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SYNDETICITY AND INDEPENDENT SUBSTITUTIONS

FABIEN DURAND AND MICHEL RIGO

Abstract. We associate in a canonical way a substitution to any abstract
numeration system built on a regular language. In relationship with the growth
order of the letters, we define the notion of two independent substitutions. Our
main result is the following. If a sequence x is generated by two independent
substitutions, at least one being of exponential growth, then the factors of x
appearing infinitely often in x appear with bounded gaps. As an application,
we derive an analogue of Cobham’s theorem for two independent substitutions
(or abstract numeration systems) one with polynomial growth, the other being
exponential.

1. Introduction

A set E ⊂ N is p-recognizable for some p ∈ N \ {0, 1}, if the language consisting
of the p-ary expansions of the elements in E is recognizable by a finite automaton
[Ei]. In 1969, A. Cobham obtained the following result [Co1]. Let p, q ≥ 2 be two
multiplicatively independent integers (i.e., pk 6= qℓ for all integers k, ℓ > 0). A set
E ⊂ N is both p-recognizable and q-recognizable if and only if E is a finite union of
arithmetic progressions.
A key part in all known proofs of this seminal theorem (and this remark stands
also for generalizations to non-standard positional numeration systems) is to show
that E is syndetic (i.e., the difference between two consecutive elements of E is
bounded), see [Ha, Du1, Du2].
In this paper we study this syndeticity problem for a larger class of numeration
systems namely, for numeration systems built on infinite regular languages, the
so-called abstract numeration systems [LR]. In particular, these systems contain
classical numeration systems like the k-ary system or the Fibonacci system, but
also more “exotic” systems for which the language of the numeration contains a
number of words of length n bounded by a polynomial in n (which is contrasting
with the usual exponential paradigm).
In 1972, A. Cobham characterized p-recognizable sets of integers in terms of con-
stant length substitutions. It turns out to be mainly the same for abstract nu-
meration systems (this is the purpose of Section 3). Hence we will often say that
a set of integers recognizable with respect to some abstract numeration system is
generated by a substitution. This will enable us to solve the syndeticity problem
for abstract numeration systems in terms of substitutions. Let us also observe that
with the formalism of substitutions and in connection with the constructions of Sec-
tion 3, Cobham’s theorem obtained in [Du1] can be directly translated for a large
class of abstract numeration systems (namely, those giving rise to substitutions of
exponential growth satisfying the assumptions of [Du1]).
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missariat Général des Relations Internationales de la Communauté Française”.

1

http://arxiv.org/abs/0907.4583v1


2 FABIEN DURAND AND MICHEL RIGO

In [Co1, Co2, Du1, Du2], the involved substitutions σ are (exponentially) growing,
meaning that the length of σn(a) goes to infinity with n, for all letters a. (This
implies in particular that one of the letter is of exponential growth and that none
of them has polynomial growth.) The substitutions corresponding to abstract nu-
meration systems do not have this latter property: they can be non-growing (in the
polynomial case) and even worse, erasing. We take care of this extra difficulty in
Section 4.
The notion of multiplicatively independent integers can be generalized to these
substitutions by considering the maximal growth rate of the letters and we are thus
able to define “independent” substitutions. Our main result (Theorem 17) can be
roughly stated as follows:
If a set of integers E is generated by two independent substitutions (one having
exponential growth), then E is syndetic. We are not able to give a complete proof
in the case of two independent substitutions both having polynomial growth.
To conclude this paper, we obtain easily from the syndeticity an analogue of Cob-
ham’s theorem for two substitutions (or equivalently for two abstract numeration
systems): one of exponential growth and the other one of polynomial growth. Com-
bined with the main result of [Du1], an extended version of Cobham’s theorem
follows.

2. Words, morphisms, substitutions and numeration systems

The aim of this section is just to recall classical definitions and notation.

2.1. Words and sequences. An alphabet A is a finite set of elements called letters.
A word over A is an element of the free monoid generated by A, denoted by A∗.
Let x = x0x1 · · ·xn−1 (with xi ∈ A, 0 ≤ i ≤ n − 1) be a word, its length is n and
is denoted by |x|. The number of occurrences of a letter a ∈ A in the word w is
denoted |w|a and if E is a subset of A, then |w|E is a shorthand for

∑

e∈E |w|e. The
empty word is denoted by ǫ, |ǫ| = 0. The set of non-empty words over A is denoted
by A+. The elements of AN are called sequences. If x = x0x1 · · · is a sequence
(with xi ∈ A, i ∈ N) and I = [k, l] an interval of N we set xI = xkxk+1 · · ·xl and
we say that xI is a factor of x. If k = 0, we say that xI is a prefix of x. The
set of factors of length n of x is written Ln(x) and the set of factors of x, or the
language of x, is noted L(x). The occurrences in x of a word u are the integers i
such that x[i,i+|u|−1] = u. When x is a word, we use the same terminology with
similar definitions.
The sequence x is ultimately periodic if there exist a word u and a non-empty word
v such that x = uvω, where vω = vvv · · · . Otherwise we say that x is non-periodic.
It is periodic if u is the empty word. A sequence x is uniformly recurrent if every
factor of x appears infinitely often in x and for each factor u the greatest difference
of two successive occurrences of u is bounded.

2.2. Morphisms and matrices. Let A and B be two alphabets. A morphism τ
is a map from A to B∗. Such a map induces by concatenation a morphism from
A∗ to B∗. If τ(A) is included in B+, it induces a map from AN to BN. These two
maps are also called τ . With the morphism τ is naturally associated the matrix
Mτ = (mi,j)i∈B,j∈A where mi,j is the number of occurrences of i in the word τ(j).
Let M be a square matrix, we call dominant eigenvalue of M an eigenvalue r such
that the modulus of all the other eigenvalues do not exceed the modulus of r. A
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square matrix is called primitive if it has a power with positive coefficients. In
this case the dominant eigenvalue is unique, positive and it is a simple root of
the characteristic polynomial. This is Perron-Frobenius Theorem (see for instance
[LM]).

