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Abstract.Generalizing a sequence of Lambert, Cayley and Ramanujan, Chapoton has recently
introduced a polynomial sequence Qn := Qn(x, y, z, t) defined by

Q1 = 1, Qn+1 = [x+ nz + (y + t)(n + y∂y)]Qn.

In this paper we prove Chapoton’s conjecture on the duality formula: Qn(x, y, z, t) = Qn(x+nz+

nt, y,−t,−z), and answer his question about the combinatorial interpretation of Qn. Actually

we give combinatorial interpretations of these polynomials in terms of plane trees, half-mobile

trees, and forests of plane trees. Our approach also leads to a general formula that unifies several

known results for enumerating trees and plane trees.

Keywords: Ramanujan polynomials, plane tree, half-mobile tree, forest, general descent, elder
vertex, improper edge
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1 Introduction

It is well-known that the Lambert function w =
∑

n≥1 n
n−1yn/n! (see [9]) is the solution

to the functional equation we−w = y with w(0) = 0 and a formula of Cayley [2] says
that nn−1 counts the rooted labeled trees on n vertices. There are various generalizations
of Cayley’s formula. In particular, an interesting refinement of the sequence nn−1 ap-
peared in Ramanujan’s work (see [1,6,7,13]) and is related to Lambert’s series as follows:
Differentiating n times Lambert’s function w with respect to y (see [13, Lemma 6]) yields

w(n) =
enw

(1− w)n
Rn

(

1

1− w

)

, (1.1)

where Rn is a polynomial of degree n− 1 and satisfies the recurrence:

R1 = 1, Rn+1(y) = [n(1 + y) + y2∂y]Rn(y). (1.2)

It follows that R2 = 1 + y, R3 = 2 + 4y + 3y2 and R4 = 6 + 18y + 25y2 + 15y3. Clearly
formula (1.2) implies that Rn(y) is a polynomial with nonnegative integral coefficients
such that Rn(0) = (n − 1)! and the leading coefficient is (2n − 3)!!. As the Lambert
function is equivalent to w(n)(0) = nn−1, we derive from (1.1) that Rn(1) = nn−1.
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On the other hand, Shor [10] and Dumont-Ramamonjisoa [7] have proved indepen-
dently that the coefficient of yk in Rn(y) counts rooted labeled trees on n vertices with k
“improper edges.” In a subsequent paper [13, Eq. (26)] Zeng proved that if we set

Z =
exw − 1

x
= w +

w2

2!
x+

w3

3!
x2 + · · · ,

then differentiating n times Z with respect to y yields

Z(n) =
e(x+n)w

(1− w)n
Pn

(

1

1− w
, y

)

, (1.3)

where Pn := Pn(x, y) is a polynomial defined by the recurrence relation:

P1 = 1, Pn+1 = [x+ n+ y(n+ y∂y)]Pn.

The polynomials Pn(x, y) are later called the Ramanujan polynomials [3, 6].
Recently, Chapoton [5] generalized Pn to the polynomials Qn := Qn(x, y, z, t) as fol-

lows:
Q1 = 1, Qn+1 = [x+ nz + (y + t)(n+ y∂y)]Qn. (1.4)

In the context of operads, Chapoton [4, p.5](see also [3]) conjectured that the coefficient
of xiyj−i in Qn(1, x, 0, y) is the dimension of homogeneous component of degree (i, j) of
the so-called Ramanujan operads Ram({1, 2, . . . , n}).

Clearly these are homogeneous polynomials in x, y, z, t of degree n− 1 and z is just a
homogeneous parameter. For example, we have Q2 = x+ y + z + t and

Q3 = x2 + 3xy + 3xz + 3xt+ 3y2 + 4yz + 5yt+ 2z2 + 4zt + 2t2.

We can easily derive explicit product formulae of Qn for some special values. Indeed,
setting t = −y in (1.4) yields

Qn(x, y, z,−y) =

n−1
∏

k=1

(x+ kz), (1.5)

while setting y = 0 in (1.4) leads to

Qn(x, 0, z, t) =

n−1
∏

k=1

(x+ kz + kt). (1.6)

Further factorization formulae can be derived from the following duality formula, which
was conjectured by Chapoton [5].

Theorem 1.1. For n ≥ 1, there holds

Qn(x, y, z, t) = Qn(x+ nz + nt, y,−t,−z). (1.7)
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Table 1: Values of Qn,k(x, t).

k\n 1 2 3 4
0 1 x+ 1 + t x2 + 3x+ 2 + (3x+ 4)t + 2t2 x3 + 6x2 + 11x+ 6 + (6x2 + 22x+ 18)t + (11x+ 18)t2 + 6t3

1 1 3x+ 4 + 5t 6x2 + 22x+ 18 + (26x + 43)t + 26t2

2 3 15x+ 25 + 35t
3 15
∑

k 1 x+ 2 + t (x+ 3 + t)(x + 3 + 2t) (x+ 4 + t)(x + 4 + 2t)(x + 4 + 3t)

It follows from (1.5) and (1.7) that when y = z the polynomials Qn factorize completely
into linear factors:

Qn(x, z, z, t) =

n−1
∏

k=1

(x+ nz + kt). (1.8)

In particular, we obtain Qn(1, 1, 1, 1) = n!Cn, where Cn = 1
n+1

(

2n
n

)

is the n-th Cata-
lan number. This leads us to first look for a combinatorial interpretation in the set
of labeled plane trees on n + 1 vertices rooted at 1, of which the cardinality is n!Cn

(see [12, p. 220]). To this end, as Qn(x, y, z, t) = zn−1Qn(x/z, y/z, 1, t/z), it is convenient
to write Qn(x, y, 1, t) as follows:

Qn(x, y, 1, t) =

n−1
∑

k=0

Qn,k(x, t)y
k. (1.9)

Now identifying the coefficients of yk in (1.4) we obtain Q1,0(x, t) = 1 and for n ≥ 2:

Qn,k(x, t) = [x+ n− 1 + t(n+ k − 1)]Qn−1,k(x, t) + (n+ k − 2)Qn−1,k−1(x, t), (1.10)

where Qn,k(x, t) = 0 if k ≥ n or k < 0. The first values of Qn,k(x, t) are given in Table 1.
In the next section we shall prove that the polynomials Qn,k(x, t) count plane trees of

k improper edges with respect to two new statistics “eld” and “young.” It turns out that
the polynomials Qn are the counterpart of Ramanujan’s polynomials Pn (which count
rooted trees) for plane trees.

