Emerging Software Testing Technologies

Francesca Lonetti' and Eda Marchetti!

'ISTI-CNR, 56124 Pisa, Italy
{francesca.lonetti, eda.marchetti}@isti.cnr.it

Abstract

Software testing encompasses a variety of activities along the soft-
ware development process and may consume a large part of the effort
required for producing software. It represents a key aspect to assess
the adequate functional and non functional software behaviour aiming
to prevent and remedy malfunctions. The increasing complexity and
heterogeneity of software poses many challenges to the development
of testing strategies and tools. In this chapter, we provide a compre-
hensive overview of emerging software testing technologies. Beyond
the basic concepts of software testing, we address prominent test case
generation approaches and focus on more relevant challenges of testing
activity as well as its role in recent development processes. An em-
phasis is also given to testing solutions tailored to the specific needs of
emerging application domains.

Keywords— Software testing, Testing objectives, Testing techniques
and tools, Testing challenges, Software process, Testing needs and trends,
Emerging application domains

1 Introduction

The testing phase is an important and critical part of software development,
consuming even more than half of the effort required for producing deliver-
able software [6]. Unfortunately, often due to time or cost constraints, the
testing is not developed in the proper manner or is even skipped. The testing
activity in fact is not limited to the detection of “bugs” in the software, but
it encompasses the entire development process.

The testing planning starts during the early stages of requirement anal-
ysis, and proceeds systematically, with continuous refinements during the
course of software development until the completion of the coding phase,
with the beginning of the test cases execution. This last step represents the
biggest part of software cost that can be evaluated in terms of: the cost of
designing a suitable set of test cases which can reveal the presence of bugs;

the cost of running those tests, which also requires a considerable amount of
time; the cost of detecting them, i.e. the development of a proper “oracle”
which can identify the manifestation of bugs as soon as possible; the cost of
correcting them. All these activities have in common the same testing pur-
pose: evaluating the product quality for increasing the software engineering
confidence in the proper functioning of the software. However, it must be
made clear that testing cannot show the absence of defects; it can only reveal
that software defects are present (Dijkstra [40]).

In this chapter, we refer to the definition of the Software Testing intro-
duced in [22]: “Software Testing consists of the dynamic verification of the
behaviour of a program on a finite set of test cases, suitably selected from the
usually infinite executions domain, against the specified expected behaviour”.
As shown by this definition, testing deals with dynamic verification of system
quality, which also involves the code execution, as will be better described in
this Chapter. Generally, the techniques applicable for quality evaluation can
be divided into two sets: static techniques, which do not involve code exe-
cution, and dynamic techniques, to which testing belongs to, which instead
require running code. The static techniques are applicable all during the
process development for different purposes such as to check the adherence
of the code to the specification or to detect defects in code by its inspection
or review. Instead, the latter approach more properly observes failures as
they show up. In particular, dynamic analysis techniques involve the exe-
cution of the code and the analysis of its responses in order to determine
its validity and detect errors. The behavioral properties of the program are
also observed. Other examples of dynamic analysis include simulation, sizing
and timing analysis, and prototyping, which may be applied throughout the
lifecycle [6]. Here, we briefly present the static techniques (Section 2.1.1),
preferring to concentrate on testing, which is the main topic of this Chapter.

Before continuing the presentation it is important to clarify the termi-
nology relative to the terms “fault”, “defect” and “failure” that we will use.
Although their meanings are strictly related, there are some distinctions be-
tween them. As discussed in [6], a failure is the manifested inability of the
program to perform the function required, i.e. a system malfunction evi-
denced by incorrect output, abnormal termination or unmet time and space
constraints. The cause of a failure, i.e. the missing or incorrect code, is a
fault. In particular, a fault may remain undetected until some stirring up
event activates it. In this case it brings the program into an intermediate un-
stable state, called error, which if propagated to the output causes a failure.
The process of failure manifestation is therefore Fault-FError-Failure, which
can be iterated recursively: a fault can be caused by a failure in some other
interacting system.

Testing reveals failures and a consequent analysis stage is needed to iden-
tify the faults that caused them. In particular, it is possible that many dif-
ferent failures can result from a single fault, and the same failure can be

caused by different faults.

The chapter is organized as follows: In Section 2 we present basic con-
cepts of testing including types of test (static and dynamic), test levels and
objectives characterizing the testing activity; in Section 3 we address most
prominent test generation techniques and tools; Section 4 targets challenging
aspects of software testing whereas Section 5 identifies the role of software
testing in relevant software processes. Finally, Section 6 outlines needs and
trends of software testing for emerging application domains and Section 7
draws discussion and conclusions.

2 Basic Concepts of Testing

The one term testing involves different concepts, refers to a full range of
test techniques, even quite different from one other, and embraces a variety
of aims. In this section we provide some basic concepts of software testing
useful in the remaining of this Chapter.

2.1 Type of Tests

Since the 1980, the widespread use of modern technologies has led a large part
of the software engineering to focus its attention on quality, usability, safety
and other characteristic attributes of software applications. In particular,
interest was captured both by the process for software development and
by its results. Using their experience software engineering researchers have
gradually arrived at the conviction that only the joint between a mature
and well-established development process with specific techniques for the
quantitative evaluation of the attributes of interest of the artifacts produced
can guarantee high quality and reliable applications. Therefore, research
has been split into two sets, with of course some natural intersections and
points of contact: the former interested to the process (Software Process
Improvement (SPI) [106], and the latter focused on the product.

Frameworks such as CMM [88|, SPICE [43]|, RUP [66] (detailed in Sec-
tion 5) are the products of the SPI research work belonging to the former
set. They capture the good practices for the process assessment and are de
facto references used by thousands of organizations. Considering the latter
set, generally the techniques applicable to the product can be divided into
two groups: static techniques, which do not involve code execution, and
the dynamic techniques, which instead require code running, to which test-
ing belongs. In the remaining of this section more details about these two
techniques are provided.

2.1.1 Static Techniques

Static techniques are based on the (manual or automated) examination of
project documentation, of software models and code, and of other related
information about requirements and design. Thus, static techniques can be
employed all along software development, and their earlier usage is of course
highly desirable.

Considering a generic development process (see Section 5 for more de-
tails), they can be applied [6]:

e at the requirements stage for checking language syntax, consistency
and completeness as well as the adherence to established conventions;

e at the design phase for evaluating the implementation of requirements,
and detecting inconsistencies (for instance between the inputs and out-
puts used by high level modules and those adopted by sub-modules);

e during the implementation phase for checking that the form adopted
for the implemented products (e.g., code and related documentation)
adheres to the established standards or conventions, and that interfaces
and data types are correct.

Traditional static techniques include [27]: Software inspection, that is
the step-by-step analysis of the documents (deliverables) produced, against
a compiled checklist of common and historical defects; Software reviews, that
is the process by which different aspects of the work product are presented
to project personnel (managers, users, customer etc) and other interested
stakeholders for comment or approval; Code reading, that is the desktop
analysis of the produced code for discovering typing errors that do not violate
style or syntax; Algorithm analysis and tracing, that is the process in which
the complexity of algorithms employed and the worst-case, average-case and
probabilistic analysis evaluations can be derived.

The processes implied by the above techniques are heavily manual, error-
prone, and time consuming. To overcome these problems, researchers have
proposed static analysis techniques relying on the use of formal methods [54].
The goal is to automate as much as possible the verification of the proper-
ties of the requirements and the design. Towards this goal, it is necessary
to enforce a rigorous and unambiguous formal language for specifying the
requirements and the software architecture.

In the middle between static and dynamic analysis techniques, is sym-
bolic execution [34], which executes a program by replacing variables with
symbolic values (see Section 3.4).

2.1.2 Dynamic Techniques

Dynamic techniques [22] obtain information of interest about a program
by observing some executions. Standard dynamic analysis include testing

(on which we focus in the rest of the chapter) and profiling. Essentially, a
program profile records the number of times some entities of interest occur
during a set of controlled executions. These data can be used to derive
measures of coverage or frequency. Other specific dynamic techniques also
include simulation, sizing and timing analysis, and prototyping [6].

Testing properly said is based on the execution of the code on valued in-
puts. Of course, although the set of input values can be considered infinite,
those that can be run effectively during testing are finite. It is in practice
impossible, due to the limitations of the available budget and time, to ex-
haustively exercise every input of a specific set even when not infinite. In
other words, by testing we observe some samples of the program behavior.
A test strategy therefore must be adopted to find a trade-off between the
number of chosen inputs and overall time and effort dedicated to testing
purposes. Different techniques can be applied depending on the target and
the effect that should be reached. We will describe test selection strategies
in Section 3.

2.2 Objectives of testing

Software testing can be applied for different purposes, such as verifying that
the functional specifications are implemented correctly, or that the system
shows specific non-functional properties such as performance, reliability, us-
ability. A (certainly non complete) list of relevant testing objectives includes
[22, 6]:

e Acceptance/qualification testing: the final test action prior to deploy-
ing a software product. Its main goal is to verify that the software
respects the customer requirement. Generally, it is run by or with the
end-users to perform those functions and tasks the software was built
for;

e Installation testing: the system is verified upon installation in the tar-
get environment. Installation testing can be viewed as system test-
ing conducted once again according to hardware configuration require-
ments. Installation procedures may also be verified;

e Alpha testing: before releasing the system, it is deployed to some in-
house users for exploring the functions and business tasks. Generally,
there is no test plan to follow, but the individual tester determines
what to do;

e Beta Testing: the same as alpha testing but the system is deployed
to external users. In this case the amount of detail, the data, and
approach taken are entirely up to the individual testers. Each tester
is responsible for creating their own environment, selecting their data,
and determining what functions, features, or tasks to explore. Each

tester is also responsible for identifying their own criteria for whether
to accept the system in its current state or not;

e Conformance Testing/Functional Testing: the test cases are aimed at
validating that the observed behavior conforms to the specifications.
In particular, it checks whether the implemented functions are as in-
tended and provide the required services and methods. This test can
be implemented and executed against different test targets, including
units, integrated units, and systens;

e Non-Functional testing: it is specifically aimed at verifying non-functional
properties of the system such as performance, reliability, usability, se-
curity and so on;

e Regression testing: it is the selective re-execution of test cases to verify
that code modifications have not caused unintended effects and that
the system or component still complies with requirements. In practice,
the objective is to show that a system which previously passed the
tests still does. Notice that a trade-off must be made between the
assurance given by regression testing every time a change is made and
the resources required to do that.

2.3 Test Levels

During the development lifecycle of a software product, testing is performed
at different levels and can involve the whole system or parts of it. Depend-
ing on the process model adopted, then, software testing activities can be
articulated in different phases, each one addressing specific needs relative to
different portions of a system. Whichever the process adopted, we can at
least distinguish in principle between unit, integration, system and regres-
sion test [6]. These are the testing stages of a traditional phased process (see
Section 5). However, even considering different, more modern, process mod-
els, a distinction between these test levels remains useful to emphasize three
logically different moments in the verification of a complex software system.
None of these levels is more relevant than another, and more importantly a
stage cannot supply for another, because each addresses different typologies
of failures.

2.3.1 Unit Test

A unit is the smallest testable piece of software, which may consist of hun-
dreds or even just a few lines of source code, and generally represents the
result of the work of one programmer. The unit test purpose is to ensure
that the unit satisfies its functional specification and/or that its implemented
structure matches the intended design structure [6].

Unit tests can also be applied to check interfaces (parameters passed in
correct order, number of parameters equal to number of arguments, parame-
ter and argument matching), local data structure (improper typing, incorrect
variable name, inconsistent data type) or boundary conditions.

2.3.2 Integration Test

Generally speaking, integration is the process by which software pieces or
components are aggregated to create a larger component. Integration test-
ing is specifically aimed at exposing the problems that can arise at this stage.
Even though the single units are individually acceptable when tested in iso-
lation, in fact, they could still result in incorrect or inconsistent behaviour
when combined in order to build complex systems. For example, there could
be an improper call or return sequence between two or more components [6].

Integration testing thus is aimed at verifying that each component inter-
acts according to its specifications as defined during preliminary design. In
particular, it mainly focuses on the communication interfaces among inte-
grated components.

There are not many formalized approaches to integration testing in the
literature, and practical methodologies rely essentially on good design sense
and the testers intuition. Integration testing of traditional systems was done
substantially in either a non-incremental or an incremental approach.

In a non-incremental approach the components are linked together and
tested all at once (“big-bang” testing) [6]. In the incremental approach, we
find the classical “top-down” strategy, in which the modules are integrated
one at a time, from the main program down to the subordinated ones, or
“bottom-up”, in which the tests are constructed starting from the modules
at the lowest hierarchical level and then are progressively linked together
upwards, to construct the whole system. Usually in practice, a mixed ap-
proach is applied, as determined by external project factors (e.g., availability
of modules, release policy, availability of testers and so on) [6].

