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Abstract

We prove two generalizations of the matrix-tree theorem. The first one, a

result essentially due to Moon for which we provide a new proof, extends the “all

minors” matrix-tree theorem to the “massive” case where no condition on row

or column sums is imposed. The second generalization, which is new, extends

the recently discovered Pfaffian-tree theorem of Masbaum and Vaintrob into a

“Hyperpfaffian-cactus” theorem. Our methods are noninductive, explicit and make

critical use of Grassmann-Berezin calculus that was developed for the needs of

modern theoretical physics.

Key words : Matrix-tree theorem, Pfaffian-tree theorem, Fermionic inte-
gration, Hyperpfaffian, Cacti.

1 Introduction

The matrix-tree theorem [20, 31, 6, 32] is one of the most fundamental tools
of combinatorial theory. Its applications are many, ranging from electrical
networks [12] to questions related to the partition function of the Potts model
in statistical mechanics [28], or to a recent conjecture of Kontsevich regarding
the number of points of varieties defined by Kirchhoff spanning tree polynomi-
als over finite fields [21, 29, 30, 13, 3]. In its simplest instance, i.e. the classical
matrix-tree theorem, it says that the principal minors of a graph Laplacian
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enumerate the spanning trees of the graph. The matrix-tree theorem has
many generalizations like the “all minors” version [12, 10, 26] and, more re-
cently, the remarkable Pfaffian-tree theorem of Masbaum and Vaintrob [23]
whose motivation was the study of lowest degree terms of Alexander-Conway
polynomials of links and their relation to Milnor invariants [25, 24]. We will
prove both these generalizations of the matrix-tree theorem using, in a crit-
ical and, we hope, illuminating manner, what we call “Grassmann-Berezin
calculus” in honor of the main two inventors of the formalism. This frame-
work is also known as “Fermionic integration” or “superanalysis”; see [4, 15]
for mathematical precision, or any modern textbook on quantum field the-
ory for emphasis on computational aspects. We, by the way, would like to
point out that the first example of true Fermionic integration (as opposed
to mere determinant calculus) that we found in the literature is the terrific
letter [14] of Clifford to Sylvester, where one can also find the ancestors of
Feynman diagrams! Grassmann-Berezin calculus is commonplace in modern
theoretical physics; it also strongly overlaps with the more familiar exterior
algebra. We have nonetheless included, for the benefit of the reader, a brief
but self-contained review in Section 2, where precise definitions are given and
main properties are stated without proof (see for instance [17] or appendix
B of [27] for more detail). In Section 3, we state and prove a generalization
of the all minors matrix-tree theorem for matrices that are not necessarily
symmetric with zero column sums, as is the case for a graph Laplacian. Al-
though not stated explicitly, this result is essentially contained in [26] (see
also [11]). Our proof is however a new one and serves as a warm up session for
Section 4, where we provide a new generalization of the theorem of Masbaum
and Vaintrob, and express a sum over spanning cacti, which is a hypergraph
generalization of the notion of tree (our definition is different but related to
the ones in [18, 16, 5]), in terms of a Berezin integral involving a collection of
antisymmetric tensors which generalize the “matrix” in “matrix-tree”. The
mentioned Berezin integral, in a particular case that includes the theorem
of Masbaum and Vaintrob, reduces to a Hyperpfaffian as considered, for in-
stance, in [2, 22]. The original proof [23] of the Pfaffian-tree theorem used
an edge contraction induction. Later, Hirschman and Reiner [19] found a
noninductive proof using a sign reversing involution (which, from the point
of view of combinatorial enumeration is more satisfactory). Our proof, which
is also noninductive and we hope even more enlighting, builds on ideas by
D. Brydges related to the “forest-root” formula of [8]. The latter, is a pro-
motion of an earlier formula of Brydges and Wright [9, 7], which holds in a
rather particular case, into a much more general “fundamental theorem of
calculus”, thereby illustrating a general principle noticed in [1] for similar
identities. We would like to add that the present paper is certainly not the
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last word on possible generalizations of the matrix-tree theorem. It seems, we
dare say, almost too easy to find more generalizations using the point of view
developed in this work, and we invite the reader to try her/his own variation.
A possible venue to explore is the generalization of Theorem 2 below to cacti
that are not necessarily made of pieces with odd cardinality. Another sugges-
tion is to investigate what one could say for tensors that are not completely
antisymmetric. We believe that the best guide in trying to further extend
Theorem 2 is by having in mind a specific and relevant problem from the
theory of the symmetric group or that of simplicial complexes.

Acknowledgements : One of our motivations for the present work was to
try to answer some questions, related to the matrix-tree theorem and the
q → 0 limit of the Potts model, raised by A. Sokal and generously submitted
to our attention. We thank D. Brydges for explaining to us the supersym-
metric proof of the “forest-root” formula of [8] and giving us a good start by
showing us how this proof translates when applied to the case of the classical
matrix-tree theorem. We also thank G. Masbaum for his explanations as
to the knot-theoretical background of the Pfaffian-tree theorem. Finally the
support of the Centre National de la Recherche Scientifique is most gratefully
acknowledged.

2 A review of Grassmann-Berezin calculus

Let R be a commutative ring with unit containing the field IQ of rational
numbers. Let χ1, . . . , χn be a collection of letters.

Definition 1 The Grassmann algebra R[χ1, . . . , χn], or simply R[χ], is the
quotient of the free noncommutative R-algebra with generators χ1, . . . , χn, by
the two-sided ideal generated by the expressions

χiχj + χjχi (1)

with 1 ≤ i, j ≤ n.