Originally Chapoton asked for a combinatorial interpretation of Qn in the model of
half-mobile trees, we shall answer his question in Section 3 by establishing a bijection from
plane trees to half-mobile trees.

In Section 4 we shall unify and generalize several classical formulae for the enumeration
of trees and plane trees. For instance, in Theorem 4.3 we prove that

∑

T

teld(T )
n
∏

i=1

x
youngT (i)
i =

n−2
∏

k=0

(x1 + · · ·+ xn + kt),

where T ranges over all plane tree trees on {1, . . . , n} and eld and young are mentioned
as before. In Section 5 we give another combinatorial interpretation of Qn,k(x, t) in terms
of forests of plane trees, which extends a previous result of Shor [10]. In Section 6 we give
a short proof of Theorem 1.1. We end this paper with some open problems.
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2 Combinatorial interpretations in plane trees

Let π = a1 · · · an be a permutation of a totally ordered set of n elements. Recall that an
element ai is said to be a right-to-left minimum of π if ai < aj for every j > i. For our
purpose we need to introduce a dual statistic on permutations as follows. The integer i
(1 ≤ i ≤ n−1) is called a general descent of π, if there exists a j > i such that aj < ai. In
other words, the general descents of π are positions that do not correspond to right-to-left
minima. The number of general descents of π is denoted by gdes(π). For instance, if
π = 3 6 1 4 5 8 7, then the general descents of π are 1, 2 and 6, so gdes(π) = 3. Let Sn

denote the set of all permutations of the set [n] := {1, . . . , n}. It is easy to see that the
following identity holds:

∑

π∈Sn

tgdes(π) = (1 + t)(1 + 2t) · · · (1 + (n− 1)t). (2.1)

Throughout this paper, unless indicated otherwise, all trees are rooted labeled trees on
a linearly ordered vertex set. Given two vertices i and j of a tree T we say that j is a
descendant of i if the path from the root to j passes through i. In particular, each vertex
is a descendant of itself. Let βT (i) be the smallest descendant of i. Furthermore, if j is
a descendant of i and is also connected to i by an edge, then we say that j is a child of
i and denote the corresponding edge by e = (i, j), and if j′ is another child of i, then we
call j′ a brother of j.

A plane tree (or ordered tree) is a rooted tree in which the children of each vertex are
linearly ordered. From now on, by saying that v1, . . . , vm are all the children of a vertex
v of a plane tree T we mean that vi is the i-th child of v, counting from left to right.
A vertex j of a plane tree T is called elder if j has a brother k to its right such that
βT (k) < βT (j); otherwise we say that j is younger. Note that the rightmost child of any
vertex is always younger. For any vertex v of a plane tree T , let eldT (v) be the number
of elder children of v in T . Clearly, we have

eldT (v) = gdes(βT (v1) · · ·βT (vm)),

where v1, . . . , vm are all the children of v. Let eld(T ) be the number of elder vertices of
T . Clearly, if T is a plane tree on n vertices with n ≥ 2, then eld(T ) ≤ n− 2.

Definition 2.1. Let e = (i, j) be an edge of a tree T . We say that e is a proper edge or
j is a proper child of i, if j is an elder child of i or i < βT (j). Otherwise, we say that e
is an improper edge and j is an improper child of i.

For example, for the plane tree T in Figure 1 the set of elder vertices is {3, 8, 9, 11, 12, 13}
and the set of the improper edges is {(3, 14), (4, 1), (6, 5), (10, 4), (14, 2), (14, 7)}.

Given a vertex v in a tree T , denote by deg(v) or degT (v) the number of children of
v, then the number of younger children of v is given by

young(v) = youngT (v) = degT (v)− eldT (v).
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Denote by Pn,k (respectively On,k ) the set of plane trees (respectively plane trees
with root 1) on [n] with k improper edges. Moreover, we may impose some conditions on
the sets Pn,k and On,k to denote the subsets of plane trees that satisfy these conditions.
For example, Pn,k[deg(n) = 0] stands for the subset of Pn,k subject to the condition
deg(n) = 0.
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Figure 1: A plane tree on [14] with elder vertices circled and improper edges thickened.

Theorem 2.2. The polynomials Qn,k(x, t) have the following interpretation:

Qn,k(x, t) =
∑

T∈On+1,k

xyoungT (1)−1teld(T ). (2.2)

Proof. Clearly, identity (2.2) is true for n = 1. We shall prove by induction that the right-
hand side of (2.2) satisfies the recurrence (1.10) by distinguishing two cases according to
whether n+ 1 is a leaf or not.