In modern Object Oriented, distributed systems, approaches such as top-
down or bottom-up integration and their practical derivatives, are no longer
usable, as no “classical” hierarchy between components can be generally iden-
tified. Some other criteria for integration testing imply integrating the soft-
ware components based on identified functional threads [6]. In this case, the
test is focused on those classes used in reply to a particular input or system
event (thread-based testing); or by testing together those classes that con-
tribute to a particular use of the system. Finally, some authors have used
the dependency structure between classes as a reference structure for guid-
ing integration testing, i.e., their static dependencies, or even the dynamic
relations of inheritance and polymorphism [6].

2.3.3 System Test

System test involves the whole system embedded in its actual hardware envi-
ronment and is mainly aimed at verifying that the system behaves according
to the user requirements. In particular, it attempts to reveal bugs that
cannot be attributed to components as such, to the inconsistencies between
components, or to the planned interactions of components and other objects
(which are the subject of integration testing).

Summarizing, the primary goals of system testing can be [6]: i) discover-
ing the failures that manifest themselves only at system level and hence were
not detected during unit or integration testing; ii) increasing the confidence
that the developed product correctly implements the required capabilities;
iii) collecting information useful for deciding the release of the product.

System testing should therefore ensure that each system function works
as expected, failures are exposed and analyzed, and additionally that inter-
faces for export and import routines behave as required.

Generally, system testing includes testing for performance, security, reli-
ability, stress testing and recovery [6]. In particular, test and data collected
applying system testing can be used for defining an operational profile nec-
essary to support a statistical analysis of system reliability (see Section 3.3).

A further test level, called Acceptance Test, is often added to the above
subdivision. This is however more an extension of system test, rather than a
new level. It is in fact a test session conducted over the whole system, which
mainly focuses on the usability requirements more than on the compliance of
the implementation against some specification. The intent is hence to verify
that the effort required from end-users to learn to use and fully exploit the
system functionalities is acceptable.

2.3.4 Regression Test

Properly speaking, regression test is not a separate level of testing (it is
listed among test objectives in Section 2.2), but may refer to the retesting of
a unit, a combination of components or a whole system after modification,
in order to ascertain that the change has not introduced new faults [6].

As software produced today is constantly in evolution, driven by market
forces and technology advances, regression testing takes by far the predomi-
nant portion of testing effort in industry. Since both corrective and evolutive
modifications may be performed quite often, to re-run after each change all
previously executed test cases would be prohibitively expensive [52]. There-
fore various types of techniques have been developed to reduce regression
testing costs and to make it more effective.

Selective regression test techniques [6] help in selecting a (minimized)
subset of the existing test cases by examining the modifications (for instance
at code level, using control flow and data flow analysis). Other approaches

instead prioritize the test cases according to some specified criterion (for
instance maximizing the fault detection power or the structural coverage),
so that the test cases judged the most effective with regard to the adopted
criterion can be taken first, up to the available budget (see Section 4.4.3 for
more details).

3 Test cases Generation

Test cases generation is among the most important and intensive activities
of software testing. A lot of research has been devoted in the last decades to
automatic test case generation with the consequent development of different
techniques and tools. In this section, we provide an overview of prominent
test case generation approaches evidencing the main issues and challenges of
each of them.

3.1 Search-based Testing

Search-Based Software Testing is one of the emerging methodologies for au-
tomated test generation. It is based on an heuristic, such as a Genetic
Algorithm [115], to optimize search techniques and automate the test case
definition. Such heuristic uses a problem-specific fitness function for on side
guiding the search of solutions from a potentially infinite search space, and
from the other limiting the required execution time. Search-Based Software
Testing is not a recent proposal, indeed the first approach dates back to 1976
[82]. However, in the last years there is an huge increase of proposals due to
their flexibility and applicability. Commonly, the application of search-based
testing requires that [78]: the solutions for the problem should be encoded so
that they can be manipulated by the heuristic algorithm; the fitness function
needs to be defined for each specific problem and should be able to guide
the search to promising areas of the search space by evaluating candidate
solutions.

Due to their versatility, search-based approaches have been adopted in
several areas such as [78]: functional testing, temporal testing, integration
testing, regression testing, stress testing, mutation testing, test prioritiza-
tion, interaction testing, state machine testing and exception testing.

Common weaknesses of search-based testing are related to the interaction
with external environment, the definition of the fitness function and the
automated oracle. In the former case, the main difficulty is related to the
handling interactions with external environment or components with which
the system under test could be dependent. In particular, issues could be
risen in checking the existence of files or directories. In literature, possible
solutions propose to include, in the file or database, test data that can be
read back by the program under test, or to use mock objects.

In case of the fitness functions, due to their heuristics nature, there is
the possibility they fail to give adequate guidance to the search. A common
example is the so-called flag problem in structural test data generation [55]:
a branch predicate consists of a boolean value (the flag), yielding only two
branch distance values one for when the flag is true, and one for when it is
false. The Testability Transformation [55] is the most adopted solution to
deal with this problem. It consists in the generation of a temporary version
of the program under test that can be used to generate the test data and
then discarded.

About the automated oracle, notwithstanding the huge interest devoted
to this topic, reducing the human activity in the evaluation of the test-
ing results is still an issue. Indeed, available proposals for fitness functions
are more focused on maximizing the (structural) coverage, while minimizing
the testing effort. The seeding work of [79] tries to alleviate this problem
proposing solutions based on knowledge management, such for instance the
possibility of explicitly select the starting point of any search-based approach
or use the program source of information for setting up the types of inputs
that may be expected.

3.2 Model-based Testing

In recent years, model-based testing (MBT) has become increasingly suc-
cessful thanks to the emergence of model-centric development paradigms,
such as UML and MDA [67]. Models are used for capturing knowledge and
specify a system with different levels of accuracy. The main goal of model-
based testing is the automatic generation, execution and evaluation of test
cases based on a formal model of the SUT. The work in [111] provides a
taxonomy of characteristics, similarities and differences of MBT techniques,
and classifies existing tools according to them.

The four main approaches known as model-based testing are [110]: i)
Generation of test input data from a domain model; ii) Generation of test
input data from an environment model; iii) Generation of test cases with
oracle from a behavior model; iv) Generation of executable test scripts from
abstract tests.

However, model-based testing suffers from some drawbacks that may pre-
vent its use in some application areas, such as the availability of a system
specification, which not always exists in practice. Moreover, when it exists,
this specification should be complete enough to ensure some relevance of the
derived test suite. Finally, this specification cannot include all the imple-
mentation details and is restricted to a given abstraction level. Therefore, to
become executable, the derived test cases need to be refined into more con-
crete interaction sequences. Automating this process still remains an open
problem.

Despite the continuous evolving of MBT field, as it could be observed in

10

the increasing number of MBT techniques published at the technical litera-
ture, there is still a gap between research related to MBT and its application
in the software industry. The authors of [39] present an overview of MBT ap-
proaches supporting the selection of MBT techniques for software projects
and the risk factors that may influence the use of these techniques in the
industry.

3.3 Black-box vs. White-box Testing

In this section, alternative classifications of test techniques are provided: the
first, called black-box testing, is based on the input/output behaviour of the
system (Section 3.3.1); the second, called white-box testing, is based on the
structure and internal data of the software under test (Section 3.3.2); the
third called grey-box testing trying to mix the previous one (Section 3.3.3).
Generally, the presented test techniques are not alternative approaches but
can be used in combination as they use and provide different sources of
information [63].

3.3.1 Black-box Testing

Black-box testing, also called functional testing, relies on the input/output
behaviour of the system. In particular, the system is subjected to external
inputs, so that the corresponding outputs are used to verify the conformance
of the system to the specified behaviour, with no assumptions of what hap-
pens in between. Therefore, in this process we assume knowledge of the
(formal or informal) specification of the system under test, which can be
used to define a behavioral model of the system (a transaction flowgraph)
[6]. A complete black-box test would consist of subjecting the program to all
possible input streams and verifying the outcome produced, but as stated in
Section 2 this is theoretically impossible. For this, different techniques can
be applied such as:

e Testing from formal specifications: In this case it is required that spec-
ifications be stated in a formal language, with a precise syntax and
semantics. The tests are hence derived automatically from the speci-
fication, which are also used for deriving inductive proofs for checking
the correct outcome [54].

e Equivalence partitioning: The functional tests are derived from the
specifications written in structured, semiformal language. The input
domain is partitioned into equivalence classes so that elements in the
same class behave similarly. In this context, the Category Partition is
a well-known and quite intuitive method, which provides a systematic,
formalized approach to partition testing [29].

11

Boundary-values analysis: This is a complementary approach to equiv-
alence partitioning, and concentrates on the errors occurring at bound-
aries of the input domain. The test cases are thus chosen near the
extremes of the class [29].

Random methods: they consists of generating random test cases based
on a uniform distribution over the input domain. It is a low-cost tech-
nique because large sets of test patterns can be generated cheaply with-
out requiring any preliminary analysis of software [84, 8.

Operational profile: Test cases are produced by a random process
meant to produce different test cases with the same probabilities with
which they would arise in actual use of the software [73].

Decision Tables: The decision tables are rules expressed in a structural
way used to express the test experts’ or design experts’ knowledge.
Decision Tables can be used when the outcome or the logic involved in
the program is based on a set of decisions and rules which need to be
followed [84].

Cause-effect graphs: These are combinatorial logic networks that can
be used to explore in systematic way the possible combinations of input
conditions. By analyzing the specification, the relevant input condi-
tions or causes, and the consequent transformations and output con-
ditions, the effects are identified and modeled into graphs linking the
effects to their causes [84].

Combinatorial Testing: In combinatorial testing, test cases are de-
signed to execute combinations of input parameters [84]. Because pro-
viding all combinations is usually not feasible in practice, due to their
extremely large numbers, combinatorial approaches able to generate
smaller test suites for which all combinations of the features are guar-
anteed, are preferred [8]. Among them, common approach is all-pair
testing technique, focusing on all possible discrete combinations of each
pair of input parameters. We refer to [85] for a complete overview of
the most recent proposals and tools.

State Transition Testing: This type of testing is useful for testing state
machine and also for navigation of graphical user interface [84]. A wide
variety of state transition systems exist, including finite state machines
[68], I/O Automata [72|, Labeled Transition Systems [109], UML state
machines [30], Simulink/Stateflow [108], and PROMELA [12].

Evidence based testing: In evidence-based software engineering (EBSE)
the best solution for a practical problem should be identified based on
evidence [62]. The process for solving practical problems based on a

12

rigorous research approach includes the following different steps that
can be applied also to testing activities [64]: i) identify the evidence
and formulate a question; ii) track down the best evidence to answer
the question; iii) critically reflect on the evidence provided with respect
to the problem and context that the evidence should help to solve. In
software engineering, two approaches that allow to identify and aggre-
gate evidence are systematic mapping studies and systematic reviews
[100].

One of the points against the black-box testing is its dependence on the
specification’s correctness and the necessity of using a large amount of inputs
in order to get good confidence of acceptable behaviour.

3.3.2 White-box Testing

The white-box testing, also called structural testing, requires complete access
to the object’s structure and internal data, which means the visibility of the
source code. The tests are derived from the program’s structure, which is
also used to track which parts of the code have been executed during testing.
For this, some of the commonly used techniques for test case selection are:

e Control flow-based criteria: these techniques use the control flow graph
representation of a program in which nodes correspond to sequentially
executed statements while edges represent the flow of control between
statements. The aim of white box testing criteria is to cover as much
as possible the control flow graph, limiting the number of selected test
cases. In particular, they differentiate in: statement coverage which
is based on executable statements, branch coverage, which focuses on
the blocks and case statements that affect the control flow, condition
coverage which relies on subexpressions independently of each other,
path coverage which is based on the possible paths exercised through
the code |84, 6].

e Data-Flow coverage: in data-flow testing, a data definition of a vari-
able is a location where a value is stored in memory (definition) and
a data use is a location where the value of the variable is accessed
for computations (c-use) or for predicate uses (p-use). The data-flow
testing goal is to generate tests that execute program subpaths from
definition to use. Traditional data-flow analysis techniques work on
control flow graphs annotated with specific information on data usage
[84, 6].

3.3.3 Grey-box Testing

The grey-box testing tries to combine the two above mentioned proposals
[63]. In this case, the tests are generated exploiting limited knowledge of

13

the internal working and the knowledge of input/output behaviour of the
system under test. Important aspects of grey box testing techniques are the
possibility of exploiting the interface definition and functional specification
rather than source code and the focus on the user’s point of view rather than
designer one. On the other side, usually grey-box testing does not assure the
coverage assessment as the access to source code is completely not available.
Indeed, there is the possibility that many program paths remain untested or
that the tests could be redundant. The other name of grey box testing is
translucent testing.

3.4 Symbolic Execution

Symbolic execution is a popular program analysis technique, introduced in
the ’70s, that has found interest in recent years in the research community,
with particular emphasis on applications to test generation [34]. The main
idea behind symbolic execution is to use symbolic values, instead of actual
data, as input values, and to execute the program by manipulating program
expressions involving the symbolic values. The state of a symbolically ex-
ecuted program is represented by the symbolic values of program variables
and by a boolean formula over the symbolic inputs representing constraints
which the inputs must satisfy. As a result, the output values computed by a
program are expressed as a function of the input symbolic values and a sym-
bolic execution tree represents the execution paths. The tree nodes represent
program states and they are connected by program transitions [87].