In other words, the generators χi of R[χ] satisfy the anticommutation
relations

χiχj + χjχi = 0 (2)

for all i and j in [n]
def
= {1, . . . , n}. In particular, since 2 is invertible, one has

χ2
i = 0 for all i ∈ [n]. The first important property of R[χ] is

Proposition 1 R[χ] is a free R-module with basis given by the 2n monomials
χi1 . . . χip with 0 ≤ p ≤ n, 1 ≤ i1 < · · · < ip ≤ n.
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A beautiful exercise we leave to the reader is to prove this statement, which
is the solution of a word problem, directly from the definition, in a non
inductive combinatorial way and without using determinants, multilinear
algebra or the universal property that defines an exterior algebra.

As a result of the proposition any element f ∈ R[χ] can be uniquely
written as

f =
n
∑

p=0

∑

1≤i1<···<ip≤n

fi1...ipχi1 . . . χip (3)

with fi1...ip ∈ R. One therefore has two natural gradings on the algebra
R[χ] : an IN-grading by the number of factors χ, i.e. the degree, and a ZZ2-
grading R[χ] = R[χ]even⊕R[χ]odd where R[χ]even (resp. R[χ]odd) is generated,
as an R-module, by the monomials with an even (resp. odd) number of
factors. A nonzero element f which belongs to R[χ]even or R[χ]odd is said

ZZ2-homogenous, and its parity is p(f)
def
= 0 in the first case and p(f)

def
= 1 in

the second. If f , g are ZZ2-homogenous, one has

fg = (−1)p(f)p(g)gf (4)

As a result one has the following most important fact about Grassmann-
Berezin calculus.

Proposition 2 The Pauli exclusion principle : If f is an odd element
of R[χ], i.e. belongs to R[χ]odd, then

f 2 = 0 (5)

We will mostly use this property for f homogenous of degree 1, where the
physical terminology of “ Pauli exclusion principle” most properly applies.
A consequence of the anticommutation relations (2) and the finiteness of the
number n of generators is that every element of R[χ]+ (the set of elements
with no term in degree 0) is nilpotent. This allows, for instance, to define
for any f ∈ R[χ]+

exp(f)
def
=
∑

p≥0

1

p!
f p (6)

since the series terminates after a finite number of terms. We will however
exclusively consider exponentials of even elements, so that ef+g = efeg holds.
For any i, 1 ≤ i ≤ n, we define the odd derivation ∂

∂χi
acting to the right, as

the degree −1 R-linear map R[χ] → R[χ], defined by the following action on
monomials χi1 . . . χip with 1 ≤ i1 < · · · < ip ≤ n. We let

∂

∂χi
χi1 . . . χip

def
= 0 (7)

4



if i /∈ {i1, . . . , ip} and

∂

∂χi
χi1 . . . χip

def
= (−1)α−1χi1 . . . χiα−1χiα+1 . . . χip (8)

if there is an α, 1 ≤ α ≤ p such that iα = i.
If I = {i1, . . . , ip}, with i1 < · · · < ip is a subset of [n], the Grassmann

algebra R[χI ]
def
= R[χi1 , . . . , χip] naturally embeds into R[χ] = R[χ1, . . . , χn]

and we will use the corresponding identifications. In particular, the degree
zero part of R[χ] is identified with R. As a result, for any injective map
τ : [p] → [n], the R-linear composite map ∂

∂χτ(1)
◦ · · · ◦ ∂

∂χτ(p)
can be viewed

either as R[χ] → R[χ] or R[χ] → R[χIc], where I
c denotes the complement

of I
def
= Im τ in [n]. Following F.A. Berezin, we use the integral notation

∫

dχτ(1) . . .dχτ(p) f (9)

for the image in R[χIc ] of f ∈ R[χ] by the map ∂
∂χτ(1)

◦· · ·◦ ∂
∂χτ(p)

. Of particular

importance is the case where p = n and τ(i) = n− i+1 for any i, 1 ≤ i ≤ p.
If f ∈ R[χ] is written as in (3) one then has

∫

dχn . . .dχ1 f = f12...n (10)

the “top form” coefficient of f . Notice also that for any f ∈ R[χ] and any
permutation σ of [n],

∫

dχσ(1) . . .dχσ(n) f = ǫ(σ)

∫

dχ1 . . .dχn f (11)

where ǫ(σ) denotes the signature of σ. Now an easy consequence of the
definitions is the following

Proposition 3 If n is an even integer and A is an n × n skew-symmetric

matrix with coefficients in R, and using the notation χAχ
def
=
∑n

i,j=1 χiAijχj,
one has

∫

dχ1 . . .dχn e
− 1

2
χAχ = Pf(A) (12)

where Pf(A) denotes the usual Pfaffian of A.

We will also need
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Proposition 4 Fubini’s theorem : Let I = {i1, . . . , ip} with i1 < · · · < ip
be a subset of [n] and let Ic = {j1, . . . , jn−p} with j1 < · · · < jn−p, then for
any elements f ∈ R[χI ] and g ∈ R[χIc ] we have, in the ring R, the identity

∫

dχIdχIc fg = (−1)p(n−p)
(
∫

dχI f

)(
∫

dχIc g

)

(13)

where dχI (resp. dχIc) is shorthand for dχi1 . . .dχip (resp. dχj1 . . .dχjn−p
).

An important special case of the previous considerations is when n = 2m
is even and the variables χ1, . . . , χn come in pairs ψi, ψi, 1 ≤ i ≤ m, i.e. when

one works in the Grassmann algebra R[ψ, ψ]
def
= R[ψ1, . . . , ψm, ψ1, . . . , ψm].

Although suggestive of complex conjugation, the bar is simply a notation due
to an extra combinatorial structure on the set [n] that labels the variables.
If f ∈ R[ψ, ψ], we introduce the notation

∫

(dψdψ)ent f
def
=

∫

dψ1dψ1dψ2dψ2 . . .dψmdψm f (14)

where “ent” is short for “entangled form” of the Berezin integral of f . The
last result of Grassmann-Berezin calculus we need to recall is the following.

