
ar
X

iv
:0

70
6.

10
92

v1
  [

m
at

h.
C

O
] 

 7
 J

un
 2

00
7

Generalizations of Khovanskĭı’s theorems on
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Abstract

We show that if P is a lattice polytope in the nonnegative orthant of Rk

and χ is a coloring of the lattice points in the orthant such that the color
χ(a+b) depends only on the colors χ(a) and χ(b), then the number of colors
of the lattice points in the dilation nP of P is for large n given by a poly-
nomial (or, for rational P , by a quasipolynomial). This unifies a classical
result of Ehrhart and Macdonald on lattice points in polytopes and a result
of Khovanskĭı on sumsets in semigroups. We also prove a strengthening
of multivariate generalizations of Khovanskĭı’s theorem. Another result of
Khovanskĭı states that the size of the image of a finite set after n applica-
tions of mappings from a finite family of mutually commuting mappings is
for large n a polynomial. We give a combinatorial proof of a multivariate
generalization of this theorem.

1 Introduction

In many classes of enumerative combinatorial problems, every counting function is
equal—usually for sufficiently large arguments—to a polynomial or to a quasipoly-
nomial. In this article, we consider several classes of problems with this prop-
erty, (re)derive their polynomiality in a more uniform manner, and generalize and
strengthen existing results. We begin with three important examples.
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Republic. ITI is supported by the project 1M0021620808 of the Czech Ministry of Education.
Email: {jelinek, klazar}@kam.mff.cuni.cz

1

http://arxiv.org/abs/0706.1092v1


1.1 Lattice polytopes, sumsets in semigroups, ideals in a
poset

For n ∈ N and a lattice polytope P ⊂ Rk, which is a convex hull of a finite set
of points from Zk, denote by i(P, n) the number of the lattice points lying in the
dilation nP = {nx : x ∈ P} of P ,

i(P, n) = |nP ∩ Zk|.

Ehrhart and Macdonald obtained the following result.

Theorem 1.1 (Ehrhart [5], Macdonald [13, 14]). The number i(P, n) of the lattice
points in nP is for all n ∈ N given by a polynomial.

More generally, if P is a rational polytope (its vertices have rational coordinates),
then i(P, n) is for all n ∈ N given by a quasipolynomial (the definition of a
quasipolynomial is recalled in Section 1.3). See Stanley [20, Section 4.6] for more
information.

For a commutative semigroup (G,+) and subsets A,B ⊂ G, consider the sum-
sets

n ∗ A = {a1 + · · ·+ an : ai ∈ A} and A+B = {a + b : a ∈ A, b ∈ B}.

For a (typically infinite) set X , its subset B ⊂ X , and a family F of mutually
commuting mappings f : X → X , the nth iterated image of B by F is

F (n)(B) =
⋃

fi∈F

(f1 ◦ · · · ◦ fn)(B),

where f(B) denotes the set {f(x) : x ∈ B}. The following three theorems are due
to Khovanskĭı.

Theorem 1.2 (Khovanskĭı [9]). Let A and B be finite sets in a commutative
semigroup.

1. For large n, the cardinality of the sumset |n ∗ A| is given by a polynomial.

2. For large n, the cardinality of the sumset |n∗A+B| is given by a polynomial.

Theorem 1.3 (Khovanskĭı [10]). Let G = (G,+) be a commutative semigroup,
A,B ⊂ G be two finite subsets, and ψ : G → C be an additive character of G
(i.e., ψ(a + b) = ψ(a)ψ(b)). Then there exist polynomials pa(x), a ∈ A, such that
for large n one has

∑

a∈n∗A+B

ψ(a) =
∑

a∈A

pa(n)ψ(a)
n.
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Theorem 1.4 (Khovanskĭı [9]). If B is a finite subset of X and F is finite family of
mutually commuting mappings from X to itself, then the cardinality of the iterated
image F (n)(B) is for large n given by a polynomial in n.

Khovanskĭı stated and proved just part 2 of Theorem 1.2 (as a corollary of Theo-
rem 1.4); however, part 2 immediately implies part 1 which we state explicitly for
the purpose of later reference. Both Theorem 1.3 and Theorem 1.4 include part
2 of Theorem 1.2 as a particular case: set ψ ≡ 1, respectively set X = G and
consider the mappings F = {sa : a ∈ A} where sa(x) = x+ a.

Let us now consider the poset (Nk
0,≤), N0 = {0, 1, 2, . . .}, with componentwise

ordering:

a = (a1, . . . , ak) ≤ b = (b1, . . . , bk) ⇐⇒ ai ≤ bi, i = 1, . . . , k.

A lower ideal S ⊂ Nk
0, is a set satisfying the condition a ≤ b, b ∈ S ⇒ a ∈ S.

The following result was first posed as a problem in the American Mathematical
Monthly, see also [20, Exercise 6 in Chapter 4].

Theorem 1.5 (Stanley [19]). For a lower ideal S in the poset (Nk
0,≤), the number

of the elements a = (a1, . . . , ak) ∈ S with ‖a‖1 = a1 + · · ·+ ak = n is for large n
given by a polynomial.

We prove all five theorems (Theorem 1.1 in a weaker form for large n only) in
the framework of more general results in Section 2.

1.2 Our results

At first, we wanted to understand the connection between Theorems 1.1 and 1.2,
and to find reasons for polynomiality of these two and other classes. This turned
into a goal to explain the above results on polynomiality in a uniform manner,
and to give combinatorial proofs of these combinatorial results; some of the above
theorems were originally proved by somewhat opaque algebraic arguments. We
succeeded in this to large extent for the five theorems. In Section 2, we demon-
strate that Theorems 1.1–1.4 (Theorem 1.1 for large n only) follow as corollaries
of Stanley’s Theorem 1.5 or of its natural extensions stated in Theorems 2.2 and
2.15. We will give multivariate generalizations of Theorems 1.2–1.4. Theorem 2.15
can be used to prove polynomiality of further classes of enumerative problems,
which we briefly mention in Section 3 and will discuss in details in [7].

