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Abstract

We construct a sequence of finite automata that accept subclasses of the class of
4231-avoiding permutations. We thereby show that the Wilf-Stanley limit for the
class of 4231-avoiding permutations is bounded below by 9.35. This bound shows
that this class has the largest such limit among all classes of permutations avoiding
a single permutation of length 4 and refutes the conjecture that the Wilf-Stanley
limit of a class of permutations avoiding a single permutation of length k cannot
exceed (k − 1)2.
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1 Introduction

Let σ = σ1σ2 · · ·σk and π = π1π2 · · ·πn be permutations of {1, 2, 3, . . . , k}
and {1, 2, 3, . . . , n} respectively, written as their sequences of values. Then σ
occurs as a pattern in π if for some subsequence τ of π of the same length as σ
all the values in τ occur in the same relative order as the corresponding values
in σ. If σ does not occur as a pattern in π we say that π avoids σ. A pattern

class of permutations, or simply class, is any set of permutations of the form:

Av(X) = {π : ∀σ ∈ X, π avoids σ}

where X is any set of permutations. We usually write Av(σ) rather than
Av({σ}). Pattern classes are the lower ideals of the set of all finite permu-
tations with respect to the partial order “occurs as a pattern in” and so are
closed under arbitrary intersections and unions.

Much of the study of pattern classes has concentrated on enumerating classes
Av(X) when X is a relatively small set of relatively short permutations. We
write sn(X) for |Av(X) ∩ Sn|. Results in this area led to the proposal of the
Wilf-Stanley conjecture. A somewhat simplified version of this conjecture is:

Conjecture 1 (Wilf-Stanley) Let X be any non-empty set of permutations.

Then there exists a real number cX such that sn(X) ≤ cn
X.

The resolution of the Wilf-Stanley conjecture by Marcus and Tardos [1], to-
gether with a result of Arratia’s on the classes defined by avoiding a single
permutation [2] implies that for each permutation π there exists a positive
real number L(π) called the Wilf-Stanley limit of the class Av(π) such that:

lim
n→∞

sn(π)1/n = L(π).

The values of L(π) are known exactly for all permutations of length 3, and
for all permutations of length 4 except 4231 and 1324 (which have the same
Wilf-Stanley limit, by the obvious isomorphism between the corresponding
classes). Using a result of Regev [3], Bóna [4,5,6] provided bounds:

9 ≤ L(4231) ≤ 288.
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Further results of Bóna [7] show that L(π) ≥ (k − 1)2 for all layered per-
mutations π of length k (a permutation π is layered if πj+1 < πj implies
πj+1 = πj − 1). Arratia [2] conjectured that for all permutations π of length
k, L(π) ≤ (k − 1)2. Regev’s result shows that the value (k − 1)2 is attained
for the permutation π = 123 · · ·k. In this paper we refute this conjecture by
proving that:

L(4231) ≥ 9.35.

Our proof of this result makes use of the insertion encoding for permuta-
tions. We establish that there is a class of permutations, strictly contained in
Av(4231) whose elements are in one to one correspondence with the words of a
language accepted by a certain finite automaton. Using the standard transfer
matrix approach we are able to determine the growth rate of this language,
which thus provides the lower bound cited above.

In order to make this paper self-contained we provide a brief introduction
to the insertion encoding in the next section. Then we will describe the au-
tomaton (actually a sequence of automata) referred to above, and prove the
required correspondence. We include a brief discussion of the computational
methodology and then a summary and conclusions.

2 The Insertion Encoding

The insertion encoding is a general method for describing permutations. It
shares some similarity with the generating tree approach of West [8,9] and
also the enumeration schemes of Zeilberger [10] two approaches which have
been used in these papers and elsewhere [11,12,13,14,15,16] to enumerate or
determine structural information about a number of permutation classes.

A permutation π is viewed as “evolving” by the successive insertion of new
maximal elements. Thus, the stages in the evolution of 264153 are: ǫ (the
empty word), 1, 21, 213, 2413, 24153 and 264153. Each step of the evolution
is described by a code letter of the form fi, li, ri or mi where i is a positive
integer. The intent of the symbols will become more clear if in the evolution of
π we also include placeholders, called slots in positions where an element will
eventually be inserted. We denote a slot by the symbol ✸. Now the evolution
of 264153 can be written as:

✸ → ✸1✸ → 2✸1✸ → 2✸1✸3 → 24✸1✸3 → 24✸153 → 246153.

It can be seen that each event in the evolution is of one of four types: filling a
slot (the last two events), insertion on the left hand end of a slot (the addition
of 4), on the right hand end of a slot (the addition of 3), or in the middle of a
slot splitting it in two (the addition of 1). The code letters then describe the
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type of insertion to carry out, and the subscript denotes the slot in which to
perform the insertion (counted from left to right). Thus the insertion encoding
of 246153 is m1l1r2l1f2f1.