Proposition 5 If A is any m×m matrix with coefficients in R, and using

the notation ψAψ
def
=
∑m

i,j=1 ψiAijψj, one has

∫

(dψdψ)ent e
−ψAψ = det(A) (15)

More generally, if p is an integer 0 ≤ p ≤ m, and I = {i1, . . . , ip}, J =
{j1, . . . , jp} are two p-element subsets of [m] where we made the choice of
ordering i1 < · · · < ip and j1 < · · · < jp, if also AIc,Jc denotes the (m− p)×
(m − p) matrix obtained by erasing the rows of A with index in I and the
columns of A with index in J , then

∫

(dψdψ)ent (ψJψI)ente
−ψAψ = (−1)ΣI+ΣJdet(AIc,Jc) (16)

where (ψJψI)ent
def
= ψj1ψi1ψj2ψi2 . . . ψjpψip, ΣI

def
= i1 + · · · + ip and likewise

for ΣJ .

Mind the inversion in the position of line and column variables. Indeed, when
p = 1, I = {i} and J = {j}, the quantity expressed by either side of (16) is
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simply the matrix element (com A)ij of the matrix of cofactors of A. This
allows, when A is invertible, to elegantly rewrite Cramer’s rule as

(A−1)ij =

∫

(dψdψ)ent ψiψje
−ψAψ

∫

(dψdψ)ent e−ψAψ
(17)

in perfect analogy with the covariance of a complex Gaussian probability
measure.

3 A generalization of the all minors matrix-

tree theorem

In this section we let A = (Aij)1≤i,j≤n be any n × n matrix with entries
in our ground ring R. We will work in the Grassmann algebra R[ψ, ψ] =
R[ψ1, . . . , ψn, ψ1, . . . , ψn]. Let p be an integer, with 1 ≤ p ≤ n, I = {i1, . . . , ip}
and J = {j1, . . . , jp} be two p-element subsets of [n], fixed throughout this
section, with i1 < · · · < ip and j1 < · · · < jp. In the following a forest means
a subset of Kn (the set of 2-element subsets of [n]) such that the associated
graph, with vertex set [n] and edge set given by the forest itself, contains
no cycle. A directed forest F is a set of pairs (u, v) ∈ [n] × [n], with u 6= v,
such that if (u, v) belongs to it, then (v, u) does not, and such that the set
{{u, v}|(u, v) ∈ F} is a forest (undirected). An edge (u, v) in a directed
forest F is considered to be oriented from u to v. A directed forest F (in
fact its associated undirected forest) naturally defines a partition ΠF of [n]
into connected components. F restricts inside each block of ΠF to a directed
tree that spans the block. With respect to the two sets I and J , a directed
forest F is called admissible if it satisfies the following conditions :

- For any block C ∈ ΠF , either C ∩ (I ∪ J) = ∅ or both C ∩ I and C ∩ J
are one-element sets.

- Inside any block C ∈ ΠF that contains an element i ∈ I and an element
j ∈ J , all the edges of the corresponding directed tree are oriented away from
j.

If F is admissible, there is a unique permutation σF : [p] → [p] such that
for all α, 1 ≤ α ≤ p, jα and iσF (α) are in the same component of ΠF . The

signature of F is then defined as ǫ(F)
def
= ǫ(σF ). Let F be a subset of [n]× [n]

and R be a subset of [n]. We say that the pair (F ,R) is admissible if the
following conditions are verified :

- F is an admissible directed forest.
- Any C ∈ ΠF which contains no element of I and J has to contain a

unique element of R. Besides, R has to be included in the union of such
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Figure 1: An admissible pair (F ,R)

blocks C.
- Inside any block C, like in the previous condition, all the edges of the

corresponding directed tree are oriented away from the unique element of
C ∩ R which plays the role of a root.

Figure 1 shows an example of admissible pair (F ,R). Here n = 16,
I = {3, 7}, J = {2, 8}, R = {13, 16}, and the directed forest is

F = {(2, 4), (4, 1), (4, 7), (6, 5), (6, 3), (9, 6),

(8, 9), (9, 10), (12, 11), (13, 12), (13, 14), (13, 15)} (18)

One also has

ΠF = {{1, 2, 4, 7}, {3, 5, 6, 8, 9, 10},

{11, 12, 13, 14, 15}, {16}} (19)

and ǫ(F) = −1.
We can now state the following

Theorem 1

det(AIc,Jc) = (−1)ΣI+ΣJ
∑

(F ,R) admissible

ǫ(F)
∏

j∈R

(

n
∑

i=1

Aij

)

×
∏

(i,j)∈F

(−Aij)

(20)

Proof : Let I
def
= (−1)ΣI+ΣJdet(AIc,Jc), which we rewrite, thanks to Propo-

sition 5, as

I =

∫

(dψdψ)ent (ψJψI)ente
−ψAψ (21)
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The trick, due to D. Brydges, that allows us to start is to write

ψAψ =
n
∑

j=1

ψj

(

n
∑

i=1

Aij

)

ψj +
n
∑

i,j=1

(ψi − ψj)Aijψj (22)

Let, for any j, 1 ≤ j ≤ n, Bj
def
=
∑n

i=1Aij, one then obtains

I =

∫

(dψdψ)ent (ψJψI)ent exp

(

−
n
∑

j=1

Bjψjψj −
n
∑

i,j=1

Aij(ψi − ψj)ψj

)

(23)

=

∫

(dψdψ)ent (ψJψI)ent

(

n
∏

j=1

e−Bjψjψj

)(

n
∏

i,j=1

e−Aij(ψi−ψj)ψj

)