2.3. Substitutions and substitutive sequences. A substitution is a morphism
τ : A → A∗. In all this paper, and without exception, a substitution τ is assumed
to fulfill the following hypothesis : There exists a letter a ∈ A with

(1) limn→+∞ |τn(a)| = +∞ and
(2) τ(a) = au for some u ∈ A∗.

Whenever the matrix associated to τ is primitive we say that τ is a primitive
substitution. We say τ is a growing substitution if limn→+∞ |τn(b)| = +∞ for all
b ∈ A. We say τ is erasing if there exists b ∈ A such that τ(b) is the empty word.
A fixed point of τ is a sequence x = (xn;n ∈ N) such that τ(x) = x. We say it is
a proper fixed point if all letters of A have an occurrence in x. We observe that all
proper fixed points of τ have the same language. Notice that each substitution has
at least one proper fixed point. Let x be a proper fixed point of τ . We define

L(τ) =
{

x[i,j]; i, j ∈ N, i ≤ j
}

.

Example 1. The substitution τ defined by τ(a) = aaab, τ(b) = bc and τ(c) = b
has two fixed points, one is starting with the letter a and is proper and the other
one is starting with the letter b and is not proper.

Let B be another alphabet and y ∈ BN. Let S be a set of substitutions. We say
that y is substitutive in S if y = φ(x) where x ∈ AN is a proper fixed point of τ ∈ S
and φ : A→ B∗ is a letter-to-letter morphism, i.e., φ(A) is a subset of B.

2.4. Automata. We assume that the reader has some basic knowledge in automata
theory, see for instance [Ei]. A deterministic finite automaton over A or simply a
DFA is a 5-tuple M = (Q, q0, F, A, δ) where Q is the finite set of states, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final states and δ : Q × A → A is the
(partial) transition function. A DFA is complete if δ is a total function. As usual,
δ can be naturally extended to Q×A∗. With the DFA M is associated the matrix
MM = (mi,j)i,j∈Q where mi,j = #{a ∈ A; δ(j, q) = i}.
If L is a regular language then the trim minimal automaton of L is said to be
the canonical automaton of L. Recall that an automaton is trim (or reduced) if
it accessible and coaccessible, i.e., every state is reachable from q0 and every state
reaches a final state. Let M = (Q, q0, F, A, δ) be a DFA and L ⊆ A∗ be a regular
language with A = (Q′, q′0, F

′, A, δ′) as canonical automaton. Then M is said to
be an L-automaton if there exists an onto mapping Φ : Q→ Q′ such that

(1) Φ(q0) = q′0,
(2) Φ(F ) ⊆ F ′,
(3) ∀q ∈ Q, ∀a ∈ A: Φ(δ(q, a)) = δ′(Φ(q), a).

In the latter condition, if δ(q, a) is not defined then δ′(Φ(q), a) is not defined, and
conversely. Notice that this kind of definition can also be found in [BH] where
linear numeration systems related to a Pisot number are investigated.

Remark 2. Changing the set of final states in an L-automaton allows this au-
tomaton to recognize exactly the language L. With the same notation as before, it
suffices to take Φ−1(F ′) as set of final states for the L-automaton.
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2.5. Abstract numeration systems. If the alphabet A is totally ordered then
we can enumerate the words of A∗ by the genealogical ordering defined as follows.
Let x, y be two words over A, we say x < y if |x| < |y| or if |x| = |y| and there exist
a, b ∈ A, u, x′, y′ ∈ A∗ such that a < b, x = uax′ and y = uby′. Enumerating the
words of an infinite regular language L over a totally ordered alphabet (A,<) by
increasing genealogical order gives a one-to-one correspondence between N and L
(see [LR]). We say that the (n+1)th word w in the genealogically ordered language
L is the representation of n in the abstract numeration system S = (L,A,<) and we
write repS(n) = w. In particular, if E is a subset of N then repS(E) is a subset of L.
We say that E is S-recognizable if repS(E) is a regular language. The characteristic
sequence of E is the sequence χE = x0x1 · · · ∈ {0, 1}N such that xi = 1 if and only
if i belongs to E.

Example 3. Let A = {0, . . . , k − 1} for some k ≥ 2. The language

L = {ǫ} ∪ {1, . . . , k − 1}{0, . . . , k − 1}∗

genealogically ordered with the usual ordering of the digits gives the classical k-
ary system. Let B = {0, 1}. Enumerating the words of M = {ǫ} ∪ 1{0, 01}∗

gives exactly the Fibonacci system. These two examples are special cases of linear
numeration systems whose characteristic polynomial is the minimal polynomial of a
Pisot number (in this setting, it is well known that the language of the numeration
is regular [BH]). All the systems of this kind are therefore special cases of abstract
numeration systems.

Example 4. Let us consider an abstract numeration system which is no more
positional (i.e., not built on a strictly increasing sequence of integers). Let A =
{a, b} with a < b. The first words of L = a∗b∗ enumerated by genealogical order
are

ǫ, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa . . .

For instance, repS(5) = bb and rep−1
S (a∗) = {0, 1, 3, 6, 10, . . .} = Ea is an S-

recognizable subset of N (formed of triangular numbers). For such a system,
rep−1

S (apbq) = 1
2 (p + q)(p + q + 1) + q and we cannot mimic positional systems

where one can define “weight” to the “digits” a and b. Moreover we can already
notice that #(L∩An) = n+1 has a polynomial behavior (contrasting with systems
built on Pisot numbers which always have an exponential behavior).

3. The link between substitutions and numeration systems.

In this section, we associate a substitution σ to any S-recognizable set E of integers
for a given abstract numeration system S. One of the fixed point z of σ is such
that f(z) = χE for some (possibly erasing) morphism f .

Lemma 5. Let S = (L,A,<) be a numeration system. A set E ⊂ N is S-
recognizable if and only if repS(E) is accepted by an L-automaton.

