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Abstract

Patience Sorting is a combinatorial algorithm that can be viewed as an iter-
ated, non-recursive form of the Schensted Insertion Algorithm. In recent work
the authors extended Patience Sorting to a full bijection between the symmetric
group and certain pairs of combinatorial objects (called pile configurations) that
are most naturally defined in terms of generalized permutation patterns and barred
pattern avoidance. This Extended Patience Sorting Algorithm is very similar to
the Robinson-Schensted-Knuth (or RSK) Correspondence, which is itself built from
repeated application of the Schensted Insertion Algorithm.

In this work we introduce a geometric form for the Extended Patience Sorting
Algorithm that is in some sense a natural dual algorithm to G. Viennot’s cele-
brated Geometric RSK Algorithm. Unlike Geometric RSK, though, the lattice
paths coming from Patience Sorting are allowed to intersect. We thus also give
a characterization for the intersections of these lattice paths in terms of the pile
configurations associated with a given permutation under the Extended Patience
Sorting Algorithm.

∗The work of the second author was supported in part by the U.S. National Science Foundation under
Grants DMS-0135345 and DMS-0304414.
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1 Introduction

The term Patience Sorting was introduced in 1962 by C.L. Mallows [8, 9] as the name
of a card sorting algorithm invented by A.S.C. Ross. This algorithm works by first par-
titioning a shuffled deck of n cards (which we take to be a permutation σ ∈ Sn) into
sorted subsequences r1, r2, . . . , rm called piles and then gathering the cards up in order
from the tops of these piles. The procedure used in forming r1, r2, . . . , rm can be viewed
as an iterated, non-recursive form of the Schensted Insertion Algorithm for interposing
values into the rows of a Young tableau (see [1] and [3]). Given σ ∈ Sn, we call this
resulting collection of piles (given as part of the more general Algorithm 1.2 below) the
pile configuration corresponding to σ and denote it by R(σ).

Given a pile configuration R, one forms its reverse patience word RPW (R) by listing
the piles in R “from bottom to top, left to right” (i.e., by reversing the so-called “far-
eastern reading”) as illustrated in Example 1.1 below. In recent work [3] the authors used
G. Viennot’s (northeast) shadow diagram construction (defined in [12] and summarized in
Section 2.1 below) to characterize these words in terms of the following pattern avoidance
condition: Given σ ∈ Sn, each instance of the generalized permutation pattern 2-31
in RPW (R(σ)) must be contained within an instance of the pattern 3-1-42. We call
this restricted form of the generalized permutation pattern 2-31 a (generalized) barred
permutation pattern and denote it by 3-1̄-42. This notational convention is due to J.
West, et al., and first appeared in the study of two-stack sortable permutations [5, 6, 13].
As usual, we denote the set of permutations σ ∈ Sn that avoid the pattern 3-1̄-42 by
Sn(3-1̄-42). (See Bóna [2] for a review of permutation patterns in general.)

Example 1.1. Let σ = 64518723 ∈ S8. Then, using a simplified form of Algorithm 1.2
below, σ has the pile configuration R(σ) = {{6 > 4 > 1}, {5 > 2}, {8 > 7 > 3}}, which is
visually represented as the following array of numbers:

R(σ) =
1 3
4 2 7
6 5 8

Furthermore, RPW (R(64518723)) = 64152873 ∈ S8(3-1̄-42).

In [3] the authors also extended the process of forming piles under Patience Sorting so
that it essentially becomes a full non-recursive analog of the famous Robinson-Schensted-
Knuth (or RSK) Correspondence. As with RSK, this Extended Patience Sorting Algo-
rithm (Algorithm 1.2 below) takes a simple idea (that of placing cards into piles) and uses
it to build a bijection between elements of the symmetric group Sn and certain pairs of
combinatorial objects. In the case of RSK, one uses the Schensted Insertion Algorithm
to build a bijection with pairs of standard Young tableaux having the same shape (a
partition λ of n, denoted λ ⊢ n; see [10]). However, in the case of Patience Sorting, one
achieves a bijection between permutations and somewhat more restricted pairs of pile
configurations. In particular, these pairs must not only have the same shape (a compo-
sition γ of n, denoted γ ⊸n) but their reverse patience words must also simultaneously
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avoid containing certain generalized permutation patterns in the same positions (see [3]
for more details). This restriction can also be understood geometrically using Viennot’s
(northeast) shadow diagram construction for the permutation implicitly defined by a pair
of pile configurations (as is discussed in [3]), but a full geometric characterization requires
the dual southwest shadow diagram construction used to define Geometric Patience Sort-
ing in Section 3.