(24)

=

∫

(dψdψ)ent (ψJψI)ent

[

n
∏

j=1

(

1−Bjψjψj
)

] [

n
∏

i,j=1

(

1− Aij(ψi − ψj)ψj
)

]

(25)
by the Pauli exclusion principle. We now expand to get

I =
∑

(F ,R)

(

∏

j∈R

Bj

)





∏

(i,j)∈F

(−Aij)



ΩF ,R (26)

where F is any subset of [n] × [n], R is any subset of [n] and we used the
notation

ΩF ,R
def
=

∫

(dψdψ)ent (ψJψI)ent

(

∏

j∈R

[

ψjψj
]

)





∏

(i,j)∈F

[

(ψi − ψj)ψj
]



 (27)

The theorem will now follow from the following

Lemma 1 ΩF ,R = 0 unless the pair (F ,R) is admissible, in which case
ΩF ,R = ǫ(F).

Proof of the lemma : Trivially, if (i, i) belongs to F , then the integrand
of ΩF ,R contains a factor ψi − ψi = 0 and therefore ΩF ,R vanishes. Slightly
less trivial is the fact that if both (i, j) and (j, i), with i 6= j, belong to F
then again ΩF ,R = 0. Indeed, the integrand would then contain both the
factors (ψi − ψj) and (ψj − ψi) while (ψi − ψj)

2 = 0 by the Pauli exclusion
principle. One more step down the ladder of triviality takes us to the heart
of the argument. Suppose that the undirected graph associated to F contains
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a cycle, i.e. that for some k ≥ 3 there is an injective map τ : ZZ/kZZ → [n]
such that for any α ∈ ZZ/kZZ, (τ(α), τ(α + 1)) or (τ(α + 1), τ(α)) belongs to
F . Assume, for instance, that (τ(k), τ(1)) ∈ F ; the alternate case can be
treated in a similar vein. Then, the integrand of ΩF ,R contains the factor

ψτ(k) − ψτ(1) = (ψτ(k) − ψτ(k−1)) + · · ·+ (ψτ(2) − ψτ(1)) (28)

Now, upon inserting this telescoping expansion of the factor ψτ(k)−ψτ(1) into
the integrand of ΩF ,R, the latter breaks into a sum of (k − 1) products. For
each of these products, there exists an α ∈ ZZ/kZZ such that the factor (ψτ(α)−

ψτ(α−1)) appears twice : once with the + sign from the telescopic expansion

of (ψτ(k) − ψτ(1)), and once more with a + (resp. −) sign if (τ(α), τ(α− 1))
(resp. (τ(α − 1), τ(α))) belongs to F . Again, the Pauli exclusion principle
entails that ΩF ,R = 0.

We now have reduced the discussion to the situation where F is a directed
forest. In this case, using Proposition 4, one can factor ΩF ,R as ΩF ,R =
ǫ
∏

C∈ΠF
ΩF ,R,C where ǫ is a global sign we do not need to compute for the

moment, and for each C ∈ ΠF of the form C = {c1, . . . , ck}, with c1 < · · · <
ck,

ΩF ,R,C
def
=

∫

(dψCdψC)ent

(

∏

j∈J∩C

ψj

)(

∏

i∈I∩C

ψi

)

(

∏

j∈R∩C

(

ψjψj
)

)





∏

(i,j)∈FC

(

ψi − ψj
)

ψj



 (29)

where any ordering of the factors in
∏

j∈J∩C ψj and
∏

i∈I∩C ψi will do (even-

tual signs being absorbed in ǫ), (dψCdψC)ent is shorthand for

dψc1dψc1dψc2dψc2 . . .dψckdψck

and FC
def
= F ∩ (C×C) is a spanning directed tree on the vertex set C. Note

that, in order to have ΩF ,R,C 6= 0, there needs to be exactly k factors ψ and
as many factors ψ in the integrand. Since F necessarily has k− 1 edges, the
last product in (29) already contributes k − 1 factors ψ and k − 1 factors ψ.
This places severe restrictions on the sets J∩C, I∩C andR∩C. Either J∩C
and I∩C are singletons and R∩C = ∅ in which case we say that C is of type
I, or J∩C = I∩C = ∅ and R∩C is a singleton in which case we say that C is
of type II. Note that the definition of ΩF ,R,C is now unambiguous since there
is no problem of ordering the factors in

∏

j∈J∩C ψj and
∏

i∈I∩C ψi anymore.
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One can readily check that the global sign ǫ is equal to the signature ǫ(F) of
F . Finally we need to evaluate the expressions ΩF ,R,C in the two following
cases.
1st case : C of type I

If C ∩ I = {i} and C ∩ J = {j} then

ΩF ,R,C =

∫

(dψCdψC)entψjψi





∏

(α,β)∈FC

(

ψα − ψβ
)

ψβ



 (30)

First, note that there is a unique shortest path, we call the backbone, joining i
and j in the undirected tree associated to FC . Second, we need to inductively
expand the product in (30) starting from the leaves of the branches that hang
from the backbone. Let α ∈ C be such a leaf. Then either (α, β) ∈ FC or
(β, α) ∈ FC for some β ∈ C. In the first case, we write the corresponding
factor as −ψβψα + ψβψβ and notice that one cannot obtain the variable ψα
in the integrand and therefore ΩF ,R,C = 0. In the second case we get a
factor −ψαψβ + ψαψα. If we keep the term −ψαψβ in the expansion then

again there is no way of obtaining the factor ψα. Therefore, to get a nonzero
contribution, the edge containing the leaf α has to be oriented towards α and
we have no choice but to select the term ψαψα in the expansion. Similarly
to the Prüfer coding of Cayley trees, we continue this rewriting of ΩF ,R,C

by treating the (ψα − ψβ)ψβ factors corresponding to the leaves, then to the
vertices that become leaves after the first generation leaves have been plucked
out etc. until we arrive at the backbone which plays the role of a root. We
then get ΩF ,R,C = 0 unless all the edges, that are not on the backbone, are
oriented away from it, in which case