Proof. Assume that E is S-recognizable. So there exists a complete and acces-
sible DFA M = (Q, q0, F, A, δ) accepting exactly repS(E). We denote by A =
(Q′, q′0, F

′, A, δ′) the canonical automaton of L. Consider the “product” automa-
ton

P = (Q′ ×Q, (q′0, q0), F
′ × F,A, µ)
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where the transition function µ is defined, for all (q, r) ∈ Q′×Q and all a ∈ A such
that δ′(q, a) exists, by

µ((q, r), a) = (δ′(q, a), δ(r, a)).

Clearly, P is an L-automaton accepting repS(E). It suffices to consider the appli-
cation Φ : Q′ ×Q→ Q′ mapping (q, r) onto q. �

Definition 6. Let A = {a1 < · · · < ak} be a totally ordered alphabet. To any
DFA M = (Q, q0, F, A, δ), if s 6∈ Q then one can associate a substitution σM :
Q ∪ {s} → (Q ∪ {s})∗ defined by

σM :

{

s 7→ s q0
q 7→ δ(q, a1) · · · δ(q, ak), ∀q ∈ Q

where in the last expression, if δ(q, a) is not defined for some a, then it is replaced
by ǫ. Observe that σM can be erasing. This kind of substitution was introduced
for instance in [RM]. The substitution associated to the canonical automaton of L
is said to be the canonical substitution of L and is denoted σL.

Let L be a regular language and σL : B → B∗ be its canonical substitution and let
τ : A → A∗ be a substitution. If there exists an onto mapping Φ : A → B such
that for all a ∈ A,

Φ(τ(a)) = σL(Φ(a))

then τ is said to be an L-substitution. Clearly, if M is an L-automaton then σM
is an L-substitution.

Proposition 7. Let S = (L,A,<) be a numeration system and E ⊂ N be an S-
recognizable set. Then there exists an L-substitution σ : B → B∗ having x ∈ Bω as
fixed point and a morphism f : B → {0, 1} ∪ {ǫ} such that

f(x) = χE .

Proof. We denote by A = (Q′, q′0, F
′, A, δ′) the canonical automaton of L. By

Lemma 5, repS(E) is accepted by some L-automaton M = (Q, q0, F, A, δ). Let
Φ : Q → Q′ be the mapping related to the L-automaton and let F ′′ be the set of
states of M given by

F ′′ = Φ−1(F ′).

Observe that F ⊆ F ′′ ⊆ Q. Consider the alphabet B = Q ∪ {s} (s 6∈ Q), the
L-substitution σM : B → B∗ and the mapping f : B → {0, 1} ∪ {ǫ} defined by

f :















s 7→ ǫ;
q 7→ 1, if q ∈ F ;
q 7→ 0, if q ∈ F ′′ \ F ;
q 7→ ǫ, if q ∈ Q \ F ′′.

It is easy to show that limn→∞ f(σn
M(s)) = χE . �

Example 8. We continue Example 4. The canonical automaton of L = a∗b∗ has
two states A and B such that δ(A, a) = A, δ(A, b) = B and δ(B, b) = b. Proceeding
as in Definition 6, we get the substitution

σM : s 7→ sA, A 7→ AB, B 7→ B

having

w = sAABABBABBBABBBBABBBBB · · ·
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as fixed point. Applying the morphism f : s 7→ ǫ, A 7→ 1, B 7→ 0 to this word w, we
get the characteristic sequence of the S-recognizable set Ea = {0, 1, 3, 6, 10, . . .}.

4. Growth type and erasures

In this section, we first consider the growth order of the length of the iterates of
a substitution for any letter. From this we define the notion of growth order of a
letter. Then we give arguments that allow us to get rid of erasing substitutions.
In the third part of this section, we exhibit sub-alphabets which are invariant for
the substitution. All of these results will play an important rôle in the proof of our
main result.
Finally, we consider the relationship of the growth order of the substitution with
abstract numeration systems. This will lead to an easy adaptation of Cobham’s
theorem given in terms of substitutions to these abstract numeration systems.

4.1. Growth type. In this subsection we recall some lemmata and definitions
appearing in [Du1].
Notice that in the following lemma, the substitutions σ and τ can be erasing. As
we will see in the detailed proof of the result, the technical procedure of replacing τ
with one of its power, allows us to get rid of irreducible components to the benefit
of irreducible ones.

Lemma 9. Let τ : A→ A∗ be a substitution on the finite alphabet A. There exists
p such that for σ = τp and for all a ∈ A, one of the following two situations occurs,
either

∃N ∈ N : ∀n > N, |σn(a)| = 0,

or there exist d(a) ∈ N and algebraic numbers c(a), α(a) such that

lim
n→+∞

|σn(a)|

c(a)nd(a) α(a)n
= 1.

Moreover, if the latter situation occurs then for all i ∈ {0, . . . , d(a)} there exists a
letter b ∈ A appearing in σj(a) for some j ∈ N and such that

lim
n→+∞

|σn(b)|

c(b)ni α(a)n
= 1.

Proof. With σ we associate an automaton Aσ in the classical way: the set of states
of Aσ is A, the alphabet is {1, . . . ,maxa∈A |σ(a)|} and the transition function δ is
defined as follows. If b appears in σ(a) at position i ≥ 1 then δ(a, i) = b. Notice that
δ(a, k) is not defined if k > |σ(a)|. So Aσ is possibly not a complete automaton.
From the definition of Aσ, it follows that |σ

n(a)| is exactly the number of paths of
length n in Aσ starting from a.
We write a→ b if there exists a path in Aσ from a to b. We define an equivalence
relation ∼ over A as follows. We define for all a, b ∈ A,

a ∼ b⇔ (a = b) or (a→ b and b→ a).

As usual, an equivalence class for ∼ is said to be a communicating class. Proceeding
as in [LM, p. 119], the communicating classes and the corresponding states of
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Aσ can be ordered in such a way that the matrix associated with σ has a block
triangular form

(4.1) Mσ =















M1 0 0 . . . 0
∗ M2 0 . . . 0
∗ ∗ M3 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . Mk















.

