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Security Testing: A Survey

Michael Felderer, Matthias Büchler, Martin Johns,
Achim D. Brucker, Ruth Breu, Alexander Pretschner

Abstract

Identifying vulnerabilities and ensuring security functionality by security testing is
a widely applied measure to evaluate and improve the security of software. Due to
the openness of modern software-based systems, applying appropriate security testing
techniques is of growing importance and essential to perform effective and efficient se-
curity testing. Therefore, an overview of actual security testing techniques is of high
value both for researchers to evaluate and refine the techniques and for practitioners to
apply and disseminate them. This chapter fulfills this need and provides an overview
of recent security testing techniques. For this purpose, it first summarize the required
background of testing and security engineering. Then, basics and recent developments
of security testing techniques applied during the secure software development lifecycle,
i.e., model-based security testing, code-based testing and static analysis, penetration
testing and dynamic analysis, as well as security regression testing are discussed. Fi-
nally, the security testing techniques are illustrated by adopting them for an example
three-tiered web-based business application.

1 Introduction

Modern IT systems based on concepts like cloud computing, location-based services
or social networking are permanently connected to other systems and handle sensitive
data. These interconnected systems are subject to security attacks that may result
in security incidents with high severity affecting the technical infrastructure or its
environment. Exploited security vulnerabilities can cause drastic costs, e.g., due to
downtimes or the modification of data. A high proportion of all software security
incidents is caused by attackers who exploit known vulnerabilities [115]. An important,
effective and widely applied measure to improve the security of software are security
testing techniques which identify vulnerabilities and ensure security functionality.

Software testing is concerned with evaluation of software products and related ar-
tifacts to determine that they satisfy specified requirements, to demonstrate that they
are fit for purpose and to detect defects. Security testing verifies and validates soft-
ware system requirements related to security properties like confidentiality, integrity,
availability, authentication, authorization and non-repudiation. Sometimes security
properties come as classical functional requirements, e.g., “user accounts are disabled
after three unsuccessful login attempts” which approximates one part of an authoriza-
tion property and is aligned with the software quality standard ISO/IEC 9126 [66]
defining security as functional quality characteristic. However, it seems desirable that
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security testing directly targets the above security properties, as opposed to taking
the detour of functional tests of security mechanisms. This view is supported by the
ISO/IEC 25010 [68] standard that revises ISO/IEC 9126 and introduces Security as a
new quality characteristic which is not included in the characteristic functionality any
more.

Web application security vulnerabilities such as Cross-Site Scripting or SQL In-
jection, which can adequately be addressed by security testing techniques, are ac-
knowledged problems [11] with thousands of vulnerabilities reported each year [91].
Furthermore, surveys as published by the National Institute of Standards and Tech-
nology [96] show high cost of insecure software due to inadequate testing even on an
economic level. Therefore, support for security testing, which is still often considered
as a “black art”, is essential to increase its effectiveness and efficiency in practice. This
chapter intends to contribute to the growing need for information on security testing
techniques by providing an overview of actual security testing techniques. This is of
high value both for researchers to evaluate and refine existing techniques and prac-
titioners to apply and disseminate them. In this chapter, security testing techniques
are classified (and also the discussion thereof) according to their test basis within the
secure software development lifecycle into four different types: (1) model-based security
testing is grounded on requirements and design models created during the analysis and
design phase, (2) code-based testing and static analysis on source and byte code created
during development, (3) penetration testing and dynamic analysis on running systems,
either in a test or production environment, as well as (4) security regression testing
performed during maintenance.

This chapter provides provides a comprehensive survey on security testing and is
structured as follows. Section 2 provides an overview of the underlying concepts on
software testing. Section 3 discusses the basic concepts of security engineering and the
secure software development lifecycle. Section 4 provides an overview of security testing
and its integration in the secure software development lifecycle. Section 5 discusses
the security testing techniques model-based security testing, code-based testing and
static analysis, penetration testing and dynamic analysis as well as security regression
testing in detail. Section 6 discusses the application of security testing techniques to
three tiered business applications. Finally, Section 7 summarizes this chapter.

2 Software Testing

According to the classic definition in software engineering [17], software testing consists
of the dynamic verification that a program provides expected behaviors on a finite set
of test cases, a so called test suite, suitably selected from the usually infinite execution
domain. This dynamic notion of testing, so called dynamic testing, evaluates software
by observing its execution [4]. The executed system is called system under test (SUT).
More general notions of testing [69] consist of all lifecycle activities, both static and
dynamic, concerned with evaluation of software products and related artifacts to de-
termine that they satisfy specified requirements, to demonstrate that they are fit for
purpose and to detect defects. This definition also takes static testing into account,
which checks software development artifact (e.g., requirements, design or code) without
execution of these artifacts. The most prominent static testing approaches are (man-
ual) reviews and (automated) static analysis, which are often combined with dynamic
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testing, especially in the context of security. For security testing, the general notion of
testing comprising static and dynamic testing is therefore frequently applied [99, 121, 9],
and thus also in this chapter testing comprises static and dynamic testing.

After running a test case, the observed and intended behaviors of a SUT are com-
pared with each other, which then results in a verdict. Verdicts can be either of
pass (behaviors conform), fail (behaviors don’t conform), and inconclusive (not known
whether behaviors conform) [65]. A test oracle is a mechanism for determining the ver-
dict. The observed behavior may be checked against user or customer needs (commonly
referred to as testing for validation), against a specification (testing for verification), A
failure is an undesired behavior. Failures are typically observed (by resulting in verdict
fail) during the execution of the system being tested. A fault is the cause of the failure.
It is a static defect in the software, usually caused by human error in the specification,
design, or coding process. During testing, it is the execution of faults in the software
that causes failures. Differing from active execution of test cases, passive testing only
monitors running systems without interaction.

Testing can be classified utilizing the three dimensions objective, scope, and acces-
sibility [125, 141] shown in Figure 1.

Scope

Component

Integration

System

Accessibility

Objective

White-Box Black-Box

Functional

Nonfunctional

Figure 1: Testing Dimensions Objective, Scope, and Accessibility

Test objectives are reason or purpose for designing and executing a test. The
reason is either to check the functional behavior of the system or its nonfunctional
properties. Functional testing is concerned with assessing the functional behavior of
an SUT, whereas nonfunctional testing aims at assessing nonfunctional requirements
with regard to quality characteristics like security, safety, reliability or performance.

The test scope describes the granularity of the SUT and can be classified into
component, integration and system testing. It also determines the test basis, i.e., the
artifacts to derive test cases. Component testing (also referred to as unit testing) checks
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the smallest testable component (e.g., a class in an object-oriented implementation or
a single electronic control unit) in isolation. Integration testing combines components
with each other and tests those as a subsystem, that is, not yet a complete system.
System testing checks the complete system, including all subsystems. A specific type
of system testing is acceptance testing where it is checked whether a solution works
for the user of a system. Regression testing is a selective retesting to verify that
modifications have not caused side effects and that the SUT still complies with the
specified requirements [107].

In terms of accessibility of test design artifacts we can classifying testing methods
into white-box and black-box testing. In white-box testing, test cases are derived based
on information about how the software has been designed or coded [17]. In black-
box testing, test cases rely only on the input/output behavior of the software. This
classification is especially relevant for security testing, as black-box testing, where no
or only basic information about the system under test is provided, enables to mimic
external attacks from hackers. In classical software testing, a related classification of
test design techniques [64] distinguishes between structure-based testing techniques (i.e.,
deriving test cases from internal descriptions like implementation code), specification-
based testing techniques (i.e., deriving test cases from external descriptions of software
like specifications), and experience-based testing techniques (i.e., deriving test cases
based on knowledge, skills, and background of testers).

The process of testing comprises the core activities test planning, design, implemen-
tation, execution, and evaluation [69]. According to [63] and [69], test planning is the
activity of establishing or updating a test plan. A test plan includes the test objectives,
test scope, and test methods as well as the resources, and schedule of intended test
activities. It identifies, amongst others, features to be tested and exit criteria defining
conditions for when to stop testing. Coverage criteria aligned with the tested feature
types and the applied test design techniques are typical exit criteria. Once the test
plan has been established, test control begins. It is an ongoing activity in which the
actual progress is compared against the plan which often results in concrete measures.
During the test design phase the general testing objectives defined in the test plan are
transformed into tangible test conditions and abstract test cases. For test derivation,
specific test design techniques can be applied, which can according to ISO/IEC/IEEE
29119 [64] be classified into specification-based, structure-based and experience-based
techniques. Test implementation comprises tasks to make the abstract test cases ex-
ecutable. This includes tasks like preparing test harnesses and test data, providing
logging support or writing test scripts which are necessary to enable the automated
execution of test cases. In the test execution phase, the test cases are then executed
and all relevant details of the execution are logged and monitored. In manual test
execution, testing is guided by a human, and in automated testing by a specialized
application. Finally, in the test evaluation phase the exit criteria are evaluated and
the logged test results are summarized in a test report.

In model-based testing (MBT), manually selected algorithms automatically and sys-
tematically generate test cases from a set of models of the system under test or its
environment [114]. Whereas test automation replaces manual test execution with au-
tomated test scripts, MBT replaces manual test designs with automated test designs
and test generation.
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3 Security Engineering

In this section, we cover basic concepts of security engineering as well as an overview
of the secure software development lifecycle.