ΩF ,R,C =

∫

(dψCdψC)ent

(

∏

α/∈B

ψαψα

)

ΛB (31)

where B is the set of vertices on the backbone and ΛB is an expression to
be defined as follows. Let k be an integer k ≥ 1 and τ : [k] → B be a
bijective map such that τ(1) = j and τ(k) = i, and for any l, 1 ≤ l ≤ k − 1,
(τ(l), τ(l+1)) or (τ(l+1), τ(l)) belongs to FC . If (τ(l), τ(l+1) ∈ FC we say
that l is good, and if (τ(l + 1), τ(l) ∈ FC we say that l is bad. Now

ΛB = ψjψi×






∏

1≤l≤k−1
l good

(

ψτ(l) − ψτ(l+1)

)

ψτ(l+1)











∏

1≤l≤k−1
l bad

(

ψτ(l+1) − ψτ(l)
)

ψτ(l)



(32)
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Let l = 1, if l is bad, then the corresponding factor is (ψτ(2) − ψj)ψj . Since
ψ2
j = 0, we would then have ΩF ,R,C = 0. So l has to be good and when

we expand the corresponding factor (ψj − ψτ(2))ψτ(2) = ψjψτ(2) − ψτ(2)ψτ(2)
we need to keep the first term ψjψτ(2) otherwise ψj would not appear in the
integrand and ΩF ,R,C would vanish. We then treat similarly l = 2, 3, . . . , k−1
to obtain that ΩF ,R,C = 0 unless also all the edges of the backbone are
directed away from j, in which case we are left with

ΩF ,R,C =

∫

(dψCdψC)ent
∏

α∈C

(ψαψα) = 1 (33)

2nd case : C of type II

It is exactly the same argument as in the previous case in the degenerate
situation where the backbone is reduced to a single vertex u, with u being
the unique element of R∩ C.

It is now simply a matter of checking our previous definitions of admissi-
bility to conclude the proof of the lemma.

Now Theorem 1 follows immediately.

Remark : The more familiar all minors matrix-tree theorem, as one can
find in [10], is the “massless” particular case of theorem 1 where the column
sums of the matrix A are zero, and where the only set of roots R that gives a
nonzero contribution is R = ∅. Theorem 1 was not explicitly stated in [26];
it however follows from the general determinant expansion therein. Other
related results are reviewed in [11].

4 A hyperpfaffian-cactus theorem :

In this section we suppose n is an odd positive integer, and we work in the
Grassmann algebra R[χ] = R[χ1, . . . , χn]. Suppose we are given for any odd

integer k, 3 ≤ k ≤ n, a completely antisymmetric tensor (y
[k]
α1...αk)(α1,...,αk)∈[n]k

with entries in the ground ring R. It is simply a multidimensional analog of a
matrix , and complete antisymmetry means that for any (α1, . . . , αk) ∈ [n]k

and any permutation σ of the set [k]

y[k]ασ(1)...ασ(k)
= ǫ(σ)y[k]α1...αk

(34)

where ǫ(σ) denotes the signature of σ. Let Õn denote the set of all subsets
of [n] which have odd cardinality greater than or equal to 3. To any subset
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Figure 2: A cactus

A of Õn, we can associate an ordinary bipartite graph G(A) with vertex set
partitioned into the disjoint union of A and [n], and edge set equal to the
set of all pairs (A, j) ∈ A × [n] such that j ∈ A. We say that A is an odd
cactus or simply a cactus, if and only if G(A) is a tree that connects all the
vertices of [n]. Let On,k denote the set of all sequences α = (α1, . . . , αk) of
odd length k made of distinct elements of [n], and let

On
def
= ∪ 3≤k≤n

k odd
On,k (35)

To each sequence α = (α1, . . . , αk) ∈ On we associate the unordered set

α̃
def
= {α1, . . . , αk} in Õn. Let C be a subset of On, we say that C is a refined

cactus if and only if the following two conditions are satisfied :
- For any distinct elements α and β of C, the sets α̃ and β̃ are also distinct.

- A(C)
def
= {α̃ ∈ Õn|α ∈ C} is a cactus.

Figure 2 shows a possible representation of what we called an odd cactus.
Here n = 19, and the odd cactus is

A = {{1, 2, 3}, {2, 4, 5, 6, 7, 8, 9}, {2, 10, 11, 12, 13},

{11, 14, 15}, {14, 16, 17}, {15, 18, 19}} (36)

Note that A is a set of unordered subsets of [n]. For instance, if one would
arbitrarily permute the labels 4, 5, 6, 7, 8, 9 on the picture, the odd cactus
would still be the same. In fact, the cyclic structure of the “lobes” of the
cactus, in the planar representation of Figure 2, is more relevant for what
we called a refined cactus. For instance, a refined cactus C, corresponding

13



to the previous odd cactus A, and for which Figure 2 is a more faithful
representation is

C = {(2, 3, 1), (6, 7, 8, 9, 2, 4, 5), (11, 12, 13, 2, 10),

(11, 14, 15), (17, 14, 16), (15, 18, 19)} (37)

where the ordering of any sequence α ∈ C agrees with clockwise rotation on
the corresponding lobe of the cactus. Note that, even with this rule, Figure
2 is still ambiguous in specifying a refined cactus since one still has to chose
the starting point of every sequence α. Indeed, there is 34 × 5 × 7 = 2835
possible refined cacti corresponding to Figure 2.