The main challenges of symbolic execution in processing real-world code
are related to [13]:

e Environment interactions: interactions with the file system or the net-
work through libraries and system calls could cause side-effects and
affect the execution. Evaluating any possible interaction outcome is
generally unfeasible since it could generate a large number of execu-
tion states. A typical strategy is to consider popular library and system
routines and create models that can help the symbolic engine to ana-
lyze only significant outcomes.

e State space explosion and path selection: the existence of real-world
looping programs might exponentially increase the number of execu-
tion states and prevent the symbolic execution engine to exhaustively
explore all the possible states within a reasonable amount of time. In
practice, heuristics are used to guide and prioritize states exploration.
In addition, efficient mechanisms for evaluating multiple states in par-
allel are implemented in symbolic engines.

e Constraint solver limitations: Constraint solvers suffer from a number
of limitations when they have to deal with non-linear constraints over

14

their elements. Symbolic execution engines normally rely on optimiza-
tions and algebraic simplifications.

However, to overcome the limitations of symbolic execution due to path
explosion and the time spent in constraint solving, a standard approach
consists into combining concrete and symbolic executions of the code under
test. This approach is known as concolic testing [101] and tightly couples
both concrete and symbolic executions that run simultaneously, and each
gets feedback from the other. The basic idea is that a concolic execution
engine uses the concrete execution to drive the symbolic execution, then
after choosing an arbitrary input to begin with, it executes the program
both concretely and symbolically by simultaneously updating concrete and
symbolic stores as well as the path constraints.

Symbolic execution has been included in several recent tools offering the
capability to systematically exploring many possible execution paths at the
same time without necessarily requiring concrete inputs. The most common
ones evidencing the growing impact of symbolic execution in practice are:

e Symbolic Java Path Finder (Symbolic JPF): It is a symbolic execution
framework that implements a non-standard bytecode interpreter on top
of the Java PathFinder model checking tool [86]. It allows to perform
automated generation of test cases and to check properties of code
during test case generation. The framework performs a non-standard
bytecode interpretation and uses JPF to systematically generate and
execute the symbolic execution tree of the code under analysis. It has
been used for testing a prototype NASA flight software component
helping discovering a serious bug.

e CUTE and jCUTE: CUTE (A Concolic Unit Testing Engine) and
jCUTE (CUTE for Java) handle multi-threaded programs that ma-
nipulate dynamic data structures using pointer operations [102|. They
combine concolic execution with dynamic partial order reduction to
systematically generate both test inputs and thread schedules. Both
tools have been applied to test several Java and C open-source software.

e KLEE: It is a symbolic execution tool, capable of automatically gen-
erating tests that achieve high coverage on a diverse set of complex
and environmentally-intensive programs [33]. An important feature of
KLEE is its ability to handle interactions with real world data read
from the file system or over the network. Moreover, it is applied to a
variety of areas, including wireless sensor networks, automated debug-
ging, testing of binary device drivers, online gaming.

15

3.5 Non-functional Testing

An important aspect for software testing is the possibility of determine and
evaluate properties of the product such as determine how fast the product
responds to a request or how long it takes to do an action. Non-Functional
testing is performed at all test levels and is focused on software attributes
such performance, security, scalability and so on. Nowadays, there exist more
than 150 types of non-functional testing. Here below, the most common non-
functional testing types are briefly schematized:

e Performance Testing: it is specifically aimed at verifying that the sys-
tem meets the specified performance requirements. It usually targets
validation of response times, throughput, resource-utilization levels and
other specific performance characteristics of the software under test.
However, the term performance testing is a general one that many time
is associated to various attributes or characteristics of non functional
testing. We refer to [69] for a specific definition of this term.

e Load Testing: it focuses on assessing the behavior of a system under
pressure in order to detect load-related problems where the term load
refers to the rate at which different service requests are submitted to
the system under test (SUT) [61]. Possible related problems can be
either functional problems that appear only under load (e.g, such as
deadlocks, racing, buffer overflows and memory leaks) or violations in
non-functional quality-related requirements under load (e.g., reliability,
stability and robustness). We refer to [61] for more details about the
most recent proposals and tools.

e Stress Testing: it is the process of putting a system far beyond its ca-
pabilities to verify its robustness and/or to detect various load-related
problems. Contrary to load testing in which the maximum allowable
load is generated, in stress testing, the load generated is more than
what the system is expected to handle [61].

e Volume Testing: it is the process in which internal program or sys-
tem limitations, such for instance storage requirements, are tried. It
involves the ability of the systems to exchange data and information
[69].

e Failover Testing: it validates a system’s ability to be able to allocate
extra resource when it encounters heavy load or unexpected failure so
to continue normal operations [69].

e Security Testing: it assesses whether security properties related to con-
fidentiality, integrity, availability, authentication, authorization, and
non-repudiation are correctly implemented. Security testing demon-
strates either the conformance with the security properties or addresses

16

known vulnerabilities by means of malicious, non-expected input data
set [44]. The emerging security testing techniques integrate on differ-
ent well known approaches such as: model-based testing, code-based
testing and static analysis, penetration testing and dynamic analysis
as well as regression testing. We refer to [44] for a complete overview
of the most recent testing techniques and tools.

o Reliability testing: testing is used as a means to improve reliability; in
such a case, the test cases must be randomly generated according to
the operational profile, i.e., they should sample more densely the most
frequently used functionalities [36].

e Compatibility Testing: it is the process for verifying whether the soft-
ware can collaborate with different hardware and software facilities or
with different versions or releases of the same hardware or software
[69].

e Usability Testing: it evaluates the ease of using and learning the system
and the user documentation, as well as the effectiveness of system
functioning in supporting user tasks, and, finally, the ability to recover
from user errors. This testing is particularly important when testing
GUI [50].

e Scalability Testing: it is focused on verifying the ability of the software
to increase and scale up on any of its non-functionality requirements
such as load, number of transactions, volume of data and so on [36].

4 Test Challenges

Beyond decades of research activities, techniques and actors in software test-
ing, there are still many aspects that remain more challenging due to the
complexity, pervasiveness and criticality of continual software development.
In this section, we overview several outstanding research challenges that need
to be addressed to advance the state of the art in software testing and repre-
sent the directions to be followed for coping with the rapid advances of the
software market.

4.1 Oracle Problem

An important component of testing is the oracle. Indeed, a test is meaningful
only if it is possible to decide about its outcome. The difficulties inherent
to this task, often oversimplified, had been early articulated in [92, 15].
Ideally, an oracle is any (human or mechanical) agent that decides whether
the program behaved correctly on a given test. The oracle is specified to
output a reject verdict if it observes a failure (or even an error, for smarter

17

oracles), and approve otherwise. Not always the oracle can reach a decision:
in these cases the test output is classified as inconclusive.

In a scenario in which a limited number of test cases is executed, the
oracle can be the tester himself/herself, who can either inspect a posterior
the test log, or even decide a priori, during test planning, the conditions
that make a test successful and code these conditions into the employed test
driver [79].

Oracle can be derived by the analysis of textual (natural language) doc-
umentation describing the functionalities expected from the SUT to varying
degrees. The partial and ambiguous nature of this documentation has often
forced the manual oracle decisions. However, as overviewed in [15], some
proposals try either to construct a formal specification exploiting user and
developer documentations and source code comments; or to restrict the nat-
ural language to a semi-formal one enabling automatic processing.

When the tests cases are automatically derived, or also when their num-
ber is quite high, in the order of thousands, or millions, a manual log inspec-
tion or codification of the test results is not thinkable. Automated oracles
must then be implemented.

In this case, a possible solution is to use pseudo-oracle [37], i.e. an al-
ternative version of the program produced independently, e.g. by a different
programming team or written in an entirely different programming language
[15]. Alternatively, regression testing results can be used, i.e. the test out-
come is compared with earlier version executions (which however in turn had
to be judged passed or failed).

However, most of the available proposals for oracle definition are derived
from a specification of the expected behavior [92]. According to [15] ap-
proaches based on formal specification can be classified into four categories:

e Model-based specification languages: the purpose is to exploit the mod-
els and a syntax that defines desired behavior in terms of its effects on
the model so to derive the expected oracle. Different proposals discuss
how to use the abstract specification to define high level test oracles
[30, 90]. However, the models or the documents describing the specifi-
cation could be very abstract, quite far from concrete execution output
and consequently, oracle definition could result quite problematic;

e State transition systems: this kind of approaches focuses on the formal
modeling of the system thought state transition systems. In particular,
they focus on the reaction of a system to stimuli, i.e. transitions, and
abstract a property of the states. A rigorous empirical evaluation of
test oracle construction techniques using state transition systems is
provided in [83];

e Asgsertions and contracts: if assertions could be embedded into the pro-
gram so to provide run-time checking capability, conditions are instead

18

expressly specified to be used as test oracles. As consequence, the pro-
duced execution traces could be logged and analyzed so to derive the
oracle verdicts [71];

e Algebraic specifications: the purpose is to define equations over pro-
gram operations that hold when the program is correct. The software
is represented in terms of equational axioms that specify the required
properties of the operations. Typically, these languages employ first-
order logic to prove properties of the specification, like the correctness
of refinements. Abstract data types (ADT), which combine data and
operations over that data, are well-suited to algebraic specification [92].

The formal specifications have the advantage that they can be used both
for test case derivation and oracle specification as well. However, the gap
between the abstract level of specifications and the concrete level of executed
tests only allows for partial oracles implementations, i.e., only necessary (but
not sufficient) conditions for correctness can be derived [92].

In view of these considerations, it should be evident that the oracle might
not always judge correctly. So the notion of coverage of an oracle is intro-
duced to measure its accuracy. It could be measured for instance by the
probability that the oracle rejects a test (on an input chosen at random from
a given probability distribution of inputs), given that it should reject it [15],
whereby a perfect oracle exhibits a 100% coverage, while a less than perfect
oracle may yield different measures of accuracy.

4.2 Full Automation

An important challenge of decades of research in software testing has been to
improve the degree of attainable automation, either by developing advanced
techniques for generating the test inputs or, beyond test generation, by find-
ing innovative support procedures to automate the testing process [23]. Due
to this, the market for tester support tools is in a huge expansion and recent
forecasts show that it shall grow up to $34 billion worldwide by 2017, which
opens relevant business opportunities for new innovative testing platforms.
Test automation tools promise to increase the number of tests they run
and the frequency at which they run them by many orders of magnitude.
Test automation can be incredibly effective, giving more coverage and new
visibility into the software under test. However, 100% automatic testing
remains still a dream [23]. Applicability of test automation is still limited
and its adaptation to testing contains practical difficulties in usability.
Practitioners frequently report disastrous failures in the attempt to re-
duce costs by automating software tests, particularly at the level of system
testing [89]. This is due to a gross underestimation of the money and time
necessary to automate tests. Automating tests takes time due both to se-
lection, building, installation and integration of the testing tools and to

19

planning and implementing automated tests. Often this effort is equivalent
to that of manual tests. Automated tests may generate a lot of results that
can take much more staff involvement and costs for analysis and isolation of
discovered faults than manual tests [57].

The trade-off between automated and manual testing is discussed in lit-
erature. The authors of [94] present a cost model that uses the concept of
opportunity cost to balance benefits, objectives and risks mitigation of au-
tomated and manual testing. The work in [53] presents an extensive review
of experiences of test automation detailing the used tools, the application
domain, the lifecycle development process, the project dimension as well as
the successful or failure results. The challenge would be the full development
of a powerful integrated test environment which by itself can automatically
take care of possibly instrumenting the deployed software deriving drivers
and stubs as well as the most suitable test cases, executing them and finally
handling the obtained results providing a test report.

An attempt in this direction is represented by perpetual testing, also
known as continuous testing 98], which uses machine resources to contin-
uously run tests in the background, providing rapid feedback about test
failures as source code is edited, reducing in this way wasted time by 92-
98%.

The principle of continuous testing is today a key feature of DevOps
which extends agile principles to entire software delivery pipeline [113]. The
main idea is to move the testing process to early in software lifecycle but
also allow the tests to be carried out on production like system executing
the test suite on every software build generated automatically without any
user intervention.

Finally, existing techniques aim to reduce automation costs by automat-
ing test automation. The main approach consists into a sequence of natural
language test steps enabling a sequence of procedure calls with accompa-
nying parameters that can drive testing without human intervention. This
technique has been proven effective in reducing the cost of test automation
by automating over 82% of the steps contained in a test suite [107].

4.3 Scalability of testing

The complexity of software systems is not only caused by their functional-
ities, but it is also due to the complexity of the platform and environment
in which they run. Mobile devices, distributed, wireless networked and vir-
tualised environment, large scale clusters, and mobile clouds are just some
examples. Additionally, in settings like Software as a service (SaaS) [32], Big
Data applications [119], Web of Systems [59], and Cyber-physical Systems
[10], there is from one hand, the need of computation able to scale up as well
as scale out; and from the other hand, an increasing demand of automated
testing of these large scale software systems, as stated in Section 4.2.