Viennot introduced the shadow diagram of a permutation in the context of studying
the Schützenberger Symmetry Property for RSK (first proven using a direct combinato-
rial argument in [11]). Specifically, one can use recursively defined shadow diagrams to
construct the RSK Correspondence completely geometrically via a sequence of recursively
defined collections of non-intersecting lattice paths (with such collections called “shadow
diagrams”). Then, using a particular labelling of the constituent “shadow lines” in each
shadow diagram, one recovers successive rows in the usual RSK insertion and recording
tableaux. The Schützenberger Symmetry Property for RSK then immediately follows
since reflecting these shadow diagrams through the line “y = x” both inverts the permu-
tation and exactly interchanges the labellings on the shadow lines that yield the rows in
these tableaux.

We review Viennot’s Geometric RSK Algorithm in Section 2 below. Then, in Sec-
tion 3, we define a natural dual to Viennot’s construction that similarly produces a geo-
metric characterization of the Extended Patience Sorting Algorithm. As with RSK, the
Schützenberger Symmetry Property is then immediate for Extended Patience Sorting.
Unlike Geometric RSK, though, the lattice paths formed under Geometric Patience Sort-
ing are allowed to intersect. Thus, having defined these two algorithms, we classify in
Section 4 the types of intersections that can occur under Geometric Patience Sorting and
then characterize when they occur in terms of the pile configurations associated to a given
permutation under Extended Patience Sorting (Algorithm 1.2 below).

We close this introduction by stating the Extending Patience Sorting Algorithm and giving
a complete example.

Algorithm 1.2 (Extended Patience Sorting Algorithm). Given a shuffled deck of
cards σ = c1c2 · · · cn, inductively build insertion piles R = R(σ) = {r1, r2, . . . , rm} and
recording piles S = S(σ) = {s1, s2, . . . , sm} as follows:

• Place the first card c1 from the deck into a pile r1 by itself, and set s1 = {1}.

• For each remaining card ci (i = 2, . . . , n), consider the cards d1, d2, . . . , dk atop the
piles r1, r2, . . . , rk that have already been formed.

– If ci > max{d1, d2, . . . , dk}, then put ci into a new pile rk+1 by itself and set
sk+1 = {i}.

– Otherwise, find the left-most card dj that is larger than ci and put the card ci
atop pile rj while simultaneously putting i at the bottom of pile sj .
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Example 1.3. Let σ = 64518723 ∈ S8. Then according to Algorithm 1.2 we simultane-
ously form the following pile configurations:

insertion
piles

recording
piles

insertion
piles

recording
piles

Form a
new pile
with 6: 6 1

Then
play the
4 on it:

4
6

1
2

Form a
new pile
with 5:

4
6 5

1
2 3

Add the
1 to left
pile:

1
4
6 5

1
2
4 3

Form a
new pile
with 8:

1
4
6 5 8

1
2
4 3 5

Then
play the
7 on it:

1
4 7
6 5 8

1
2 5
4 3 6

Add the
2 to mid-
dle pile:

1
4 2 7
6 5 8

1
2 3 5
4 7 6

Add the
3 to right
pile:

1 3
4 2 7
6 5 8

1 5
2 3 6
4 7 8

The idea behind Algorithm 1.2 is that we are using a new pile configuration S(σ)
(called the “recording piles”) to implicitly label the order in which the elements of the
permutation σ are added to the usual Patience Sorting pile configuration R(σ) (which we
will now by analogy to RSK also call the “insertion piles”). It is clear that this information
then allows us to uniquely reconstruct σ by reversing the order in which the cards were
played. However, even though reversing the Extended Patience Sorting Algorithm is much
easier than reversing the RSK Algorithm through recursive “reverse row bumping,” the
trade-off is that the pairs of pile configurations that result from the Extended Patience
Sorting Algorithm are not independent (see [3] for more details), whereas the standard
Young tableau pairs generated by RSK are completely independent (up to shape).