• If T ∈ On+1,k with degT (n+1) = 0, then deleting n+1 yields a plane tree T ′ ∈ On,k.
Conversely, starting from any T ′ ∈ On,k, we can recover T by adding n+ 1 to T ′ as
a leaf in 2n− 1 ways as follows. Pick up any vertex v of T ′ with the children being
a1, . . . , am, and then add n+1 as the i-th (1 ≤ i ≤ m+1) child of v to make the tree
T . In other words, the children of v in T become a1, . . . , ai−1, n + 1, ai+1, . . . , am.
Note that if n + 1 is the rightmost child of v, then eld(T ) = eld(T ′); otherwise,
eld(T ) = eld(T ′)+1. Meanwhile, if n+1 is the rightmost child of 1, then youngT (1) =
youngT ′(1) + 1; otherwise, youngT (1) = youngT ′(1). Since there are n vertices in T ′

and
∑

v∈[n] degT ′(v) = n− 1, we obtain

∑

T∈On+1,k [deg(n+1)=0]

xyoungT (1)−1teld(T )

= [x+ n− 1 + t(n− 1)]
∑

T∈On,k

xyoungT (1)−1teld(T ). (2.3)

• If T ∈ On+1,k with deg(n+ 1) > 0, suppose all the children of n+ 1 are a1, . . . , am.
Note that the edge (n+1, am) is always younger and improper. We need to consider
two cases:
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If m = 1 or βT (am−1) < βT (am), then replace n + 1 by the child am and contract
the edge joining n + 1 and am such that the original children of am are as the
rightmost children with their previous order unchanged. Thus, we obtain a plane
tree T ′ ∈ On,k−1. Conversely, for such a T ′, we can recover T as follows. Pick any
vertex v 6= 1 of T ′, and replace v by n+ 1 and join v to n+ 1 by an edge. Suppose
all the children of v in T ′ are b1, . . . , bp, with bi1 , bi2 , . . . , bir (i1 < i2 < · · · < ir)
being the improper children. Then βT ′(bij ) < βT ′(bs) for any 1 ≤ j ≤ r and s > ij .
It is easy to see that the children of n + 1 in T must be b1, b2, . . . , bij and v, while
the children of v in T must be bij+1, bij+2, . . . , bp, where 0 ≤ j ≤ r and i0 = 0.
This means that there are r + 1 possibilities to partition the children of v. Since
there are k − 1 improper edges and n vertices (one of which is 1) in T ′, we see
that there are total n+ k− 2 such corresponding plane trees T . Moreover, we have
youngT (1) = youngT ′(1) and eld(T ) = eld(T ′). Hence the generating function for
the plane trees in On+1,k with n+1 having only one child or its second child counting
from right being younger is

(n+ k − 2)
∑

T∈On,k−1

xyoungT (1)−1teld(T ). (2.4)

If m ≥ 2 and βT (am−1) > βT (am), then am−1 is an elder child of n + 1 and hence
(n + 1, am−1) is a proper edge. Replace n + 1 by the child am−1 and contract the
edge joining n + 1 and am−1, such that the original children of am−1 are as the
rightmost children in their previous order. Thus, we obtain a plane tree T ′ ∈ On,k.
Conversely, for such a T ′, we can recover T similarly as the first case. Pick any
vertex v 6= 1 of T ′, and replace v by n+ 1 and join v to n+ 1 by an edge. Suppose
the children of v in T ′ are b1, . . . , bp. Assume all the improper children of v in T ′

are bi1 , bi2 , . . . , bir . It is easy to see that the only possible children of n + 1 in T
are b1, b2, . . . bij−1, v, bij , while the children of v in T are bij+1, bij+2, . . . , bp, where
1 ≤ j ≤ r. Namely there are r possibilities to partition the children of v. Since T ′

has k improper edges, we see that there are total k such preimages T . Moreover,
we have youngT (1) = youngT ′(1) and eld(T ) = eld(T ′) + 1. Hence the generating
function for the plane trees in On+1,k with n + 1 having at least two children and
its second child counting from right being elder is

k t
∑

T∈On,k

xyoungT (1)−1teld(T ). (2.5)

Summing (2.4) and (2.5) we obtain
∑

T∈On+1,k[deg(n+1)>0]

xyoungT (1)−1teld(T ) = k t
∑

T∈On,k

xyoungT (1)−1teld(T )

+ (n+ k − 2)
∑

T∈On,k−1

xyoungT (1)−1teld(T ).

(2.6)
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Table 2: Values of Qn,k(x− t− 1, t).

k\n 1 2 3 4
0 1 x x2 + x+ xt x3 + 3x2 + 2x+ (3x2 + 4x)t+ 2xt2

1 1 3x+ 1 + 2t 6x2 + 10x+ 2 + (14x + 7)t + 6t2

2 3 15x+ 10 + 20t
3 15
∑

k 1 x+ 1 (x+ 2)(x + 2 + t) (x+ 3)(x + 3 + t)(x + 3 + 2t)

The proof then follows from summarizing identities (2.3) and (2.6).

The plane trees in O4,1 with their weights are listed in Figure 2.
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Figure 2: The polynomial Q3,1(x, t) = 3x+ 4 + 5t as a weight function of O4,1.

Theorem 2.3. The polynomials Qn,k(x− t− 1, t) have the following interpretation:

Qn,k(x− t− 1, t) =
∑

T∈Pn,k

xyoungT (1)teld(T ). (2.7)

Proof. By (1.10), we see that

Qn,k(x− t−1, t) = [x+n−2+ t(n+k−2)]Qn−1,k(x, t)+ (n+k−2)Qn−1,k−1(x, t). (2.8)

Similarly to the proof of Theorem 2.2, we show that the right-hand side of (2.7) satisfies
the recurrence (2.8). More precisely, we can prove that for n ≥ 1,

∑

T∈Pn,k[deg(n)=0]

xyoungT (1)teld(T ) = [x+ n− 2 + t(n− 2)]
∑

T∈Pn−1,k

xyoungT (1)teld(T ), (2.9)

∑

T∈Pn,k[deg(n)>0]

xyoungT (1)teld(T ) = k t
∑

T∈Pn−1,k

xyoungT (1)teld(T )

+ (n + k − 2)
∑

T∈Pn−1,k−1

xyoungT (1)teld(T ). (2.10)

The proof of (2.9) and (2.10) is exactly the same as that of (2.3) and (2.6) and is omitted
here. We only mention that “Pick any vertex v 6= 1 of T ′” needs to be changed to “Pick
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Figure 3: The polynomial Q3,1(x− t− 1, t) = 3x+ 1 + 2t as a weight function of P3,1.

any vertex v of T ′,” and if n is the root of T then we take the vertex replacing n as the
root of T ′.