In considering Av(4231) it turns out that a small modification of this encoding
provides a more natural description of the resulting language. In this modifi-
cation, the rightmost slot is distinguished by not allowing either r or f code
letters in that slot. This ensures that there is always a slot present at the right
hand end – an evolution may be complete when this is the only remaining
slot. With respect to this convention, the evolution of 246153 becomes:

✸ → ✸1✸ → 2✸1✸ → 2✸1✸3✸ → 24✸1✸3✸ → 24✸153✸ → 246153✸.

The corresponding encoding is m1l1m2l1f2f1. For the remainder of this paper,
it is this variation of the insertion encoding which we refer to as the insertion
encoding.

We mention without proof the following result which will appear in [17]. It is
not actually used in the next section, but provides the motivation for it.

Theorem 1 Let k be a fixed positive integer. The collection of permutations

whose evolution requires at most k slots at any point forms a pattern class

Bk. The insertion encodings of Bk form a regular language, as do the inser-

tion encodings of any pattern class Bk ∩ Av(X) where X is a finite set of

permutations.

The theoretical methods of [17] provide, in principle, an effective method for
determining the regular languages representing the insertion encodings of Bk∩
Av(4231). In practice, these methods require various operations on automata
which are of exponential complexity and hence are impractical for most values
of k.

Instead, in the next section, we describe a direct construction of the automata
which recognize words belonging to the insertion encodings of elements of
Bk ∩ Av(4231).

3 The automata

Consider a configuration of elements and slots which might arise in the evolu-
tion of a 4231 avoiding permutation. In this configuration there will be some
instances of patterns of the form · · ·✸ · · · b · · ·✸ · · ·a · · · where b > a. Wher-
ever such an instance occurs the first slot must be filled before the second
slot can be. Otherwise we would obtain four elements · · · d · · · b · · · c · · ·a · · ·
with a < b < c < d in the resulting permutation, that is, an instance of 4231.
Conversely, the only way we could ever create a 4231 pattern would be by
insertion into such a slot. Borrowing terminology from [18] we say that in this
configuration the second slot is locked until such time as the first slot (and
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any other slots participating in such patterns with it) are filled.

We now turn to the question of how locks are created, and how they interact.
Suppose that we have a configuration of t slots:

α1 ✸ α2 ✸ · · · ✸ αj ✸ αj+1 ✸ · · ·αt ✸

where α1 through αt are certain sequences of elements, α1 might be empty,
but the remaining α’s are not. Suppose that the jth slot is not locked and we
insert a new maximum element b into it, on the left for the sake of argument.
The new configuration is:

α1 ✸ α2 ✸ · · · ✸ αj b✸ αj+1 ✸ · · ·αt ✸

Taking any slot from the first through the (j − 1)st, b, any slot from the jth
through the (t − 1)st and any element from αt yields a ✸b✸a pattern. Thus
all the slots from the jth through the (t − 1)st are now locked until all the
slots from the first through the (j − 1)st have been filled.

We can record this in the new configuration by subscripting the jth slot with
the value t−j – which is to be read as “the t−j consecutive slots beginning from
this one are locked, until the slots before it have been filled”. Alternatively, a
more attractive visual representation would be to place a bar over this block
of slots. Any slot under a bar cannot be filled, but bars are removed when
there are no slots to the left of them.

Other insertions into the jth slot create similar locks or bars. If the intersection
of two locks is non-empty then one must be contained in the other, since a
lock when created always begins at the remaining slot just to the right of the
current insertion and ends at the penultimate slot.

It is possible for locks to be extended – in the example above the construction
might proceed by adding a few more slots on the right hand end (using middle
insertions in the final slot), and then an insertion on the right of the (j − 1)st
slot. Since this new lock properly contains the old one, we can at this point
discard the old lock or simply extend its bar in the visual representation.

Observation 2 If we know all the locking information about a configuration,

then we can determine which insertions are allowed. Furthermore, we can de-

termine the locking information of the configuration resulting from any allowed

insertion.

The first part of the observation is trivial since, by definition, insertions are
allowed in the unlocked slots. The second follows from the notes above, since
the lock formed by any insertion does not depend on the actual values present,
only on the slots. Locks are removed precisely when their left hand endpoint
becomes the leftmost slot.

By giving slots that are not at the left hand end of a lock a subscript of
0 and then reading a configuration only as a sequence of subscripts we see
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that the configurations that can arise in the construction of a 4231-avoiding
permutation are in one to one correspondence with sequences s1s2 · · · sm (for
m ≥ 1) of non-negative integers satisfying s1 = sm = 0, and if sk > 0 then for
all j < k + sk, j + sj ≤ k + sk. The first condition expresses the fact that the
first and last slots are always unlocked, and the second that if the jth slot lies
within the lock on the kth slot, then its lock cannot extend beyond the end of
that one. Sequences satisfying these conditions will be called lock sequences .
It can easily be established inductively (but is not actually required for the
following constructions) that every lock sequence can arise in the evolution of
some 4231-avoiding permutation.