2 Northeast Shadow Diagrams and Viennot’s

Geometric RSK

In this section we briefly develop Viennot’s geometric form for RSK in order to motivate
the geometric form for the Extended Patience Sorting that is introduced in Section 3
below.
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(c) Shadowline
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(d) Shadowline
L3(64518723).

Figure 2.1: Examples of Northeast Shadow and Shadowline Constructions

2.1 The Northeast Shadow Diagram of a Permutation

We begin with the following fundamental definition:

Definition 2.1. Given a lattice point (m,n) ∈ Z2, we define the northeast shadow of
(m,n) to be the quarter space SNE(m,n) = {(x, y) ∈ R2 | x ≥ m, y ≥ n}.

See Figure 2.1(a) for an example of a point’s northeast shadow.

The most important use of these shadows is in building so-called northeast shadow-
lines:

Definition 2.2. Given lattice points (m1, n1), (m2, n2), . . . , (mk, nk) ∈ Z2, we define
their northeast shadowline to be the boundary of the union of the northeast shadows
SNE(m1, n1), SNE(m2, n2), . . . , SNE(mk, nk).

In particular, we wish to associate to each permutation a certain collection of northeast
shadowlines (as illustrated in Figure 2.1(b)–(d)):

Definition 2.3. Given a permutation σ = σ1σ2 · · ·σn ∈ Sn, the northeast shadow dia-
gram D

(0)
NE(σ) of σ consists of the shadowlines L1(σ), L2(σ), . . . , Lk(σ) formed as follows:

• L1(σ) is the northeast shadowline for the lattice points {(1, σ1), (2, σ2), . . . , (n, σn)}.

• While at least one of the points (1, σ1), (2, σ2), . . . , (n, σn) is not contained in the
shadowlines L1(σ), L2(σ), . . . , Lj(σ), define Lj+1(σ) to be the northeast shadowline
for the points

{(i, σi) | (i, σi) /∈

j
⋃

k=1

Lk(σ)}.

In other words, we define the shadow diagram inductively by first taking L1(σ) to be
the shadowline for the diagram {(1, σ1), (2, σ2), . . . , (n, σn)} of the permutation. Then we
ignore the lattice points whose shadows were used in building L1(σ) and define L2(σ) to
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(b) Shadow Diagram
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(1)
NE(64518723).
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⊙
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(c) Salient points for

D
(1)
NE(64518723).
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•

•

(d) Shadow Diagram

D
(2)
NE(64518723).

Figure 2.2: The northeast shadow diagrams for the permutation 64518723 ∈ S8.

be the shadowline of the resulting subset of the permutation diagram. We then build
L3(σ) as the shadowline for the points not yet used in constructing either L1(σ) or L2(σ),
and this process continues until all points in the permutation diagram are exhausted.

We can characterize the points whose shadows define the shadowlines at each stage
as follows: they are the smallest collection of unused points whose shadows collectively
contain all other remaining unused points (and hence also contain the shadows of those
points). As a consequence of this shadow containment property, the shadowlines in a
northeast shadow diagram will never cross. However, as we will see in Section 3.1 below,
the dual construction to Definition 2.3 that is introduced will allow for crossing shadow-
lines, which are then classified and characterized in Section 4. The most fundamental
cause for this distinction is the way that we will reverse the above shadow containment
property for the points used in defining southwest shadowlines.