We denote by Cj the communicating class related to Mj . Each Mj 6= 0 is irre-
ducible. Let pj be the corresponding period (i.e., the smallest integer t such that
(Mj)

t has positive entries on the main diagonal). Let p = lcmj=1,...,k pj . Replacing
σ with σp does not affect its fixed point. The communicating classes Cj related to
primitive blocks Mj are the same in Aσ and Aσp but each communicating class in
Aσ related to a nonzero block which is not primitive is split into several commu-
nicating classes in Aσp related to primitive blocks (see for instance [LM, Section
4.5]). Assuming that σ has been replaced by σp (this has no consequence for the
rest of this paper because we are mainly interested in the fixed points of σ, so we
may assume that the substitutions we consider have such a property), we may as-
sume in what follows that each Mj ’s appearing in (4.1) is either primitive or zero.
Let αj be the Perron-Frobenius eigenvalue associated with Mj 6= 0. If Mj = 0,
we set αj = 0. One can already notice that αj is algebraic since Mj has only
integer entries. Notice also that αj = 1 ⇔ Mj = (1). The number of words of
length n starting from and ending to a state related to Mj is of the form ∼ cj α

n
j .

Since cj can be computed from left and right Perron eigenvectors of Mj (see [LM,
Thm 4.5.12]), it is clear that cj is an algebraic number (computations take place in
Q(αj)).
We now estimate the number |σn(a)| of paths of length n in Aσ starting from
a given state a belonging to Ck. In the graph of the communicating classes (we
use once again the terminology of [LM, p. 119]), consider the set Pk of all paths
starting in Ck and ending in a leaf. Let Ck,0 = Ck, Ck,1, . . . , Ck,ℓ be such a path
p (we will only consider classes such that Mk,i 6= 0, if no such a class exists then
the corresponding number of words of length n is zero for n large enough). The
contribution of p to |σn(a)| is

∼ ck,0 . . . ck,ℓ
∑

n0+···+nℓ=n

αn0

k,0 · · ·α
nℓ

k,ℓ

Let

β = max
i=0,...,ℓ

αk,i

and Ck,j1 , . . . , Ck,jt be the communicating classes having β as Perron-Frobenius
eigenvalue, t ≥ 1. Therefore the contribution of p to |σn(a)| is

∼ ck,0 . . . ck,ℓ n
t−1 βn.

In particular, it follows that the Jordan-decomposition of the incidence matrix of
Aσ restricted to the states occurring in p contains a Jordan block of size t for
the eigenvalue β. To conclude the first part of the proof, we just have to sum
expressions like the one obtained above for all paths in Pk.
The particular case is immediate, with the same notation as above, if b belongs
to Ck,jm , m ∈ {2, . . . , t}, then the contribution of p to |σn(b)| is proportional to
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nt−m βn. Moreover, since a belongs to Ck,0, it is clear that a→ b, i.e., there exists
j such that b appears in σj(a). �

Notice that the following definition is mainly relevant for non-erasing substitutions
(and the next subsection allows us to only consider such substitutions).

Definition 10. Let σ be a non-erasing substitution possibly replaced by a conve-
nient power as in the proof of the previous lemma. For all a ∈ A we will call growth
type of a the couple

(d(a), α(a))

as introduced in the previous lemma. If (d, α) and (e, β) are two growth types we
say that (d, α) is less than (e, β) (or (d, α) < (e, β)) whenever α < β or, α = β and
d < e.

Consequently if the growth type of a ∈ A is less than the growth type of b ∈ A
then limn→+∞ |σn(a)|/|σn(b)| = 0. We say that a ∈ A is a growing letter if

(d(a), θ(a)) > (0, 1)

or equivalently, if limn→+∞ |σn(a)| = +∞.
We set

Θ := max{θ(a) | a ∈ A}, D := max{d(a) | θ(a) = Θ | a ∈ A}

and Amax := {a ∈ A | θ(a) = Θ, d(a) = D}. The dominant eigenvalue of M is
Θ. We will say that the letters of Amax are of maximal growth and that (D,Θ)
is the growth type of σ. Consequently, we say that a substitutive sequence y is
(D,Θ)-substitutive if the underlying substitution is of growth type (D,Θ).
Observe that if Θ = 1, then in view of the last part of Lemma 9, there exists at
least one non-growing letter of growth type (0, 1). Otherwise stated, if a letter has a
polynomial growth, then there exists at least one non-growing letter. Consequently
σ is growing (i.e., all its letters are growing) if and only if θ(a) > 1 for all a ∈ A.
We define

λσ : A∗ → R

u0 · · ·un−1 7→
∑n−1

i=0 c(ui)1Amax
(ui),

where c : A→ R+ is defined in Lemma 9 and 1A is the usual characteristic function
of the set A. From Lemma 9 we deduce the following lemma.

Lemma 11. For all u ∈ A∗ we have limn→+∞ |σn(u)|/nDΘn = λσ(u).

We say that the word u ∈ A∗ is of maximal growth if λσ(u) 6= 0.

Corollary 12. For all k ≥ 1, the growth type of σk is (D,Θk).

4.2. Erasing morphisms. In view of Proposition 7, we will have to deal with eras-
ing substitutions and also with erasing morphisms. The following two propositions
show how to get rid of the erasing behavior.

Proposition 13. Let x be a proper fixed point of a substitution σ : A → A∗ with
growth type (D,Θ). Then, there exists a non-erasing substitution τ : C → C∗ with
a proper fixed point y, a letter-to-letter morphism ψ : C → A and a morphism
φ : A→ C∗ verifying

(1) x = ψ(y);
(2) There exists l ∈ N such that for all n ∈ N we have τn ◦ φ = φ ◦ σln;
(3) Each line and each column of the matrix of φ has a non-zero coefficient;
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(4) The growth type of τ is (D,Θl).