Let i be a fixed vertex of [n] which will play the role of a root and let C
be a refined cactus. For any α = (α1, . . . , αk) in C, there is a unique shortest
path in the bipartite tree graph G(A(C)) going from α̃ to i. The first vertex
of [n] one meets along this path starting from α̃ is called the local root of α
and is of the form αs for a unique index s, 1 ≤ s ≤ k. We then define the
circulation of α as the sequence

α̂
def
= (αs+1, αs+2, . . . , αk, α1, α2, . . . αs−1) (38)

which has an even lenght k − 1. Now choose an ordering of C, and define by
concatenation a sequence π by putting the i first and then successively all
the sequences α̂, for α ∈ C according to the chosen ordering of C. Note that
π = (π1, . . . , πn) is a permutation of the sequence (1, 2, . . . , n). For example,
if C is a refined cactus represented by Figure 2 and if one chooses i = 10 as
a root, then there is 6! = 720 possible sequences π to choose from, one of
which is, for instance

π = (10, 11, 12, 13, 2, 3, 1, 4, 5, 6,

7, 8, 9, 18, 19, 14, 15, 16, 17) (39)

We let ǫi,C denote the signature of π. This is well defined, since changing
the ordering of C amounts to rigidly moving around the α̂’s which are all of
even length. We can now define the amplitude of a refined cactus C, with
respect to the choice of root i as

Yi,C
def
= ǫi,C ×

∏

α∈C

yα (40)

where, for α = (α1, . . . , αk) in C, yα denotes y
[k]
α1...αk .

We now have the following
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Lemma 2 For any cactus A, the quantity Yi,C is independent of the choice
of a root i in [n] and of the choice of a refined cactus C such that A = A(C).

We will therefore write YA
def
= Yi,C for any such choice of i and C.

Proof : First we show the independence with respect to C. LetA be a cactus,
i a fixed root and let C and C′ be two refined cacti with A(C) = A(C′) = A.
For the given root i ∈ [n], let π be a sequence constructed as before from the
circulations of the α’s in C, and let π′ be an analogous sequence for C′. We
need to compare the signatures of π and π′. For each set A ∈ A of cardinality
k, there is a unique α ∈ C such that α̃ = A and a unique β ∈ C′ such that
β̃ = A; besides β = (β1, . . . , βk) is a permutation of α = (α1, . . . , αk). The
local roots of α and β coincide and are given by j = αµ = βν for j ∈ A
and 1 ≤ µ, ν ≤ k. Now note that the signature of the permutation that
transforms the sequence

α̂ = (αµ+1, . . . , αk, α1, . . . , αµ−1)

into
β̂ = (βν+1, . . . , βk, β1, . . . , βν−1)

is the same as that which transforms

(j, αµ+1, . . . , αk, α1, . . . , αµ−1)

into
(j, βν+1, . . . , βk, β1, . . . , βν−1)

Since the latter are respectively circular permutations of α and β, the sign
change is the same as the signature of the permutation that transforms α
into β. Indeed a cycle of odd length k has signature (−1)k−1 = 1. As a result
the sign change between the signatures of π and π′ is exactly compensated by
that between

∏

α∈C yα and
∏

β∈C′ yβ, by the antisymmetry of the y tensors.
Therefore Yi,C = Yi,C′.

Now we take the same refined cactus C with A(C) = A and compare Yi,C
and Yj,C for two different choices of global root : i and j. Let again π be a
sequence constructed from the circulations of the elements in C with respect
to the root i, and let π′ be an analogous sequence with respect to the choice of
root j. Note again that there is a unique shortest path in the tree G(A) going
from i to j. Let α1, . . . , αp be the elements of C corresponding to the vertices
of A that successively appear along this path. Let, for each q, 1 ≤ q ≤ p, α̂iq
be the circulation of the sequence αq with respect to the root i, and α̂jq be
the one with respect to the root j. It is easy to see that the signature of the
permutation transforming π into π′ is that of the permutation transforming
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the “reduced” sequence πred
def
= iα̂i1 . . . α̂

i
p into π′

red
def
= jα̂jp . . . α̂

j
1 (we used

the obvious notation for the concatenation of words or sequences). Indeed,
choosing i or j as a global root induces the same local roots for the α’s that
are not on the mentioned path. By way of example, let us take i = 1 and
j = 18 for a refined cactus C represented by Figure 2. Then, one would have

πred = (1, 2, 3, 10, 11, 12, 13, 14, 15, 18, 19) (41)

and
π′
red = (18, 19, 15, 11, 14, 12, 13, 2, 10, 3, 1) (42)

Now note that, by the tree property of G(A), for any q, 1 ≤ q ≤ p − 1,
α̃q∩ α̃q+1 is a singleton whose unique element we denote by lq. Note also that
if one chooses i as a global root, then the local root of α1 is i, and for any q,
2 ≤ q ≤ p, the local root of αq is lq−1. On the contrary, if one chooses j as a
global root, then the local root of αp is j and for any q, 1 ≤ q ≤ p−1, the local
root of αq is lq. Remark also that there exist 2p (possibly empty) sequences
u1, . . . , up and v1, . . . , vp such that for any q, 1 ≤ q ≤ p − 1, α̂iq is equal to
the concatenation uqlqvq, while α̂

i
p = upjvp. One also has α̂jq = vqlq−1uq, for

2 ≤ q ≤ p and α̂j1 = v1iu1.
For the example given by Figure 2, with i = 1 and j = 18, one has p = 4,

l1 = 2, l2 = 11, l3 = 15, u1 = ∅, v1 = (3), u2 = (10), v2 = (12, 13), u3 = (14),
v3 = ∅, u4 = ∅ and v4 = (19).