2.2 Viennot’s Geometric RSK Algorithm

As simple as northeast shadowlines were to define in the previous section, a great deal
of information can still be gotten from them. One of the most basic properties of the
northeast shadow diagram D

(0)
NE(σ) for a permutation σ ∈ Sn is that it encodes the top

row of the RSK insertion tableau P (σ) (resp. recording tableau Q(σ)) as the smallest
ordinates (resp. smallest abscissae) of all points belonging to the constituent shadowlines
L1(σ), L2(σ), . . . , Lk(σ). One proves this by comparing the use of Schensted Insertion on
the top row of the insertion tableau with the intersection of vertical lines having the form
x = a. In particular, as a increases from 0 to n, the line x = a intersects the lattice points
in the permutation diagram in the order that they are inserted into the top row, and so
shadowlines connect elements of σ to those smaller elements that will eventually bump
them. (See Sagan [10] for more details.)

Remarkably, one can then use the northeast corners (called the salient points) of

D
(0)
NE(σ) to form a new shadow diagram D

(1)
NE(σ) that similarly gives the second rows of

P (σ) and Q(σ). Then, inductively, the salient points of D
(1)
NE(σ) can be used to give the

third rows of P (σ) and Q(σ), and so on. As such, one can view this recursive formation
of shadow diagrams as a geometric form for the RSK correspondence. We illustrate this
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(d) Shadowline

L
(0)
3 (64518723).

Figure 3.1: Examples of Southwest Shadow and Shadowline Constructions

process in Figure 2.2 for the following permutation from Example 1.3:

σ = 64518723
RSK
←→





1 2 3
4 5 7
6 8 ,

1 3 5
2 6 8
4 7





3 Southwest Shadow Diagrams and Geometric

Patience Sorting

In this section we introduce a very natural dual algorithm to Viennot’s geometric form
for RSK as given in Section 2.2 above.

3.1 The Southwest Shadow Diagram of a Permutation

As in Section 2.1, we begin with the following fundamental definition:

Definition 3.1. Given a lattice point (m,n) ∈ Z2, we define the southwest shadow of
(m,n) to be the quarter space SSW (m,n) = {(x, y) ∈ R2 | x ≤ m, y ≤ n}.

See Figure 3.1(a) for an example of a point’s southwest shadow.

As with their northeast counterparts, the most important use of these shadows is in
building southwest shadowlines:

Definition 3.2. Given lattice points (m1, n1), (m2, n2), . . . , (mk, nk) ∈ Z2, we define their
southwest shadowline to be the boundary of the union of the shadows SSW (m1, n1),
SSW (m2, n2), . . ., SSW (mk, nk).

In particular, we wish to associate to each permutation a certain collection of southwest
shadowlines. However, unlike the northeast case, these shadowlines sometimes cross (as
illustrated in Figures 3.1(b)–(d) and Figure 3.2(a)).
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(d) Shadow Diagram

D
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SW (64518723).

Figure 3.2: The southwest shadow diagrams for the permutation 64518723 ∈ S8.

Definition 3.3. Given a permutation σ = σ1σ2 · · ·σn ∈ Sn, the southwest shadow di-
agram D

(0)
SW (σ) of σ consists of the southwest shadowlines L

(0)
1 (σ), L

(0)
2 (σ), . . . , L

(0)
k (σ)

formed as follows:

• L
(0)
1 (σ) is the shadowline for those lattice points (x, y) ∈ {(1, σ1), (2, σ2), . . . , (n, σn)}

such that SSW (x, y) does not contain any other lattice points.

• While at least one of the points (1, σ1), (2, σ2), . . . , (n, σn) is not contained in the

shadowlines L
(0)
1 (σ), L

(0)
2 (σ), . . . , L

(0)
j (σ), define L

(0)
j+1(σ) to be the shadowline for the

points

(x, y) ∈ {(i, σi) | (i, σi) /∈

j
⋃

k=1

L
(0)
k (σ)}

such that SSW (x, y) does not contain any other lattice points in the same set.

In other words, we again define a shadow diagram by recursively eliminating certain
points in the permutation diagram until every point has been used to define a shadow-
line. However, we are here reversing both the direction of the shadows and the shadow
containment property from the northeast case. It is in this sense that the geometric form
for the Extended Patience Sorting Algorithm given in the next section can be viewed as
“dual” to Viennot’s geometric form for RSK.