We build on the results of Khovanskĭı [9, 10], Nathanson and Ruzsa [17] and
Stanley [19]. Khovanskĭı’s original proof of part 2 of Theorem 1.2 as a corollary
of Theorem 1.4 in [9] was algebraic, by means of the Hilbert polynomial of graded
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modules. In [10], he gave a combinatorial proof of part 2 as a corollary of Theorem
1.3. Extending Khovanskĭı’s algebraic argument, Nathanson [16] proved a multi-
variate generalization of part 2 (see Theorem 2.5). Then Nathanson and Ruzsa
[17] gave a simple combinatorial proof for a multivariate generalization of part 1
(see Theorem 2.4).

Our contribution is a common strengthening of these generalizations in Theo-
rem 2.10: If A1, . . . , Al are finite sets in a commutative semigroup (G,+) and

p(n1, . . . , nl) := |n1 ∗ A1 + · · ·+ nl ∗ Al|,

then there is a constant c > 0 such that for any l-tuple of arguments n1, . . . , nl, if
the arguments ni not exceeding c are fixed, then p(n1, . . . , nl) is a polynomial func-
tion in the remaining arguments ni bigger than c. We characterize such eventually
strongly polynomial functions in Proposition 2.9.

In Theorems 2.1 and 2.8, we prove our next result, a common generalization
of a weaker form of Theorem 1.1 and part 1 of Theorem 1.2. We prove that if P
is a lattice polytope in the nonnegative orthant of Rk, and χ is a coloring of the
lattice points in the orthant such that χ(a + b) depends only on the colors χ(a)
and χ(b), then the number of colors

|χ(nP ∩ Zk)|

used on the points nP ∩ Zk is a polynomial in n for large n. More generally, if P
is a rational polytope, then the number of colors is for large n a quasipolynomial
(Theorem 2.8). This includes Theorem 1.1 (in a weaker form for large n) and part
1 of Theorem 1.2 as particular cases. We want to remark that our Theorem 2.1
is to some extent hinted to already by Khovanskĭı [9, paragraph 5] who derives,
as an application of part 2 of Theorem 1.2, the weaker form of Theorem 1.1. We
also obtain Theorem 2.1 as a corollary of part 2 of Theorem 1.2 and a geometric
lemma.

Our third result are multivariate generalizations of Theorems 1.3 and 1.4, pre-
sented in Theorems 2.11 and 2.12, respectively. We give combinatorial proofs.
The proof of Theorem 2.11 on additive characters is a simple extension of the
combinatorial proof of Theorem 2.10 and we only give a sketch of the proof. The
proof of Theorem 2.12 on iterated images is more interesting. We derive it from
Theorem 2.15 which extends Stanley’s Theorem 1.5 on lower ideals. Theorem 2.15
characterizes the sets S ⊂ Nk

0 for which Theorem 1.5 holds.
Our combinatorial approach is based on expressing counting problems in terms

of colorings χ of Nk
0 and on counting the color classes of χ via appropriate rep-

resentatives, so called substantial points. We have learned both techniques from
Nathanson and Ruzsa [17]. A new ingredient is the representation of counting
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functions in a compact and convenient way by their generating power series (which
play almost no role in [9, 10, 16, 17]). We recall some results on them in the next
subsection.

In Section 3, we give some concluding remarks and references to further exam-
ples of polynomial classes of enumerative problems.

1.3 Notation and results on power series

We fix notation and recall some useful results on power series. N is the set of
natural numbers {1, 2, . . . } and N0 is the set {0} ∪ N. The symbols for number
sets Z, Q, R, and C have their usual meanings. For n ∈ N, the set {1, 2, . . . , n} is
denoted by [n]. We call the elements of Zk lattice points. All semigroups in this
article are commutative. We will use the lexicographic ordering of Nk

0, which is a
total ordering: a <lex b iff a1 = b1, . . . , ai = bi, ai+1 < bi+1 for some i, 0 ≤ i < k.

A quasipolynomial is a function f : Z → C for which there are d polynomials
p1(x), . . . , pd(x) such that f(n) = pi(n) if n ≡ i mod d; d is the period of f .
Equivalently, f(n) = ak(n)n

k + · · ·+ a1(n)n+ a0(n) where ai : Z → C are periodic
functions. The term quasipolynomial is sometimes (e.g., in [10]) used also for
linear combinations of exponentials with polynomial coefficients (as in Theorem
1.3); we use it in the present sense.

We shall use formal power series

F (x1, . . . , xk) =
∑

a∈Nk
0

α(a)xa11 . . . xakk

with real coefficients α(a) = α(a1, . . . , ak) and several variables x1, . . . , xk; their
set is denoted by R[[x1, . . . , xk]]. The symbol

[xa11 . . . xakk ] F

denotes the coefficient α(a1, . . . , ak) of xa11 . . . xakk in F . For a subset A ⊂ Nk
0,

FA(x) = FA(x1, . . . , xk) ∈ R[[x1, . . . , xk]] is the power series

FA(x1, . . . , xk) =
∑

a∈A

xa11 . . . xakk ,

i.e., α(a) is the characteristic function of A.

Lemma 1.6. Let F ∈ R[[x1, . . . , xk]] be a rational power series of the form

F (x1, . . . , xk) =
r(x1, . . . , xk)

(1− x1)e1 . . . (1− xk)ek

5



where r ∈ R[x1, . . . , xk] is a polynomial and ei ∈ N0. Then for every l ∈ N0, l ≤ k,
and every l-tuple (a1, . . . , al) ∈ Nl

0, there exist a constant c > 0 and a polynomial
p ∈ R[xl+1, . . . , xk] (for l = k we understand p as a real constant) such that if
nl+1, . . . , nk ∈ N are all bigger than c, then

[xa11 . . . xall x
nl+1

l+1 . . . xnk

k ] F = p(nl+1, . . . , nk).