3.1 Basic Concepts

Security testing validates software system requirements related to security properties of
assets that include confidentiality, integrity, availability, authentication, authorization
and non-repudiation. These security properties can be defined as follows [27]:

• Confidentiality is the assurance that information is not disclosed to unauthorized
individuals, processes, or devices.

• Integrity is provided when data is unchanged from its source and has not been
accidentally or maliciously modified, altered, or destroyed.

• Availability guarantees timely, reliable access to data and information services for
authorized users.

• Authentication is a security measure designed to establish the validity of a trans-
mission, message, or originator, or a means of verifying an individual’s authoriza-
tion to receive specific categories of information.

• Authorization provides access privileges granted to a user, program, or process.

• Non-repudiation is the assurance that none of the partners taking part in a trans-
action can later deny of having participated.

Security requirements can be formulated as positive requirements, explicitly defin-
ing the expected security functionality of a security mechanism, or as negative require-
ments, specifying what the application should not do [99]. For instance, for the security
property authorization as positive requirements could be “User accounts are disabled
after three unsuccessful login attempts.”, whereas a negative requirement could be for-
mulated as “The application should not be compromised or misused for unauthorized
financial transactions by a malicious user.” The positive, functional view on security
requirements is aligned with the software quality standard ISO/IEC 9126 [66] defining
security as functional quality characteristic. The negative, non-functional view is sup-
ported by the ISO/IEC 25010 [68] standard that revises ISO/IEC 9126 and introduces
Security as a new quality characteristic which is not included in the characteristic
Functionality any more.

An asset is a data item, or a system component that has to be protected. In the
security context, such an asset has one or multiple security properties assigned that
have to hold for that asset.

A fault is a textual representation of what goes wrong in a behavioral description. It
is the incorrect part of a behavioral description that needs to be replaced to get a correct
description. Since faults can occur in dead code — code that is never executed —, and
because faults can be masked by further faults, a fault does not necessarily lead to an
error. At the other side, an error is always produced by a fault. A fault is not necessarily
related to security properties but is the cause of errors and failures in general.

A vulnerability is a special type of fault. If the fault is related to security properties,
it is called a vulnerability. A vulnerability is always related to one or more assets and
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their corresponding security properties. An exploitation of a vulnerability attacks an
asset by violating the associated security property. Since vulnerabilities are always as-
sociated with the protection of an asset, the security relevant fault is usually correlated
with a mechanism that protects the asset. A vulnerability either means that (1) the
responsible security mechanism is completely missing, or (2) the security mechanism
is in place but is implemented in a faulty way.

An exploit is a concrete malicious input that makes use of the vulnerability in the
system under test (SUT) and violates the property of an asset. Vulnerabilities can
often be exploited in different ways. One concrete exploit selects a specific asset and
a specific property, and makes use of the vulnerability to violate the property for the
selected asset.

A threat is the potential cause of an unwanted incident that harms or reduces the
value of an asset. For instance, a threat may be a hacker, power outages, or malicious
insiders. An attack is defined by the steps a malicious or inadvertently incorrectly
behaving entity performs to the end of turning a threat into an actual corruption of
an asset’s properties. This is usually done by exploiting a vulnerability.

Security aspects can be considered on the network, operating system and application
level. Each level has its own security threats and corresponding security requirements
to deal with them. Typical threats on the network level are distributed denial-of-service
or network intrusion. On the operating system level, all types of malware cause threats.
Finally, on the application level threats typical threats are related to access control or
are application type specific like Cross-Site Scripting in case of web applications. All
levels of security can be subject to tests.

Security testing simulates attacks and employs other kinds of penetration testing
attempting to compromise the security of a system by playing the role of a hacker trying
to attack the system and exploit its vulnerabilities [7]. Security testing requires specific
expertise which makes it difficult and hard to automate [102]. By identifying risks in
the system and creating tests driven by those risks, security vulnerability testing can
focus on parts of a system implementation in which an attack is likely to succeed.

Risks are often used as a guiding factor to define security test processes. For in-
stance, Potter and McGraw [102] consider the process steps creating security misuse
cases, listing normative security requirements, performing architectural risk analysis,
building risk-based security test plans, wielding static analysis tools, performing se-
curity tests, performing penetration testing in the final environment, and cleaning up
after security breaches. Also the Open Source Security Testing Methodology Manual
(OSSTMM) [56] and the OWASP Testing Guide [99] take risks into account for their
proposed security testing activities.

3.2 Secure Software Development Lifecycle

Testing is often started very late in the software development lifecycle shortly before it is
deployed. It has turned out that this is a very ineffective and inefficient practice. One of
the best methods to prevent security bugs from appearing in production applications is
to improve the software development lifecycle by including security in each of its phases,
thereby extending it to a secure software development lifecycle. A software development
lifecycle is a series of steps, or phases, that provide a model for the development and
lifecycle management of an application or piece of software. It is a structure imposed
on the development of software artifacts. A generic software development lifecycle
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model considering testing as an orthogonal dimension comprises the phases analysis,
design, development, deployment, and maintenance [99]. Each phase delivers specific
artifacts, i.e., the analysis phase results in requirements, design provides design models,
development delivers code, deployment results in a running system, and finally all
artifacts are maintained.

A secure software development lifecycle takes security aspects into account in each
phase of software development. A crucial concept within the secure software devel-
opment lifecycle is risk. A risk is the likelihood of an unwanted incident and its
consequence for a specific asset [84]. Taking into account the negative nature of many
security requirements, the concept of risk can be employed to direct the selection or ap-
plication of security counter-measures like testing [84, 102]. In all phases of the secure
software development process, but especially at the design level [127], risk analyses
provide effective means to guide security testing and thus detect faults and vulnerabil-
ities.

Major security development processes are the Security Development Lifecycle
(SDL) [57] from Microsoft and the Open Software Assurance Maturity Model (Open-
SAMM) [97] from OWASP.

Microsofts SDL is an established security lifecycle for software development projects
pursuing the following major principles [57]:

• Secure by Design: Security is a built-in quality attribute affecting the whole
software lifecycle.

• Security by Default: Software systems are constructed in a way that potential
harm caused by attackers is minimized, e.g. software is deployed with least nec-
essary privilege.

• Secure in Deployment: software deployment is accompanied by tools and guidance
supporting users and/or administrators.

• Communications: software developers are prepared for occurring threats commu-
nicating openly and timely with users and/or administrators.

The SDL is composed of security practices attached with the major activities of a
software lifecycle, i.e., requirements, design, implementation, verification and deploy-
ment in case of SDL, which are extended by the two activities training and response.
For instance, the security practice “establish security requirements” is attached to re-
quirements analysis, “use threat modeling” to design, “perform static analysis” to im-
plementation, “perform fuzz testing” to verification, and “certify release and archive”
to release.

Similar to the SDL, OpenSAMM attaches security practices to core activities, i.e.,
governance, construction, verification, and deployment in case of OpenSAMM, within
the software development lifecycle. For instance, verification includes the security
practices design review, code review, as well as (dynamic) security testing.

In particular, OpenSAMM attaches each security practice with three maturity levels
and a starting point of zero:

• Level 0: Implicit starting point representing the activities in the practice being
unfulfilled

• Level 1: Initial understanding and ad-hoc provision of security practice
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• Level 2: Increase efficiency and/or effectiveness of the security practice

• Level 3: Comprehensive mastery of the security practice at scale

For each security practice and maturity level, OpenSAMM does not only define the
objectives and activities, but also gives support to achieve this particular level. This
comprises assessment questions, success metrics, costs and personnel needed to achieve
the targeted maturity level.

4 Security Testing

In this section, we cover basic concepts of security testing and the integration of security
testing in the secure software development lifecycle.

4.1 Basic Concepts

Security testing is testing of security requirements related to security properties
like confidentiality, integrity, availability, authentication, authorization, and non-
repudiation.

Security testing identifies whether the specified or intended security properties are,
for a given set of assets of interests, correctly implemented. This can be done by try-
ing to show conformance with the security properties, similar to requirements-based
testing; or by trying to address known vulnerabilities, which is similar to traditional
fault-based, or destructive, testing. Intuitively, conformance testing considers well-
defined, expected inputs. It tests if the system satisfies the security properties with
respect to these well-defined expected inputs. In contrast, addressing known vulner-
abilities means using malicious, non-expected input data that is likely to exploit the
considered vulnerabilities.

As mentioned in the previous section, security requirements can be positive and
functional, explicitly defining the expected security functionality of a security mecha-
nism, or negative and non-functional, specifying what the application should not do.
This classification of security requirements also impacts security testing. For positive
security requirements classical testing techniques can be applied applied, whereas for
negative security requirements (a combination of) additional measures like risk analy-
ses, penetration testing, or vulnerability knowledgebases are essential. This classifica-
tion is also reflected in by classification in the literature as provided by Tian-yang et
al. [121] as well as by Potter and McGraw [103].