3.2 The Geometric Patience Sorting Algorithm

As in Section 2.2, one can produce a sequence DSW (σ) = (D
(0)
SW (σ), D

(1)
SW (σ), D

(2)
SW (σ), . . .)

of shadow diagrams for a given permutation σ ∈ Sn by recursively applying Definition 3.3
to salient points, with the restriction that new shadowlines can only connect points that
were on the same shadowline in the previous iteration. (The reason for this important
distinction from Geometric RSK is discussed further in Section 4.1 below.) The salient
points in this case are then naturally defined to be the southwest corner points of a given
set of shadowlines. See Figure 3.2 for an example of how this works for the permutation
from Example 1.3.
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Definition 3.4. We callD
(k)
SW (σ) the kth iterate of the exhaustive shadow diagram DSW (σ)

for σ ∈ Sn.

Moreover, the resulting sequence of shadow diagrams can then be used to reconstruct
the pair of pile configurations given by the Extended Patience Sorting Algorithm (Algo-
rithm 1.2). To accomplish this, index the cards in a pile configuration using the French
convention for tableaux so that the row index increases from bottom to top and the col-
umn index from left to right. (In other words, we are labelling boxes as we would lattice
points in the first quadrant of R2). Then, for a given permutation σ ∈ Sn, the elements
of the ith row of the insertion piles R(σ) (resp. recording piles S(σ)) are given by the

largest ordinates (resp. abscissae) of the shadowlines that compose D
(i)
SW .

The main difference between this process and Viennot’s Geometric RSK is that care
must be taken to assemble each row in its proper order. Unlike the entries of a Young
tableau, the elements in the rows of a pile configuration do not necessarily increase from
left to right, and they do not have to be contiguous. As such, the components of each
row should be recorded in the order that the shadowlines are formed. The rows can then
uniquely be assembled into a legal pile configuration since the elements in the columns of
a pile configuration must both decrease (when read from bottom to top) and appear in
the leftmost pile possible.

The proof of this is along the same lines as that of Viennot’s Geometric RSK in
that the shadowlines produced by Definition 3.3 are a visual record for how cards are
played atop each other under Algorithm 1.2. In particular, it should be clear that, given
a permutation σ ∈ Sn, the shadowlines in both of the shadow diagrams D

(0)
SW (σ) and

D
(0)
NE(σ) are defined by the same lattice points from the permutation diagram for σ. In

[3] the points along a given northeast shadowline are shown to correspond exactly to the
elements in some column of R(σ) (as both correspond to one of the left-to-right minima
subsequences of σ). Thus, by reading the lattice points in the permutation diagram in
increasing order of their abscissae, one can uniquely reconstruct both the piles in R(σ)
and the exact order in which cards are added to these piles (which implicitly yields S(σ)).

In this sense, both D
(0)
SW (σ) and D

(0)
NE(σ) encode the bottom rows of R(σ) and S(σ) as

given by Algorithm 1.2.
It is then easy to see by induction that the salient points of D

(k−1)
SW (σ) yield the kth

rows of R(σ) and S(σ), and so this gives the following

Theorem 3.5. The process described above for creating a pair of pile configurations
(R′(σ), S ′(σ)) from the Geometric Patience Sorting construction yields the same pair
of pile configurations (R(σ), S(σ)) as the Extended Patience Sorting Algorithm (Algo-
rithm 1.2).

Having given the above Geometric form for Algorithm 1.2, it is worth pointing out
that—as with RSK—there are various natural generalizations of Extended Patience Sort-
ing for more general combinatorial objects including words and lexicographic arrays. (See
[7] for a description of such extensions of RSK.) Moreover, many of these generalizations
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can still similarly be realized as non-recursive analogs for the forms of RSK that can be ap-
plied to such objects. In particular, the authors in [4] explore several such generalizations
and develop geometric forms for them much like the one given in this section.