Proof. The statement (1), (2) and (3) can be found in [AS, Theorem 7.5.1, p. 227]
and (4) is a consequence of (2) and (3). �

Proposition 14. Let x be a proper fixed point of a substitution σ : A → A∗ with
growth type (D,Θ), Γ ⊂ A and ζ : A → A \ Γ defined by ζ(a) = ǫ if a ∈ Γ and a
otherwise. Then, there exists a non-erasing substitution τ : C → C∗ with a proper
fixed point y, a letter-to-letter morphism ψ : C → A and a morphism φ : A → C∗

verifying

(1) ζ(x) = ψ(y);
(2) There exists l ∈ N such that for all n ∈ N we have ψ ◦ τn ◦ φ = ζ ◦ σl(n+1);
(3) Each line and each column of the matrix of φ has a non-zero coefficient;
(4) The growth type of τ is (D,Θl).

Proof. The statement (1), (2) and (3) can be found in [AS, pp. 232–236] and (4)
is a consequence of (2) and (3). �

4.3. Invariant alphabets. Let ∆(w) ⊆ A be the set of letters having an occur-
rence in the word w ∈ A∗.

Lemma 15. Let σ : A → A∗ be a non-erasing substitution. There exists N ≥ 1
such that for all a ∈ A and all n ≥ 1,

∆((σN )n(a)) = ∆(σN (a)).

Proof. We set A = {a1, . . . , a|A|}. The alphabet A being finite, the sequence of
sub-alphabets (∆(σn(a1)))n∈N is ultimately periodic, i.e., there exist p and q such
that

∆(σq+np+i(a1)) = ∆(σq+mp+i(a1))

for all m,n, i ∈ N. Hence, for k such that kp ≥ q, we have for all n ≥ 1

∆((σkp)n(a1)) = ∆(σkp(a1)).

Now take a2 and consider σkp. Proceeding as before we find r such that

∆((σr)n(a1)) = ∆(σr(a1)) and ∆((σr)n(a2)) = ∆(σr(a2)).

We conclude continuing like this with a3, . . . , a|A|. �

The following corollary is just a reformulation of the previous lemma.

Corollary 16. Let σ : A → A∗ be a non-erasing substitution. There exists N ≥ 1
such that for all a, b ∈ A and n ≥ 1

a ∈ A appears in (σN )n(b) if and only if a appears in (σN )n+1(b).

Replacing σ by one of its power σN does not alter its fixed points (we will use
this argument repeatedly). Therefore we will often require that σ has the following
property:

∀a, b ∈ A, ∀n ≥ 1, a ∈ A appears in σn(b) if and only if a appears in σn+1(b).

(4.2)
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4.4. Linking the growth order with numeration systems. Let L be a reg-
ular language having A = (Q′, q′0, F

′, A, δ′) as canonical automaton and MA as
associated matrix.

(1) As in section 4.1, for all states q′ ∈ Q′ we can define the growth type (d, α)
of q′ (corresponding to the number of words of length n accepted in A from
q′) and consequently, we can define the growth type of A as the largest
growth type of the states in Q′.

(2) If M = (Q, q0, F, A, δ) is an L-automaton then M and A have the same
growth type. Indeed, for any q′ ∈ Q′, we denote by pA,q′(n) the number of
paths of length n in A starting in q′. If Φ : Q→ Q′ is the mapping defining
the L-automaton, then for any q ∈ Φ−1(q′),

pA,q′(n) ≥ pM,q(n)

and also

pA,q′(n) ≤
∑

q∈Φ−1(q′)

pM,q(n).

This means that q′ and at least one of the states q ∈ Φ−1(q′) are of the
same growth type and that none of the states q ∈ Φ−1(q′) is of a larger
growth type than q′.

(3) If M is of growth type (D,Θ), Θ > 1, then σM is of the same growth type.
But notice that if M is of growth type (D, 1) then σM is of growth type
(D + 1, 1).

As a consequence of theses observations, if L is a regular language having a canonical
automaton of growth type (D,Θ), Θ > 1, (resp. (D, 1), D ≥ 1) and if E ⊂ N is
S-recognizable for the numeration system S = (L,A,<) then from Propositions
7, 13 and 14 the sequence χE is (D,Θl)-substitutive for some l (resp. (D + 1, 1)-
substitutive). This obersevation will be helpful in the last section of this paper
(Corollary 27 and Remark 28).

5. The words appear with bounded gaps

This section is devoted to the proof of the main result of this paper:

Theorem 17. Let d, e ∈ N \ {0} and α, β ∈ [1,+∞[ such that (d, α) 6= (e, β) and
satisfying one of the following three conditions:

(1) α and β are multiplicatively independent;
(2) α, β > 1 and d 6= e;
(3) (α, β) 6= (1, 1) and, β = 1 and e 6= 0, or, α = 1 and d 6= 0;

Let C be a finite alphabet. If x ∈ CN is both (d, α)-substitutive and (e, β)-substitutive
then the letters of C which have infinitely many occurrences in x appear in x with
bounded gaps.

For the proof of this result we will proceed into three parts. The first part consists
of arithmetical lemmata about density in R. In the second part we give bounds for
gaps created by some letters. In subsections 5.3 and 5.4 we exhibit an important
sequence of integers and we fix some useful constants. Finally from subsection 5.5
to 5.8 we proceed to a case study depending on the growth order of the considered
substitutions. Let us first fix the context we will be dealing with.
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Let σ and τ be two substitutions on the alphabets A and B, with fixed points y
and z and with growth types (d, α) and (e, β) respectively. Taking powers of σ and
τ does not alter the fixed points y and z and does not change the multiplicative
dependence. Thus, in the proof we will sometimes replace the substitution by some
convenient power of itself (and this also allows us to assume that condition (4.2)
is satisfied). In particular, when α and β are multiplicatively dependent we may
suppose that α = β.
Let φ : A → C and ψ : B → C be two letter-to-letter morphisms such that
φ(y) = ψ(z) = x. Lemma 13 allows us to suppose that σ and τ are non-erasing.
We call A+ the set of growing letters of A with respect to σ.