According to Tian-yang et al. [121] two principal approaches can be distinguished,
i.e., security functional testing and security vulnerability testing. Security functional
testing validates whether the specified security requirements are implemented correctly,
both in terms of security properties and security mechanisms. Security vulnerability
testing addresses the identification of unintended system vulnerabilities. Security vul-
nerability testing uses the simulation of attacks and other kinds of penetration testing
attempting to compromise the security of a system by playing the role of a hacker
trying to attack the system and exploit its vulnerabilities [7]. Security vulnerability
testing requires specific expertise which makes it difficult and hard to automate [103].
By identifying risks in the system and creating tests driven by those risks, security
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vulnerability testing can focus on parts of a system implementation in which an attack
is likely to succeed.

Potter and McGraw [103] distinguish between testing security mechanisms to ensure
that their functionality is properly implemented, and performing risk-based security
testing motivated by understanding and simulating the attacker’s approach. Testing
security mechanisms can be performed by standard test organizations with classical
functional test techniques, whereas risk-based security testing requires specific expertise
and sophisticated analysis [103].

For security vulnerability testing approaches, Shahriar and Zulkernine [118], i.e.,
vulnerability coverage, source of test cases, test case generation method, testing level,
test case granularity, tool automation as well as target applications. Tool automation
is further refined into the criteria test case generation, oracle generation, and test
case execution. The authors classify 20 informally collected approaches according to
these criteria. The main aim of the criteria is support for security practitioners to
select an appropriate approach for their needs. Therefore Shahriar and Zulkernine
blend abstract criteria like source of test cases or test case generation method with
technological criteria like tool automation or target applications.

Differing from classical software testing, where black-box and white-box test de-
sign are nowadays considered very similar, i.e., in both cases testing proceeds from
abstract models [4], the distinction is essential for security testing. White-box testing
performs testing based on information about how the software has been designed or
coded, and thus enables testing from an internal software producer point of view. [17].
Black-box testing relies only on the input/output behavior of the software, and thus
enables to mimic external attacks from hackers. The classification into white- and
black-box testing is also pointed out by Bachmann and Brucker [9], who additionally
classify security testing techniques due to execution (dynamic vs. static testing) and
automation (manual vs. automated testing).

In addition, due to the critical role of negative security requirements, classical test-
ing which focuses on testing functional requirements and security testing differ. It
seems desirable that security testing directly targets security properties, as opposed to
taking the detour of functional tests of security mechanisms. As the former kind of
(non-functional) security properties describe all executions of a system, testing them
is intrinsically hard. Because testing cannot show the absence of faults, an imme-
diately useful perspective directly considers the violation of these properties. This
has resulted in the development of specific testing techniques like penetration testing
that simulates attacks to exploit vulnerabilities. Penetration tests are difficult to craft
because tests often do not directly cause observable security exploits, and because
the testers must think like an attacker [103], which requires specific expertise. Dur-
ing penetration testing, testers build a mental model of security properties, security
mechanisms, and possible attacks against the system and its environment. Specifying
security test models in an explicit and processable way, results in a model-based secu-
rity testing approach. In such an approach, security test models provide guidance for
the systematic specification and documentation of security test objectives and security
test cases, as well as for their automated generation and evaluation.

(Functional) testing normally focuses on the presence of some correct behavior but
not the absence of additional behavior, which is implicitly specified by negative require-
ments. Testing routinely misses hidden action and the result is dangerous side effect
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behaviors that ship with a software. Figure 2 illustrates this side effect nature of most
software vulnerabilities that security testing has to cope with [120].

Intended Specified

System Functionality

System

as Implemented

Missing or Incorrect

Functionality: most 

Security Mechanisms are here

Unintended Side-effect

Behvior: most

Vulnerabilities are here

Figure 2: Most faults in security mechanisms are related to missing or incorrect functionality,
most vulnerabilities are related to unintended side-effect behavior (adapted from Thomp-
son [120])

The circle represents an application’s intended functionality including security
mechanisms, which is usually defined by the requirements specification. The amor-
phous shape superimposed on the circle represents the application’s actual, imple-
mented functionality. In an ideal system, the coded application would completely
overlap with its specification, but in practice, this is hardly ever the case. The areas
of the circle that the coded application does not cover represents typical functional
faults (i.e., behavior that was implemented incorrectly and does not conform to the
specification), especially also in security mechanisms. Areas that fall outside of the cir-
cular region represent unindented and potentially dangerous functionality, where most
security vulnerabilities lay. The mismatch between specification and implementation
shown in Figure 2 leading to faults in security mechanisms and vulnerabilities can be
reduced by taking security and especially security testing aspects into account early
and in all phases of the software development lifecycle as discussed in Section 4.2.

4.2 Security Testing in the Secure Software Development
Lifecycle

As mentioned before, testing within the security lifecycle plays the role to validate and
verify security requirements. Due to the negative nature of many security requirements
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and the resulting broad range of subordinate requirements, also testing activities cover
a broad range of scopes and employed methods. In keeping with research and expe-
rience, it is essential to take testing into account in all phases of the secure software
development lifecycle, i.e., analysis, design, development, deployment, as well as main-
tenance. Thus, security testing must be holistic covering the whole secure software
development lifecycle [9]. In concrete terms, Figure 3 shows a recommended distri-
bution of static and dynamic testing efforts among the phases of the secure software
development lifecycle according to [99]. It shows that security testing should be bal-
anced over all phases, with a focus on the early phases, i.e., analysis, design, and
implementation.

10Ͳ35%

15Ͳ35%
15Ͳ35%

10Ͳ15%

10Ͳ15%

Analysis

Design

Development

Deployment

Maintenance

Figure 3: Proportion of Test Effort in Secure Software Development Lifecycle according
to [99]

To provide support for the integration of security testing into all phases of the secure
software development process, major security development processes (see Section 3.2),
consider the integration of testing. In the Security Development Lifecycle (SDL) [57]
from Microsoft practices with strong interference with testing efforts are the following:

• SDL Practice #2 (Requirements): Establish Security and Privacy Requirements

• SDL Practice #4 (Requirements): Perform Security and Privacy Risk Assess-
ments

• SDL Practice #5 (Design): Establish Design Requirements

• SDL Practice #7 (Design): Use Threat Modeling

• SDL Practice #10 (Implementation): Perform Static Analysis

• SDL Practice #11 (Verification): Perform Dynamic Analysis

• SDL Practice #12 (Verification): Perform Fuzz Testing

• SDL Practice #13: Conduct Attack Surface Review

• SDL Practice #15: Conduct Final Security Review

In OpenSAMM [97] from OWASP, the verification activity includes the security
practices design review, code review, as well as (dynamic) security testing.
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The OWASP Testing Guide [99] and the OWASP Code Review Guide [98] provide a
detailed overview of the variety of testing activities of web application security. While
the Testing Guide has a focus on black-box testing, the Code Review Guide is a white-
box approach focusing on manual code review. Overall, the Testing Guide distinguishes
91 different testing activities split into 11 sub-categories (i.e., information gathering,
configuration and deployment management testing, identity management testing, au-
thentication testing, authorization testing, session management testing, data validation
testing, error handling, cryptography, business logic testing, as well as client side test-
ing). Applying security testing techniques to web applications is covered in Section
6.

The OWASP testing framework workflow, which is also contained in the OWASP
Testing Guide, contains checks and reviews of respective artifacts in all secure soft-
ware development phases, creation of UML and threat models in the analysis and de-
sign phases, unit and system testing during development and deployment, penetration
testing during deployment, as well as regression testing during maintenance. Proper
security testing requires a mix of techniques as there is no single testing technique that
can be performed to effectively cover all security testing and their application within
testing activities at unit, integration, and system level. Nevertheless, many companies
adopt only one security testing approach, for instance penetration testing [99].

Figure 4 abstracts from concrete security testing techniques mentioned before, and
classifies them according to their test basis within the secure software development
lifecycle.

Requirements Design Models Code Running System

Analysis Design Development Deployment Maintenance

Penetration Testing 
and Dynamic Analysis

CodeͲBased Testing 
and Static Analysis

Security

Regression Testing
ModelͲBased
Security Testing

Figure 4: Security Testing Techniques in the Secure Software Development Lifecycle

Model-based security testing is grounded on requirements and design models created
during the analysis and design phase. Code-based testing and static analysis is based
on source and byte code created during development. Penetration testing and dynamic
analysis is based on running systems, either in a test or production environment.
Finally, security regression testing is performed during maintenance. We also apply this
classification to structure the discussion of security testing techniques in the following
section.

5 Security Testing Techniques

This section discusses the security testing techniques model-based testing, code-based
testing and static analysis, penetration testing and dynamic analysis as well as regres-
sion testing in detail. For each testing technique, basic concepts as well as current
approaches are covered.
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5.1 Model-Based Security Testing

In model-based testing (MBT) manually selected algorithms automatically and sys-
tematically generate test cases from a set of models of the system under test or its
environment [114]. MBT is an active area of research [31, 126] and offers big potential
to improve test processes in industry [125, 114, 49]. Its prospective benefits include
early and explicit specification and review of system behavior, better test case docu-
mentation, the ability to automatically generate useful (regression) tests and control
test coverage, improved maintenance of test cases as well as shorter schedules and lower
costs [114].