20

Recent studies focus on scalability of mutation testing which requires
much time and computational resources to execute the overall test suite
against all mutants. An empirical study of scalability of selective mutation
testing is proposed in [117]. The authors of [117] show how the program
size and the total number of non-equivalent mutants affect the effectiveness
of selective mutation testing based on the subsets of selected mutants. In
particular, as either the program size or the total number of non-equivalent
mutants increases, the number of selected mutants increases slowly, while
the proportion of selected mutants decreases, evidencing a good scalability
of selective mutation testing.

4.4 Test Effectiveness

Evaluating the program under test, measuring the efficacy of a testing tech-
nique or judging whether testing is sufficient and can be stopped, are im-
portant aspects of the software testing, which in turn would require having
measures of the effectiveness. The following sections provide details about
the different aspects of effectiveness.

4.4.1 Measuring the Software

For evaluating the program under test different measurements and approaches
can be applied as reported in [45]:

e Linguistic measures: these are based on proprieties of the program
or of the specification text. This category includes for instance the
measurement of: Sources Lines of Code (LOC), statements, number of
unique operands or operators, and function points;

e Structural measures: these are based on structural relations between
objects in the program and comprise control flow or data flow com-
plexity. These can include measurements relative to the structuring of
program modules, e.g., in terms of the frequency with which modules
call each other;

e Hybrid measures: these may result from the combination of structural
and linguistic properties;

e Fault density: this is a widely used measure in industrial contexts and
foresees the counting of the discovered faults and their classification by
their type. For each fault class, fault density is measured by the ratio
between the number of faults found and the size of the program.

4.4.2 Measuring the Testing Technique

For evaluating the testing approach, sometimes, coverage/thoroughness mea-
sures can be adopted. In this case, adequacy criteria evaluate the testing

21

approach through the percentage of exercised set of elements identified in
the program or in the specification by testing. However, the widespread
adopted methods focus on the evaluation of the fault-detection effectiveness
of the considered testing technique. With different degrees of formalization,
these proposals measure how much the test cases are able to revealing cat-
egories of likely or pre-defined faults. Among them, mutation analysis [60]
is the standard technique to assess the effectiveness of a testing approach.
In mutation testing, a mutant is a slightly modified version of the program
under test, differing from it by a small, syntactic change. Every test case
exercises both the original and all the generated mutants: if a test case is
successful in identifying the differences between the program and a mutant,
the latter is said to be killed. The underlying assumption of mutation testing
and the coupling effect, is that, by looking for simple syntactic faults, more
complex, but real, faults will be found. For the technique to be effective, a
high number of mutants must be automatically derived in a systematic way.

Mutation Testing can be adopted at any level of testing (unit, integration
level, system level) and can be applied both for white-box, black-box or gray-
box testing. In literature, there are plenty of proposals and tools for many
programming languages. We refer to [60, 6] for an overview of the most
recent proposals about Fortran programs, Ada programs, C programs, Java
programs, C# programs, and AspectJ programs. Mutation Testing has also
been used for interfaces testing [38| or more in general during the design
level [60, 20] for mutating Finite State Machines, Statecharts, Petri Nets
and Network protocols. Recently Mutation testing has been applied to Web
Services [6] or to Security Policies [76, 26].

4.4.3 Test cases Selection & Prioritization

In software testing, to improve fault detection rate at a given test execution
time, common solutions rely on the application of proper strategies for test
cases selection or prioritization. Test case selection aims to reduce the car-
dinality of the test suites while keeping the same effectiveness in terms of
coverage or fault detection rate; test case prioritization aims at defining a
test execution order according to some criteria (e.g., coverage, fault detec-
tion rate), so that those tests that have a higher priority are executed before
the ones having a lower priority.

Many proposals address test cases selection for regression systems, aiming
to speed up testing with a focus on detecting change-related faults [103]. The
main idea is to select and run from the full test suite those tests that are
relevant to the changes made to different software revisions, guaranteeing
that the outcome of the tests that are not selected will not be affected by
the changes. The effectiveness of regression test selection is measured by the
ratio of the number of tests selected to run over the total number of tests
[103].

22

Some recent proposals try to automate test cases selection techniques
using information retrieval [74], others exploit the tracking of dynamic de-
pendencies of tests on Java and JUnit files without require integration with
version-control systems [51].

Test case prioritization techniques [104] schedule test cases in an order
to increase::

e the rate of fault detection, namely, the likelihood of revealing faults
earlier in a run of regression tests;

e the likelihood of revealing regression errors related to specific code
changes earlier in the regression testing process [99];

e the coverage of code under test;

e the confidence in the reliability of the system under test.

In practice, the test case prioritization problem may be intractable, so
test case prioritization techniques rely typically on heuristics. A review of
such prioritization techniques is presented in [96]. In [97], several test pri-
oritization techniques are used to increase the fault detection rate of test
suites. More recent results [41] still confirm the effectiveness of test case
prioritization based on fault detection rate and show the flexibility of the
approach for application in different contexts. However, as demonstrated
in [42], no prioritization metric is the best one for any system: indeed, the
performance of the prioritization approach varies according to the consid-
ered application and could depend on the evaluated test suites [24]. Another
proposal addresses time-constrained test prioritization in the context of in-
teger programming [118]. An approach that is currently considered very
promising is based on the notion of test similarity [114]: the intuition be-
hind similarity-based prioritization is that when resources are limited and
only a subset of test cases within a large test suite can be executed, then
it is convenient to start from those that are the most dissimilar according
to a predefined distance function. In the context of testing of access con-
trol systems, some prioritization criteria based on similarity of access control
requests are presented in [24].

5 Testing Process

During recent years, software testing has increased its role in the process
of development. It is no longer focused on the defects detection after code
completion, but it is now an integrated and significant activity performed
during the whole software life cycle. Its critical nature and the importance
for the overall quality of the final products led adopting the good practice of
starting its management at the early stages of software development during

23

the requirements analysis and proceeding with its organization systemati-
cally and continuously during the entire development process up to the code
level.

Without referring to any specific software development process, usually
the basic development phases can be summarized as in the following [6]:

e Requirements Analysis: services, constraints, goals, and features of the
overall system are established and organized. The list of requirements
specifies the guidelines that the project must adhere to. At the end of
this phase a set of documented, actionable, measurable, testable, and
traceable requirements should be defined to a level of detail sufficient
for system design;

e System and Software Design: this phase targets both hardware and
software requirements and establishes the overall system architecture.
The representation of the system is usually provided in terms of func-
tionalities easily transformable into one or more executable applica-
tions/programs;

e Implementation: the established design is implemented in order to sat-
isfy the list of requirements identified in the requirement analysis and
definition phase. The implemented units, or subsystems are integrated
into a complete system to be properly tested;

e Validation and Testing: quality attributes as well as requirement as-
sessment are calculated and validated. Different test techniques can
be included in the process development, each one targeting a different
aspect of the proposed system.

Considering in particular the Validation and Testing phase, even if its
management can depend strictly on the development process adopted for
delivering the software products, the main phases can be resumed in [6]:

e Planning: as for any other process activity, the testing must be planned
and scheduled. Thus, the time and effort needed for performing and
completing software testing must be established in advance during the
early stages of development. This also includes the specification of the
personnel involved, the tasks they must to perform and the facilities
and equipments they may use;

e Test cases generation: according to the test plan constraints a set(s)
of the test cases must be generated by using a (several) test strategy
(ies);

e Test cases execution: the test cases execution may involve testing en-
gineers, outside personnel or even customers. It is important to docu-
ment every action performed in order to allow the experiments’ dupli-
cation and meaningful and truthful evaluations of the results obtained;

24

e Test results analysis: the collected testing results must be evaluated
to determine whether the test was successful (the system performs as
expected, or there are no major unexpected outcomes) and used for
deriving measures and values of interest;

e Problem reporting: a test log documents the testing activity per-
formed. This should contain for example the date in which a test
was conducted, the data of the people who performed the test, the in-
formation about the system configuration and any other relevant data.
Anomalies or unexpected behaviours should be also reported;

e Post-closure activities: the information relative to failures or defects
discovered during testing execution are used for evaluating the perfor-
mance and the effectiveness of the developed testing strategy(ies) and
determining whether the process development adopted needs some im-
provements.

In the remaining of this Section some of the most important development
processes are briefly introduced and the role of testing inside them discussed.

5.1 Sequential Models

One of the first models to be designed was the waterfall model (W-model),
also known as the cascade model, where the software development lifecycle
was constructed from a sequential set of stages [6]. It starts with a require-
ments analysis at the top level and finishes with the testing activity, so that
defects are discovered close to the releasing, with a deep impact on the overall
development costs. Usually, the waterfall model is the recommended frame-
work for creating software which provides back-end functionality, meaning a
software whose main scope is to provide a service for other applications.

The V-model, is the successive variation of the W-model, where a V
shape folded at the coding level is included. It was important to demonstrate
that testing activities should be planned and designed as early as possible
in the lifecycle. Sometimes the V-model can be used in large projects which
can include several subsystems and 3rd party systems.

The most common alternatives of the sequential approaches are evolu-
tionary ones which are based on iterations. In this case, the system is not
defined in advance but evolves through the evaluation of the achieved inter-
mediate results.

5.2 TIterative Models

During the last ten years, part of software research has been dedicated to
the improvement of the development process (Software Process Improvement
(SPI) initiatives). In this context, the CMM model (Capability Maturity

25

Model) [88], developed at the Software Engineering Institute (SEI) is a de
facto reference used by thousands of organizations together with the SPICE
framework [43]. We report below a brief description of the commonly used
process assessment models referring to [43] for further details.

As summarized in [88], the CMM model is a framework that describes the
elements required for an effective software process. In particular, it focuses
on an evolutionary improvement path from an ad hoc, immature process to
a mature, disciplined process. It presents sets of recommended practices in
a number of key process areas that have been shown to enhance software
development and maintenance capability. The CMM guides developers in
gaining control of their development and maintenance processes, and evolv-
ing toward a culture of software engineering and management excellence.
CMM is not a framework that advocates magical and revolutionary new
ideas, but it is in fact a tailored compilation of the best practices in software
testing. Specifically, it improves quality of software delivered, it increases
the customer satisfaction; it helps in achieving targeted cost savings; it also
ensures stability and consistent high performance.

Other methods for managing the program improvement are the IDEAL
framework [77| defined at the SEI, and the Rational Unified Process (RUP)
[66].

The IDEAL method is an integrated approach for SPI defined by the
SEI which identifies five phases: i) Initiating, which specifies the business
goals and objectives that will be realized or supported; ii) Diagnosing, which
identifies the organization’s current state with respect to a related standard
or reference model; iii) Establishing, which develops plans to implement
the chosen approach; iv) Acting, which brings together everything available
to create a best guess solution specific to organizational needs and puts the
solution in place; v) Leveraging, which summarizes lessons learned regarding
processes used to implement IDEAL.

The Rational Unified Process (RUP), which is a detailed refinement of
the Unified Process (UP) [66], presents itself as a web-enabled software en-
gineering process useful for: improving team productivity, delivering of soft-
ware best practices to all team members, guiding the user in applying UML
during the process development, and providing an extensive set of guide-
lines, templates, and examples. It is in particular a customizable framework,
adaptable to the different organization exigencies, supported by tools (tightly
integrated with Rational tools) which automates a large part of the process
development. A central role of this process is represented by the RUP Best
Practices, which are mainly guidelines for a well-established process develop-
ment. RUP identifies six best practices which are: Develop Software Itera-
tively, Manage Requirements, Use Component-Based Architectures, Visually
Model Software, Verify Software Quality, Control Changes to Software.

The RUP structure is characterized by: a static structure that describes
the process (who is doing what, how and when); dynamic structure that

26

details how the process rolls out over time; an architecture-centric process
that defines and details the architecture; a Use-Case Driven Process which
specifies how use cases are used throughout the development cycle.

The RUP encourages testing early by offering a number of mechanisms
to integrate testing more closely with the software development effort. In
particular, RUP targets to: i) making Test a distinct discipline; ii) using
an iterative development approach; iii) continuously verifying quality and
letting use cases drive development; iv) scheduling implementation based on
risk; v) managing changes strategically; vi) using the right-sized process.

5.3 Agile development process

The term agile software development was created by the Agile Manifesto [46].
Agile software development is basically an iterative approach that focuses
on incremental specification, design, and implementation, while requiring
full integration of testing and development. Agile development process has
been originated by a precedent development practice, the Rapid Application
Development (RAD) methodology [28]. RAD uses a large number of itera-
tions, with every iteration being a complete development cycle. At the end
of each iteration, a complete executable product is released. The iteration
product is a subset of the complete desired product and it will be increased
from iteration to iteration until the final product is released. Natural evolu-
tion of RAD are therefore the nowadays known agile software development
approaches.

In the agile environment, testing is a frequent activity as small amounts of
code are tested immediately upon being written. According to the Manifesto
for Agile Software Development, agile main points are: i) individuals and
interactions over processes and tools; ii) working software over comprehensive
documentation; iii) customer collaboration over contract negotiation, and iv)
responding to change over following a plan.