5.1. Some density lemmata. Recall that α, β ∈ [1,+∞[ are multiplicatively in-
dependent whenever αk = βℓ, ℓ, k ∈ N, implies k = 0 or ℓ = 0. In [Du1, Corollary
11] the following result is proved. Observe that this result is well known when
d = e = 0 (and is sometimes stated as a Kronecker’s theorem). Moreover it does
not take into account the case α = 1 or β = 1.

Theorem 18. Let α and β be multiplicatively independent elements of ]1,+∞[.
Let d and e be non-negative integers. Then the set

{

αnnd

βmme
;n,m ∈ N

}

is dense in R+.

Lemma 19. Let d, e ∈ N and α ∈]1,+∞[. Then,

(1) d, e ≥ 1 if and only if the set
{

nd

me ;n,m ∈ N

}

is dense in R+;

(2) e 6= 0 if and only if
{

αnnd

me ;n,m ∈ N

}

is dense in R+;

(3) d 6= e if and only if
{

αnnd

αmme ;n,m ∈ N

}

is dense in R+.

Proof. (1) Suppose d, e ≥ 1. Let l ∈ R+ \{0} and ǫ > 0. It suffices to find n,m ∈ N

such that |l − nd/me| < ǫ.
Let m ∈ N be such that max(d, 2dl/ǫ) < (lme)1/d − 1 and 1/me < l. There exists
n ∈ N such that nd/me < l ≤ (n+1)d/me. We observe that this implies that n > d
and 2dl/n < ǫ. Consequently, we get

0 < l −
nd

me
≤

(n+ 1)d − nd

me
≤

2dnd−1

me
=

2d

n

nd

me
<

2dl

n
< ǫ.

Hence the set {nd/me;n,m ∈ N} is dense in R+.

(2) Suppose e 6= 0. Let l ∈ R+ \ {0} and ǫ > 0. It suffices to find n,m ∈ N such
that |l − αnnd/me| < ǫ.
Let m0 ∈ N be such that e ln(1+1/m0) < ln(1+ǫ/l). Let n be such that e ln(m0) <
d ln(n)+n ln(α)−ln(l) andm ≥ m0 be such that e ln(m) ≤ d ln(n)+n ln(α)−ln(l) ≤
e ln(m+ 1). Then we have

0 ≤ d ln(n) + n ln(α) − ln(l)− e ln(m) ≤ e ln

(

1 +
1

m

)

< ln
(

1 +
ǫ

l

)

.

Hence the set {αnnd/me;n,m ∈ N} is dense in R+.
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(3) Suppose d 6= e. Let l ∈ R+ \ {0} and ǫ > 0. It suffices to find n,m ∈ N such
that |l − ndαn/meαm| < ǫ.
We can suppose d > e because {αnnd/αmme;n,m ∈ N} is dense in R+ if and only
if {αmme/αnnd;n,m ∈ N} is dense in R+.
Let n0 be such that

d− e

2 lnα
lnn0 ≤

d− e

lnα
lnn0 −

ln(l + ǫ)

lnα
≤
d− e

lnα
lnn0 −

ln(l)

lnα
≤

3(d− e)

2 lnα
lnn0.

Choose b0 with (ǫαb0)
1

d−e ≥ 1. Then for all b ≥ b0 there exists nb such that

lαb ≤ nd−e
b ≤ (l + ǫ)αb.

The sequence (nb) goes to infinity, consequently we can choose b and n such that
n = nb ≥ n0 and 1− ǫ/l ≤ (n/n+ b)e. Then we have

d− e

2 lnα
lnn ≤ b ≤

3(d− e)

2 lnα
lnn

Now consider m = n+ b. This gives

l − ǫ ≤ l

(

n

b+ n

)e

≤
ndαn

meαm
≤ (l + ǫ)

(

n

b+ n

)e

≤ l + ǫ.

Suppose d = e. If n ≤ m then αnnd/αmme ≤ 1 and if n > m then αnnd/αmme ≥ α.
This concludes the proof. �

Corollary 20. Let d, e ∈ N and α, β ∈ [1,+∞[. We set

Ω =

{

αnnd

βmme
;n,m ∈ N

}

.

Then Ω is dense in R+ if and only if one of the following two conditions holds:

(1) α and β are multiplicatively independent.
(2) α, β > 1 and d 6= e.
(3) β = 1 and e 6= 0, or, α = 1 and d 6= 0;

Proof. It follows from Theorem 18 and Lemma 19. �

We will say that two substitutions are independent whenever their respective growth
type (d, α) and (e, β) are different and satisfy Hypothesis (1), (2) or (3) in the pre-
vious corollary. Notice that in Theorem 17 the assumptions mean that the substi-
tutions are independent and are not both of polynomial growth (this corresponds
to the hypothesis (α, β) 6= (1, 1)).

5.2. Growth type of gaps. In this subsection we give two results on the gaps
created by the letters of some sub-alphabet in prefixes of fixed points and in iterates
of letters. They will be key arguments in the proof of Theorem 17.
Let E ⊂ A. For all N ≥ 1, we set

M(N, x,E) := max{k ∈ N : ∃i ∈ [0, N − k + 1], |x[i,i+k]|E = k}.

In what follows, if x and E are clear from the context, we simply write M(N).
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Proposition 21. Let x = (xn)n≥0 be a proper fixed point of the non-erasing sub-
stitution σ of growth type (d, α) on the finite alphabet A. Assume σ is such that
each letter of A has an occurrence in σ(x0) and σ satisfies (4.2).
Let E ⊂ A. Suppose there exists a letter e ∈ A such that σ(e) ∈ E∗ and call E′ the
set of all such letters. Let (d′, α′) be the greatest growth order among the elements of
E′. Then, in each of the following situations, there exist two constants C1, C2 > 0
such that

(1) If (α′, d′) = (α, d) then, for all N ,

C1N ≤M(N) =M(N, x,E) ≤ C2N.