Process. The process of MBT consists of three main steps integrated into the overall
process of test design, execution, and evaluation. (1) A model of the SUT and/or its
environment is built from informal requirements, existing specification documents, or
a SUT. The resulting model of the SUT dedicated to test generation is often called
test model. (2) If they are executable, one execution trace of such a model acts as a
test case: input and expected output for an SUT. Because there are usually infinitely
many and infinitely long execution traces, models can therefore be used to generate an
infinite number of tests. To cut down their number and length, test selection criteria
are applied. These guide the generation of tests. (3) Once the test model and the test
selection criteria are defined, a set of test cases is generated from the test model as
determined by the chosen test selection criteria. Test generation is typically performed
automatically. The generated test cases are traces of the model and thus in general
at a higher level than the events or actions of an SUT. Therefore, the generated test
cases are further refined to a more concrete level or adapted to the SUT to support
their automated execution.

Model-based security testing. Model-based security testing (MBST) is an
MBT approach that validates software system requirements related to security proper-
ties. It combines security properties like confidentiality, integrity, availability, authen-
tication, authorization and non-repudiation with a model of the SUT and identifies
whether the specified or intended security features hold in the model.

Both MBT and MBST have in common, that the input artifact is a model and
not the SUT. Therefore the abstraction gap between the model and the SUT has to
be addressed. In particular, an identified (security) issue at the model level does not
automatically confirm an (security) issue at the SUT. Therefore an additional step is
needed to map an abstract test case to an executable test case that can be executed
on the SUT.

Selection criteria: “Good” test cases. Arguably, “good” test cases detect
potential, rather than actual, defects with good cost effectiveness [104]. Potential
defects need to be described by defect hypotheses. In order to turn these hypotheses
into operational adequacy criteria [145], they need to be captured by some form of
explicit defect model [93, 105, 104]. One form of defect is a fault, understood as the
root cause of an incorrect system state (error) or incorrect system output (failure). As
we show below, vulnerabilities can be understood as faults.

In addition to explicit models of (the functionality of) the system under test, model-
based security testing usually makes use of one or more of the three following models
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for test selection: properties, vulnerabilities, and attackers. Models of an attacker
encode an attacker’s behavior: the data they need, the different steps they take, the
way they craft exploits. Attacker models can be seen as models of the environment
of a system under test, and knowledge about a targeted vulnerability usually is left
implicit. In contrast, models of vulnerabilities explicitly encode weaknesses in a system
or a model of the system. In this sense, they can be seen as faults that are used for
the generation of “good” test case generation (see above). Finally, properties describe
desired characteristics of a model, or an implementation, and they include confiden-
tiality, availability, integrity, and so on. Models of properties are needed to describe
the properties of an asset that are supposed not to be violated: they describe what
exactly the security tester targets, and what an exploit is supposed to exploit.

It is noteworthy that all forms of security testing, model-based or not, always work
with an implicit or explicit hypothesis about a potential vulnerability.

Vulnerabilities as faults. Frequently, as a reaction to known relevant threats,
assets are protected by explicit security mechanisms. Mechanisms include input sani-
tization, Address Space Layout Randomization (ASLR), encryption of password files,
but also intrusion detection systems and access control components. Mechanisms are
components of a system and can always be syntactically recognized: there is a piece
of code (the mechanism) that is supposed to protect the asset; or there is no such
piece of code. A vulnerability is a special kind of fault with security implications. It
is defined as the absence of a correctly functioning mechanism. This can mean both
(1) that there is no mechanism at all (e.g., no input sanitization takes place which can
lead to buffer overflows or SQL Injections) and (2) that the mechanism does not work
correctly, i.e., is partially or incorrectly implemented, for instance, if an access control
policy is faulty.

Security testing can then be understood in three seemingly different ways: (1) to
test if specific security properties of an asset can be violated (properties and prop-
erty models); (2) to test the functionality of a mechanism (attacker models); and (3)
to directly try to exploit a vulnerability (vulnerability models). The boundaries are
blurred, however: With the above definition of vulnerabilities as the absence of effec-
tively working defense mechanisms, and the observation that attacker models always
involve implicit or explicit hypotheses on vulnerabilities, activities (2) and (3) are close
to identical. In practice, they only differ in terms of the perspective that the tester
takes: the mechanism or the vulnerability. Because the above definition also binds vul-
nerabilities to—possibly unspecified—assets, the goal of activities (2) and (3) always
is activity (1). It hence seems hard to provide a crisp conceptual distinction between
the three activities of (1) testing security properties, (2) testing security mechanisms,
and (3) testing for vulnerabilities.

Classification of Model-Based (Security) Testing. Several publications
have been published that propose taxonomies and classifications of existing MBT [126,
31] and MBST approaches [35, 116]. We will focus on the classification proposed by
Schieferdecker et al. [116] considering different perspectives used in securing a system.
The authors claim that MBST needs to be based on different types of models and
distinguish three types of input models for security test generation, i.e., architectural
and functional models, threat, fault and risk models, as well as weakness and vulner-
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ability models. Architectural and functional models of the SUT are concerned with
security requirements and their implementation. They focus on the expected system
behavior. Threat, fault and risk models focus on what can go wrong, and concentrate
on causes and consequences of system failures, weaknesses or vulnerabilities. Weakness
and vulnerability models describe weaknesses or vulnerabilities by themselves.

In the following, we exemplary describe selected approaches, that make use of
different models according to the classification of Schieferdecker et al.

5.1.1 A Model-based Security Testing Approach for Web Applica-
tions

An approach that makes use of functional, fault, and vulnerability models according
to Schieferdecker et al. is presented by Büchler et al. [23]. They published a semi-
automatic security testing approach for web applications from a secure model. The
authors assume there is a formal model M for the specification of the System under
Test (SUT). This model is secure as it does not violate any of the specified security
goals (e.g., confidentiality, authenticity). Thus, a model-checker will report M |= ϕ for
all security properties ϕ defining the security goals of the model. The model is built
using abstract messages that are defined by the modeler. These messages represent
common actions a user of the web application can perform. The idea is that these
abstract messages are sent to the server to tell it which actions the client wants to
perform, e.g., log in to the web application, view profiles of different users, delete
profiles, update profiles, and so on. Thus, the modeler does not care about details
at the browser/protocol level but only about abstract messages that represent web
application actions.

To make use of such a secure model, Büchler et al. [23] define semantic mutation
operators that represent common, well-known vulnerabilities at source code level. Se-
mantic mutation operators are an abstraction that these vulnerabilities so that they
can be injected into the model. After having applied a mutation operator to an original
model, the model-checker may provide a trace from this mutated model that violates a
security property. This trace is called an attack trace because it shows which sequence
of abstract messages have to be exchanged in order to lead the system to a state where
the security property is violated. Since abstract attack traces are at the same level
of abstraction as the input model, they need to be instantiated to turn them opera-
tional. The approach proposes a multi-step instantiation since web applications are
usually accessed via a browser. In the first step, abstract messages are translated into
abstract browser actions. The second step is a mapping from these browser actions to
executable API calls to make them operational in a browser. Finally, a test execution
engine executes the operationalized test cases on the SUT to verify, if the implementa-
tion of the model suffers from the same vulnerability as reported by the model checker
at the abstract level.

5.1.2 A Model-Based Framework for Security Policy Specification,
Deployment and Testing

Mouelhi et al. [94] propose an approach based on architectural, functional, and fault
models and focus on security policies. They propose a model-based approach for the
specification, deployment and testing of security policies in Java applications. The
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approach starts with a generic security meta-model of the application. It captures
the high level access control policy implemented by the application and is expressed
in a dedicated domain-specific language. Before such a model is further used, the
model is verified to check the soundness and adequacy of the model with respect to the
requirements. Afterwards the model is automatically transformed to policy decision
points (PDP). Since such PDPs are usually not generated from scratch but are based
on existing frameworks, the output of the transformation is, for instance, an XACML
(Extended Access Control Markup Language) file that captures the security policy.
This transformation step is essential in MBT since an identified security issue at model
level does not automatically imply the same issue at implementation level, nor does
a model without security issues automatically imply the same on the implementation.
Mouelhi et al. make use of mutations at the model level to ensure that the imple-
mentation conforms to the initial security model. An existing test suite is executed on
an implementation generated from a mutated security model. If such mutants are not
detected by the existing test suite, it will be adapted to cover the mutated part of the
security model as well. Finally the test objective is to check that the implementation
(security policy) is synchronized with the security model.

5.1.3 Risk-Based Security Testing

In the following, we consider approaches that are based on risk models. Risk-based test-
ing in general is a type of software testing that explicitly considers risks of the software
system as the guiding factor to solve decision problems in all phases of the test process,
i.e., test planning, design, implementation, execution and evaluation [46, 115, 38]. It
is based on the intuitive idea to focus testing activities on those areas that trigger the
most critical situations for a software system [135]. The precise understanding of risks
as well as their focused treatment by risk-based testing has become one of the corner-
stones for critical decisions within complex software development projects and recently
gained much attention [38]. Lately, the international standard ISO/IEC/IEEE 29119
Software Testing [64] on testing techniques, processes and documentation even explic-
itly considers risks as an integral part of the test planning process. In the following,
we describe three risk-based approaches to security testing in more detail.

Grossmann et al. [51] present an approach called Risk-Based Security Testing that
combines risk analysis and risk-based test design activities based on formalized security
test patterns. The involved security test patterns are formalized by using a minimal
test design strategies language framework which is represented as a UML profile. Such
a (semi-)formal security test pattern is then used as the input for a test generator
accompanied by the test design model out of which the test cases are generated. The
approach is based on the CORAS method [84] for risk analysis activities. Finally, a tool
prototype is presented which shows how to combine the CORAS-based risk analysis
with pattern-based test generation.