The plane trees in P3,1 with their weights are listed in Figure 3.
It is worthwhile to point out that there is a simpler variant of Theorems 2.2 and

2.3. A vertex j of a plane tree T is called really elder if j has a brother k to its right
such that k < j. Let reldT (v) be the number of really elder children of v. Namely,
reldT (v) = gdes(a1 · · · am), where a1, . . . , am are all the children of v. Assume e = (i, j) is
an edge of a tree T , we say that e is a really proper edge, if j is a really elder child of i or
i < βT (j). Otherwise, we call e a really improper edge. Let

youngT (v) = degT (v)− reldT (v),

and let Pn,k (respectively On,k) denote the set of plane trees (respectively plane trees with
root 1) on [n] with k really improper edges.

Corollary 2.4. There holds

Qn,k(x, t) =
∑

T∈On+1,k

xyoungT (1)−1treld(T ) =
∑

T∈Pn,k

(x+ t+ 1)youngT (1)−1treld(T ).

Proof. It suffices to construct a bijection φ from Pn,k (respectively On+1,k) to Pn,k (respec-
tively On+1,k). Starting from a plane tree T ∈ Pn,k (respectively T ∈ On+1,k), we define
φ(T ) as the plane tree obtained from T as follows. For any vertex v of T with subtrees
T1, . . . , Tm rooted at v1, . . . , vm, respectively, we reorder these subtrees as Tσ(1), . . . , Tσ(m)

such that vσ(i) < vσ(j) if and only if βT (vi) < βT (vj), where σ ∈ Sm. See Figure 4.

To end this section we make a connection to increasing (plane) trees. A (plane)
tree on [n] is called increasing if any path from the root to another vertex forms an
increasing sequence. Clearly an increasing plane tree has no improper edges and vice
versa. Combining (1.6), (1.9) and Theorem 2.2 we get the following result.

Proposition 2.5. For every n ≥ 1, we have

∑

T∈Pn,0

xyoungT (1)teld(T ) =

n−2
∏

k=0

(x+ k + kt).

In particular, the number of increasing trees on [n] is (n−1)! and the number of increasing
plane trees on [n] is (2n− 3)!!.
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Figure 4: The plane tree in P14,6 corresponding to that in Figure 1.

3 Combinatorial interpretations in half-mobile trees

The notion of half-mobile trees was introduced by Chapoton [4]. A half-mobile tree on
[n] is defined to be a rooted tree with two kinds vertices, called labeled and unlabeled (or
white and black, respectively) vertices satisfying the following conditions:

• The labeled vertices are in bijection with [n];

• Each unlabeled vertex has at least two children and all of them are labeled;

• There is a fixed cyclic order on the children of any unlabeled vertex;

• The children of each labeled vertex are not ordered.

Let T be a half-mobile tree. For any black vertex x of T , we define βT (x) to be the
smallest vertex among all the white descendants of x. From now on, we assume that the
rightmost child x of a black vertex v has the smallest βT (x).

Definition 3.1. An edge e = (u, v) of a half-mobile tree T is called improper if u and v
are labeled and u > βT (v), or u is unlabeled and v is its rightmost child, moreover u has
a (labeled) father greater than βT (v).

A forest of half-mobile trees on [n] is a graph of which the connected components are
half-mobile trees and the white vertex set is [n]. Denote by Hn the set of forests of half-
mobile trees on [n]. For any F ∈ Hn, let imp(F ) be the number of improper edges of F ,
and tree(F ) the number of half-mobile trees of F . Finally define the black degree of F ,
denoted by bdeg(F ), to be the total degree of black vertices minus the number of black
vertices. Namely,

bdeg(F ) =
∑

v

(degF (v)− 1),

where the sum is over all black vertices v of F .
We first recall a fundamental transformation ψ on Sn. We identify each permutation

π ∈ Sn with the sequence π(1)π(2) . . . π(n). Since a variant of this bijection can be found
in [11, Proposition 1.3.1], we only give an informal description of ψ as follows:
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(a) Factorize the permutation π into a product of disjoint cycles.

(b) Order the cycles of π in increasing order of their minima.

(c) Write the minimum at last within each cycle and erase the parentheses of cycles.

For instance, if the factorization of π ∈ S8 is (241)(73)(5)(86), then ψ(π) = 2 4 1 7 3 5 8 6.

Lemma 3.2. The mapping ψ is a bijection on Sn such that the number of cycles of π is
equal to the number of right-to-left minima of ψ(π).

Now we are ready to construct our bijection from the plane trees to forests of half-
mobile trees.

Proposition 3.3. There is a bijection θ : On+1 −→ Hn such that for any T ∈ On+1

youngT (1) = tree(θ(T )), eld(T ) = bdeg(θ(T )), imp(T ) = imp(θ(T )).