(2) If α = α′ > 1 and d′ < d then, for all N ,

C1N(logN)d
′−d ≤M(N) ≤ C2N(logN)d

′−d.

(3) If α > α′ > 1 then, for all N ,

C1(logN)d
′−d log α′

log α N
log α′

log α ≤M(N) ≤ C2(logN)d
′−d log α′

log α N
log α′

log α .

(4) If α > α′ = 1 then for all N ,

C1

(

logN

logα

)d′

≤M(N) ≤ C2

(

logN

logα

)d′+1

.

(5) If α = α′ = 1 and d′ < d then for all N

C1N
d′/d ≤M(N) ≤ C2N

(d′+1)/d.

Remark 22. Notice that as usual the assumptions on σ made in the statement of
Proposition 21 are easily satisfied by taking a convenient power of σ if needed.

Proof. Let N ∈ N. There exists n ∈ N such that

(5.1) |σn−1(x0)| ≤ N ≤ |σn(x0)|.

We start proving (1). As there exists a letter e ∈ E′ of maximal growth having
an occurrence in σ(x0) (and since (4.2) is satisfied, σk(e) ∈ E∗, for all k ≥ 1) we
obtain

|σn−2(e)| ≤M(N) ≤ |σ(x0)|max
l∈A

|σn−1(l)|

and from Lemma 9 we deduce that there exist two constants C1 and C2 not de-
pending on n such that

C1α
nnd ≤M(N) ≤ C2α

nnd.

Let us prove (2). The assertion (3) can be proved following the same arguments.
We start proving the left inequality. Proceeding as before we obtain a constant C′

1

depending neither on n nor N such that

C′
1α

nnd′

≤M(N).

Moreover, from (5.1), we deduce there exist two constants C′′
1 , C

′′
2 depending neither

on n nor N such that
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C′′
1 log(N) ≤ n ≤ C′′

2 log(N) if α > 1 and(5.2)

C′′
1N

1/d ≤ n ≤ C′′
2N

1/d if α = 1.(5.3)

This together with Lemma 9 gives the left inequality.
Let us prove the right inequality. Let i be such that |x[i,i+M(N)]|E = M(N). We

set u = x[i,i+M(N)]. There exist u1 ∈ E′∗ having an occurrence in σn−1(x0) and
p1, s1 ∈ E∗ such that u = s1σ(u1)p1 and |s1|, |p1| less than m = max{|σ(a)|; a ∈
E}. In the same way there exist u2 ∈ A∗ having an occurrence in σn−2(x0) and
p2, s2 ∈ E′∗ such that u1 = s2σ(u2)p2 and |s2|, |p2| less than m. We remark that
σ2(u2) belongs to E

∗. From Hypothesis (4.2), we conclude that u2 belongs to E′∗.
Hence there exist u1, . . . , un−1 ∈ E′∗, p1, s1 ∈ E∗, p2, . . . , pn−1, s2, . . . , sn−1 ∈ E′∗

such that

(5.4) u = s1σ(s2) · · ·σ
n−2(sn−1)σ

n−1(un−1)σ
n−2(pn−1) · · ·σ(p2)p1,

|pi| and |si| are less than m. From this expression and Lemma 9 we deduce that
there exists a constant C′′′

2 such that

(5.5) |u| ≤ C′′′
2 α

nnd′

.

We conclude using (5.1) (together with Lemma 9) and (5.2).

We now prove (4). For the left inequality it works as before. For the right inequality
it also works as before except that once we obtain the decomposition (5.4) we find

some constant C such that |u| ≤ C
∑n−1

j=1 j
d′

. Consequently for some other constant

|u| ≤ Cnd′+1. We conclude using Lemma 9 and (5.2)

For (5) we proceed as in the previous case except we use (5.3). �

We suppose there exists a letter c ∈ C with infinitely many occurrences in x and
that does not appear with bounded gaps in x. Projecting to {0, 1} we can suppose
C = {0, 1} and c = 1. W.l.o.g. we may assume that σ and τ both satisfy (4.2)
(as usual taking a power of the substitution does not alter its fixed points). There
exist a ∈ A with infinitely many occurrences in y and a strictly increasing sequence
(pn)n∈N of positive integers such that the letter c does not appear in φ(σpn (a)).
Let A(c) be the set of such letters. We define B(c) and B+ as A(c) and A+ but
with respect to τ and B.
The sets A(c) and B(c) are non-empty. Then, there exist a letter a ∈ A(c) ∩ A+

and a letter b ∈ B(c) ∩ B+ having infinitely many occurrences in y and z, with

growth type (d
′

, α
′

) ≤ (d, α) and (e
′

, β
′

) ≤ (e, β), respectively, where (d
′

, α
′

) and

(e
′

, β
′

) are maximal with respect to A(c) and B(c).
Because M(N, y, φ−1({0})) = M(N, z, ψ−1({0})), from Proposition 21 we deduce
that we have necessarily one of the following five situations:

(5.6)























(α′, d′) = (α, d) and (β′, e′) = (β, e);
α = α′ > 1, β′ = β and d− d′ = e− e′;
α > α′ > 1 and β > β′ > 1;
α > α′ = 1 and β > β′ = 1;
α = α′ = 1, d′ < d and β = β′ = 1, e′ < e.
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We will consider these cases separately. Before we establish some general facts that
will be used in the treatment of these cases.
Let w = w0 · · ·wn be a word belonging to L(y) (resp. L(z)), we call gap(w) the
largest integer k such that there exists i ∈ [0, n− k + 1] for which the letter c does
not appear in φ(wi · · ·wi+k−1) (resp. in ψ(wi · · ·wi+k−1)).
The next lemma is stated for σ but of course it also holds for τ . Moreover we can
assume the constant K ′ is the same for the two substitutions.

Lemma 23. With notation introduced before, there exists a constant K
′

such that
for all a′′ ∈ A we have:

gap(σn(a′′)) ≤ K
′

nd′

α
′n

if α′ > 1 and

gap(σn(a′′)) ≤ K
′

nd′+1 if α′ = 1

for all n ∈ N.