Botella et al. [16] describe an approach to security testing called Risk-Based Vul-
nerability Testing, which is guided by risk assessment and coverage to perform and
automate vulnerability testing for web applications. Risk-Based Vulnerability testing
adapts model-based testing techniques using a pattern-based approach for the gener-
ation of test cases according to previously identified risks. For risk identification and
analysis, the CORAS method [84] is utilized. The integration of information from
risk analysis activities with the model-based test generation approach is realized by a

16



test purpose language. It is used to formalize security test patterns in order to make
them usable for test generators. Risk-Based Vulnerability Testing is applied to security
testing of a web application.

Zech et al. [143, 142] propose a new method for generating negative security tests for
non-functional security testing of web applications by logic programming and knowl-
edge engineering. Based on a declarative model of the system under test, a risk analysis
is performed and used for derivation of test cases.

5.2 Code-Based Testing and Static Analysis

Many vulnerabilities can only be detected by looking at the code. While traditionally
not understood as a testing technique, static analysis of the program code is an impor-
tant part of any security development process, as it allows to detect vulnerabilities at
early stages of the development lifecycle where fixing of vulnerabilities is comparatively
cheap [43]. In Microsoft’s SDL [57], SAST is part of the implementation phase to high-
light that this technique should be applied as soon as the first line of code is written.
Note that in this section, we only discuss purely static approaches, i.e., approaches
that do not require an executable test system. Thus, we discuss hybrid approaches,
i.e., approaches that combine static analysis with dynamic testing (such as concolic
testing) in Section 5.3.

Code reviews can either be done manually or automated. The latter is often called
static code analysis (SCA) or Static Application Security Testing (SAST). Moreover,
we can either analyze the source code (i.e., the code that was written by a developer)
of the program or the compiled source code (i.e., binaries or byte-code). As they are
closely related, we discuss them not separately. From a software vendor’s perspective
who is aiming at building secure software, the analysis on the source code is preferred
over a binary analysis, as the source code analysis is more precise and can provide
detailed recommendations to developers on how to fix a vulnerability on the source
code level.

5.2.1 Manual Code Review

Manual code review is the process by which an expert is reading program code “line-by-
line” to identify vulnerabilities. This requires expertise in three areas: the application
architecture, the implementation techniques (programming languages, frameworks used
to build the application), as well as security. Thus, a good manual code review should
start with a threat model or at least an interview with the developers to get a good
understanding of the application architecture, its attack surface, as well as the imple-
mentation techniques. After this, the actual code review can start in which code is,
guided by the identified attack surface, manually analyzed for security vulnerabilities.
Finally, the results of the analysis are reported back to development to fix the identified
vulnerabilities as well as to educate architects and developers to prevent similar issues
in the future. Overall, manual code reviews are a tedious process that requires skill,
experience, persistence, and patience.
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5.2.2 Static Application Security Testing

Automated static program analysis for finding security vulnerabilities, also called Static
Application Security Testing (SAST) [26], is an attempt to automated code reviews: in
principle, a SAST tool analyses the program code of a software component (e.g., an ap-
plication or a library) automatically and reports potential security problems (potential
vulnerabilities). This limits the manual effort to reviewing the reported problems and,
thus, increases the scalability (i.e., the amount of program code that can be analyzed
in a certain amount of time) significantly. Moreover, on the one hand, SAST tools
“encapsulate” most of the required security expertise and, thus, they can (and should)
be used by developers that are not necessarily security experts. On the other hand,
SAST tools only report vulnerabilities they are looking for and, thus, there is still a
need for a small team of experts that configures the SAST tools correctly [14, 21].

For computing the set of potential security problems in a program, a SAST tool
mainly employs two different types of analysis:

1. Syntactic checks such as calling insecure API functions or using insecure config-
uration options. An example of this class would be an analysis of Java programs
for calls to java.util.random (which does not provide a cryptographically secure
random generator).

2. Semantic checks that require an understanding of the program semantics such as
the data flow or control flow of a program. An example of this class would be an
analysis checking for direct (not sanitized) data-flows from an program input to
a SQL statement (indicating a potential SQL Injection vulnerability).

As SAST tools work on over-approximations of the actual program code as well as apply
heuristics checks, the output of a SAST tool is a list of potential security vulnerabilities.
Thus, or each finding, an human expert is necessary to decide:

• If the finding represents a vulnerability, i.e, a weakness that can be exploited by
an attacker (true positive), and, thus, needs to be fixed.

• If the finding cannot be exploited by an attacker (false positive) and, thus, does
not need to be fixed.

Similarly, if an SAST tool does not report security issues, this can have two reasons:

• The source code is secure (true negative)

• The source code has security vulnerability but due to limitations of the tool, the
tool does not report a problem (false negative).

There are SAST tools available for most of the widely used programming language,
e.g., FindBugs [8] that is able to analyzes Java byte code and, thus, can analyze various
languages running on the Java Virtual Machine. There are also specializes techniques
for Java programs (e.g., [83]), or C/C++ (e.g., [33]) as well as approaches that work
on multiple languages (e.g., [25]). For a survey on static analysis methods, we refer
the reader elsewhere [101, 26]. Moreover, we discuss further static analysis techniques
in the context of a small case study in Section 6.

Besides the fact that SAST tools can be applied very early in the software devel-
opment lifecycle as well as the fact that source code analysis can provide detailed fix
recommendations, SAST has one additional advantages over most dynamic security
testing techniques: SAST tools can analyze all control flows of a program. Therefore,
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Figure 5: Phases of a penetration test [113]

SAST tools achieve, compared to dynamic test approaches, a significant higher cov-
erage of the program under test and, thus, produce a significant lower false negative
rate. Thus, SAST is a very effective method [112] for detecting programming related
vulnerabilities early in the software development lifecycle.

5.3 Penetration Testing and Dynamic Analysis

In contrast to white-box security testing techniques (see Section 5.2), black-box security
testing does not require access to the source code or other development artifacts of the
application under test. Instead, the security test is conducted via interaction with the
running software.

5.3.1 Penetration testing

A well known form of black-box security testing is Penetration Testing. In a penetration
test, an application or system is tested from the outside in a setup that is comparable to
an actual attack from a malicious third party. This means, in most settings the entity
that is conducting the test has potentially only limited information about the system
under test and is only able to interact with the system’s public interfaces. Hence, a
mandatory prerequisite for this approach is a (near) productive application, that is
feature complete and sufficiently filled with data, so that all implemented workflows
can be executed during the test. Penetration tests are commonly done for applications
that are open for networked communication.

The NIST Technical Guide To Information Security Testing And Assessment [113]
partitions the penetration testing process in four distinct phases (see Fig. 5):

1. Planning: No actual testing occurs in this phase. Instead, important side con-
ditions and boundaries for the test are defined and documented. For instance,
the relevant components of the applications that are subject of the test are de-
termined and the nature/scope of the to be conducted tests and their level of
invasiveness.

2. Discovery: This phase consists of a steps. First, all accessible external interfaces
of the system under test are systematically discovered and enumerated. This
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set of interfaces constitutes the system’s initial attack surface. The second part
of the discovery phase is vulnerability analysis, in which the applicable vulner-
ability classes that match the interface are identified (e.g., Cross-Site Scripting
for HTTP services or SQL Injection for applications with database backend). In
a commercial penetration test, this phase also includes the check if any of the
found components is susceptible to publicly documented vulnerabilities which is
contained in precompiled vulnerability databases.

3. Attack: Finally, the identified interfaces are tested through a series of attack at-
tempts. In these attacks, the testers actively attempts to compromise the system
via sending attack payloads. In case of success, the found security vulnerabilities
are exploited in order to gain further information about the system, widen the
access privileges of the tester and find further system components, which might
expose additional interfaces. This expanded attack surface is fed back into the
discovery phase, for further processing.

4. Reporting: The reporting phase occurs simultaneously with the other three phases
of the penetration test and documents all findings along with their estimated
severeness.

5.3.2 Vulnerability scanning

In general penetration tests are a combination of manual testing through security
experts and the usage of black-box vulnerability scanners. Black-box web vulnerability
scanners are a class of tools that can be used to identify security issues in applications
through various techniques. The scanner queries the application’s interfaces with a set
of predefined attack payloads and analyses the application’s responses for indicators if
the attack was successful and, if this is not the case, hints how to alter the attack in
the subsequent tries. Bau et al. [11] as well as Adam et al. [3] provide overviews of
recent commercial and academic black-box vulnerability scanners.