Proof. Let T ∈ On+1. Pick any vertex v of T with deg(v) > 0. Suppose its children are
a1, . . . , am. Consider the permutation πv = b1 · · · bm, where bj = βT (aj) for 1 ≤ j ≤ m.
Let bi1 , bi2 , . . . , bir = bm be all the right-to-left minima of πv. For any k (1 ≤ k ≤ r), if
ik − ik−1 > 1 (i0 = 0), add a black vertex to be a new child of v and then move the
subtrees rooted at aik−1+1, . . . , aik to be subtrees of this black vertex with the cyclic
order (aik−1+1, . . . , aik). In other words, the cycle (aik−1+1, . . . , aik) is a cycle of length
greater than 1 in the permutation ψ−1(πv), obtained by applying the inverse mapping of
ψ in Lemma 3.2. Since all the elements except the rightmost one in (aik−1+1, . . . , aik) are
elder vertices in T , applying the above procedure to every vertex v with deg(v) > 0, we
obtain a half-mobile tree T ′ on [n + 1] with root 1. By Lemma 3.2, it is easy to see that
the mapping T 7→ T ′ is reversible. Furthermore,

youngT (1) = degT ′(1), eld(T ) = bdeg(T ′), imp(T ) = imp(T ′).

Deleting the root 1, and shifting the label i to i − 1 (2 ≤ i ≤ n + 1) in T ′, we obtain a
forest θ(T ) of half-mobile trees on [n]. This completes the proof.

As an illustration of the bijection θ, we apply θ to a tree T in Figure 5 with n =
14. For example, the root 1 of T has three children 4, 8, 3 and π1 = 2 8 3. Note that
youngT (1) = 2, eld(T ) = 5 and imp(T ) = 4.

Let Hn,k denote the set of forests of half-mobile trees on [n] with k improper edges.
The following statement follows immediately from Theorem 2.2 and Proposition 3.3.

Theorem 3.4. For n ≥ 1, there holds

Qn,k(x, t) =
∑

F∈Hn,k

xtree(F )−1tbdeg(F ).

In other words, we have

Qn(x, y, 1, t) =
∑

F∈Hn

xtree(F )−1yimp(F )tbdeg(F ).
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Figure 5: An example for the bijection θ.

4 Enumeration of plane trees

We first state a variant of Chu-Vandermonde formula.

Lemma 4.1. For n ≥ 1, there holds

n
∑

k=0

(

n

k

) k
∏

i=0

(x+ it)
n−k−1
∏

j=0

(y + jt) = x
n
∏

k=1

(x+ y + kt). (4.1)

Proof. Write the left-hand side of (4.1) as

(−1)nn!xtn
n

∑

k=0

(

−x/t − 1

k

)(

−y/t

n− k

)

and then apply the Chu-Vandermonde convolution formula
∑n

k=0

(

a

k

)(

b

n−k

)

=
(

a+b

n

)

.

Let T be a plane tree containing the edge (i, j). We define a mapping T 7→ T ′, called
(i, j)-contraction, by contracting the edge (i, j) to the vertex i and moving all the children
of j to i such that if a1, . . . , ar (respectively b1, . . . , bs) are all the children of i to the left
(respectively right) of j and c1, . . . , ct are all the children of j, then the children of i in T ′

are ordered as a1, . . . , ar, c1, . . . , ct, b1, . . . , bs. An illustration of this contraction is given
in Figure 6.

Two plane trees T1 and T2 are said to be i-equivalent and denoted T1 ≃ T2, if T2 can be
obtained from T1 by reordering the children of the vertex i (see Figure 7). Moreover, T1
and T2 are said to be (i, j)-equivalent and denoted T1 ∼ T2, if both T1 and T2 contain the
edge (i, j) and their images under the (i, j)-contraction are i-equivalent. For instance, the
two plane trees T3 and T4 in Figure 8 are (2, 5)-equivalent, since after the (2, 5)-contraction
they become respectively T1 and T2 in Figure 7.
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Figure 7: Two 2-equivalent plane trees.

Lemma 4.2. Let T0 be a plane tree on [n] containing the edge (i, j). Let T0(i, j) be the
set of plane trees obtained from the (i, j)-contraction of those i-equivalent to T0. Then

∑

T∼T0

teld(T )

n
∏

k=1

x
youngT (k)
k = xi

∑

T∈T0(i,j)

(xi + xj + t)youngT (i)teld(T )
∏

k∈[n]\{i,j}

x
youngT (k)
k .

Proof. Suppose that degT0
(i) + degT0

(j) = m+ 1. By Eq. (2.1) and Lemma 4.1, we have

∑

T≃T0

teldT (i)x
youngT (i)
i teldT (j)x

youngT (j)
j =

m
∑

k=0

∑

T∼T0
degT (i)=k+1

teldT (i)x
youngT (i)
i teldT (j)x

youngT (j)
j

=
m
∑

k=0

(

m

k

) k
∏

r=0

(xi + rt) ·
m−k−1
∏

s=0

(xj + st)

= xi

m
∏

k=1

(xi + xj + kt)

= xi
∑

T∈T0(i,j)

(xi + xj + t)youngT (i)teldT (i).

Multiplying by
∏

k∈[n]\{i,j} t
eldT0 (k)x

youngT0 (k)

k we get the desired result.
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Figure 8: Two (2, 5)-equivalent plane trees in P10.

Let Pn denote the set of all plane trees on [n].

Theorem 4.3. For n ≥ 1, there holds

∑

T∈Pn

teld(T )

n
∏

i=1

x
youngT (i)
i =

n−2
∏

k=0

(x1 + · · ·+ xn + kt). (4.2)

Proof. We shall prove (4.2) by induction on n. The identity obviously holds for n = 1.
Suppose (4.2) holds for n − 1. For i, j ∈ [n] (i 6= j), let Pn(i, j) be the set of all plane
trees on [n] containing the edge (i, j). Let A be a maximal set of plane trees in Pn(i, j)
that are pairwise not (i, j)-equivalent and B the set of plane trees on [n] \ {j} obtained
from the (i, j)-contraction of those in A.