Proof. Let us check that the claim holds when k = 1, 0 ≤ l ≤ 1, and r(x1) =
r(x) = xb. By the binomial expansion,

xb

(1− x)e
=

∑

n≥0

(

n+ e− 1

e− 1

)

xb+n =
∑

n≥b

(

n+ e− 1− b

e− 1

)

xn.

The general case reduces to this by expressing F as a finite linear combination of
terms of the type

xb11 . . . x
bk
k

(1− x1)e1 . . . (1− xk)ek
=

k
∏

i=1

xbii
(1− xi)ei

.

We add three comments to the lemma. If the polynomial r(x1, . . . , xk) has rational
coefficients, then p(xl+1, . . . , xk) has rational coefficients as well. Also, Lemma 1.6
holds more generally for any subset of the set of variables x1, . . . , xk (we have chosen
the subset xl+1, . . . , xk only for the convenience of notation). Finally, Lemma 1.6
can be strengthened by selecting the constant c first and thus making it indepen-
dent on the l-tuples (a1, . . . , al). We return to this matter in Proposition 2.9.

Let F ∈ R[[x1, . . . , xk]] be a power series and P = {P1, . . . , Pl} be a partition of
the index set [k] into l blocks. The substitution xi := yj, where 1 ≤ i ≤ k and j is
the unique index satisfying i ∈ Pj , turns F into the power series G ∈ R[[y1, . . . , yl]]
with the coefficients

[yn1
1 . . . ynl

l ] G =
∑

[xa11 . . . xakk ] F,

where we sum over all a ∈ Nk
0 satisfying

∑

i∈Pj
ai = nj , 1 ≤ j ≤ l. We call

a substitution of this kind P -substitution. It is immediate that P -substitutions
preserve the class of rational power series considered in Lemma 1.6.

Lemma 1.7. If F ∈ R[[x1, . . . , xk]] has the form F = r(1− x1)
−e1 . . . (1− xk)

−ek ,
where r ∈ R[x1, . . . , xk] and ei ∈ N0, and G ∈ R[[y1, . . . , yl]] is obtained from F by
a P -substitution, then G = s(1− y1)

−f1 . . . (1− yl)
−fl, where s ∈ R[y1, . . . , yl] and

fi ∈ N0.
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2 Generalizations of Khovanskĭı’s theorems

This section is devoted to the proofs of our main results, which are Theorems 2.1,
2.8, 2.10, 2.11, 2.12, and 2.15.

2.1 Additive colorings

We shall work with the semigroup (Nk
0,+), where the addition of k-tuples is defined

componentwise. For a (possibly infinite) set of colors X , we say that a coloring
χ : Nk

0 → X is additive if

χ(a+ b) = χ(c+ d) whenever χ(a) = χ(c) and χ(b) = χ(d),

that is, if the color of every sum depends only on the colors of summands. The
coloring χ then can be viewed as a homomorphism between the semigroups (in fact
monoids) (Nk

0,+) and (X,+). The additivity of χ is equivalent to the seemingly
weaker property of shift-stability, which only requires that

χ(a+ b) = χ(c+ b) for every b whenever χ(a) = χ(c).

Indeed, if χ is shift-stable and a, b, c, d ∈ Nk
0 are arbitrary elements satisfying

χ(a) = χ(c) and χ(b) = χ(d), then χ(a + b) = χ(a + d) and χ(a + d) = χ(c + d),
so χ(a+ b) = χ(c+ d).

Let (G,+) be a (commutative) semigroup, we may assume that it has a neutral
element and is a monoid. If A = (a1, . . . , ak) is a sequence of (possibly repeating)
elements from G, then the associated coloring

χ : Nk
0 → G, χ(v) = χ((v1, . . . , vk)) = v1a1 + · · ·+ vkak,

is additive. In terms of this coloring, the cardinality of the sumset

n ∗ A = {n1a1 + · · ·+ nkak : n1 + · · ·+ nk = n}

equals to the number of colors |χ(nP ∩Zd)| appearing on the lattice points in the
dilation of the unit simplex

P = {x ∈ Rk : xi ≥ 0, x1 + · · ·+ xk = 1}.

We prove the following common generalization of a weaker form of Theorem
1.1 (for large n only) and part 1 of Theorem 1.2.

7



Theorem 2.1. Let P be a polytope in Rk with vertices in Nk
0 and let χ : Nk

0 → X
be an additive coloring. Then, for n ∈ N sufficiently large, the number of colors

|χ(nP ∩ Zk)| = |χ(nP ∩ Nk
0)|

is given by a polynomial.

For large n, Theorem 1.1 corresponds to the case when χ is injective (hence addi-
tive) and P is a general polytope, while part 1 of Theorem 1.2 corresponds to the
case when χ is a general additive coloring and P is the unit simplex.

We begin with proving a formally stronger version of Theorem 1.5; our proof
is a straightforward adaptation of that in [19]. Recall that S ⊂ Nk

0 is a lower
ideal in the poset (Nk

0,≤) if for every a ∈ Nk
0 we have a ∈ S whenever a ≤ b for

some b ∈ S. Upper ideals are defined similarly. The proof rests on the well-known
result, sometimes called Dickson’s lemma, which states that all antichains (sets
with elements mutually incomparable by ≤) in (Nk

0,≤) are finite. This lemma is a
corollary of the more general fact that if (P,≤P ) and (Q,≤Q) are two posets which
have no infinite antichains and no infinite strictly descending chains, then this
property carries over to the product poset (P ×Q,≤P×Q) (see, e.g., Kruskal [11]).

Theorem 2.2. Let S ⊂ Nk
0 be a lower or an upper ideal in the poset (Nk

0,≤). Then

FS(x1, . . . , xk) =
r(x1, . . . , xk)

(1− x1) . . . (1− xk)

where r(x1, . . . , xk) is an integral polynomial.