5.3.3 Dynamic taint analysis

An important variant of black-box testing is an analysis technique called taint analysis.
A significant portion of today’s security vulnerabilities are string-based code injection
vulnerabilities [71], which enable the attacker to inject syntactic content into dynami-
cally executed programming statements, which — in the majority of all cases — leads to
full compromise of the vulnerable execution context. Examples for such vulnerabilities
include SQL Injection [52] and Cross-Site Scripting [50]. Such injection vulnerabilities
can be regarded as information flow problems, in which unsanitized data paths from
untrusted sources to security sensitive sinks have to be found. To achieve this, a well
established approach is (dynamic) data tainting. Untrusted data is outfitted with taint
information on runtime, which is only cleared, if the data passes a dedicated sanitiza-
tion function. If data which still carries taint information reaches a security sensitive
sink (e.g., an API that converts string data into executable code), the application
can react appropriately, for instance through altering, auto-sanitization the data or
completely stopping the corresponding process. If taint tracking is utilized in security
testing, the main purpose is to notify the tester that insecure data flows, that likely
lead to code injection, exist. Unlike static analysis, that also targets the identification
of problematic data flows, dynamic taint analysis is conducted transparently while the
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application under test is executed. For this, the execution environment, e.g., the lan-
guage runtime, has to be made taint aware, so that the attached taint information of
the untrusted data is maintained through the course of program execution, so that it
can reliably be detected when tainted data ends up in security sensitive sinks.

5.3.4 Fuzzing

Fuzzing or fuzz testing is a dynamic testing technique that is based on the idea of
feeding random data to a program “until it crashes.” It was pioneered in the late
1980ies by Barton Miller at the University of Wisconsin [89]. Since then, fuzz testing
has been proven to be an effective technique for finding vulnerabilities in software.
While the first fuzz testing approaches where purely based on randomly generated test
data (random fuzzing), advances in symbolic computation, model-based testing, as well
as dynamic test case generation have lead to more advanced fuzzing techniques such
as mutation-based fuzzing, generation-based fuzzing, or gray-box fuzzing.

Random fuzzing is the simplest and oldest fuzz testing technique: a stream of
random input data is, in a black-box scenario, send to the program under test. The
input data can, e.g., be send as command line options, events, or protocol packets.
This type of fuzzing in, in particular, useful for test how a program reacts on large
or invalid input data. While random fuzzing can find already severe vulnerabilities,
modern fuzzers do have a detailed understanding of the input format that is expected
by the program under test.

Mutation-based fuzzing is one type of fuzzing in which the fuzzer has some knowledge
about the input format of the program under test: based on existing data samples, a
mutation-based fuzzing tools generated new variants (mutants), based on a heuristics,
that it uses for fuzzing. there are a wide range of mutation based fuzzing approaches
available for different domains. We refer the interested reader elsewhere for details [108,
32].

Generation-based fuzzing used a model (of the input data or the vulnerabilities) for
generating test data from this model or specification. Compared to pure random-based
fuzzing, generation-based fuzzing achieves usually a higher coverage of the program
under test, in particular if the expected input format is rather complex. Again, for
details we refer the interested reader elsewhere [138, 144].

Advanced fuzzing techniques combine several of the previously mentioned ap-
proaches, e.g., use a combination of mutation-based and generation-based techniques
as well as observe the program under test and use these observations for constructing
new test data. This turns fuzzing into a gray-box testing technique that also utilizes
symbolic computation that is usually understood as a technique used for static program
analysis. Probably the first and also most successful application of gray-box fuzzing
is SAGE from Microsoft [47, 48], which combines symbolic execution (a static source
code analysis technique) and dynamic testing. This combination is today known as
concolic testing and inspired several advanced security testing e.g., [12, 1], as well as
functional test approaches.

5.4 Security Regression Testing

Due to ever changing surroundings, new business needs, new regulations, and new tech-
nologies, a software system must evolve and be maintained, or it becomes progressively
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less satisfactory [80]. This makes it especially challenging to keep software systems per-
manently secure as changes either in the system itself or in its environment may cause
new threats and vulnerabilities [37]. A combination of regression and security testing
called security regression testing, which ensures that changes made to a system do not
harm its security, are therefore of high significance and the interest in such approaches
has steadily increased [36]. Regression testing techniques ensure that changes made
to existing software do not cause unintended effects on unchanged parts and changed
parts of the software behave as intended [82]. As requirements, design models, code or
even the running system can be changed, regression testing techniques are orthogonal
to the security testing techniques discussed in the previous sections.

Yoo and Harman [139] classify regression testing techniques into three categories:
test suite minimization, test case prioritization and test case selection.

Test suite minimization seeks to reduce the size of a test suite by eliminating
redundant test cases from the test suite.

Test case prioritization aims at ordering the execution of test cases in the regression
test suite based on a criterion, for instance, on the basis of history, coverage, or require-
ments, which is expected to lead to the early detection of faults or the maximization
of some other desirable properties.

Test case selection deals with the problem of selecting a subset of test cases that
will be used to test changed parts of software. It requires to select a subset of the
tests from the previous version, which are likely to detect faults, based on different
strategies. Most reported regression testing techniques focus on this regression testing
technique [139]. The usual strategy is to focus on the identification of modified parts of
the SUT and to select test cases relevant to them. For instance, the retest-all technique
is one naive type of regression test selection by re-executing all tests from the previous
version on the new version of the system. It is often used in industry due to its simple
and quick implementation. However, its capacity in terms of fault detection is limited
[41]. Therefore, considerable amount of work is related to the development of effective
and scalable selective techniques.

In the following, we discuss available security testing approaches according to the
categories minimization, prioritization, and selection. The selected approaches are
based on a systematic classification of security regression testing approaches by Felderer
and Fourneret [36].

5.4.1 Test Suite Minimization

Test suite minimization seeks to reduce the size of a test suite by eliminating test cases
from the test suite based on a given criterion. Current approaches on minimization [122,
55, 45] address vulnerabilities.

Toth et al. [122] propose an approach that applies automated security testing for
detection of vulnerabilities by exploring application faults that may lead to known
malware, such as viruses or worms. The approach considers only failed tests from the
previous version revealing faults for re-run in a new system version after fault fixing.

He et al. [55] propose an approach for detecting and removing vulnerabilities for
minor releases of web applications. In their approach, only strong-association links
between pages from a previous version, optimized through iterations, are selected for
exploration of web pages that contain vulnerabilities.
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Finally, Garvin et al. [45] propose testing of self-adaptive system for already known
failures. The authors avoid reproducing already known failures by considering only
those tests for execution that exercise the known failures in previous versions.

5.4.2 Test Case Prioritization

Test case prioritization is concerned with right ordering of test cases that maximizes
desirable properties, such as early fault detection. Also, current approaches to priori-
tization [59, 140, 129] address only vulnerabilities.

Huang et al. [59] propose a prioritization technique for security regression testing.
Their technique gathers historical records, whose most effective execution order is
determined by a genetic algorithm.

Yu et al. [140] propose fault-based prioritization of test cases, which directly utilizes
the knowledge of their capability to detect faults.

Finally, Viennot et al. [129] propose a mutable record-replay system, which allows
a recorded execution of an application to be replayed with a modified version of the
application. Their execution is prioritized by defining a so called d-optimal mutable
replay based on a cost function measuring the difference between the original execution
and the mutable replay.

5.4.3 Test Case Selection

Test case selection approaches choose a subset or all test cases to test changed parts
of software. As for classical regression testing [139], also for security regression testing
most approaches fall into this category [36]. These approaches test both, security
mechanisms and vulnerabilities. Several subset-based approaches [34, 75, 5, 58, 62]
and retest-all approaches [128, 22, 78, 106] have been proposed.

Felderer et al. [34] provide a UML-based approach for regression testing of se-
curity requirements of type authentication, confidentiality, availability, authorization,
and integrity. Tests, represented as sequence diagrams, are selected based on test
requirements changes. Kassab et al. [75] propose an approach to improve regression
testing based on non-functional requirements ontologies. Tests are selected based on
change and impact analysis of non-functional requirements, such as security, safety,
performance, or reliability. Each test linked to a changed or modified requirement is
selected for regression testing. Anisetti et al. [5] propose an approach for providing
test evidence for incremental certification of security requirements of services. This
approach is based on change detection in the service test model, which will determine
if new test cases need to be generated, or existing ones to be selected for re-execution
on the evolved service. Huang et al. [58] address security regression testing of access
control policies. This approach selects tests if they cover changed elements in the pol-
icy. Finally, Hwang et al. [62] propose three safe coverage-based selection techniques
for testing evolution of security policies, each of which includes a sequence of rules to
specify which subjects are permitted or denied to access which resources under which
conditions. The three techniques are based on two coverage criteria, i.e., (1) coverage
of changed rules in the policy, and (2) coverage of different program decisions for the
evolved and the original policy.

Vetterling et al. [128] propose an approach for developing secure systems evaluated
under the Common Criteria [67]. In their approach, tests covering security require-
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Figure 6: Number of entires in the Common Vulnerabilities and Exposures (CVE) index by
category

ments are created manually and represented as sequence diagrams. In case of a change,
new tests are written if necessary and then all tests are executed on the new version.
Bruno et al. [22] propose an approach for testing security requirements of web ser-
vice releases. The service user can periodically re-execute the test suite against the
service in order to verify whether the service still exhibits the functional and non-
functional requirements. Kongsli [78] proposes the use of so called misuse stories in
agile methodologies (for instance, extreme programming) to express vulnerabilities re-
lated to features and/or functionality of the system in order to be able to perform
security regression testing. The author suggests that test execution is ideal for agile
methodologies and continuous integration. Finally, Qi et al. [106] propose an approach
for regression fault-localization in web-applications. Based on two programs, a refer-
ence program and a modified program, as well as input failing on the modified program,
their approach uses symbolic execution to automatically synthesize a new input that is
very similar to the failing input and does not fail. On this basis, the potential cause(s)
of failure are found by comparing control flow behavior of the passing and failing inputs
and identifying code fragments where the control flows diverge.