In the case of words, Aldous and Diaconis [1] have given two different generalizations
for Patience Sorting based upon whether cards with equal value are played on top of each
other or not. These are called the “ties allowed” and “ties forbidden” cases, respectively,
and the usual RSK and dual RSK algorithms can be modeled in order to develop bijective
versions of them. The geometric forms for the resulting algorithms as given in [4] can then
be compared to Fulton’s “Matrix-Ball” Geometric RSK algorithm (defined in [7]) just as
we compare the Geometric Patience Sorting given in this section to Viennot’s Geometric
RSK in Section 4.

4 Geometric Patience Sorting and Intersecting

Lattice Paths

Extended Patience Sorting (Algorithm 1.2) can be viewed as a “non-bumping” version
of the RSK algorithm for permutations in that cards are permanently placed into piles
and are covered by other cards rather being displaced by them. It is in this sense that
one of the main differences between their geometric algorithms lies in how and in what
order (when read from left to right) the salient points of their respective shadow diagrams
are determined. In particular, as playing a card atop a pre-existing pile under Patience
Sorting is essentially like non-recursive Schensted Insertion, certain particularly egregious
“multiple bumps” that occur under the Schensted Insertion Algorithm prove to be too
complicated to be properly modeled by the “static insertions” of Patience Sorting.

At the same time, it is also easy to see that for a given σ ∈ Sn, the cards atop the
piles in the pile configurations R(σ) and S(σ) (as given by Algorithm 1.2) are exactly
the cards in the top rows of the RSK insertion tableau P (σ) and recording tableau Q(σ),
respectively. Thus, this raises the question of when the remaining rows of P (σ) and
Q(σ) can likewise be recovered from R(σ) and S(σ). While this appears to be directly
related to the order in which salient points are read (as illustrated in Example 4.1 below),
one would ultimately hope to characterize the answer in terms of generalized pattern
avoidance similar to the description of reverse patience words for pile configurations (as
given in [3]).

Example 4.1. Consider the northeast and southwest shadow diagrams for σ = 2431:

D
(0)
NE(2431) =

0 1 2 3 4
0
1
2
3
4

•

•
•

•
⊙

⊙

vs. D
(0)
SW (2431) =

0 1 2 3 4
0
1
2
3
4

•

•
•

•⊙

⊙

10



0 1 2 3 4
0

1

2

3

4

•

•

•

(a) Shadow Diagram

D
(0)
SW (312).

0 1 2 3 4
0

1

2

3

4

•

•

•

(b) Shadow Diagram

D
(0)
SW (231).

0 1 2 3 4
0

1

2

3

4 •

•

•

•

(c) Shadow Diagrams

D
(0)
SW , D

(1)
SW (4231).

0 1 2 3 4 5
0
1
2
3
4
5
•
•

•

•
•

(d) Shadow Diagrams

D
(0)
SW , D

(1)
SW (45312).

Figure 4.1: Shadow diagrams with different types of crossings.

In particular, note that the order in which the salient points are formed (when read from
left to right) is reversed. Such reversals serve to illustrate one of the inherent philosophical
differences between RSK and the Extended Patience Sorting Algorithm.

As mentioned in Section 3.2 above, another fundamental difference between Geometric
RSK and Geometric Patience Sorting is that the latter allows certain crossings to occur
in the lattice paths formed during the same iteration of the algorithm. We classify these
crossings in Section 4.1 and then characterize those permutations that yield entirely non-
intersecting lattice paths in Section 4.2.