Proof. Since every upper ideal S has as its complement T = Nk
0\S a lower ideal

and vice versa, and

FS(x) + FT (x) = FNk
0
(x) =

1

(1− x1) . . . (1− xk)
,

it suffices to prove the result only for ideals of one kind. Let S be an upper ideal.
If M ⊂ S is the set of the minimal elements in S, then

S =
⋃

a∈M

Oa,

where Oa = {b ∈ Nk
0 : b ≥ a}. Being an antichain, M is finite by Dickson’s lemma

and S is a finite union of the orthants Oa, a ∈ M . For any finite set T of points
in Nk

0 we have
⋂

t∈T

Ot = Os,
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where s = (s1, s2, . . . , sk) is the componentwise maximum of the points t ∈ T .
Thus, by the principle of inclusion and exclusion, the characteristic function of S
is a linear combination, with coefficients ±1, of characteristic functions of finitely
many orthants Os. Since each of them has generating function

FOs
(x) =

xs11 · · ·xskk
(1− x1) · · · (1− xk)

,

we have FS(x) = r/((1− x1) . . . (1− xk)) for some integral polynomial r.

Theorem 1.5 now follows as a corollary, with the help of Lemmas 1.6 and 1.7 and
the P -substitution P = {{1, . . . , k}}.

Next, we prove the multivariate generalizations of Theorem 1.2 from [16] and
[17]; this is necessary, since we need part 2 of Theorem 1.2 for the proof of Theo-
rem 2.1. In Corollary 2.3 we lift the result of Nathanson and Ruzsa to the level of
generating functions.

Suppose that P is a partition of [k] into l blocks and χ : Nk
0 → X is a coloring.

For x ∈ Nk
0 we define ‖x‖P to be the l-tuple (c1, . . . , cl) ∈ Nl

0, where ci =
∑

j∈Pi
xj

is the sum of the coordinates with indices in the ith block. Using the notion
introduced in [17], we say that a point a ∈ Nk

0 is P -substantial (with respect to χ)
if it is the lexicographically minimum element in the set

{b ∈ Nk
0 : χ(b) = χ(a), ‖b‖P = ‖a‖P}.

Note that every nonempty intersection of a color class with the set {x ∈ Nk
0 :

‖x‖P = (n1, . . . , nl)} (for l = 1 this is the dilation n1P where P is the unit simplex)
contains exactly one P -substantial point. P -substantial points are representatives
which enable us to count the color classes.

Corollary 2.3. Let P be a partition of [k] into l blocks, χ : Nk
0 → X be an additive

coloring and S ⊂ Nk
0 be the set of P -substantial points. Then

FS(x1, . . . , xk) =
r(x1, . . . , xk)

(1− x1) · · · (1− xk)

where r(x1, . . . , xk) is an integral polynomial.

Proof. In view of the previous theorem, it suffices to show that P -substantial
points form a lower ideal or, equivalently, that their complement is an upper ideal.
The latter way is a more natural choice. Let b ∈ Nk

0 be any point such that
b ≥ a for a non-P -substantial point a ∈ Nk

0. There is a point a′ ∈ Nk
0 satisfying

χ(a′) = χ(a), ‖a′‖P = ‖a‖P , and a
′ <lex a. Consider the point b′ = a′ + (b − a).

We have χ(b′) = χ(b) by the additivity (indeed, shift-stability) of χ, and ‖b′‖P =
‖a′‖P + ‖b − a‖P = ‖a‖P + ‖b − a‖P = ‖b‖P and b′ <lex b by the properties of
addition in (Nk

0,+). Thus b is not P -substantial either.
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Theorem 2.4 (Nathanson and Ruzsa [17]). Let A1, . . . , Al be finite sets in a
semigroup (G,+). There exist a constant c > 0 and an integral polynomial p ∈
Z[x1, . . . , xl] such that if n1, . . . , nl ∈ N are all bigger than c, then

|n1 ∗ A1 + · · ·+ nl ∗ Al| = p(n1, . . . , nl).

Proof. Let A = (a1, . . . , ak) be a fixed ordering of all elements appearing in the
sets A1, . . . , Al (taken with their multiplicities, so k = |A1|+ · · ·+ |Al|) and P be
the corresponding partition of [k] into l blocks. Let χ : Nk

0 → G be the coloring
associated with A and S ⊂ Nk

0 be the corresponding set of P -substantial points.
Let G ∈ R[[y1, . . . , yl]] be the power series obtained from FS(x1, . . . , xk) by the
P -substitution. Then

|n1 ∗ A1 + · · ·+ nl ∗ Al| = [yn1
1 . . . ynl

l ] G.

The result now follows by Corollary 2.3 and by Lemmas 1.6 and 1.7.

Extending Khovanskĭı’s original algebraic argument, Nathanson [16] proved a mul-
tivariate generalization of part 2 of Theorem 1.2.

Theorem 2.5 (Nathanson [16]). Let A1, . . . , Al+1 be finite sets in a semigroup
(G,+). There exist a constant c > 0 and a polynomial p ∈ Z[x1, . . . , xl] such that
if n1, . . . , nl ∈ N are all bigger than c, then

|n1 ∗ A1 + · · ·+ nl ∗ Al + Al+1| = p(n1, . . . , nl).

Proof. The proof is almost identical to the proof of Theorem 2.4. We again see
that

|n1 ∗A1 + · · ·+ nl ∗ Al + Al+1| = [yn1
1 . . . ynl

l yl+1] G

and use Corollary 2.3 and Lemmas 1.6 and 1.7.

The last ingredient needed for the proof of Theorem 2.1 is a geometric lemma.
Before we state the lemma, let us point out some observations about multiples of
polytopes. Let P ⊂ Rk be a polytope, n ∈ N0, and α1, . . . , αn ∈ R be nonnegative
coefficients. Clearly, nP ⊂ n ∗ P . On the other hand, representing points in P as
convex combinations of the vertices of P , we deduce the following set inclusion

α1P + · · ·+ αnP ⊂ (α1 + · · ·+ αn)P. (1)

In particular, n ∗P ⊂ nP and thus n ∗P = nP . As a corollary, we obtain another
set inclusion

(α1P ∩ Zk) + · · ·+ (αnP ∩ Zk) ⊂ (α1 + · · ·+ αn)P ∩ Zk. (2)

10



In particular, n ∗ (P ∩ Zk) ⊂ nP ∩ Zk. The opposite inclusion in general does not
hold. To get equality in some form also for lattice points, we use Carathéodory’s
theorem. This theorem says that if a point a in Rk is in the convex hull of a set
of points M , then a can be expressed as a convex combination of at most k + 1
points of the set M (see, e.g., Matoušek [15]).