If we ignore the first and last slots (which can never be locked) and think
of the locks as subintervals of {1, 2, 3, . . . , m} we see that they form a family
of subintervals no two of which have the same left endpoint, and with the
property that if two intersect, then one is a subinterval of the other. Of course
this can be thought of as a recursive description of how such arrangements of
locks can be created and it follows directly that the number of configurations of
locks on these m elements is exactly the mth large Schröder number (sequence
A006318 of [19]). The large Schröder numbers count paths in the nonnegative
half plane from (0, 0) to (2n, 0) using steps u = (1, 1), d = (1,−1) and h =
(2, 0). The correspondence is most easily seen from the set of such paths to
arrangements of locks. Associate the numbers 1 through n with the u’s and
h’s of such a sequence in order. The locks are precisely the subintervals of
numbers that occur between some u and its matching d. So, for example the
sequence uhudhuhddh corresponds to the subintervals [1, 6], [3, 3] and [5, 6]
of the interval [1, 7].

If we consider only locking sequences of length at most k (for some fixed posi-
tive integer k) and the symbols of the insertion encoding which are allowed to
operate on them, then Observation 2 and the discussion in the first paragraph
of this section immediately imply the following result.

Theorem 3 Let k be a fixed positive integer. There is a finite automation

Autk whose accepted language consists of the insertion encodings of the per-

mutations in Bk∩Av(4231). The states of Autk can be taken to be the lock se-

quences of length at most k and the transitions of Autk from a given sequence

s are labelled by the codes of the allowed insertions in the slot configuration

corresponding to s, and are from s to the lock sequence labelling the result of

the corresponding insertion.

The automata above are simply the restrictions of an automaton Aut (with
infinitely many states and an infinite language) that produces the insertion
encoding of all and only the elements of Av(4231). Its states are arbitrary lock
sequences and its transitions are precisely the allowed insertions within a lock
sequence.

For illustrative purposes, consider Aut4. This automaton has 10 states repre-
sented by the lock sequences 0, 00, 000, 010, 0000, 0010, 0100, 0110, 0200 and
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0210. A representative slot configuration for each of these states is: ✸, ✸1✸,
✸1✸2✸, ✸2✸1✸, ✸1✸2✸3✸, ✸1✸3✸2✸, ✸2✸1✸3✸, ✸2✸14✸3✸, ✸3✸1✸2✸
and ✸3✸2✸1✸. A complete transition table for this automaton is shown be-
low. Each row illustrates the transitions available from the state specified at
the left hand end of the row and double subscripts such as f12 indicate that
both f1 and f2 induce the same transition.

0 00 000 010 0000 0010 0100 0110 0200 0210

0 l1 m1

00 f1 l12r1 m2 m1

000 f12 l13r2 r1l2 m3 m2 m1

010 f1 l13r1 m3 m1

0000 f13 f2 l14r3 r2l3 r1l2

0010 f12 l14r2 r1l2

0100 f1 f3 l14r3 l3 r1

0110 f1 l14 r1

0200 f1 l14r1

0210 f1 l14r1

4 Computational Methodology

Let L be the set of all finite lock sequences. We order this set first by length,
and then lexicographically within each length. This assigns an index (the po-
sition in this ordering) to each possible lock sequence. Armed with a table of
Schröder numbers, the recursive description of L makes it relatively easy to
compute these indices directly. Let

ind : L → N

be the function which computes the index of a lock sequence.

Using ind and its inverse the states of Aut can be indexed by the natural
numbers, and the transitions of Aut can be determined. As our goal is pri-
marily to determine the growth rate of the language accepted by Autk we
can use these to construct the matrix Ak whose entry in row i and column j
is the number of transitions between the state ind

−1(i) and ind
−1(j) (here i

and j are any pair of integers in the image of the lock sequences of length at
most k under ind).

The matrix Ak is irreducible because the underlying directed multigraph is
strongly connected. Furthermore it is primitive as all the diagonal entries are
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non-zero (each state has a loop labelled l1). Thus we can apply the Perron
Frobenius theorem and conclude that Ak has a unique dominant eigenvalue
λk which lies on the positive real axis and that the corresponding eigenvector
is positive. Hence the limit

lim
n→∞

(eT
1 An

ke1)
1/n = λk.

Moreover, the generating function for the language accepted by Autk is sim-
ply:

∞∑

n=0

eT
1 An

ke1t
n

In other words, λk is the growth rate of the language accepted by Autk and
hence the Wilf-Stanley limit of the class Bk ∩ Av(4231).