4.1 Types of Crossings in Geometric Patience Sorting

Given σ ∈ Sn, we can classify the basic types of crossings in D
(0)
SW (σ) as follows: First note

that each southwest shadowline in D
(0)
SW (σ) corresponds to a pair of decreasing sequences

of the same length, namely a column from the insertion piles R(σ) and its corresponding
column from the recording piles S(σ). Then, given two different pairs of such columns
in R(σ) and S(σ), the shadowline corresponding to the rightmost (resp. leftmost) pair—
under the convention that new columns are always added to the right of all other columns
in Algorithm 1.2)—is called the upper (resp. lower) shadowline. More formally:

Definition 4.2. Given two shadowlines, L
(m)
i (σ), L

(m)
j (σ) ∈ D

(m)
SW (σ) with i < j, we call

L
(m)
i (σ) the lower shadowline and L

(m)
j (σ), the upper shadowline. Moreover, if L

(m)
i (σ)

and L
(m)
j (σ) intersect, then we call this a vertical crossing (resp. horizontal crossing) if

it involves a vertical (resp. horizontal) segment of L
(m)
j (σ).

We illustrate these crossings in the following example. In particular, note that the
only permutations σ ∈ S3 of length three having intersections in their 0th iterate shadow
diagram D

(0)
SW (σ) are 312, 231 ∈ S3.

Example 4.3.

1. The smallest permutation for which D
(0)
SW (σ) contains a horizontal crossing is σ =

312 as illustrated in Figure 4.1(a). The upper shadowline involved in this crossing
is the one with only two segments.
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2. The smallest permutation for which D
(0)
SW (σ) contains a vertical crossing is σ = 231

as illustrated in Figure 4.1(b). As in part (1), the upper shadowline involved in this
crossing is again the one with only two segments.

3. Consider σ = 4231. From Figure 4.1(c), D
(0)
SW (σ) contains exactly two southwest

shadowlines, and these shadowlines form a horizontal crossing followed by a vertical
crossing. We call a configuration like this a “polygonal crossing.” Note in particular
that D

(1)
SW (σ) (trivially) has no crossings.

4. Consider σ = 45312. From Figure 4.1(d), D
(0)
SW (σ) not only has a “polygonal cross-

ing” (this time as two shadowlines have a vertical crossing followed by a horizontal

one) but D
(1)
SW (σ) does as well.

Polygonal crossings are what make it necessary to read only the salient points along the
same shadowline in the order in which shadowlines are formed (as opposed to constructing
the subsequent shadowlines using the entire partial permutation of salient points as in
Viennot’s Geometric RSK).

Example 4.4. Consider the shadow diagram of σ = 45312 as illustrated in Figure 4.1(d).

The 0th iterate shadow diagram D
(0)
SW contain a polygonal crossing, and so the 1st iterate

shadow diagram D
(1)
SW needs to be formed as indicated in order to properly describe the

pile configurations R(σ) and S(σ) since

σ = 45312
XPS
←→





1
3 2
4 5 ,

1
3 2
4 5





under the Extended Patience Sorting Algorithm.

4.2 Non-intersecting shadow diagrams

Unlike the rows of Young tableaux, the values in the rows of a pile configuration do not
necessarily increase when read from left to right. In fact, the descents in the rows of
pile configurations are very closely related to the crossings given by Geometric Patience
Sorting.

As noted in Section 3.2 above, Geometric Patience Sorting is ostensibly simpler than
Geometric RSK in that one can essentially recover both the insertion piles R(σ) and the

recording piles S(σ) from the 0th iterate shadow diagram D
(0)
SW . The fundamental use,

then, of the iteratesD
(i+1)
SW , D

(i+2)
SW , . . . is in understanding the intersections in the ith iterate

shadow diagram D
(i)
SW . In particular, each shadowline L

(m)
i (σ) ∈ D

(m)
SW (σ) corresponds to

the pair of segments of the ith columns of R(σ) and S(σ) that are above the mth row (or
are the ith columns if m = 0), where rows are numbered from bottom to top.
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Theorem 4.5. Each iterate D
(m)
SW (σ) (m ≥ 0) of σ ∈ Sn is free from crossings if and

only if every row in both R(σ) and S(σ) is monotone increasing from left to right.

Proof. Since each L
(m)
i = L

(m)
i (σ) depends only on the ith columns of R = R(σ) and

S = S(σ) above row m, we may assume without loss of generality that R and S have the
same shape with exactly two columns.