Lemma 2.6. Let k ∈ N and P ⊂ Rk be a lattice polytope. Then for every n ∈ N,
n ≥ k, we have in (Zk,+) the identity

nP ∩ Zk = (n− k) ∗ (P ∩ Zk) + (kP ∩ Zk).

Proof. Let v1, . . . , vr be the vertices of P and let p ∈ nP∩Zk with n ∈ N and n ≥ k.
Clearly, p is in the convex hull of the points nv1, . . . , nvr. By Carathéodory’s
theorem, p is a convex combination of at most k + 1 of these points. Hence

p = β1nw1 + · · ·+ βjnwj , where βi ≥ 0 and β1 + · · ·+ βj = 1,

= n1w1 + · · ·+ njwj + w,

where ni = ⌊βin⌋ ∈ N0, j ≤ k+1, w1, . . . , wj are some distinct vertices of v1, . . . , vr,
and

w = α1w1 + · · ·+ αjwj, where αi = βin− ⌊βin⌋ ∈ [0, 1).

Since w = p − (n1w1 + · · · + njwj), we see that w is a lattice point. By (1),
w ∈ (α1 + · · · + αj)P = cP . We have 0 ≤ c = α1 + · · · + αj < j ≤ k + 1 and
c = α1 + · · · + αj = n − (n1 + · · · + nj) ∈ N0. Thus c ≤ k. We conclude that
w ∈ cP ∩ Zk where c ∈ N0, c = n− (n1 + · · ·+ nj), and c ≤ k.

We split n1w1 + · · ·+ njwj in the individual n1 + · · ·+ nj = n− c summands,
each of them equal to some wi, and merge k− c of them with w so that we obtain
a point z ∈ kP ∩ Zk (using the inclusion (2) above). Thus we get the expression

p = z1 + · · ·+ zn−k + z

where zi ∈ P ∩ Zk (in fact, zi ∈ {v1, . . . , vr}) and z ∈ kP ∩ Zk. This shows that

nP ∩ Zk ⊂ (n− k) ∗ (P ∩ Zk) + (kP ∩ Zk).

The opposite inclusion follows from (2).

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We consider the semigroup of color classes (χ(Nk
0),+) and

its subsets A = χ(P ∩ Nk
0) and B = χ(kP ∩ Nk

0). By Lemma 2.6,

|χ(nP ∩ Nk
0)| = |(n− k) ∗ A+B|.

11



By part 2 of Theorem 1.2 (or by Theorem 2.5 or by Theorem 2.10 in the next
subsection), this quantity is for big n a polynomial in n−k and hence a polynomial
in n.

We generalize Theorem 2.1 to rational polytopes. Our argument is based on
the following generalization of Lemma 2.6.

Lemma 2.7. Let k ∈ N and let P ⊂ Rk be a rational polytope. Let m ∈ N be
such that mP is a lattice polytope. If n ∈ N satisfies n ≥ mk and is congruent to
r ∈ {0, 1, . . . , m− 1} modulo m, then we have the identity

nP ∩ Zk =
n−mk − r

m
∗ (mP ∩ Zk) + ((mk + r)P ∩ Zk).

Proof. The proof is an extension of that for Lemma 2.6 and we proceed more
briefly. Again, it suffices to prove the set inclusion “⊆”, the opposite one is trivial.
Fix a point p ∈ nP ∩Zk with n ≥ mk congruent to r modulo m. As in the proof of
Lemma 2.6, only replacing the integral part ni = ⌊βin⌋ with the largest multiple
of m not exceeding βin, we write p as

p =

j
∑

i=1

niwi +

j
∑

i=1

αiwi

where j ≤ k+1, wi are some vertices of P , ni ∈ N0 are multiples of m, αi ∈ [0, m),
and c = α1 + · · ·+ αj = n− (n1 + · · ·+ nj) ∈ N0 is congruent to r modulo m. So
c ≤ mk + r. Moving several multiples of m from ni to the corresponding αi, we
may assume that c = mk + r. It follows that the first sum of the right-hand side
is equal to an element of n−mk−r

m
∗ (mP ∩ Zk), while the second sum belongs to

(mk + r)P ∩ Zk.

Using this lemma and part 2 of Theorem 1.2, we get the following theorem in the
same way as we got Theorem 2.1. We omit the proof.

Theorem 2.8. Let P be a polytope in Rk with vertices in Qk
≥0, let m ∈ N be such

that the vertices of mP lie in Nk
0, and let χ : Nk

0 → X be an additive coloring.
Then, for n ∈ N sufficiently large, the number of colors

|χ(nP ∩ Nk
0)|

is given by a quasipolynomial with period m.

12



2.2 Strongly eventually polynomial functions

Theorems 2.4 and 2.5 say nothing about the values of the corresponding functions
when some argument ni is not bigger than c. In Theorem 2.10 we give a stronger
formulation using other notion of an eventually polynomial function in several
variables, which is suggested by power series.

For k, c ∈ N we define V (k, c) = ([0, c]∪{∞})k; the elements of V (k, c) are the
(c + 2)k words w = w1w2 . . . wk of length k such that every entry wi is 0, . . . , c or
∞. We say that a function

f : Nk
0 → R

is strongly eventually polynomial if there exist a c ∈ N and (c + 2)k polynomials
pw ∈ R[x1, . . . , xk] indexed by the words w ∈ V (k, c) so that for every k-tuple
n = (n1, . . . , nk) ∈ Nk

0 and the unique w = w(n) ∈ V (k, c) determined by wi = ni
if ni ≤ c and wi = ∞ if ni > c, we have

f(n1, . . . , nk) = pw(n)(n1, . . . , nk).