As a result, we need to evaluate the signature of the permutation that
transforms

πred = iu1l1v1u2l2v2 . . . up−1lp−1vp−1upjvp (43)

into
π′
red = jvplp−1upvp−1lp−2up−1 . . . v2l1u2v1iu1 (44)

Notice that one can transform, with a permutation of positive signature, πred
into

πred
def
= iu1l1u2l2 . . . up−1lp−1upjvpvp−1 . . . v1 (45)

This can be done in a succession of steps. First one changes the segment
u1l1v1u2l2v2 into u1l1u2l2v2v1 which gives a sign (−1)|v1|(|u2|+|l2|+|v2|) where |.|
denotes the length of a sequence. But |u2| + |l2| + |v2| = k2 − 1 where k2 is
the odd length of α2. Then one changes the slightly bigger resulting segment

u1l1u2l2v2v1u3l3v3

into
u1l1u2l2u3l3v3v2v1

16



which gives a sign
(−1)(|v2|+|v1|)(|u3|+|l3|+|v3|) = 1 (46)

since |u3| + |l3| + |v3| = k3 − 1 where k3 is the odd length of α3 etc. One
can do the same operations with π′

red to obtain, without change of sign, the
sequence

π′
red

def
= jvplp−1vp−1lp−2 . . . v2l1v1iu1u2 . . . up (47)

In the last sequence, one can move l1 in order to lie between u1 and u2 which
gives a factor (−1)|v1|+|u1|+1 = 1. Then we move l2 to make it lie between u2
and u3 which gives a factor

(−1)(|v1|+|u1|+1)+(|v2|+|u2|+1) = 1 (48)

etc. Finally, the resulting sequence

jvpvp−1 . . . v1iu1l1u2l2 . . . up−1lp−1up

can be transformed into πred by a cycle of length n and signature (−1)n−1 = 1.
This concludes the proof that π is transformed into π′ by a permutation of
positive signature, and the proof of the lemma.

The result of the lemma allows us to state the following

Theorem 2 The Berezin integral

∫

dχn . . .dχ1 χi exp





∑

3≤k≤n
k odd

1

(k − 1)!

∑

(α1,...,αk)∈[n]k

y[k]α1...αk
χα2χα3 . . . χαk





is independent of i ∈ [n] and is equal to

∑

A

YA

where the sum is over all odd cacti A.

Remark 1 : In the special case where all the y tensors are zero except for
a specific odd integer k, 3 ≤ k ≤ n, one obtains

∫

dχn . . .dχ1 χi exp





1

(k − 1)!

∑

(α1,...,αk)∈[n]k

yα1...αk
χα2χα3 . . . χαk



 (49)

as a sum over all k-regular cacti (i.e. cacti A whose elements are subsets of
[n] of cardinality k). Let the tensor A = (Aα2...αk

)(α2,...,αk)∈[n]k−1 be defined
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by Aα2...αk

def
=
∑n

α1=1 yα1...αk
and denote by A(i) the tensor obtained from A

by forbidding the index i. It is easy to check that (49) is equal to

(−1)i−1Pf [k−1]
(

A(i)
)

where Pf [k−1](A(i)) is the order (k − 1) Hyperpfaffian of A(i) as considered,
for instance, in [2, 22]. Note that the result is zero unless n− 1 is a multiple
of k − 1.
Remark 2 : The special case k = 3 of the previous remark is exactly the
Pfaffian-tree theorem of Masbaum and Vaintrob [23].
Proof of theorem 2 : Our own variation on Brydges’ trick is to perform,
for each odd k, 3 ≤ k ≤ n, and each sequence of indices α1, . . . , αk in [n], the
following computation. Expand

(χα1 − χα2)(χα1 − χα3) . . . (χα1 − χαk
) =

(−1)k−1χα2χα3 . . . χαk
+ (−1)k−2

k
∑

µ=2

χα2 . . . χαµ−1χα1χαµ+1 . . . χαk
(50)

Notice that for any µ, 2 ≤ µ ≤ k,

(χα2 . . . χαµ−1)χα1(χαµ+1 . . . χαk
) = ǫµ(χαµ+1 . . . χαk

)χα1(χα2 . . . χαµ−1) (51)

with
ǫµ = (−1)(µ−2)(k−µ)+(µ−2)+(k−µ) = −1 (52)

since k is odd. As a result, we get

(χα1 − χα2)(χα1 − χα3) . . . (χα1 − χαk
) =

k
∑

µ=1

χαµ+1 . . . χαk
χα1 . . . χαµ−1 (53)

i.e. one obtains, by expanding the product, all the monomials deduced
from χα2χα3 . . . χαk

by circular permutation on the full sequence (α1, . . . , αk).

Since the antisymmetric tensor y
[k]
α1...αk is invariant by circular permutation

of its indices (k is odd) one obtains, writing dχ for dχn . . .dχ1,

Ωi
def
=

∫

dχ χi exp





∑

3≤k≤n
k odd

1

(k − 1)!

n
∑

α1,...,αk=1

y[k]α1...αk
χα2 . . . χαk



 (54)
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=

∫

dχ χi

exp





∑

3≤k≤n
k odd

1

k!

n
∑

α1,...,αk=1

y[k]α1...αk
(χα1 − χα2)(χα1 − χα3) . . . (χα1 − χαk

)





(55)

=

∫

dχ χi

∏

3≤k≤n
k odd





∏

(α1,...,αk)∈[n]k

(

1 +
y
[k]
α1...αk

k!
(χα1 − χα2)(χα1 − χα3) . . . (χα1 − χαk

)

)





(56)

Using the antisymmetry of the y tensors, one can restrict to sequences
(α1, . . . , αk) made of distinct elements. Thus

Ωi =
∑

C





∏

(α1,...,αk)∈C

y
[k]
α1...αk

k!