6 Application of Security Testing Techniques

In this section, we make a concrete proposal on how to apply the security test techniques
(and the tools implementing them) to a small case study: a business application using a
three tiered architecture. We focus on security testing techniques that detect the most
common vulnerability types that were disclosed in the Common Vulnerabilities and
Exposures (CVE) index [91] over the period of the last 15 years (see Figure 6). This
clearly shows that the vast majority of vulnerabilities, such as XSS, buffer overflows, are
still caused by programming errors. Thus, we focus in this section on security testing
techniques that allow to find these kind of vulnerabilities. For instance, we exclude
techniques for ensuring the security of the underlying infrastructure such as the network
configuration, as, e.g., discussed in [15, 20] as well as model-based testing techniques
(as discussed in Section 5.1) that are in particular useful for finding logical security
flaws. While a holistic security testing strategy makes use of all available security
testing strategies, we recommend to concentrate efforts first on techniques for the most
common vulnerabilities. Furthermore, we also do not explicitly discuss retesting after
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changes of the system under test, which is addressed by suitable (security) regression
testing approaches (as discussed in Section 5.4).

6.1 Selection Criteria for Security Testing Approaches

When selecting a specific security testing method and tool, many aspects need to be
taken into account, e.g.:

• Attack surface: different security testing methods find different attack and vul-
nerability types. Many techniques are complementary so it is advisable to use
multiple security testing methods together to efficiently detect a range of vulner-
abilities as wide as possible.

• Application type: different security testing methods perform differently when ap-
plied to different application types. For example, a method that performs well
against a mobile application may not be able to perform as well against three-tier
client-server applications.

• Performance and resource utilization: different tools and methods require differ-
ent computing power and different manual efforts.

• Costs for licenses, maintenance and support: to use security testing tools effi-
ciently in a large enterprise, they need to be integrated into, e.g., bug-tracking
or reporting solutions—often they provide their own server applications for this.
Thus, buying a security testing tool is usually not a one-time effort—it requires
regular maintenance and support.

• Quality of results: different tools that implement the same security testing tech-
nique provide a different quality level (e.g., in terms of fix recommendations or
false positives rates).

• Supported technologies: security testing tools usually only support a limited num-
ber of technologies (e.g., programming languages, interfaces, or build systems).
If these tools support multiple technologies, they do not necessary support all of
them with the same quality. For example, a source analysis tool that supports
Java and C might work well for Java but not as well for C.

In the following, we focus on the first two aspects: the attack surface and the application
type. These two aspects are, from a security perspective the first ones to consider for
selecting the best combinations of security testing approaches for a specific application
type (product). In a subsequent step, the other factors need to be considered for
selecting a specific tool that fits the needs of the actual development as well as the
resource and time constraints.

6.2 A Three-tiered Business Application

In this chapter, we use a simple multi-tiered business application, e.g., for booking
business travels, as a running example. This architecture is, on the first hand, very
common for larger applications and, on the other hand, covers a wide variety of security
testing challenges.

Let us assume that we want to plan the security testing activities for business
application that is separated into three tiers:
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• First tier: A front-end that is implemented as rich-client using modern web de-
velopment techniques, i.e., HTML5 and JavaScript, e.g., using frameworks such
as AngularJS or JQuery.

• Second tier: A typical middle-tier implemented in Java (e.g., using Java Servlets
hosted in an application server such as Apache Tomcat).

• Third tier: A third-party database that provides persistency for the business data
that is processed in the second tier.

Figure 7 illustrates this example architecture where the dotted vertical lines mark the
trust boundaries of the application.

6.2.1 The First Tier: Web Applications

Web applications are predominantly affected by code injection vulnerabilities, such as
SQL Injection [52] or Cross-Site Scripting (XSS) [50]. This is shown in Figure 6: as it
can be seen, besides buffer overflows (and similar memory corruption vulnerabilities),
which in general do not occur in Web applications, injection vulnerabilities represent
the vast majority of reported issues.

In consequence, security testing approaches for Web applications are primarily con-
cerned with detection of such code injection vulnerabilities. In the remainder of this
section, we utilize the field of Web applications as a case study in security testing and
comprehensively list academic approaches in this area.

Code-Based Testing and Static Analysis. As introduced in Section 5.2, static
analysis of source code is a powerful tool to detect vulnerabilities in source code. Static
analysis allows to analyze the code of a given application without actually executing
it. To detect injection vulnerabilities with such an approach, in most cases the static
analysis attempts to approximate the data flows within the examined source code. This
way, data flows from sources that can be controlled by the attacker (e.g., the incoming
HTTP request) into security sensitive sinks (e.g, APIs that create the HTTP response
of send SQL to the database).

Different mechanisms and techniques proposed in the program analysis literature
can be applied to Web applications. The actual implementation of such an analysis
can utilize different techniques such as model checking, data-flow analysis, or symbolic
execution, typically depending on the desired precision and completeness. Three dif-
ferent properties are relevant for the analysis phase. First, the static analysis of the
source code itself can be performed on different levels, either only within a given func-
tion (intraprocedural analysis) or the interaction of functions can be analyzed as well
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(interprocedural analysis). Second, the execution context can be examined in detail or
neglected, which then typically reduces the precision of the analysis. A third aspect of
static analysis deals with the way how the flow of data or code is analyzed.

One of the first tools in this area was WebSSARI [60], a code analysis tool for PHP
applications developed by Huang et al. based on a CQual-like type system [39, 40].

Pixy is a static taint analysis tool presented by Jovanovic et al. for automated iden-
tification of XSS vulnerabilities in PHP web applications [72, 73]. The tool performs
an interprocedural, context-sensitive, and flow-sensitive data flow analysis to detect
vulnerabilities in a given application. Combined with a precise alias analysis, the tool
is capable of detecting a variety of vulnerabilities. In a similar paper, Livshits and
Lam demonstrated how a context-sensitive pointer alias analysis together with string
analysis can be realized for Java-based web applications [83].

Xie and Aiken introduced a static analysis algorithm based on so-called block and
function summaries to detect vulnerabilities in PHP applications [137]. The approach
performs the analysis in both an intraprocedural and an interprocedural way. Dahse
and Holz refined this approach and demonstrated that a fine-grained analysis of built-in
PHP features and their interaction significantly improves detection accuracy [29, 28].

Wasserman and Su implemented a static code analysis approach to detect XSS
vulnerabilities caused by weak or absent input validation [134]. The authors combined
work on taint-based information flow analysis with string analysis previously introduced
by Minamide [90].

A tool for static analysis of JavaScript code was developed by Saxena et al. [110].
The tool named Kudzu employs symbolic execution to find client-side injection flaws
in Web applications. Jin et al. employ static analysis[70] to find XSS vulnerabili-
ties within HTML5-based mobile applications. Interestingly, they found new ways to
conduct XSS attacks within such apps by abusing the special capabilities of mobile
phones.

Further static analysis approaches to detect injection vulnerabilities have been pro-
posed by Fu et al.[42], Wassermann and Su [133], and Halfond et al. [53]

Dynamic analysis and black-box testing. A complementary approach is dy-
namic analysis, in which a given application is executed with a particular set of inputs
and the runtime behavior of the application is observed. Many of these approaches
employ dynamic taint tracking and consist of two different components. A detection
component to identify potentially vulnerable data flows and a validation component to
eliminate false positives.

SecuBat [74] is a general purpose Web vulnerability scanner that also has XSS
detection capabilities. To achieve its goals, SecuBat employs three different com-
ponents: a crawling component, an attack component, and an analysis component.
Whenever the crawling component discovers a suspicious feature, it passes the page
under investigation to the attack component, which then scans this page for web forms.
If a form is found, appropriate payloads are inserted into the fields of the form and
submitted to the server. The response of the server is then interpreted by the analysis
component. Snuck [30] is another dynamic testing tool. In a first step, Snuck uses
a legitimate test input to dynamically determine a possible injection and the corre-
sponding context via XPATH expressions. Based on the determined context, the tool
chooses a set of predefined attack payloads and injects them into the application.
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While SecuBat and Snuck focus on server-side security problems, FlashOver [2]
focuses on a client-side problem. More specifically, FlashOver detects client-side
reflected XSS in Adobe Flash applets. It does so by decompiling the source code and
statically detecting suspicious situations. Then it constructs an attack payload and
executes the exploit via dynamic testing.

Recently, Bau et al. [11] and and Doupe et al. [3] prepared comprehensive overviews
on commercial and academic black-box vulnerability scanners and their underlying
approaches.

Taint-tracking. As discussed previously, most Web-specific security vulnerabilities
can predominantly be regarded as information flow problems, caused by unsanitized
data paths from untrusted sources to security sensitive sinks. Hence, taint-tracking
(see Section 5.3.3) is a well established method to detect injection vulnerabilities.