Said more briefly, there is a constant c ∈ N such that for any selection of arguments
ni, when we fix arguments not exceeding c, f(n1, . . . , nk) is a polynomial function
in the remaining arguments (which are all bigger than c). Note that for k = 1
this notion is identical with the usual notion of an eventually polynomial function
f : N0 → R (there is a constant c > 0 and a polynomial p ∈ R[x] such that
f(n) = p(n) for n > c). Note also that if f : Nk

0 → R is strongly eventually
polynomial for a constant c, then it is strongly eventually polynomial for any
larger constant.

We give a stronger version of Lemma 1.6.

Proposition 2.9. A function f : Nk
0 → R is strongly eventually polynomial if and

only if

F (x1, . . . , xk) =
∑

n∈Nk
0

f(n)xn1
1 · · ·xnk

k =
r(x1, . . . , xk)

(1− x1)e1 · · · (1− xk)ek
,

for some r ∈ R[x1, . . . , xk] and ei ∈ N0.

Proof. If f is strongly eventually polynomial and is represented by the polynomials
pv, v ∈ V (k, c), we have

F (x) =
∑

n∈Nk
0

f(n)xn1
1 · · ·xnk

k =
∑

v∈V (k,c)

∑

n

w(n)=v

pv(n)x
n1
1 . . . xnk

k .
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Each inner sum is a power series which can be transformed in the form r(1 −
x1)

−e1 . . . (1 − xk)
−ek for some r ∈ R[x1, . . . , xk] and ei ∈ N0. Thus F (x) has the

stated form.
Suppose that F (x) has the stated form. As in the proof of Lemma 1.6, we

write it as a linear combination of terms of the type

k
∏

i=1

xbii
(1− xi)ei

,

where bi, ei ∈ N0. The coefficients of the power series xb/(1−x)e form a univariate
strongly eventually polynomial function. It is easy to see that the concatenative
product h : Nk+l

0 → R of two strongly eventually polynomial functions f : Nk
0 → R

and g : Nl
0 → R, defined by

h(n1, . . . , nk+l) = f(n1, . . . , nk)g(nk+1, . . . , nk+l),

is strongly eventually polynomial as well (as we know, we may assume that the
constant c is the same for f and g). The same holds for the linear combination
αf + βg : Nk

0 → R of two strongly eventually polynomial functions f, g : Nk
0 → R.

From the expression of F (x) as a linear combination of the mentioned products,
it follows that the function (n1, . . . , nk) 7→ [xn1

1 . . . xnk

k ]F (x1, . . . , xk) is a finite
linear combination of concatenative products of strongly eventually polynomial
(univariate) functions. Thus it is strongly eventually polynomial as well.

The following theorem is a common strengthening of Theorems 2.4 and 2.5,
which cancels the distinction between the projective and affine formulations (parts
1 and 2 of Theorem 1.2).

Theorem 2.10. Let A1, . . . , Al be finite sets in a semigroup (G,+). Then

(n1, . . . , nl) 7→ |n1 ∗ A1 + · · ·+ nl ∗Al|

is a strongly eventually polynomial function from Nl
0 to N0.

Proof. The proof is almost identical to the proof of Theorem 2.4, only we use
Proposition 2.9 in place of Lemma 1.6.

2.3 Multivariate generalizations of Theorems 1.3 and 1.4

Recall that for l, c ∈ N, the set V (l, c) consists of the (c + 2)l words of length
l over the alphabet {0, . . . , c,∞} and that for n = (n1, . . . , nl) ∈ Nl

0 the word
w(n) = w1 . . . wl ∈ V (l, c) is defined by wi = ni if ni ≤ c and wi = ∞ if ni > c.
The next theorem generalizes Theorems 1.3 and 2.10 (and thus in turn Theorems
1.2, 2.4, and 2.5).

14



Theorem 2.11. For finite sets A1, . . . , Al in a semigroup G = (G,+) and a char-
acter ψ : G→ C, there exist a constant c ∈ N and (c+ 2)l|A1| · · · |Al| polynomials
pw,a1,...,al ∈ C[x1, . . . , xl], where w ∈ V (l, c) and ai ∈ Ai, such that for every l-tuple
n = (n1, . . . , nl) ∈ Nl

0 and the corresponding word w(n) ∈ V (l, c), we have
∑

a∈n1∗A1+···+nl∗Al

ψ(a) =
∑

a1∈A1,...,al∈Al

pw(n),a1,...,al(n1, . . . , nl)ψ(a1)
n1 . . . ψ(al)

nl.

Proof (Sketch). We pull ψ back to the semigroup (Nk
0,+) with the associated col-

oring and for X ⊂ Nk
0 work with the power series

FX,ψ(x) =
∑

n∈X

ψ(n)xn1
1 . . . xnk

k .

For an orthant Os ⊂ Nk
0 we then have, denoting the k basic unit vectors by ui,

FOs,ψ(x) =
ψ(s)xs11 . . . xskk

(1− ψ(u1)x1) . . . (1− ψ(uk)xk)
.

Thus, arguing as in the proof of Theorem 2.2, if X ⊂ Nk
0 is a lower or an upper

ideal, then

FX,ψ(x) =
r(x1, . . . , xk)

(1− ψ(u1)x1) . . . (1− ψ(uk)xk)

where r is a polynomial whose coefficients are finite sums of ± values of ψ. It
follows that

∑

a∈n1∗A1+···+nl∗Al

ψ(a) = [yn1
1 . . . ynl

l ]G

where G(y) is obtained from such FX,ψ(x) by a P -substitution. The theorem
now follows by a version of Proposition 2.9 for rational power series of the form
r/((1− α1x1)

e1 . . . (1− αkxk)
ek).