Let m+ 1 be the highest row where a descent occurs in either R or S. If this descent
occurs in R, then L

(m)
2 is the upper shadowline in a horizontal crossing since L

(m)
2 has

y-intercept below that of L
(m)
1 , which is the lower shadowline in this crossing (as in 312).

If this descent occurs in S, then L
(m)
2 is the upper shadowline in a vertical crossing since

L
(m)
2 has x-intercept to the left of L

(m)
1 , which is the lower shadowline in this crossing (as

in 231). Note that both descents may occur simultaneously (as in 4231 or 45312).
Conversely, suppose m is the last iterate at which a crossing occurs in DSW (σ) (i.e.,

D
(ℓ)
SW (σ) has no crossings for ℓ > m). We will prove that L

(m)
2 may have a cross-

ing only at the first or last segment. This, in turn, implies that row m in R or S
is decreasing. A crossing occurs when there is a vertex of L

(m)
1 not in the shadow

of any point of L
(m)
2 . We will prove that it can only be the first or last vertex. Let

{(s1, r1), (s2, r2), . . . } and {(u1, t1), (u2, t2), . . . } be the vertices that define L
(m)
1 and L

(m)
2 ,

respectively. Then {ri}i≥1 and {ti}i≥1 are decreasing while {si}i≥1 and {ui}i≥1 are increas-
ing. Write (a, b) ≤ (c, d) if (a, b) is in the shadow of (c, d) (i.e. if a ≤ b and c ≤ d), and con-

sider L
(m+1)
1 and L

(m+1)
2 . They are noncrossing and defined by points {(s1, r2), (s2, r3), . . . }

and {(u1, t2), (u2, t3), . . . }, respectively. Then, for any i, (si, ri+1) ≤ (uj, tj+1) for some j.
Suppose (si, ri+1) ≤ (uj, tj+1) and (si+1, ri+2) ≤ (uk, tk+1) for some j < k. Each upper
shadowline vertex must contain some lower shadowline vertex in its shadow, so for all ℓ ∈
[j, k], (si, ri+1) ≤ (uℓ, tℓ+1) or (si+1, ri+2) ≤ (uℓ, tℓ+1). Choose the least ℓ ∈ [j, k] such that
(si+1, ri+2) ≤ (uℓ, tℓ+1). If (si, ri+1) ≤ (uℓ, tℓ+1), then (si+1, ri+1) ≤ (uℓ, tℓ+1) ≤ (uℓ, tℓ). If
(si, ri+1) � (uℓ, tℓ+1), then (si, ri+1) ≤ (uℓ−1, tℓ), so (si+1, ri+1) ≤ (uℓ, tℓ). Thus, in both
cases, (si+1, ri+1) ≤ (uℓ, tℓ), and the desired conclusion follows.

An immediate corollary of the above proof is that all rows i ≥ m in both R(σ) and

S(σ) are monotone increasing from left to right if and only if every iterate D
(i)
SW (σ) (i ≥ m)

is free from crossings.
One can equivalently characterize intersecting shadowlines beyond the 0th iterate of

σ ∈ Sn in terms of sub-pile patterns for the entries in R(σ) and S(σ). We state the
following such result only for horizontal crossings, but vertical crossings can then be
characterized by inverting σ (i.e., by transposing within these pairs of patterns via a
Schützenberger-type symmetry result proven in [3]). Moreover, it is not difficult to show
that avoiding both horizontal and vertical crossings in every iterate is equivalent to avoid-
ing all crossings.

Corollary 4.6. If R(σ) and S(σ) contain either of the following two simultaneous sub-

pile patterns, then the permutation σ ∈ Sn has a horizontal crossing in D
(m)
SW (σ) (here
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{xs}s≥1 and {yr}r≥1 are monotone increasing; m ≤ k, l; and the numbers in the boxes
indicate the number of elements in respective sub-piles):

i

y1 j

y3 y2
k m

⊂ R

,

k −m

x1 0
x2 x3

i+m j +m

⊂ S or

i

y1 j

y3 y2
k l

⊂ R

,

k −m l −m
x2 x1

x3 x4

i+m j +m

⊂ S
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