By Lemma 4.2, we have

∑

T∈Pn(i,j)

teld(T )

n
∏

k=1

x
youngT (k)
k =

∑

T0∈A

∑

T∼T0

teld(T )

n
∏

k=1

x
youngT (k)
k

= xi
∑

T ′
0∈B

∑

T≃T ′
0

(xi + xj + t)youngT (i)teld(T )
∏

k∈[n]\{i,j}

x
youngT (k)
k .

By the induction hypothesis, the last double sum is equal to

xi
∑

T∈P[n]\{j}

(xi + xj + t)youngT (i)teld(T )
∏

k∈[n]\{i,j}

x
youngT (k)
k

= xi

n−3
∏

k=0

(x1 + · · ·+ xn + (k + 1)t).
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Summing over all of the pairs (i, j) with i 6= j we get

∑

1≤i,j≤n
i 6=j

∑

T∈Pn(i,j)

teld(T )
n
∏

k=1

x
youngT (k)
k

= (n− 1)(x1 + · · ·+ xn)

n−3
∏

k=0

(x1 + · · ·+ xn + (k + 1)t)

= (n− 1)

n−2
∏

k=0

(x1 + · · ·+ xn + kt). (4.3)

Noticing that any plane tree on [n] has n− 1 edges, we have

∑

1≤i,j≤n
i 6=j

∑

T∈Pn(i,j)

teld(T )

n
∏

k=1

x
youngT (k)
k = (n− 1)

∑

T∈Pn

teld(T )

n
∏

k=1

x
youngT (k)
k . (4.4)

Comparing (4.3) and (4.4) yields the desired formula for Pn.

Corollary 4.4. The number of unlabeled plane trees on n + 1 vertices is the Catalan
number Cn = 1

n+1

(

2n
n

)

.

Proof. Setting x1 = · · · = xn = t = 1 in (4.2) gives the number of labeled plane trees on
n vertices, i.e., |Pn| = (2n− 2)!/(n− 1)!. We then obtain the number of unlabeled plane
trees on n vertices by dividing |Pn| by n!.

Corollary 4.5. The number of unlabeled plane trees with k leaves on n+1 vertices is the
Narayana number Nn,k =

1
n

(

n

k

)(

n

k−1

)

.

Proof. Setting t = 1 in (4.2) and replacing n by n+ 1, we have

∑

T∈Pn+1

n+1
∏

i=1

x
youngT (i)
i =

n−1
∏

s=0

(x1 + · · ·+ xn+1 + s).

Note that the vertex i is a leaf of the plane tree T if and only if youngT (i) = 0. Hence the
number an,k of plane trees on [n + 1] with leaves 1, 2, . . . , k is the sum of the coefficients
of monomials x

rk+1

k+1 · · ·x
rn+1

n+1 with rj ≥ 1 for all k + 1 ≤ j ≤ n+ 1 in the expansion of the
symmetric polynomial

P =

n−1
∏

s=0

(xk+1 + · · ·+ xn+1 + s).

Note that the sum of the coefficients of monomials in P not containing i (0 ≤ i ≤ n+1−k)
fixed variables is

∏n−1
s=0 (n+1−k− i+ s). By the Principle of Inclusion-Exclusion and the
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Chu-Vandermonde convolution formula, one sees that

an,k =

n−k+1
∑

i=0

(−1)i
(

n− k + 1

i

) n−1
∏

s=0

(n+ 1− k − i+ s)

= n!

n−k+1
∑

i=0

(−1)i
(

n− k + 1

i

)(

2n− k − i

n

)

= n!

(

n− 1

k − 1

)

.

Therefore, the number of unlabeled plane trees with k leaves on n+1 vertices is equal to

an,k
k!(n− k + 1)!

=
n!

k!(n− k + 1)!

(

n− 1

k − 1

)

= Nn,k.

Let P
(r)
n denote the set of plane trees on [n] with a specific root r ∈ [n]. Then we can

refine Theorem 4.3 as follows.

Theorem 4.6. For n ≥ 1, there holds

∑

T∈P
(r)
n

teld(T )

n
∏

i=1

x
youngT (i)
i = xr

n−2
∏

k=1

(x1 + · · ·+ xn + kt). (4.5)

Proof. Suppose Eq. (4.5) hold for n− 1. Let P
(r)
n (i, j) denote the subset of plane trees in

Pn(i, j) with root r. Similarly to the proof of Theorem 4.3, we can show that

∑

T∈P
(r)
n (i,j)

teld(T )
n
∏

i=1

x
youngT (i)
i =

{

xrxi
∏n−3

k=1(x1 + · · ·+ xn + (k + 1)t), if i 6= r,

(xr + xj + t)xi
∏n−3

k=1(x1 + · · ·+ xn + (k + 1)t), if i = r.

The proof then follows from computing the following sum:

∑

1≤i,j≤n
i 6=j

∑

T∈P
(r)
n (i,j)

teld(T )

n
∏

i=1

x
youngT (i)
i ,

and using the fact that any plane trees on [n] has n− 1 edges.

Corollary 4.7. For 1 ≤ r < s ≤ n, there holds

x−1
r

∑

T∈P
(r)
n

teld(T )

n
∏

i=1

x
youngT (i)
i = x−1

s

∑

T∈P
(s)
n

teld(T )

n
∏

i=1

x
youngT (i)
i .

15



It would be interesting to have a combinatorial proof of the above identity. We give
such a proof in the case (r, s) = (1, 2). Let T be any plane tree in P

(1)
n . Suppose all

the children of the root 1 are a1, . . . , am and 2 is a descendant of at. Hence, a1, . . . , at−1

are elder, while at is younger. Assume all the children of 2 are b1, . . . , bl. Exchanging
the subtrees with roots at+1, . . . , am in T and the subtrees with roots b1, . . . , bl in their

previous orders, and then exchanging the labels 1 and 2, we obtain a plane tree T ′ ∈ P
(2)
n .