The intent is to produce high quality software in a cost effective and
timely manner, and in the meantime, meet the changing needs of end users.
In an agile environment, testing is often included within development in
the form of Test Driven Development (TDD) [46], which is a programming
technique that promotes code development by repeating short cycles. It
combines Test-first development with refactoring and methods involving four
steps: 1) write a test for an unimplemented functionality or behaviour; ii)
supply the minimal amount of code to pass the test; iii) refactor the code;
iv) check that all tests are still passing after the changes were done.

By developing only enough code to pass the tests and then using the
refactoring as an improvement method for the design quality, TDD leads
to better code quality and improves the confidence in the code as well as
increasing the productivity.

Recent applications of agile software development are the XP (eXtreme

27

Programming) and Scrum [65] development methods. In eXtreme Program-
ming (XP), after a short planning stage, development goes through analysis,
design, and implementation stages quickly (from one to four weeks). XP
success relies on skilled and well prepared software developers that are able
to improve development quality and productivity.

The Scrum is more focused on the delivering of objected-oriented software
[65]. Origin of term Scrum came from the popular sport Rugby, because
rughby strategies have been used the first time to describe its hyper productive
development processes that are: i) a holistic team approach; ii) constant
interaction among team member; iii) unchanging core team members.

Basic adjectives characterizing Scrum implementations are: transparency
(visibility), inspection, and adaptation. Transparency or visibility means
that any aspect of the process that affects the outcome must be visible
and known to everybody involved in the process. Inspection requires that
various aspects of the process must be inspected frequently enough so that
unacceptable variances in the process can be detected. Adaptation requires
that the inspector should adjust the process if one or more aspects of the
process are in an unacceptable range.

6 Domain Specific Testing

Recent years have witnessed the emergence of domain-specific approaches in
software testing. These approaches are tailored to the specific needs of the
domain and leverage domain knowledge to adapt and customize well-known
testing solutions. Specifically, in the last decades software development is
driven by emerging trends such as the widespread diffusion of mobile technol-
ogy, cloud infrastructures adoption as well as big data analysis and software
as a service paradigm that point out new constraints and challenges for the
testing activity. In the following of this section, we give a brief overview
of different aspects and solutions for software testing applied into several
domain-specific environments.

6.1 Cloud-based Testing

Cloud computing is henceforth an accepted alternative for deploying appli-
cations and services. Businesses desire to achieve higher-level operational
performance and flexibility while keeping the development and deployment
cost as lower as possible. Meanwhile, cloud computing has an high impact
in software testing with the diffusion of a new testing paradigm known as
Testing as a Service (TaaS). TaaS in a cloud infrastructure is a new busi-
ness and service model, which provides static or dynamic on-demand testing
services in the cloud and delivers them as a service to customers.
The main advantages of cloud-based testing deal with [47, 35]:

28

e Reducing the testing costs and time. Cloud computing offers unlimited
storage as well as virtualized resources and shared cloud infrastructures
that can help to eliminate required computer resources and licensed
software costs as well as to reduce the execution time of large test suites
in a cost-effective manner. This allows large I'T companies to support
many production lines which require diverse computing resources and
test tools;

e Performing on-demand test services to conduct large-scale performance
and scalability online validation;

e Performing testing of dynamic, complex, distributed applications such
as mobile and web applications, leveraging multiple operating systems
and updates, multiple browser platforms and versions, different types
of hardware and a large number of concurrent users.

The authors of [35] provide a systematic survey of cloud based testing
techniques including model based testing, performance testing, symbolic ex-
ecution, fault injection testing, random testing, privacy aware testing and
others.

There are three main different forms of testing as service (TaaS) in a cloud
environment. Each of them has different focuses and objectives [48, 47]:

e Testing on clouds. In this form, software applications are deployed
and executed on a cloud, and validated using the provided test services
given by TaaS vendors. The major objective here is to take the advan-
tage of large-scale test simulations and elastic computing resources on
a cloud;

e Testing over clouds. In this form, software applications are deployed
and validated based on different clouds (such as private clouds, public
or hybrid clouds). A typical software system crossing multiple clouds
is structured with components, service software, and servers deployed
crossing over several clouds;

e Testing of a cloud. It validates the quality of a cloud infrastructure
according to the specified capabilities and service requirements.

Besides the many advantages in using cloud-based systems, there are
yet many realistic problems of cloud service testing that need to be solved
[48, 47]:

e On-demand test environment set up. There is a lack of supporting
solutions to assist engineers to set up a required test environment in a
cloud using a cost-effective way. To overcome these limitations, solu-
tions aiming to empower the cloud applications with self-configuration,
self-healing, and self-protection capabilities are provided;

29

e The heterogeneity and lack of standards in test tools and their connec-
tivity and interoperability to support testing services;

e Assuring and assessing user privacy and security of cloud based appli-
cations inside a third-party cloud infrastructure.

Finally, the authors of [11] provide a survey of typical tools for cloud
testing. The main requirements for these tools include multi-layer testing,
SLA-based testing, large scale simulation, and on-demand test environment.

6.2 SOA Testing

As described in Section 3.3, traditional testing approaches are divided into
three major classes: black-box, white-box and grey-box testing. Consider-
ing the specific domain of SOA testing while black-box approaches keep the
same target of traditional ones, white-box and grey-box proposals assume
a slightly different meaning. Indeed, in SOA white-box testing two differ-
ent points of view can be identified: coverage measured at the level of a
service composition (orchestration or choreography) and coverage of a sin-
gle service internals. Generally, validation of service orchestrations is based
on the Business Process Execution Language description ! considered as an
extended control flow diagram. Classical techniques of white-box coverage
(e.g., control flow or dataflow) can be used to guide test generation or to
assess test coverage so as to take into consideration the peculiarities of the
Business Process Execution Language. Other proposals are instead based on
formal specification of the workflows, e.g., Petri Nets and Finite State Pro-
cesses used for verifying specific service properties [17]. Considering a service
choreography, existing research focuses, among others, on service modeling,
process flow modeling, violation detection of properties such as atomicity
and resource constraints, and XML-based test derivation.

If, on the one side, there are several approaches for structural testing of
service compositions, there are few proposals for deriving structural coverage
measures of the invoked services. The reason for this is that independent
web services usually provide just an interface, enough to invoke them and
develop some general (black-box) tests, but insufficient for a tester to develop
an adequate understanding of the integration quality between the application
and independent web services.

In the rest of this section, a survey of some proposed approaches and
tools for supporting SOA testing is presented. Additionally, since black,
white and grey box testing, albeit successfully executed, do not prevent
security weaknesses, an overview of this important aspect is presented in
Section 6.2.4.

'WSBPEL available at: https://www.oasis-open.org/committees/tc_home.php?
wgabbrev=wsbpel

30

6.2.1 SOA Black-box Testing

As a common guideline, SOA black-box testing relies on the functionality
provided by the Web Services. Commonly, the use of the (formal) specifi-
cation or the XML Schema datatype ? available allows for the generation of
test cases for boundary-value analysis, equivalence class testing or random
testing [17]. The derived test suite could have different purposes, such as
to prove the conformance to a user-provided specification, to show the fault
detection ability assessed on fault models, or to verify the interoperability
by exploiting the invocation syntax defined in an associated WSDL (WS
Description Language) document 2. In this last case the formalized WSDL
description of service operations and of their input and output parameters
can be taken as a reference for black box testing at the service interface
[19, 91]|. More details about SOA black-box testing are provided in 31, 17].
Despite the different proposals, test automation is still an open issue in this
context [56]. In the specific case of web services, the use of XML-based syn-
tax of WSDL documents could support fully automated WS test generation
by means of traditional syntax-based testing approaches.

6.2.2 SOA White-box Testing

Most often white-box testing of SOA applications is devoted to the vali-
dation of Web Service Compositions (WSC). Validation of WSCs can be
usually addressed performing structural coverage testing of a WSC specifi-
cation. As overviewed in [31, 17| the WSC specification can be abstracted
as an extended control flow diagram or transformed into formal specification
so to apply structural coverage criteria (e.g. transition coverage). Simi-
lar complexity explosion problems may be encountered in such methods,
since the amount of states and transitions of the target model can be very
high. Alternative proposals adopt either model-checking techniques for con-
formance testing by generating test cases from counterexamples, or use the
formal model of the WSC and the associated properties to verify proper-
ties such as reachability. However, the complexity of the involved models
and model-checking algorithms in some cases could make these approaches
hardly applicable to real-world WSCs. In [18, 58] an overview of the SOA
testing specifically based on data-related models is provided.

6.2.3 SOA Grey-box Testing

In the context of Service Oriented Architectures (SOAs), where independent
web services can be composed with other services to provide richer function-
ality, interoperability testing becomes a major challenge. Independent web

?XML Schema description: https://www.u3.org/XML/Schema#dev
3WSDL description: https://www.w3.org/TR/wsd120-primer/

31

services usually provide just an interface, enough to invoke them and de-
velop some general functional (black-box) tests, but insufficient for a tester
to develop an adequate understanding of the integration quality between the
application and the independent web services. To address this lack, grey box
proposals, trying to “whitening” the SOA testing, can be considered [16, 116].
In such grey-box proposals, the main idea is to try to derive data during the
service execution so that produced test traces can be collected and analyzed
against the specification paths. Many times, the collection of service exe-
cution traces is associated with the possibility to introducing an “Observer”
stakeholder into the ESOA (Extended SOA) framework. In ESOA, the goal
is either to monitor code coverage |16], or to monitor ESOA services (passive
testing) against a state-model [21].

6.2.4 SOA Security Testing

Security aspects are highly critical in designing and developing web services.
It is possible to distinguish at least two kinds of strategies for addressing
protective measures of the communication among web services: security at
the transport level and security at the message level. Enforcing the security
at the transport level means that the authenticity, integrity, and confiden-
tiality of the message (e.g., the SOAP message) are completely delegated to
the lower-level protocols that transport the message itself from the sender
to the receiver. Such protocols use public key techniques to authenticate
both the end points and agree to a symmetric key, which is then used to
encrypt packets over the (transport) connection. Since SOAP messages may
carry vital business information, their integrity and confidentiality need to
be preserved, and exchanging SOAP messages in a meaningful and secured
manner remains a challenging part of system integration. Unfortunately,
those messages are prone to attacks based on an on-the-fly modification of
SOAP messages (XML rewriting attacks or XML injection) that can lead to
several consequences such as unauthorized access, disclosure of information,
or identity theft. Message-level security within SOAP and web services is
addressed in many standards such as WS-Security *, which provides mech-
anisms to ensure end-to-end security and allows to protect some sensitive
parts of a SOAP message by means of XML Encryption and XML Signature
[44].

The activity of fault detection is an important aspect of (web) service
security. Indeed, most breaches are caused when a system component is
used in an unexpected manner. Improperly tested code, executed in a way
that the developer did not intend, is often the primary culprit for security
vulnerability. Robustness and other related attributes of web services can
be assessed through the testing phase and are designed first off by analyzing

*https://www.oasis-open.org/committees/tc_home.php?ug_abbrev=uss

32

WSDL document to know what faults could affect the robustness quality
attribute of web services, and secondly by using the fault-based testing tech-
niques to detect such faults. Focusing in particular on testing aspects, the
different strategies and approaches that have been developed over the years
can be divided into passive or active mechanisms [44, 17].

Passive mechanisms consist of observing and analyzing messages that the
component under test exchanges with its environment and are specially used
either for fault management in networks or for checking whether a system
respects its security policy. Active testing is based on the generation and
the application of specific test cases in order to detect faults.

All the techniques have the purpose of providing evidence in security
aspects, i.e., that an application faces its requirements in the presence of
hostile and malicious inputs. Like functional testing, security testing relies
on what is assumed to be a correct behaviour of the system, and on non-
functional requirements. However, the complexity of (web) security testing
is bigger than functional testing, and the variety of different aspects that
should be taken into consideration during a testing phase implies the use of
a variety of techniques and tools. An important role in software security is
played by negative testing [44, 17|, i.e., test executions attempting to show
that the application does something that it is not supposed to do. Negative
tests can discover significant failures, produce strategic information about
the model adopted for test case derivation, and provide overall confidence
in the quality and security level of the system. Other common adopted
methodologies and techniques include [44, 17]:

e Fuzz testing: it involves generating semivalid data and submitting
them in defined input fields or parameters (files, network protocols,
API calls, and other targets) in an attempt to break the program and
find bugs. Semivalid data are correct enough to keep parsers from im-
mediately dismissing them, but still invalid enough to cause problems.
Fuzzing covers a significant portion of negative test cases without forc-
ing the tester to deal with each specific test case for a given boundary
condition. In the specific area of web service security, fuzzing inputs
can often be generated by programmatically analyzing the WSDL or
sample SOAP requests and making modifications to the structure and
content of valid requests. File fuzzing strategy is also used for detecting
XML data vulnerability;

e Injection: in general, web services can interact with a variety of systems
and for this reason they must be resistant to injection attacks when ex-
ternal systems are accessed or invoked. The most prevalent injection
vulnerabilities include SQL injection, command injection, LDAP in-
jection, XPath injection, and code injection. Recently, SQL Injection
Attack has become a major threat to web applications. SQL injec-
tion occurs when a database is queried with an SQL statement which

33

contains some user-influenced inputs that are outside the intended pa-
rameters range;

e Policy-based testing: an important aspect in the security of modern in-
formation management systems is the control of accesses. Data and re-
sources must be protected against unauthorized, malicious or improper
usage or modification. For this purpose, several standards have been
introduced that guarantee authentication and authorization, such for
instance the eXtensible Access Control Markup Language (XACML)
5 and to rule the writing of the access control policies. Thus policy-
based testing is the testing process to ensure the correctness of pol-
icy specifications and implementations. By observing the execution of
a policy implementation with a test input (i.e., access request), the
testers may identify faults in policy specifications or implementations,
and validate whether the corresponding output (i.e., access decision) is
as intended. Although policy testing mechanisms vary because there is
no single standard way to specify or implement access control policies,
in general, the main goals to conduct policy testing are to ensure the
correctness of the policy specifications, and the conformance between
the policy specifications and implementations. The recent approaches
on XACML policy testing are divided in the following main categories:
i) Fault Models and Mutation Testing that are based on a fault model
to describe simple faults in XACML policies; ii) Testing criteria that
determine whether sufficient testing has been conducted and it can be
stopped, and measure the degree of adequacy or sufficiency of a test
suite. They include structural coverage criteria and fault coverage cri-
teria; iii) Test generation proposals specifically focused on the access
control policies |75, 25].