Ωi,C (57)

where the sum over C is over all subsets of On and

Ωi,C
def
=

∫

dχ χi





∏

(α1,...,αk)∈C

(χα1 − χα2)(χα1 − χα3) . . . (χα1 − χαk
)



 (58)

If two distinct elements α, β in C are such that the unordered sets α̃ and β̃
coincide then Ωi,C = 0. Indeed there would then be a permutation σ of [k] for
which β = (β1, . . . , βk) = (ασ(1), . . . , ασ(k)) and the product to be integrated
would contain the following product of 2(k − 1) factors

(χα1 − χα2)(χα1 − χα3) . . . (χα1 − χαk
)

×(χασ(1)
− χασ(2)

)(χασ(1)
− χασ(3)

) . . . (χασ(1)
− χασ(k)

)

If σ(1) = 1 then clearly one can factor, for instance, (χα1 − χα2)
2 = 0. If

σ(1) 6= 1, let µ be any index, 2 ≤ µ ≤ k, such that σ(µ) 6= 1 (recall that
k ≥ 3). One then finds, among the last k − 1 factors, (χασ(1)

− χασ(µ)
) which

we expand as
(χα1 − χασ(µ)

)− (χα1 − χασ(1)
)
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One gets a sum of two terms that vanish since they contain (χα1 −χασ(µ)
)2 or

(χα1 −χασ(1)
)2 which are zero by the Pauli exclusion principle. Furthermore,

if there is a cycle in G(A(C)) then Ωi,C = 0. Indeed, there would then be a
cycle in themultigraph (repeated edges are allowed) made by putting together
all the edges {α1, α2}, {α1, α3},. . . , {α1, αk}, for each α = (α1, . . . , αk) in C.
Since, for each edge {u, v} in the multigraph, there is a corresponding factor
(χu−χv) in the integrand, the same argument based on telescopic sums and
the Pauli exclusion principle as in the proof of Lemma 1 would show that
Ωi,C vanishes. Finally, note that if G(A(C)) does not connect the set [n], then
the integrand of (58) will not contain some of the variables χ1, . . . , χn, and
Ωi,C would be zero. This shows that the sum in (57) is over refined cacti C.
For such a C, one can write, using (53)

Ωi,C =

∫

dχ χi
∏

(α1,...,αk)∈C

(

k
∑

µ=1

χαµ+1 . . . χαk
χα1 . . . χαµ−1

)

(59)

One then completely expands the last product, and notices that, again thanks
to the Pauli exclusion principle, only one term contributes. Indeed, if the
root i belongs to α̃, then the only term in

k
∑

µ=1

χαµ+1 . . . χαk
χα1 . . . χαµ−1

which does not contain χi is that for the only index µ such that αµ = i. We
do the same for α’s of “second generation” i.e. which contain an element
from a β ∈ C such that i ∈ β̃, etc. The end result is that

Ωi,C =

∫

dχ χπ1χπ2 . . . χπn (60)

where π = (π1, . . . , πn) is a sequence constructed using the circulations of
elements of the refined cactus C, with respect to the choice of root i, like in the
considerations preceding the statement of Lemma 2. Note that Ωi,C = ǫ(π)
i.e. the signature of π viewed as a permutation of [n]. Besides the product
of the 1

k!
factors in (57) simply accounts for the number of refined cacti C

corresponding to the same cactus A. Lemma 2, allows us to write

Ωi =
∑

A

YA (61)

where the sum is over all cacti A, thereby proving the theorem.
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wird, Ann. Physik Chemie, 72, 497-508, (1847).

[21] M. Kontsevich, Gelfand seminar talk. Rutgers University, December
1997.

[22] J.-G. Luque and J.-Y. Thibon, Pfaffian and hafnian identities in shuffle
algebras, Adv. in Appl.Math., 29, no. 4, 620-646, (2002).

[23] G. Masbaum and A. Vaintrob, A new matrix-tree theorem, Int. Math.
Res. Not., no. 27, 1397-1426, (2002).

[24] G. Masbaum and A. Vaintrob, Milnor numbers, Spanning trees, and the
Alexander-Conway Polynomial, math.GT/0111102, preprint, (2001).

[25] J. Milnor, Link groups, Ann. of Math. (2), 59, 177-195, (1954).

[26] J. W. Moon, Some determinant expansions and the matrix-tree theorem,
Discrete Math., 124, 163-171, (1994).

[27] M. Salmhofer, Renormalization, An introduction, Texts and Mono-
graphs in Physics, Berlin, Springer-Verlag, 1999.

[28] A. D. Sokal, Bounds on the complex zeros of (di)chromatic polynomials
and Potts-model partition functions, Combin. Probab. Comput., 10, no.
1, 41-77 (2001).

[29] R. Stanley, Spanning trees and a conjecture of Kontsevich, Ann. Comb.,
2, no. 4, 351-363 (1998).

[30] J. Stembridge, Counting points on varieties over finite fields related to
a conjecture of Kontsevich, Ann. Comb., 2, no. 4, 365-385 (1998).

22

http://arxiv.org/abs/math/0111102


[31] J.J Sylvester, On the change of systems of independent variables, Quart.
J. Pure Appl. Math., 1, 42-56, (1855).

[32] W. T. Tutte, The dissection of equilateral triangles into equilateral tra-
iangles, Proc. Cambridge Philos. Soc., 44, 463-482 (1948).

23


	Introduction
	A review of Grassmann-Berezin calculus
	A generalization of the all minors matrix-tree theorem
	A hyperpfaffian-cactus theorem :