It is easy to see that the mapping T 7→ T ′ is a bijection from P
(1)
n to P

(2)
n . Moreover, one

sees that eld(T ) = eld(T ′), youngT (1) = youngT ′(1)+1, youngT (2) = youngT ′(2)−1, and
youngT (i) = youngT ′(i) if i 6= 1, 2.

As applications of Theorem 4.6 we derive three classical results on planted and plane
forests, which correspond, respectively, to Theorem 5.3.4, Corollary 5.3.5 and Theorem
5.3.10 in Stanley’s book [12].

Recall that a planted forest σ (or, rooted forest) is a graph whose connected components
are rooted trees. If the vertex set of σ is [n], then we define the ordered degree sequence
δ(σ) = (d1, . . . , dn), where di = deg(i).

Corollary 4.8. Let d = (d1, . . . , dn) ∈ N
n with

∑

di = n−k. Then the number of planted
forests on [n] (necessarily with k components) with ordered degree sequence d is given by

(

n− 1

k − 1

)(

n− k

d1, . . . , dn

)

.

Proof. Equating the coefficients of xk1x
d1
2 · · ·xdnn+1 in (4.5) with r = 1, t = 0 and n replaced

by n + 1, we get the desired result.

Given a planted forest σ, define the type of σ to be the sequence

type σ = (r0, r1, . . .),

where ri vertices of σ have degree i. Similarly we can define the type for a plane forest. As
is well-known (see [12, p. 30]), Corollary 4.8 can be restated in the following equivalent
form.

Corollary 4.9. Let r = (r0, . . . , rm) ∈ N
m+1 with

∑

ri = n and
∑

(1 − i)ri = k > 0.
Then the number of planted forests on [n] (necessarily with k components) of type r is
given by

(

n− 1

k − 1

)

(n− k)!

0!r0 · · ·m!rm

(

n

r0, . . . , rm

)

.

A plane forest is a family of plane trees in which the roots of the plane trees are linearly
ordered.

Corollary 4.10. Let r = (r0, . . . , rm) ∈ N
m+1 with

∑

ri = n and
∑

(1 − i)ri = k > 0.
Then the number of unlabeled plane forests on [n] (necessarily with k components) of type
r is given by

k

n

(

n

r0, . . . , rm

)

.
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Proof. Let us see how many plane forests we can obtain from a planted forest σ of type
r by ordering the vertices. For any vertex v of σ, there are deg(v)! ways to linearly order
its children. By definition, there are ri vertices of σ having degree i. Besides, there are k!
ways to linearly order the trees of σ. So, we can obtain 0!r0 · · ·m!rmk! plane forests from
σ. Hence it follows from Corollary 4.9 that the total number of plane forests on [n] of
type r is equal to

(

n− 1

k − 1

)

(n− k)!

0!r0 · · ·m!rm

(

n

r0, . . . , rm

)

0!r0 · · ·m!rmk! = (n− 1)!k

(

n

r0, . . . , rm

)

. (4.6)

On the other hand, every unlabeled plane forest with n vertices has n! different labeling
methods. Dividing (4.6) by n! yields the desired formula.

5 Forests of plane trees

When x = r is an integer, we can give another interpretation for the polynomial rQn−r,k(r, t)
in terms of forests. Let F r

n,k denote the set of forests of r plane trees on [n] with k im-
proper edges and with roots 1, . . . , r. The following is a generalization of a theorem of
Shor [10], which corresponds to the case t = 0.

Theorem 5.1. The generating function for forests of r plane trees on [n] with k improper
edges and with roots 1, . . . , r by number of elder vertices is rQn−r,k(r, t). Namely,

rQn−r,k(r, t) =
∑

F∈Fr
n,k

teld(F ). (5.1)

Proof. We proceed by induction on n. Identity (5.1) obviously holds for n = r + 1.
Suppose (5.1) holds for n. Similarly to the proof of 2.2, we can show that

∑

T∈Fr
n+1,k [deg(n+1)=0]

teld(T ) = [n + t(n− r)]
∑

F∈Fr
n,k

teld(T ), (5.2)

∑

F∈Fn+1,k[deg(n+1)>0]

teld(T ) = kt
∑

F∈Fr
n,k

teld(T ) + (n + k − r − 1)
∑

F∈Pr
n,k−1

teld(T ). (5.3)

Summing (5.2) and (5.3) and using the induction hypothesis and (1.10), we obtain

∑

T∈Fr
n+1,k

teld(T ) = [n + t(n+ k − r)]rQn−r,k(r, t) + (n+ k − r − 1)rQn−r,k−1(r, t),

= rQn+1−r,k(r, t).

Namely, Eq. (5.1) holds for n + 1. This completes the proof.
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6 Proof of the duality formula for Qn

First we restate the duality formula (1.7) in terms of Qn,k(x, t).

Lemma 6.1. For n ≥ 2, the duality formula (1.7) is equivalent to

Qn,k(x, t) = (x− k + t+ 1)Qn−1,k(x+ t+ 1, t) + (n+ k − 2)Qn−1,k−1(x+ t+ 1, t). (6.1)

Proof. Plugging (1.9) into (1.7) we see that (1.7) is equivalent to the following recurrence
relation for Qn,k(x, t):

Qn,k(x, t) = Qn,k(−(x+ n + nt)/t, 1/t)(−t)n−k−1. (6.2)

Setting Xn = −(x+ n + nt)/t and T = 1/t, by means of (1.10) we have

Qn,k(Xn, T ) = −
x− k + t + 1

t
Qn−1,k (Xn, T ) + (n+ k − 2)Qn−1,k−1 (Xn, T ) . (6.3)

Multiplying (6.3) by (−t)n−k−1, we see that (6.2) is equivalent to (6.1).