6.3 GUlI-based Testing

Currently, with the widespread use of graphical user interface (GUIL), the
GUI testing is receiving a lot of attention. However, the GUI development
includes different activities that force to face the GUI testing from different
perspectives such as test coverage, test case generation, test oracle and re-
gression testing. Among these, the test case generation is one of the most
important and therefore the one that received most attention in literature.
As stated in [80] some proposals for GUI testing can be based on the manual
derivation of test cases, i.e. method calls to the instances of the classes un-
der test. Assertions are inserted in the test cases to determine whether the
classes/methods are executed correctly. However, because manual coding of
test cases can be tedious, capture/replay techniques can be adopted. These
proposals capture sequences of events that testers perform manually on the

Shttp://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

34

GUI, define the test case as a sequence of input events and replay derived
test cases automatically on the GUI.

Referring to the classification provided into [93| the available proposals
can be grouped as in the following:

e Based on Finite State Machines: this kind of approach is the most
adopted for the GUI testing. Usually the input and output sequences
are used for generating hierarchal models based on them. FSM can be
then exploited for different testing approaches such as coverage for all-
paths and all-transitions. Peculiarities of such kind of testing are [14]:
i) GUI has an enormous number of states and every state should be
tested; ii) the GUI input space is very large because of permutations of
inputs and events which effect the GUT,; iii) the complex dependencies
cannot be avoided in the GUI system; iv) the GUI system can cause
external effects at any time;

e Goal-Driven approaches: these proposals exploit the definition of pre-
defined goals that can be used both as input and as output, by gener-
ating sequences of actions, which reach these goals. These sequences
of actions are used as test cases for GUIs. This technique allows the
analysis of user interactions using model checking, and the synthesis
of user interactions to executable GUI applications;

e Based on abstractions: in these proposals, abstractions may be based
on structural features of GUI applications, e.g., the enabledness of
a button (enabled or disabled) using a boolean value, or the current
value of slider control using an integer value. Abstraction can be either
manually inferred or automatically derived by static analysis of the
code [9];

e Model-Based approaches: all these techniques require the creation of a
model of the software or its GUL, and algorithms to use the model to
generate test cases. In some cases, the models are created manually; in
others, they are derived in an automated manner. Also the test-case
generation for some techniques is manual, but for most is automated.
In |80] an exhaustive overview of the most recent proposals is provided.

6.4 Mobile Testing

Rapid advances of mobile technology and wireless networking push the wide
adoption of mobile applications in different critical domains, from banking
to mobile cyber-physical systems, to patients monitoring. According to the
recent studies, the market for cloud-based mobile applications will grow ex-
ponentially in the next years. To guarantee the reliability and security of such
mobile applications, their testing is required on many different configurations

35

of devices and operating systems. Approaches to make such testing auto-
mated, systematic and measurable are needed. According to recent studies
[3], the revenues from mobile application testing tools will reach $800 million
by the end of 2017 due to the test automation demand for mobile applica-
tions. What makes testing mobile software more demanding than testing
computer software is the great complexity of the environment. Specifically,
the diversity of relevant devices, operating systems, and networks as well as
the fast updates of mobile browsers and mobile platforms and technologies
make the testing of mobile web applications very expensive.

Recent research addresses Mobile Testing as a Service (MTaaS) [49] as a
possible solution to reduce the complexity of mobile testing by leveraging a
cloud-based scalable mobile testing environment to assure pre-defined qual-
ity of service requirements and service-level agreements. The authors of [49]
discuss about issues and solutions of M'TaaS proposing a mobile testing as a
service infrastructure aiming at reducing high costs in current mobile test-
ing practice and environments and supporting mobile scalability test. The
work in [105] presents a set of existing cloud-based services and tools for
mobile application testing whereas [112]| proposes a framework, called Auto-
mated Mobile Testing as a Service (AM-TaaS), which offers automated test
for mobile applications including emulation of mobile devices with different
characteristics under virtual machines and cloud infrastructure. However,
well-defined test models and processes that address the distinct needs of mo-
bile testing are yet lacking. In particular, quality of mobile applications has
different meaning and criticality for different users and in different contexts.
Nowadays, the main challenge about mobile testing is improving its cost
effectiveness by combining:

e Use of test automation: traditional testing of mobile applications, often
done by manual execution of test cases and visual verification of the
results, is an effort-intensive and time-consuming process. Automating
the testing activities produces a great reduction of costs and effort in
the whole mobile applications software development lifecycle;

e Use of emulators and actual devices: emulators can be useful for test-
ing features of the application that are device independent. However,
due to diversity in mobile hardware, actual devices will be used for
validating the results;

e Testing the mobile environment for application complexity: this is
needed in order to address the varieties of mobile and wireless tech-
nologies, like Wi-Fi, WiMax, 3G, 4G, etc., as well as to validate per-
formance and robustness of the mobile system in real-world network
conditions;

e Testing on heterogeneous mobile platforms: the applications will be

36

tested on different platforms for checking compatibility with different
mobile operating systems;

e Large-scale on-demand mobile test services: they allow to implement
testing techniques and strategies responding to on-demand requests of
test generation, execution, and control.

6.5 Big Data Testing

Big data provides not only large amounts of data but also various data
types such as images, videos, interactive maps, time stamps and associated
metadata. The main four characteristics of big data are: volume, variety,
velocity, and value. Data is continuously being generated from machines,
sensors from Internet of Things, mobile devices, network data traffic, and
application logs. This requires advances in data storage, mining and business
intelligence technologies making it possible to preserve increasing amounts of
data generated directly or indirectly by users and analyze it to yield valuable
new insights [81].

Big data also presents new challenges with respect to their maintenance,
testing and benchmarking. While big data systems have advanced their capa-
bilities of data analysis, scalability, processing and fault tolerance, database
testing and benchmarking have not moved forward to provide data gener-
ators, data sets, and workloads. The authors of [4] provide a comparative
analysis of techniques for big data testing, including genetic algorithms, clus-
tering techniques, performance and regression test approaches. In particular,
the emerging challenges in the field of testing big data relate to the need of
quickly generating huge, realistic and scalable data sets, as well as the need
for well-defined workloads that capture the nature of novel, modern analysis
tasks [5].

Experimental studies often reuse data sets from well-known standardized
benchmarks for performance evaluation of database systems, like TPC-C [1],
and XMLGen [2|. They typically provide open-source tools for data and
workload generation, which can be easily adapted and used by third parties
reducing the overall effort required to prepare and execute the experiment
[5]. An alternative approach deals with the implementation of custom data
generators for the comparison of approaches for large-scale data analysis.

The main limitations of existing approaches of benchmarking and testing
of big data systems are about the lack of realistic data sets. Existing data
sets are build on simplistic assumptions such as uniform distributions or
oversimplified schema that often are not representative for real-world data.
An attempt to overcome these limitations is to automatically extract the
domain information from a ground truth data set, which is often available
in practice. This information is then integrated into a data generator speci-
fication for a specific target environment and then used to create a concrete

37

data generator instance that is able to mimic the original data set [5].

Different solutions to generate representative data sets in the big data
context and to control the size of the test set, deal with input space parti-
tioning testing associated to input-domain model. The tester partitions the
input-domain model, selects test values from partitioned blocks, and applies
combinatorial coverage criteria to generate tests. Parallel computing and
Hadoop are used to speed up data generation [70].

Finally, the evaluation and testing of big data analytic systems requires
more complex, realistic, and universally useful workload specifications that
involve machine learning algorithms, information extraction, and graph anal-
ysis/mining.

6.6 Automotive Testing

In automotive domain, one of the most important aspects is security. Cur-
rently, existing solutions for security assessment of software systems basically
perform either static analysis (i.e., the software is not executed), or dynamic
analysis (performed by executing the software on specific inputs), although
any life cycle will likely apply a combination of both. A 2009 survey carried
out within the NIST SAMATE project ¢, provides an analysis of more than
70 tools either specifically conceived for security assessment or more gener-
ally for software correctness related to security, and catalogues them under
the following categories:

e Static Analysis: aids analysts in locating security-related issues;

e Source Code Fault Injection: the source code is instrumented by in-
serting changes and then executed to observe the changes in state and
behavior that emerge;

e Dynamic Analysis: refers generically to security testing approaches,
such as coverage-based or profiling;

e Architectural Analysis: aims at identifying flaws in the software archi-
tecture and determining resulting risks to information assets;

e Pedigree Analysis: identifies software coming from an external source
(e.g., open source software);

e Binary Code Analysis and Disassembler Analysis: both categories re-
view binary code. Since source code is not needed, they can be applied
to Commercial Off-The-Shelf (COTS) components;

e Binary Fault Injection: focuses on likely faults in the real-time op-
eration of the software (e.g., memory faults or other error conditions
provided by the processor);

Shttp://samate.nist.gov

38

e Fuzzing: a form of negative testing, in which the software is exercised
under random invalid data, generally specific to a particular type of
input;

e Malicious Code Detectors: search for malicious logic embedded in pro-
grams;

e Bytecode Analysis: bytecode contains more semantic information about
the program execution than an equivalent binary. Bytecode analysis
tools are actively investigated.

Many works try to transfer existing security assessment methods to the
automotive domain, addressing specific risks and challenges of automotive
software. Nowadays, several works [95] concur that security cannot be ad-
dressed separately from safety in the software engineering process of automo-
tive systems, thus assessment approaches should converge and complement
each other.

The widespread utilization of model-based design and production code
generation in the automotive development process enables the application
of automatic verification and validation techniques earlier in the software
lifecycle, and at an higher level of abstraction using for instance Simulink
models [108].

However, many testing methodologies and tools are customized to ad-
dress specific challenges of the automotive domain. In [7] a detailed survey
of the most recent proposals is provided.

Other security testing activities are aimed at finding implementation er-
rors that could be exploited by an outside attacker to cause potential func-
tionality problems. Such activities are also used to establish to what extent
the target system can resist an attack and generally consist of: i) func-
tional automotive security testing able to ensure general compliance with
the specifications and standards for the security functionality implemented,
encryption algorithms and authentication protocols of a vehicular I'T system;
ii) vulnerability scanning applied to all relevant applications, source codes,
networks, and backend infrastructures of an automotive system in order to
test the system for common security vulnerabilities such as security loopholes
or security configurations with known weaknesses taken from a continuously
updated database of automotive security vulnerabilities; iii) fuzzing that is
used to expose the implementation to unexpected, invalid, or random input
in the hope that the target will react in an unexpected way and, as a result,
uncover new vulnerabilities; iv) penetration tests, applied in a final step to
test security of the whole system by applying attacking methods conducted
by trusted individuals to check whether ECUs are vulnerable and could allow
unauthorized users access.