The matrix Ak is relatively sparse, so the eigenvalue λk can be computed
without great difficulty even for moderately large values of k. For instance,
if k = 13, Ak is a square matrix with 6589728 rows. There are at most 46
transitions from any state in the automaton (this is achieved in the state with
12 slots having no locks – many states have significantly fewer transitions).
However, no row has quite this many non zero entries as there are always
several transitions to the same state.

Theorem 4 The Wilf-Stanley limit, L(4231) is at least 9.35.

PROOF. Let A = A13. Because A is irreducible, primitive, and non-negative
an iterative scheme to compute its dominant eigenvalue is guaranteed to con-
verge. That is, we may define a sequence of vectors ~vk where ~v1 = e1 and ~vk+1

is a scalar multiple of A~vk having some fixed norm. This method, implemented
in Java, produced a dominant eigenvalue of 9.3508 for the matrix A together
with an approximate eigenvector ~v. Direct computation then showed that:
A~v ≥ (9.35)~v. Since the entries of A are all non-negative and the diagonal
entries are all positive it follows that An~v ≥ (9.35)n~v for all positive integers
n. Since the first coordinate of ~v is non-zero, it also follows that:

lim
n→∞

(eT
1 An

ke1)
1/n ≥ 9.35

which, as noted above, establishes the claim of the theorem. ✷

The values of sn(4231) are reported for n ≤ 20 as sequence A061552 in [19].
The recursive method used to compute these numbers is described in [20] and
its exact complexity has not been analysed. A permutation requiring more
than k slots to produce in the insertion encoding must have length at least
2k so sn(1324) is the (1, 1) entry of An

k for any k > n/2. Choosing k = 13
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allows us to report that the values of the sequence sn(4231) for n between
21 and 25 are: 1535346218316422, 12015325816028313, 94944352095728825,
757046484552152932 and 6087537591051072864.

As Ak has asymptotically O(k(1 +
√

2)2k) non-zero entries, the complexity of
the computation of sn(4231) by this method is not more than O(n2(1+

√
2)n)

(and the constants are not large).

5 Conclusions

The lower bounds presented here leave the question of the true growth rate
of Av(4231) intriguingly open. Since the sequence λk is monotone increasing
and bounded above by L(4231) it has a limit λ

∞
≤ L(4231). Although the

generating functions for the language accepted by Autk and Av(4231) agree
through at the first 2k terms, this does not necessarily guarantee that λ

∞
=

L(4231). So this raises:

Question 1 Is limk→∞
λk = L(4231)?

The growth rates of the automata languages for different values of k are pre-
sented below.

k λk

1 1.0000

2 3.4142

3 5.1120

4 6.2262

5 7.0014

6 7.5693

7 8.0029

8 8.3450

9 8.6220

10 8.8511

11 9.0439

12 9.2085

13 9.3508

We leave it to the reader to decide how to extrapolate this sequence. How-
ever, the value obtained will depend on how one models the behaviour of the
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difference λ
∞

− λk as a function of k. Our best guess, based on an empiri-
cal observation that the plot of 1/

√
k against λk is roughly linear is that the

limiting value lies between 11 and 12. Computing λk for larger values of k is
possible – though we note that there are over 6.5×106 states in Aut13 and the
number of states goes up by a factor of roughly 5.8 for each additional slot so
significant further progress in this direction is limited by the obvious combi-
natorial explosion. However, the natural structure of the states of Aut leaves
open the possibility of a closed form or asymptotic analysis of the limiting
case.

We suspect that the answer to Question 1 is yes, but the evidence is not
entirely convincing. It consists of the observation that for Av(312) we can
carry out a similar analysis (and of course we know that L(312) = 4) and
because of the simple form of the corresponding automaton which only has
one state for each number of slots, we can prove that the maximal eigenvalues
do converge to 4. On the other hand for the class Av(4321) with L(4321) = 9
it is also the case that the underlying automata are relatively simple, the one
for k slots having only O(k2) states. The corresponding dominant eigenvalues
do appear to converge to 9 but the rate of convergence is quite slow.

The results above show that the class of 4231 avoiders has strictly larger
growth rate than any other class avoiding a single permutation of length 4.
This throws open once again the question of what makes one pattern harder
to avoid than another. That is:

Question 2 Among the classes Av(π) where π is a single permutation of

length k, which have the largest growth rates? What is this largest growth rate?

More generally, given two permutations π and τ are there general methods for

deciding whether or not L(π) ≥ L(τ)?
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[6] M. Bóna, A simple proof for the exponential upper bound for some tenacious
patterns, Adv. in Appl. Math. 33 (1) (2004) 192–198.
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