In the multivariate generalization of Theorem 1.4 we refine the iterated image
F (n)(B) by partitioning F . For a (typically infinite) set X , its subset B ⊂ X ,
a family F of mutually commuting mappings f : X → X , and a partition P =
{P1, . . . , Pl} of F into nonempty blocks, we let F (n1,...,nl) denote the set of all the
functions that can be obtained by composing l functions f1 ◦ f2 ◦ · · · ◦ fl, where
each fi is itself a composition of ni functions belonging to the block Pi, and set

F (n1,...,nl)(B) =
⋃

f∈F(n1,...,nl)

f(B).

The next theorem generalizes Theorems 1.4 and 2.10 (and thus in turn Theo-
rems 1.2, 2.4, and 2.5).
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Theorem 2.12. If B is a finite subset of X, F is finite family of mutually com-
muting mappings from X to itself, and P = {P1, . . . , Pl} is a partition of F , then

(n1, . . . , nl) 7→ |F (n1,...,nl)(B)|

is a strongly eventually polynomial function from Nl
0 to N0.

For the combinatorial proof we need an extension of Theorem 2.2 to sets more
general than lower or upper ideals. For k ∈ N, I ⊂ [k], and s ∈ Nk

0, the generalized
orthant Os,I ⊂ Nk

0 is defined by

Os,I = {x ∈ Nk
0 : i ∈ I ⇒ xi = si, i 6∈ I ⇒ xi ≥ si}.

An empty set is also a generalized orthant. A subset S ⊂ Nk
0 is simple if it is a

finite union of generalized orthants. In particular, every finite set is simple. So is
every upper ideal and, as we shall see in a moment, every lower ideal.

Lemma 2.13. Intersection of any system of generalized orthants is a generalized
orthant. Complement of a generalized orthant to Nk

0 is a simple set.

Proof. A k-tuple x of Nk
0 lies in the intersection of the system Os(j),I(j), j ∈ J , of

nonempty generalized orthants iff for every i ∈ [k] the ith coordinate xi satisfies
for every j ∈ J the condition imposed by the membership x ∈ Os(j),I(j). These
conditions have form xi ∈ {si,j} or xi ∈ [si,j,+∞) for some si,j ∈ N0. Intersection
(conjunction) of these conditions over all j ∈ J is a condition of the type xi ∈ ∅
or xi ∈ {si} or xi ∈ [si,+∞) for some si ∈ N0. This is true for every i ∈ [k]. Thus
⋂

j∈J Os(j),I(j) is an empty set or a nonempty generalized orthant.

Let O = Os,I ⊂ Nk
0 be a generalized orthant. We have x ∈ Nk

0\O iff there exists
an i ∈ [k] such that (i) i ∈ I and xi satisfies xi ∈ [si + 1,+∞) or xi ∈ [0, si − 1]
or such that (ii) i 6∈ I and xi satisfies xi ∈ [0, si − 1]. Let u(i, j) ∈ Nk

0, for i ∈ [k]
and j ∈ N0, denote the k-tuple with all coordinates zero except the ith one which
is equal to j. It follows that Nk

0\O is the union of the generalized orthants

Ou(i,si+1),∅, i ∈ I; Ou(i,ji),{i}, i ∈ [k] and ji ∈ [0, si − 1]

(if si = 0, no Ou(i,ji),{i} is needed). Thus Nk
0\O is a simple set.

Corollary 2.14. The family of simple sets in Nk
0 contains the sets ∅ and Nk

0 and
is closed under taking finite unions, finite intersections, and complements. Hence
it forms a boolean algebra.

Proof. This follows by the previous lemma and by elementary set identities involv-
ing unions, intersections and complements.
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The family of simple sets is in general not closed to infinite unions nor to infinite
intersections.

The next theorem is an extension of Theorems 1.5 and 2.2. It characterizes the
sets S ⊂ NK

0 , for which these theorems hold.

Theorem 2.15. If S ⊂ Nk
0 is a simple set, then

FS(x1, . . . , xk) =
r(x1, . . . , xk)

(1− x1) · · · (1− xk)

where r(x1, . . . , xk) is an integral polynomial. If S ⊂ Nk
0 is a set such that

FS(x1, . . . , xk) =
r(x1, . . . , xk)

(1− x1) · · · (1− xk)

where r(x1, . . . , xk) is an integral polynomial, then S is a simple set.

Proof. Suppose that S ⊂ Nk
0 is simple and S = O1 ∪ · · · ∪Or for some generalized

orthants Oi. By the principle of inclusion and exclusion, FS(x1, . . . , xk) is a sum
of the 2r terms (−1)|X|FO(X)(x1, . . . , xk), X ⊂ [r], where

O(X) =
⋂

i∈X

Oi.

By Lemma 2.13, each O(X) is again a generalized orthant. For a generalized
orthant O = Os,I ,

FO(x1, . . . , xk) =
xs11 · · ·xskk

∏

i∈[k]\I(1− xi)
.

The first claim follows.
Suppose that S ⊂ Nk

0 and FS(x1, . . . , xk) = r/((1 − x1) · · · (1 − xk)) where
r ∈ Z[x1, . . . , xk]. Hence FS(x1, . . . , xk) is an l-term integral linear combination

∑

s∈T

csx
s1
1 · · ·xskk

(1− x1) · · · (1− xk)

where T ⊂ Nk
0, |T | = l, and cs ∈ Z. Every summand is in fact equal to

csFOs
(x1, . . . , xk). The characteristic function of S is an integral linear combina-

tion of the characteristic functions of the l (full-dimensional) orthants Os = Os,∅,
s ∈ T . With X running through the 2l subsets of T , we partition Nk

0 in the 2l cells

⋂

s∈X

Os ∩
⋂

s∈T\X

Nk
0\Os.
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The characteristic function of S is an integral linear combination of the character-
istic functions of these cells. Since the cells are pairwise disjoint, it follows that S
is a union of some of these cells. Each cell is a simple set by Corollary 2.14 and
therefore S is a simple set as well.