39

7 Discussion and Conclusions

This Chapter presented a journey through the world of software testing and
its emerging techniques, ranging over many fields from definition to organi-
zation, from its applicability and analysis of effectiveness, to the challenges
and specific issues of some of the most important application domains. How-
ever, due to the vast and articulated research discipline, the covering into
one chapter of all ongoing and foreseen research directions and emerging
technologies is impossible. Indeed, this Chapter proposes broadness against
depth overview and it is an attempt to depict a comprehensive and extensible
roadmap of the most important topics, challenges and future directions of
testing activity. Figure 1 provides a graphical overview of the main chapter

contents.
" Testing Techniques Testing Challenges 5
i) @ a
] =0 S
3 Search-based Testing Oracle Problem [’S 62-] g
=, 8 g 2
v @& Model-based Testing Full Automation ¥ BT 5
wv = O =l o 7] -
$ 5 9 @ |3 & 5
8 = = Black-box Testing Scalability of testing = D e
o = = R 539
a g White-box Testing Test Effectiveness ® =
L 2 g £ | S
'..% 4 % Grey-box Testing 8 o =
B S 3 5 2 la o
v = < Non-functional Testing = [@ fO0 | M
= o < 4> »n
.E = ®° 3 -
c £ Symbolic Execution g = 2 5
: | R
& @ *
Large scale Testing within the emergingtrends ;. R
Correct-by-design Distributed and collaborative environments

Figure 1: Software Testing Roadmap

This Chapter would be a reference of the most recent testing techniques
and presented an almost complete overview of the new methods, approaches
and tools useful to the reader for managing, controlling and evaluating soft-
ware testing development. It targets both students, researchers, software
developers and practitioners looking for solutions for their problems and im-
provements in the different activities of the testing process. As emerged from
this Chapter, software testing is not an isolated activity; it has many fruitful
relations between different areas of software engineering and many times it
is the bridge between different disciplines.

Due to the increasing complexity of software systems and the variety of
execution environments, software testing will continue to be a key activity

40

in the software development process and quality assurance.

Over the years software testing has had to keep the path of the trends,
innovations and modifications provided by the new software development
paradigms. In order to trigger always updated and practical solutions, soft-
ware testing needs to learn from the state of practice and to elaborate the
future vision useful to predict the problems, market exigencies and quality
issues that could rise. In particular, the growth of cloud computing bring the
need of benchmarks and on-demand test environment construction to mea-
sure the performance and scalability metrics of new applications considering
the special features of cloud such as dynamic scalability, scalable testing envi-
ronments, SLA-based requirements, and cost-models. New testing methods
will be developed to assess compatibility, interoperability and multi-tenancy
ability of cloud applications that must be able to work across multiple envi-
ronments, various cloud platforms, client technologies, and browsers.

Possible suggestions for more in-depth and effective methodologies and
approaches can be the use of realistic settings and large-scale-systems as
well as the simulation or involvement of real stakeholders working simulta-
neously in distributed environments. In particular, large scale and software
intensive IT systems are created by integrating and orchestrating indepen-
dently controlled and managed systems. The most limiting factor of their
development is software validation, which typically requires very costly and
complex testing processes. Existing approaches for testing these systems
focus on orchestrating the different phases of the testing process including
test operation, test injection, monitoring and reporting, sometimes accord-
ing to response-time, bandwidth-usage, throughput and adaptability, with
the aim of continuous integration and deployment. New testing techniques
able to deal with the inherent complexity of these systems will be based
on the divide-and-conguer principle, which is commonly used for architect-
ing complex software. They will leverage a novel test orchestration theory
and toolbox enabling the creation of complex test suites for large systems
as the composition of simple testing units. These new solutions will allow
the reusability of testing knowledge, architectures and code, making testing
activity more effective and less expensive. Moreover, these new testing tech-
niques, based on the orchestration topology of simple test cases, will also
target the important problem of automated partial oracle derivation of tests
of large systems by inferring test oracle specification from the composition
of expected and obtained outputs of the executed testing units.

An important role is given by the possibility of leveraging the software
testing proposals from the specific programming language and execution
environment so that high-level, application-independent attributes such as
trust, security, performance and so on can be eagily and automatically veri-
fied with a drastic reduction of testing time and effort.

Considering in particular the new collaborative and distributed software
development processes such as Agile, Scum and DevOp, the testing tech-

41

niques should make easier the simultaneous verification and the automatic
alignment of test activity with decomposition and distribution of the target
systems. Additionally, due to the short development time, new proposals
drastically decreasing learning time and addressing the multiple levels of
IT personnel are becoming a real pressing so improve software testing and
productivity.

Moreover, due to the increasing popularity of social networking services
and their massive integration into the users’ everyday life, another future
target of testing activity is represented by the specific requirements of these
services. Besides, performance and scalability validation of the decentralized
online social networks, new testing techniques will be devoted to assess se-
curity and privacy of users’ personal data in order to prevent local attacks.
These techniques will specifically target assessment of privacy and sharing
information policies as well validation of decentralized management of users’
social profiles and data storage solutions.

Finally, the recent trend of adopting correct or secure-by-design develop-
ment process forces testing activity to propose tools and methodology useful
for testing and analyzing design level artifacts. In particular, simulation,
model checking and model-based approaches should be the key success for
improving the quality of the developed systems.

References

[1] TPC Benchmarks & Benchmark Results. http://www.tpc.org/. On-
line; accessed April 2017.

[2] XMark-An XML Benchmark Project. http://www.xml-benchmark.
org/. Online; accessed April 2017.

[3] ABI Research’s Mobile Application Technologies. $200 Mil-
lion Mobile Application Testing Market Boosted by Growing De-
mand for Automation. https://www.abiresearch.com/press/
200-millionmobile-application-testing-market-boos.

[4] A. Abidin, D. Lal, N. Garg, and V. Deep. Comparative analysis on
techniques for big data testing. In 2016 Int. Conf. on Information
Technology (InCITe) - The Next Generation IT Summit on the Theme
- Internet of Things: Connect your Worlds, pages 219223, Oct 2016.

[5] Alexander Alexandrov, Christoph Briicke, and Volker Markl. Issues in
big data testing and benchmarking. In Proc. of the Sizth Int. Workshop
on Testing Database Systems, page 1. ACM, 2013.

[6] Paul Ammann and Jeff Offutt. Introduction to software testing. Cam-
bridge University Press, 2016.

42

7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Bertolino Antonia, Calabro’ Antonello, Di Giandomenico Felicita,
Lami Giuseppe, Lonetti Francesca, Marchetti Eda, Martinelli Fabio,
Matteucci Ilaria, and Mori Paolo. Secure Software Engineering for
Connected Vehicles: A Research Agenda. http://www.iit.cnr.it/
en/node/36711. TR Technical reports n. IIT TR-18/2015.

A. Arcuri and L. Briand. Formal analysis of the probability of inter-
action fault detection using random testing. IEEE Transactions on
Software Engineering, 38(5):1088-1099, Sept 2012.

Stephan Arlt, Evren Ermis, Sergio Feo-Arenis, and Andreas Podelski.
Verification of GUI Applications: A Black-Box Approach, pages 236—
252. Springer Berlin Heidelberg, 2014.

Radhakisan Baheti and Helen Gill. Cyber-physical systems. The im-
pact of control technology, 12:161-166, 2011.

Xiaoying Bai, Muyang Li, Bin Chen, Wei-Tek Tsai, and Jerry Gao.
Cloud testing tools. In IEEE 6th Int. Symp. on Service Oriented Sys-
tem Engineering (SOSE), pages 1-12, 2011.

Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen.
Principles of model checking. MIT press, 2008.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
arXiv preprint arXiw:1610.00502, 2016.

Ishan Banerjee, Bao Nguyen, Vahid Garousi, and Atif Memon. Graph-
ical user interface (GUI) testing: Systematic mapping and repository.
Information and Software Technology, 55(10):1679-1694, 2013.

Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and
Shin Yoo. The oracle problem in software testing: A survey. IEEE
Transactions on Software Engineering, 41(5):507-525, 2015.

Cesare Bartolini, Antonia Bertolino, Sebastian Elbaum, and Eda
Marchetti. Whitening SOA testing. In Proceedings of the 7th Int.
Conf. ESEC-FSE, pages 161-170. ACM, 2009.

Cesare Bartolini, Antonia Bertolino, Francesca Lonetti, and Eda
Marchetti. Approaches to functional, structural and security SOA test-
ing. In Performance and Dependability in Service Computing: Con-
cepts, Techniques and Research Directions, pages 381-401. IGI Global,
2012.

43

[18]

[19]

[20]

[21]

22]
23]

[24]

[25]

[26]

[27]

28]

[29]

Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Ioannis Paris-
sis. Data flow-based validation of web services compositions: Perspec-
tives and examples. In Architecting Dependable Systems V, pages 298—
325. Springer, 2008.

Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Andrea
Polini. WS-TAXI: A WSDL-based testing tool for web services. In
International Conference on Software Testing Verification and Valida-
tion (ICST), pages 326-335. IEEE, 2009.

Fevzi Belli, Christof J Budnik, Axel Hollmann, Tugkan Tuglular, and
W Eric Wong. Model-based mutation testing: approach and case stud-
ies. Science of Computer Programming, 120:25-48, 2016.

Abdelghani Benharref, Rachida Dssouli, Mohamed Adel Serhani, and
Roch Glitho. Efficient traces’ collection mechanisms for passive testing
of web services. Inf. and Software Technology, 51(2):362-374, 2009.

Antonia Bertolino. Software testing. SWFEBOK, page 69, 2001.

Antonia Bertolino. Software testing research: Achievements, chal-
lenges, dreams. In 2007 Future of Software Engineering, pages 85-103.
IEEE Computer Society, 2007.

Antonia Bertolino, Said Daoudagh, Donia El Kateb, Christopher
Henard, Yves Le Traon, Francesca Lonetti, Eda Marchetti, Tejeddine
Mouelhi, and Mike Papadakis. Similarity testing for access control.
Information and Software Technology, 58:355-372, 2015.

Antonia Bertolino, Said Daoudagh, Francesca Lonetti, and Eda
Marchetti. The x-create framework-a comparison of xacml policy test-
ing strategies. In WEBIST, pages 155-160, 2012.

Antonia Bertolino, Said Daoudagh, Francesca Lonetti, and Eda
Marchetti. XAMUT: XACML 2.0 mutants generator. In IEEE Sizth
International Conference on Software Testing, Verification and Vali-
dation Workshops (ICSTW), pages 28-33. IEEE, 2013.

Antonia Bertolino and Eda Marchetti. A brief essay on software test-
ing. Software Engineering, The Development Process, 3, 2005.

Paul Beynon-Davies, Chris Carne, Hugh Mackay, and Douglas
Tudhope. Rapid application development (rad): an empirical review.
European Journal of Information Systems, 8(3):211-223, 1999.

A. Bhat and S. M. K. Quadri. Equivalence class partitioning and
boundary value analysis - a review. In 2015 2nd International Confer-
ence on Computing for Sustainable Global Development (INDIACom),
pages 1557-1562, March 2015.

44

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

Egon Borger and Robert Stérk. Abstract state machines: a method
for high-level system design and analysis. Springer Science & Business
Media, 2012.

Mustafa Bozkurt, Mark Harman, and Youssef Hassoun. Testing and
verification in service-oriented architecture: a survey. Software Testing,
Verification and Reliability, 23(4):261-313, 2013.

Peter Buxmann, Thomas Hess, and Sonja Lehmann. Software as a
service. Wirtschaftsinformatik, 50(6):500-503, 2008.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Proc. of the 8th USENIX Conf. on Operating Systems
Design and Implementation, OSDI’08, pages 209-224, 2008.

Cristian Cadar and Koushik Sen. Symbolic execution for software
testing: three decades later. Comm. of the ACM, 56(2):82-90, 2013.

Inderveer Chana, Ajay Rana, et al. Empirical evaluation of cloud-based
testing techniques: a systematic review. ACM SIGSOFT Software
Engineering Notes, 37(3):1-9, 2012.

SR Dalal, MR Lyu, and CL Mallows. Software Reliability. Wiley
Online Library, 2014.

Martin D Davis and Elaine J Weyuker. Pseudo-oracles for non-testable
programs. In Proceedings of the ACM’81 Conference, pages 254-257.
ACM, 1981.

Marcio Eduardo Delamaro, JC Maidonado, and Aditya P. Mathur.
Interface mutation: An approach for integration testing. IEEE trans-
actions on software engineering, 27(3):228-247, 2001.

Arilo C. Dias-Neto and Guilherme H. Travassos. A picture from the
model-baged testing area: Concepts, techniques, and challenges. In
Advances in Computers, volume 80, pages 45 — 120. Elsevier, 2010.

Edsger Wybe Dijkstra. Notes on structured programming, 1970.

Hyunsook Do and Gregg Rothermel. On the use of mutation faults
in empirical assessments of test case prioritization techniques. IEEE
Transactions on Software Engineering, 32(9):733-752, 2006.

Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G
Malishevsky. Selecting a cost-effective test case prioritization tech-
nique. Software Quality Journal, 12(3):185-210, 2004.

45

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

Khaled El Emam, Walcelio Melo, and Jean-Normand Drouin. SPICE:
The theory and practice of software process improvement and capability
determination. IEEE Computer Society Press, 1997.

Michael Felderer, Matthias Biichler, Martin Johns, Achim D Brucker,
Ruth Breu, and Alexander Pretschner. Chapter one-security testing:
A survey. Advances in Computers, 101:1-51, 2016.

Norman Fenton and James Bieman. Software metrics: a rigorous and
practical approach. CRC Press, 2014.

Martin Fowler and Jim Highsmith. The agile manifesto. Software
Development, 9(8):28-35, 2001.

Jerry Gao, Xiaoying Bai, and Wei-Tek Tsai. Cloud testing-issues, chal-
lenges, needs and practice. Software Engineering: An Int. Journal,
1(1):9-23, 2011.