Now, by replacing x with x− t− 1 in (6.1), we get

Qn,k(x− t− 1, t) = (x− k)Qn−1,k(x, t) + (n + k − 2)Qn−1,k−1(x, t). (6.4)

Subtracting (6.4) from (1.10), we are led to the following equivalent identity:

Lemma 6.2. For n ≥ 2 and 0 ≤ k ≤ n− 1 there holds

Qn,k(x, t)−Qn,k(x− t− 1, t) = (t + 1)(n+ k − 1)Qn−1,k(x, t). (6.5)

Proof. We proceed by induction on n. Eq. (6.5) is obviously true for n = 2. Suppose it
is true for n− 1. By the definition (1.10) of Qn,k(x, t) we have

Qn,k(x, t)−Qn,k(x− t− 1, t)

= [x+ n− 1 + t(n + k − 2)]Qn−1,k(x, t) + (n+ k − 2)Qn−1,k−1(x, t)

− [x+ n− 2 + t(n + k − 3)]Qn−1,k(x− t− 1, t)− (n + k − 2)Qn−1,k−1(x− t− 1, t)

= [x+ n− 2 + t(n + k − 3)][Qn−1,k(x, t)−Qn−1,k(x− t− 1, t)]

+ (t+ 1)Qn−1,k(x, t) + (n+ k − 2)[Qn−1,k−1(x, t)−Qn−1,k−1(x− t− 1, t)],

and the induction hypothesis implies that the above quantity is equal to

(t + 1)[x+ n− 2 + t(n + k − 3)](n + k − 2)Qn−2,k(x, t) + (t+ 1)Qn−1,k(x, t)

+ (t+ 1)(n+ k − 2)(n+ k − 3)Qn−2,k−1(x, t)

= (t+ 1)(n+ k − 2){[x+ n− 2 + t(n+ k − 3)]Qn−2,k(x, t) + (n+ k − 3)Qn−2,k−1(x, t)}

+ (t+ 1)Qn−1,k(x, t)

= (t+ 1)(n+ k − 2)Qn−1,k(x, t) + (t + 1)Qn−1,k(x, t)

= (t+ 1)(n+ k − 1)Qn−1,k(x, t).

Thus (6.5) is true for n. This completes the proof.
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Remark. We can also prove Theorem 1.1 by arguing directly with Qn instead of Qn,k.
Indeed, the theorem is equivalent to saying that

Fn+1(x− z − t) = [x+ nz + (y − z)(n + y∂y)]Fn(x), (6.6)

where Fn(x) = Qn(x, y, z, t). Subtracting (6.6) from the definition (1.4) yields

Fn+1(x)− Fn+1(x− z − t) = (z + t)(n + y∂y)Fn(x). (6.7)

By (1.4) and the induction hypothesis, the left-hand side of (6.7) may be written as

[x+ nz + (y + t)(n+ y∂y)]Fn(x)− [x− z − t + nz + (y + t)(n + y∂y)]Fn(x− z − t)

= [x+ (n− 1)z − t][Fn(x)− Fn(x− z − t)] + (z + t)Fn(x)

+ (y + t)(n+ y∂y)[Fn(x)− Fn(x− z − t)]

= (z + t) {[x+ (n− 1)z − t](n− 1 + y∂y) + (y + t)(n+ y∂y)(n− 1 + y∂y)}Fn−1(x)

+ (z + t)Fn(x).

Applying the differential operator identity

(y + t)(n+ y∂y)(n− 1 + y∂y) = (n− 1 + y∂y)[(y + t)(n+ y∂y)− y],

to the last expression, we obtain

(z + t)(n− 1 + y∂y) {[x+ (n− 1)z + (y + t)(n− 1 + y∂y)]Fn−1(x)}+ (z + t)Fn(x)

= (z + t)(n + y∂y)Fn(x),

as desired.

7 Open problems

Although we have shown the fecundity of polynomials Qn in the enumeration of plane
trees and forests, there are still further interesting problems.

First of all, is there any connection between these polynomials and the Lambert W
function or a generalization of the LambertW function? In particular, is there an analogue
of the formula (1.1) or (1.3) for Qn?

Secondly, it would be interesting to have a better combinatorial understanding of the
polynomials Qn. For example, from Theorems 2.2 and 2.3 we deduce that

∑

T∈On+1,k

xyoungT (1)−1teld(T ) =
∑

T∈Pn,k

(x+ t + 1)youngT (1)teld(T ). (7.1)

Is there a direct combinatorial proof of (7.1)? Also, the duality formula (1.7) deserves a
combinatorial proof. For t = 0, such proofs have been given by Chen and Guo [6].

Thirdly, since our proof of Theorems 4.3 and 4.6 is by induction, it remains to find
direct bijective proofs of them.
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Finally, using a dual statistic, the number of “improper vertices,” Gessel and Seo [8]
have recently given several combinatorial interpretations of the polynomials

xQn(x, z, z, t− z) = x

n−1
∏

k=1

(x+ (n− k)z + kt). (7.2)

On the other hand, we derive from Eqs. (1.8), (1.9) and Theorem 2.2 that the same
polynomials (7.2) also have the following expression:

∑

T∈P
(1)
n+1

xyoungT (1)(t− z)eld(T )zn−youngT (1)−eld(T ).

It might be of interest to have a combinatorial explanation for these different interpreta-
tions.

Acknowledgment. We would like to thank our colleague Frédéric Chapoton for his
patience and helpful discussions.

References

[1] B.C. Berndt, Ramanujan’s Notebooks, Part I, Chap. 3, Springer-Verlag, New York, 1985.

[2] A. Cayley, A theorem on trees, Quart. J. Pure Appl. Math. 23 (1889), 376-378; Collected
Mathematical Papers Vol. 13, Cambridge University Press 1897, 26-28.
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