Proof of Theorem 2.12. Let X , B, F , and P = {P1, . . . , Pl} be as stated. Enlarg-
ing F by repeating some mappings and enlarging B by repeating some elements
does not affect the set F (n1,...,nl)(B). Therefore, we may assume that |F| = |B| = k,
F = {f1, . . . , fk} andB = {b1, . . . , bk}. We setK = k2 and define a partial coloring

χ : NK
0 = Nk2

0 → X ∪ {u}

as follows: the elements x with χ(x) = u are regarded as “uncolored”; for i ∈ [k]
and x ∈ NK

0 such that z1 := x(i−1)k+1, . . . , zk := x(i−1)k+k are positive but all other
coordinates of x are zero, we set

χ(x) = (f z1−1
1 ◦ · · · ◦ f zk−1

k )(bi).

Note that if z1 = · · · = zk = 1, then χ(x) = bi. We denote the set of all these
points x by Ci. The set of colored points is C = C1 ∪ · · · ∪ Ck. The points in
NK

0 \C are uncolored. Each Ci is a generalized orthant. If x ∈ Ci and x′ ∈ Cj
for i < j, then x and x′ are incomparable by ≤ but x′ <lex x. For x ∈ NK

0 with
all coordinates different from (i − 1)k + 1, . . . , (i − 1)k + k equal to zero (e.g., if
x ∈ Ci) and j ∈ [k], we define x(j) by shifting the k-term block of possibly nonzero
coordinate values to the coordinates (j−1)k+1, . . . , (j−1)k+k. The key property
of χ is the following:

if x, y ∈ Ci, x ≤ y, x′ ∈ Cj, and χ(x) = χ(x′), then χ(y) = χ(x′ + (y − x)(j)).

Indeed, if χ(x) = χ(x′) = c ∈ X and the coordinates k(i− 1) + 1, . . . , k(i− 1) + k
of y − x are z1, . . . , zk, then χ(y) = χ(x + (y − x)) = (f z11 ◦ · · · ◦ f zkk )(c) =
χ(x′ + (x− y)(j)).

P induces naturally a partition of [K] into l blocks which we again denote
P = {P1, . . . , Pl}: for fj ∈ Pr we put in the Pr ⊂ [K] all k elements j, j + k, j +
2k, . . . , j + (k − 1)k. Note that for n1, . . . , nl ∈ N we have (recall the definition of
‖x‖P before the proof of Corollary 2.3)

|χ({x ∈ NK
0 : ‖x‖P = (n1, . . . , nl)})\{u}| = |F (n1−1,...,nl−1)(B)|.

We call a point x ∈ NK
0 P -substantial if it is colored and is the lexicographically

minimum element in the set

{y ∈ NK
0 : χ(y) = χ(x), ‖y‖P = ‖x‖P}.
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As before, P -substantial points are representatives of the nonempty intersections
of the color classes of χ with the simplex ‖x‖P = (n1, . . . , nl). Thus

|F (n1−1,...,nl−1)(B)| = [yn1
1 . . . ynl

1 ]G

where G(y1, . . . , yl) is obtained by the P -substitution from FS(x1, . . . , xK) and S
is the set of all P -substantial points in NK

0 . Now the theorem follows as before by
Proposition 2.9, Lemma 1.7 and Theorem 2.15, provided that we show that S is a
simple set.

To prove that S is simple we consider the complement NK
0 \S. We have that

NK
0 \S = (NK

0 \C) ∪ C
∗

where C∗ consists of all colored points that are not P -substantial. The set NK
0 \C

is simple by Corollary 2.14 because C is simple (as a union of the generalized
orthants Ci). Now C∗ = C∗

1 ∪ · · · ∪ C∗
k where C∗

i = C∗ ∩ Ci. We show that each
C∗
i is an upper ideal in (Ci,≤). Then, by Dickson’s lemma, C∗

i is a finite union of
generalized orthants, which implies that C∗

i and C∗ are simple. So NK
0 \S is simple

and S is simple.
Thus suppose that x ∈ C∗

i and y ∈ Ci with x ≤ y. It follows that there is
a colored point x′ ∈ NK

0 with χ(x′) = χ(x), ‖x′‖P = ‖x‖P , and x′ <lex x. Let
x′ ∈ Cj. Consider the point y′ = x′ + (y − x)(j). By the property of χ we have
χ(y′) = χ(y). Since ‖y − x‖P = ‖(y − x)(j)‖P (by the definition of P ), we have
‖y′‖P = ‖x′ + (y − x)(j)‖P = ‖x‖P + ‖(y − x)(j)‖P = ‖x‖P + ‖y − x‖P = ‖y‖P .
If i = j, then y − x = (y − x)(j) and y′ = x′ + (y − x) <lex x + (y − x) = y. If
i 6= j, we must have i < j because x′ ∈ Cj, x ∈ Ci, and x

′ <lex x. But y
′ ∈ Cj and

y ∈ Ci, so again y′ <lex y. Thus χ(y
′) = χ(y), ‖y′‖P = ‖y‖P , and y

′ <lex y, which
shows that y ∈ C∗

i . We have shown that C∗
i is an upper ideal in (Ci,≤), which

concludes the proof.

3 Concluding remarks

In [7], we plan to look from general perspective at further polynomial and quasipoly-
nomial classes of enumerative problems. A natural question, for example, is about
the multivariate generalization of Theorem 2.1; generalization of Theorem 1.1 to
several variables was considered by Beck [3, 4]. Theorem 2.1 is related in spirit
to results of Lisoněk [12] who counts orbits of group actions on lattice points in
polytopes. It would be interesting to have an explicit description of the structure
of an additive coloring χ : Nk

0 → X because one may consider further statistics of χ
on the points nP ∩Zk, such as the number of occurrences of a specified color. We
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plan to investigate polynomial classes arising from counting permutations (e.g., Al-
bert, Atkinson and Brignall [1], Huczynska and Vatter [6], Kaiser and Klazar [8]),
graphs (e.g., Balogh, Bollobás and Morris [2]), relational structures (e.g., Pouzet
and Thiéry [18]), and perhaps other.
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