Jerry Gao, Xiaoying Bai, Wei-Tek Tsai, and Tadahiro Uehara. Testing
as a service (TaaS) on clouds. In IEEE 7th Int. Symp. on Service
Oriented System Engineering (SOSE), pages 212-223. IEEE, 2013.

Jerry Gao, Wei-Tek Tsai, Ray Paul, Xiaoying Bai, and Tadahiro Ue-
hara. Mobile Testing-as-a-Service (MTaaS)-Infrastructures, Issues, So-
lutions and Needs. In IEEFE 15th Int. Symp. on High-Assurance Sys-
tems Engineering (HASE), pages 158-167. IEEE, 2014.

Emily Geisen and Jennifer Romano Bergstrom. Usability Testing for
Survey Research. Morgan Kaufmann, 2017.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical re-
gression test selection with dynamic file dependencies. In Proc. of
the 2015 Int. Symp.on Software Testing and Analysis, pages 211-222.
ACM, 2015.

Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov.
An empirical evaluation and comparison of manual and automated test
selection. In Proc. of the 29th ACM/IEEE Int. Conf. on Automated
software engineering, pages 361-372. ACM, 2014.

Dorothy Graham and Mark Fewster. Experiences of test automation:
case studies of software test automation. Addison-Wesley Professional,
2012.

John V Guttag and James J Horning. Larch: languages and tools for
formal specification. Springer Science & Business Media, 2012.

46

[55]

[56]

[57]

[58]

[59]

[60]

[61]

62]

[63]

[64]

[65]
[66]

[67]

Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen
Sthamer, André Baresel, and Marc Roper. Testability transformation.
IEEE Transactions on Software Engineering, 30(1):3-16, 2004.

Lom Messan Hillah, Ariele-Paolo Maesano, Libero Maesano, Fabio
De Rosa, Fabrice Kordon, and Pierre-Henri Wuillemin. Service func-
tional testing automation with intelligent scheduling and planning. In
Proc. of the 31st Annual ACM Symp. on Applied Computing, SAC 16,
pages 1605-1610, New York, NY, USA, 2016. ACM.

Douglas Hoffman. Cost benefits analysis of test automation. STAR
West, 99, 1999.

Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and
Schahram Dustdar. Testing of data-centric and event-based dynamic
service compositions. Software Testing, Verification and Reliability,
23(6):465-497, 2013.

Tomas Isakowitz, Michael Bieber, and Fabio Vitali. Web information
systems. Communications of the ACM, 41(7):78-80, 1998.

Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. [EEE Transactions on Software Engineering,
37(5):649-678, Sept 2011.

Z. M. Jiang and A. E. Hassan. A survey on load testing of large-
scale software systems. ITEEE Transactions on Software Engineering,
41(11):1091-1118, Nov 2015.

Abhinaya Kasoju, Kai Petersen, and Mika V Mintyld. Analyzing an
automotive testing process with evidence-based software engineering.
Information and Software Technology, 55(7):1237 — 1259, 2013.

Mohd Ehmer Khan, Farmeena Khan, et al. A comparative study of
white box, black box and grey box testing techniques. Int. Jour. of
Advanced Computer Science and Applications (IJACSA), 3(6), 2012.

B. A. Kitchenham, T. Dyba, and M. Jorgensen. Evidence-based soft-
ware engineering. In Proceedings. 26th International Conference on
Software Engineering, pages 273-281, May 2004.

Henrik Kniberg. Scrum and XP from the Trenches. Lulu. com, 2015.

Philippe Kruchten. The rational unified process: an introduction.
Addison-Wesley Professional, 2004.

Kevin Lano. Model-driven software development with UML and Java.
Course Technology Press, 2009.

47

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

David Lee and Mihalis Yannakakis. Principles and methods of testing
finite state machines-a survey. Proceedings of the IEEE, 84(8):1090—
1123, 1996.

William E Lewis. Software testing and continuous quality improvement.
CRC press, 2016.

N. Li, A. Escalona, Y. Guo, and J. Offutt. A scalable big data test
framework. In 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), pages 1-2, April 2015.

Pablo Loyola, Matt Staats, In-Young Ko, and Gregg Rothermel.
Dodona: Automated oracle data set selection. In Proceedings of the

2014 International Symposium on Software Testing and Analysis, 1S-
STA 2014, pages 193203, New York, NY, USA, 2014. ACM.

Nancy A Lynch and Mark R Tuttle. An introduction to input/output
automata. 1988.

Michael R Lyu et al. Handbook of software reliability engineering.
1996.

Claudio Magalhaes, Flavia Barros, Alexandre Mota, and Eliot Maia.
Automatic selection of test cases for regression testing. In Proc. of the

1st Brazilian Symp. on Systematic and Automated Software Testing,
page 8. ACM, 2016.

Evan Martin. Automated test generation for access control policies.
In Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications, pages 752

753. ACM, 2006.

Evan Martin and Tao Xie. A fault model and mutation testing of
access control policies. In Proc. of WWW, pages 667-676, May 2007.

Bob McFeeley. Ideal: A user’s guide for software process improvement.
Technical report, DTIC Document, 1996.

Phil McMinn. Search-based software testing: Past, present and future.
In Software testing, verification and validation workshops (icstw), 2011
ieee fourth international conference on, pages 153-163. IEEE, 2011.

Phil McMinn, Mark Stevenson, and Mark Harman. Reducing qualita-
tive human oracle costs associated with automatically generated test
data. In Proceedings of the First International Workshop on Software
Test Output Validation, pages 1-4. ACM, 2010.

48

[80]

[81]

[82]

[83]

[84]

[85]

[36]

187]

[38]

[89]

[90]

Atif M Memon and Bao N Nguyen. Advances in automated model-
based system testing of software applications with a gui front-end.
Advances in Computers, 80:121-162, 2010.

K. Michael and K. W. Miller. Big data: New opportunities and new
challenges [guest editors’ introduction|. Computer, 46(6):22-24, June
2013.

Webb Miller and David L. Spooner. Automatic generation of floating-
point test data. IEEE Transactions on Software Engineering, (3):223—
226, 1976.

Samar Mouchawrab, Lionel C Briand, Yvan Labiche, and Massimiliano
Di Penta. Assessing, comparing, and combining state machine-based
testing and structural testing: a series of experiments. IEEFE Transac-
tions on Software Engineering, 37(2):161-187, 2011.

Glenford J Myers, Corey Sandler, and Tom Badgett. The art of soft-
ware testing. John Wiley & Sons, 2011.

Changhai Nie and Hareton Leung. A survey of combinatorial testing.
ACM Comput. Surv., 43(2):11:1-11:29, February 2011.

Corina S Pasareanu, Peter C Mehlitz, David H Bushnell, Karen
Gundy-Burlet, Michael Lowry, Suzette Person, and Mark Pape. Com-
bining unit-level symbolic execution and system-level concrete execu-
tion for testing nasa software. In Proceedings of the 2008 international
symposium on Software testing and analysis, pages 15-26. ACM, 2008.

Corina S Pasireanu and Willem Visser. A survey of new trends in
symbolic execution for software testing and analysis. International
Journal on Software Tools for Technology Transfer (STTT), 11(4):339—
353, 2009.

Mark Paulk. Capability maturity model for software. Encyclopedia of
Software Engineering, 1993.

Christer Persson and Nur Yilmazturk. Establishment of automated
regression testing at abb: Industrial experience report on’avoiding the
pitfalls’. In Proceedings of the 19th IEEE international conference on
Automated software engineering, pages 112-121. IEEE Computer So-
ciety, 2004.

Dennis K Peters and David Lorge Parnas. Using test oracles gener-
ated from program documentation. IEEFE Transactions on Software
Engineering, 24(3):161-173, 1998.

49

[91]

[92]

[93]

[94]

[95]

196]

[97]

(98]

[99]

[100]

Dessislava Petrova-Antonova, Kunka Kuncheva, and Sylvia Ilieva. Au-
tomatic generation of test data for xml schema-based testing of web
services. In 10th International Joint Conference on Software Technolo-
gies (ICSOFT), volume 1, pages 1-8. IEEE, 2015.

Mauro Pezze and Cheng Zhang. Automated test oracles: A survey.
Advances in Computers, 95:1-48, 2015.

Imran Ali Qureshi and Aamer Nadeem. Gui testing techniques: a
survey. International Journal of Future Computer and Communication,
2(2):142, 2013.

Rudolf Ramler and Klaus Wolfmaier. Economic perspectives in test au-
tomation: balancing automated and manual testing with opportunity
cost. In Proceedings of the 2006 international workshop on Automation
of software test, pages 85-91. ACM, 2006.

Christopher Robinson-Mallett. Coordinating security and safety en-
gineering processes in automotive electronics development. In Pro-
ceedings of the 9th Annual Cyber and Information Security Research
Conference, pages 45-48, 2014.

G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. Test
case prioritization: an empirical study. In IEEFE International Confer-
ence on Software Maintenance (ICSM ’99), pages 179-188, 1999.

Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean
Harrold. Prioritizing test cases for regression testing. IEFEE Transac-
tions on software engineering, 27(10):929-948, 2001.

David Saff and Michael D Ernst. Reducing wasted development time
via continuous testing. In 14th International Symposium on Software
Reliability Engineering, pages 281-292. IEEE, 2003.

Ripon K Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E
Perry. An information retrieval approach for regression test prioriti-
zation based on program changes. In IEEE/ACM 37th IEEE Inter-
national Conference on Software Engineering (ICSE), volume 1, pages
268-279. IEEE, 2015.

Ronnie ES Santos, Cleyton VC de Magalhaes, and Fabio QB da Silva.
The use of systematic reviews in evidence based software engineering:
a systematic mapping study. In Proceedings of the 8th ACM/IEEFE In-
ternational Symposium on Empirical Software Engineering and Mea-
surement, page 53. ACM, 2014.

50

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Koushik Sen. Concolic testing. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 07, pages 571-572, New York, NY, USA, 2007. ACM.

Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A Concolic Unit
Testing Engine for C. SIGSOFT Softw. Eng. Notes, 30(5):263-272,
September 2005.

August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. Comparing
and combining test-suite reduction and regression test selection. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 237-247. ACM, 2015.

Praveen Ranjan Srivastava. Test case prioritization. Journal of Theo-
retical and Applied Information Technology, 4(3):178-181, 2008.

Oleksii Starov, Sergiy Vilkomir, Anatoliy Gorbenko, and Vyacheslav
Kharchenko. Testing-as-a-service for mobile applications: state-of-the-
art survey. In Dependability Problems of Complex Information Systems,
pages 55-71. Springer, 2015.

Richard H Thayer and Robin Hunter. Software Process Improvement.
IEEE Computer Society, 2001.

S. Thummalapenta, S. Sinha, N. Singhania, and S. Chandra. Au-
tomating test automation. In 2012 34th International Conference on
Software Engineering (ICSE), pages 881-891, June 2012.

Ashish Tiwari. Formal semantics and analysis methods for simulink
stateflow models. Technical report, Citeseer, 2002.

Jan Tretmans. Model based testing with labelled transition systems.
Formal methods and testing, pages 1-38, 2008.

Mark Utting and Bruno Legeard. Practical model-based testing: a tools
approach. Morgan Kaufmann, 2010.

Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy
of model-based testing approaches. Software Testing, Verification and
Reliability, 22(5):297-312, 2012.

I. K. Villanes, E. A. B. Costa, and A. C. Dias-Neto. Automated mo-
bile testing as a service (am-taas). In 2015 IEEE World Congress on
Services, pages 79-86, June 2015.

Manish Virmani. Understanding devops & bridging the gap from con-
tinuous integration to continuous delivery. In Fifth International Con-
ference on Innovative Computing Technology (INTECH), pages 78-82.
IEEE, 2015.

o1

[114]

[115]

[116]

[117]

[118]

[119]

Kun Wu, Chunrong Fang, Zhenyu Chen, and Zhihong Zhao. Test case
prioritization incorporating ordered sequence of program elements. In
Proceedings of the Tth International Workshop on Automation of Soft-
ware Test, pages 124-130. IEEE Press, 2012.

S Xanthakis, C Ellis, C Skourlas, A Le Gall, S Katsikas, and K Kara-
poulios. Application of genetic algorithms to software testing. In Pro-
ceedings of the 5th International Conference on Software Engineering
and Applications, pages 625-636, 1992.

Chunyang Ye and Hans-Arno Jacobsen. Whitening soa testing
via event exposure. I[EEE Transactions on Software Engineering,
39(10):1444-1465, 2013.

Jie Zhang, Muyao Zhu, Dan Hao, and Lu Zhang. An empirical study on
the scalability of selective mutation testing. In IEEE 25th International
Symposium on Software Reliability Engineering (ISSRE), pages 277—
287. IEEE, 2014.

Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and Hong Mei. Time-
aware test-case prioritization using integer linear programming. In Pro-
ceedings of the eighteenth international symposium on Software testing
and analysis, pages 213-224. ACM, 2009.

Paul Zikopoulos, Chris Eaton, et al. Understanding big data: Analytics
for enterprise class hadoop and streaming data. McGraw-Hill Osborne
Media, 2011.

52

