation
of at least (log2 n)/n bits simultaneously occurs. We divide P5 into two halves according
to increasing function values. One can prove that with probability 1− e−Ω(log2 n) the first
point y ∈ P5 that is reached via a mutation from some point x ∈ P4 belongs to the first half.
Therefore, the length of the rest of the long k-path the algorithm faces is still Θ(n3 logn).
We conclude that with probability 1 − e−Ω(log2 n) Algorithm 9 spends Ω(n3) steps on the
path. In each of these steps where the current mutation probability equals (logn)/n with
probability at least

(
n

2 logn

)log n

·
(
logn
n

)log n

·
(
1− logn

n

)n−log n

≥ e− log n

n
> n−2.45
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some point in P6, the trap, is reached. Therefore, with probability 1− e−Ω(
√

n) the trap is
entered within the Ω(n3/ logn) steps that we have with this mutation probability on the
path with high probability. So, altogether we have that with probability 1 − e−Ω(log2 n)

Algorithm 9 enters the trap. Once this happens, i. e., some x ∈ P6 becomes the current
string of Algorithm 9, a mutation of exactly logn specific bits is needed to reach the global
optimum. The probability that this happens in one step is upper bounded by

max

{(
2i

n

)log n (
1− 2i

n

)n−log n

| i ∈ {0, 1, . . . , �logn� − 1}
}

≤
(
logn
n

)log n (
1− logn

n

)n−log n

= e−Ω(log2 n).

This yields on the one hand Ω(elog
2 n) as lower bound on the expected running time. And

on the other hand we have that with probability 1− e−Ω(log2 n) Algorithm 9 does not find
the global optimum xopt of PathWithTrap within nO(1) steps.

5 CONCLUSIONS

We have studied two variants of the (1+1) EA with dynamic parameter control. The first
variant uses a probabilistic selection mechanism that accepts worsenings with a probability
that depends on a parameter α. We have proved for a simple example function that a
dynamic parameter control can tremendously decrease the expected running time compared
to optimal static choices. Our example proves an exponential gap between the Metropolis
algorithm and simulated annealing in a simple and understandable way.

Second, we have considered the (1+1) EA with dynamically changing mutation probabilities.
We have seen that this leads to an enhanced robustness while only slowing the algorithm
down by the factor logn for typical functions. For one example we have seen that the
dynamic variant outperforms the static one for the most recommended static choice p(n) =
1/n. It remains open, whether in practical situations the enhanced robustness of the dynamic
variant turns out to be an advantage.
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