Dynamic taint tracking was initially introduced by Perl in 1989 [131] and since then
has been adopted for numerous programming languages and frameworks [117]. Sub-
sequent works describe finer grained approaches towards dynamic taint propagation.
These techniques allow the tracking of untrusted input on the basis of single charac-
ters. For instance, Nguyen-Tuong et al [95] and Pietraszek and Vanden Berghe [100]
proposed fine grained taint propagation for the PHP runtime to detect various classes
of injection attacks, such as SQL Injection or XSS. Based on dynamic taint propaga-
tion, Su and Wassermann [119] describe an approach that utilizes specifically crafted
grammars to deterministically identify SQL injection attempts.

The first taint tracking paper that aimed at automatically generating Cross-Site
Scripting attacks was authored by Martin et al. [86]. The presented mechanism expects
a program adhering to the Java Servlet specification and a taint-based vulnerability
specification as an input, and generates a valid Cross-Site Scripting or SQL Injection
attack payload with the help of dynamic taint tracking and model checking. While
this approach requires a security analyst to manually write a vulnerability specifica-
tion, Kieyzun et al. focus on the fully automatic generation of taint-based vulnerability
payloads [76]. Furthermore, they extend the dynamic tainting to the database. Hence,
as opposed to the first approach, this approach is able to also detect server-side per-
sistent XSS vulnerabilities.

Besides server-side injection vulnerabilities, Web applications are also susceptible to
injection problems on the client-side, i.e., Cross-Site Scripting problems caused by inse-
cure JavaScript executed in the browser [77]. Through making the browser’s JavaScript
engine taint-aware, this vulnerability class can be detected during testing: Lekies et
al. implemented a browser-based byte-level taint-tracking engine to detect reflected
and persistent client-side XSS vulnerabilities [81]. By leveraging the taint-information,
their approach is capable of generating a precise XSS payload matching the injection
context. A similar approach was taken by FLAX [111], which also employs taint-
tracking in the browser. Instead of using an exploit generation technique, FLAX uti-
lizes a sink-aware fuzzing technique, which executes variations of a predefined list of
context-specific attack vectors.

6.2.2 The Second Tier: Java-based Server Applications

Also the second tier, i.e., the Java-based business application, is predominantly affected
by code injection vulnerabilities, such as SQL Injection [52] or Cross-Site Scripting [50].
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Even if we secure the front-end against these attacks, we cannot rely on these protection
as an attacker might circumvent the front-end by attacking the second tier directly (e.g.,
using WSDL-based, RESTful, or OData-based interfaced). Thus, we need to apply the
same standards for secure development also to the second tier.

Code-Based Testing and Static Analysis. There are many static analysis
approaches available for languages traditionally used for server systems, e.g., C/C++
or Java; both in the academic world as well as commercial offerings. Commercial
tools are at least available since ten years [25, 88] and used widely since at least five
years [14, 21]. Due to space reason, we only discuss a few selected works for Java:
most notability, FindBugs [8] is a “ready-to-run” tool that finds a large number of
potential security vulnerabilities in Java programs and, moreover, can be considered
the first widely used static analysis tool for Java that included security checks. Already
in 2005, Livshits presented a method based on taint-propagation for finding data-flow
related vulnerabilities in Java programs [83]. Tripp et al. [123] improved this idea
to make it applicable to large scale programs by using a optimized pointer analysis
as prerequisite for building the call graph. An alternative to using a call-graph-based
tainting analysis, there are also approaches, such as [92] that are based on slicing.
Moreover, there are two different Open Source frameworks available that for building
own static analysis tools for Java: Wala [130], which itself is written in Java, and
Swaja [61], which is written in OCaml.

Penetration Testing and Dynamic Analysis. From an implementation per-
spective, the most important dynamic testing approach is – besides manual penetration
testing – fuzzing. As we implement the second tier, we focus on gray-box testing ap-
proaches that combine white-box and black-box testing. The most well-known and
industrially proven approach is SAGE [48], which is used by Microsoft. Besides SAGE,
there are also other approaches that share the same basic concept: using instrumen-
tation or static analyses of the implementation to improve the quality, efficiency, or
effectiveness of dynamic security testing. For example, [12] uses a binary taint analy-
sis to increase the fuzz testing coverage while [54] uses symbolic execution to achieve
the same goal. Gray-box fuzzing is also successfully applied to commercial operating
system [87].

When using a gray-box testing technique on a multi-tier architecture, one can decide
to only test the second tier in isolation or to test all tiers “at once”. In the latter case,
only selected tiers might be subject to taint-tracking or symbolic execution, as already
such a partial covering of the implementation with white-box techniques allows to
improve the testing results. Moreover, even partial application of white-box techniques
helps to diagnose the root cause of an vulnerability and, thus, usually helps to minimize
the time required for fixing a vulnerability.

Until recently, thus gray-box testing approaches where not generally available in
commercial security testing solutions. This has changed: first vendors are staring to
integrate similar techniques in their tools, using the Interactive Security Application
Testing (ISAT).
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6.2.3 The Third Tier: Back-End Systems

In our example, we assume that the back-end system (i.e., the database) is supplied by
a third-party vendor. Therefore, we only have access to the systems as black-box. Still,
we need to security test it as we are implementing stored procedures (SQL) on top of
it as well as need to configure its security (e.g., to ensure proper access control and a
secure and trustworthy communication to the second tier). Moreover, we might want
to assess the overall implementation-level security of the externally developed product.

Security Testing the Implementation. For increasing our confidence in the
security of the database, a third-party component, itself, we can apply manual pene-
tration testing as well as fuzzing for checking for buffer overflows in the interfaces that
are exposed via the network. As we assume that we only have access to the binary,
we can only use black-box fuzzers such as presented by Woo et al. [136] or gray-box
fuzzers that are based on binary analysis, e.g., [79].

Moreover, all code that we develop on top of the core database, i.e., stored pro-
cedures written in an SQL-dialect such as PL/SQL should be analyzed for injection
attacks using dedicated static analysis approaches such as [24] (also many commer-
cially available static analysis tools support the analysis of SQL dialects). Moreover,
we can apply several dynamic security testing approaches that specialize on testing
SQL Injections: Appelt et al. [6] present a mutation based testing approach for finding
SQL Injections while Wang et al. [132] use a model-based fuzzing approach. For an
experience report on using fuzzers for finding SQL Injections see [44].

Security Testing the Configuration. Finally, even if all software components
are implemented securely, we still need to ensure that the actual configuration used
during operations is also secure. While we touch this topic only very briefly, we want
to emphasize that it is important to test the secure configuration of the communication
channels, the access control of all tiers, as well as to keep the systems up to date by
patching known vulnerabilities. Testing the security of the communication channels
includes approaches that check the correct validation of SSL/TLS certificates (e.g.,
Frankencerts [18]) as well as protocol fuzzers such as SNOOZE [10] or SECFUZZ [124].
For testing the correct access control, various model based approaches (e.g., [13, 19, 85])
haven been applied to case studies of different size. Finally, tools like Nessus [109] that
rather easily allow to scan networks for applications with known vulnerabilities and,
thus, applications that need to be updated or patched.

7 Summary

In this chapter, we provided an overview of recent security testing techniques and
their practical application in context of a three-tiered business application. For this
purpose, we first summarized the required background on software testing and secu-
rity engineering. Testing consists of static and dynamic lifecycle activities concerned
with evaluation of software products and related artifacts. It can be performed on
the component, integration, and system level. With regard to accessibility of test
design artifacts white-box testing (i.e., deriving test cases based on design and code
information) as well as black-box testing (i.e., relying only on input/output behavior
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of software) can be distinguished. Security testing validates software system require-
ments related to security properties of assets that include confidentiality, integrity,
availability, authentication, authorization, and non-repudiation. Security requirements
can be positive and functional, explicitly defining the expected security functionality of
a security mechanism, or negative and non-functional, specifying what the application
should not do. Due to the negative nature of many security requirements and the
resulting broad range of subordinate requirements, it is essential to take testing into
account in all phases of the secure software development lifecycle (i.e., analysis, design,
development, deployment as well as maintenance) and to combine different security
testing techniques.

For a detailed discussion of security testing techniques in this chapter, we there-
fore classified them according to their test basis within the secure software develop-
ment lifecycle into four different types: (1) model-based security testing is grounded
on requirements and design models created during the analysis and design phase, (2)
code-based testing and static analysis on source and byte code created during develop-
ment, (3) penetration testing and dynamic analysis on running systems, either in a test
or production environment, as well as (4) security regression testing performed dur-
ing maintenance. With regard to model-based security testing, we considered testing
based on architectural and functional models, threat, fault and risk models, as well as
weakness and vulnerability models. Concerning, code-based testing and static analysis
we took manual code reviews as well as static application security testing into account.
With regard to penetration testing and dynamic analysis, we considered penetration
testing itself, vulnerability scanning, dynamic taint analysis, as well as fuzzing. Con-
cerning security regression testing, we discussed approaches to test suite minimization,
test case prioritization, and test case selection. To show how the discussed security
testing techniques could be practically applied, we discuss their usage for a three-tiered
business application based on a web client, an application server, as well as a database
backend.

Overall, this chapter provided a broad overview of recent security testing techniques.
It fulfills the growing need for information on security testing techniques to enable their
effective and efficient application. Along these lines, this chapter is of value both for
researchers to evaluate and refine existing security testing techniques as well as for
practitioners to apply and disseminate them.
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