Proof. It suffices to proceed as we did before to obtain (5.4) and then (5.5). �

From Lemma 9, the following limits exist and are finite and they deserve specific
notation

lim
n→+∞

|σn(a)|

nd′α′n
=: µ(a) and lim

n→+∞

|τn(b)|

ne′β′n
=: µ(b).

5.3. Some choices when α, β > 1. Here we suppose that the set Ω of Corollary
20 is dense in R+. There exist infinitely many prefixes of y (resp. z) of the type
u1au2a

′ (resp. v1bv2b
′) fulfilling the conditions ı) and ıı) below:

ı) The growth type of u1 ∈ A∗ and a′ ∈ A (resp. v1 ∈ B∗ and b′ ∈ B) is maximal
(Lemma 9 allows such a configuration).
ıı) The word u2 (resp. v2) does not contain a letter of maximal growth.

We notice this is not the case when the growth type is (d, 1) because in this case
there is exactly one letter of growth type (d, 1) and it appears exactly once in the
fixed point: this is the first letter of the fixed point.
Let u1au2a

′ be a prefix of y and v1bv2b
′ be a prefix of z fulfilling the conditions ı)

and ıı).
From Corollary 20 there exist four strictly increasing sequences of integers (mi)∈N,
(ni)∈N, (pi)∈N and (qi)∈N such that

lim
i→+∞

nd
iα

ni

me
iβ

mi
=

2λτ (v1)

2λσ(u1) + 2λσ(a) + λσ(a′)
=: γ1 and(5.7)

lim
i→+∞

peiβ
pi

qdi α
qi

=
2λσ(u1)

2λτ (v1) + 2λτ (b) + λτ (b′)
=: γ2.(5.8)

As a consequence of (5.7) and (5.8), we have

(5.9) lim
i→+∞

ni

mi
=

log β

logα
and lim

i→+∞

pi
qi

=
logα

log β
.

The sequence z has infinitely many occurrences of letters of maximal growth. Hence,
in this case, we can take v1 so long that
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2K ′(2γ2)
log α′

log α

µ(a)
·

(

logα

log β

)e
′

−e log α′

log α

< 1.(5.10)

Using Lemma 11 there exists i0 such that for all i ≥ i0 we have

|σni(u1au2)|

|τmi(v1)|
≤ 1 ≤

|σni(u1au2a
′)|

|τmi(v1bv2)|
and(5.11)

|τpi(v1bv2)|

|σqi (u1)|
≤ 1 ≤

|τpi (v1bv2b
′)|

|σqi(u1au2)|
.(5.12)

It comes that the word ψ(τmi (bv2)) (resp. φ(σqi (au2))) has an occurrence in
φ(σni(a′)) (resp. ψ(τpi (b′))). To obtain a contradiction it suffices to have some
j ≥ i0 such that gap(σnj (a′))/gap(τmj (b)) < 1 or gap(τpj (b′))/gap(σqj (a)) < 1.
We observe that gap(τmj (b)) = |τmj (b)| and gap(σqj (a)) = |σqj (a)|. We set Sj =
gap(σnj (a′))/|τmj (b)| and Tj = gap(τpj (b′))/|σqj (a)|. Then,

it suffices to find some j with Sj < 1 or Tj < 1.(5.13)

We have

Si ≤
K ′nd′

i α
′ni

µ(b)me′
i β

′mi
·
µ(b)me′

i β
′mi

|τmi (b)|
≤

2K ′

µ(b)
·
nd′

i (αni)
log α′

log α

me′
i β

′mi
(5.14)

≤
2K ′

µ(b)
·

nd′

i

me′
i β

′mi
·

(

2γ1
me

iβ
mi

nd
i

)
log α′

log α

(5.15)

≤
2K ′(2γ1)

log α′

log α

µ(b)
·
n
d
′

−d log α′

log α

i

m
e′−e log α′

log α

i

· exp

(

mi

(

logα′

logα
log β − log β′

))

(5.16)

and, with the same kind of computations

Ti ≤
K ′pe

′

i β
′pi

µ(a)qd
′

i α
′qi ·

µ(a)qd
′

i α
′qi

|σqi(a)|
≤

2K ′

µ(a)
·

pe
′

i β
′pi

qd
′

i (αqi )
log α′

log α

(5.17)

=
2K ′(2γ2)

log α′

log α

µ(a)
·
p
e
′

−e log α′

log α

i

q
d′−d log α′

log α

i

· exp

(

pi

(

log β′ −
logα′

logα
log β

))

.(5.18)

5.4. Remarks when α and β are multiplicatively independent. In this case
we necessarily have α > 1 and β > 1. There exists K ≥ 2 and j0 such that for all
i ≥ j0 we have

1

K
≤

ni

mi
≤ K,

1

K
≤
pi
qi

≤ K,

nd
iα

ni

me
iβ

mi
≤ 2γ1,

peiβ
pi

qdi α
qi

≤ 2γ2,

µ(a)qd
′

i α
′qi

|σqi(a)|
≤ 2,

µ(b)me′

i β
′mi

|τmi(b)|
≤ 2.
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In the sequel we intensively use the previous inequalities and Lemma 23. We can
now proceed to a case study. In view of the hypothesis of Theorem 17, we will not
consider the last case occurring in (5.6). Subsections 5.5 to 5.8 correspond to these
first four cases.

5.5. (α′, d′) = (α, d) and (β′, e′) = (β, e) . We necessarily have α, β > 1. From

(5.18) we get

Ti ≤
4γ2K

′

µ(a)

and we conclude using (5.10) and the argument (5.13).

5.6. α′ = α > 1, d′ < d, and β′ = β > 1, e′ < e . From Proposition 21, it comes

that d− d′ = e− e′.

5.6.1. α and β are multiplicatively independent. From (5.17) and (5.9) we have

Ti ≤
4γ2K

′

µ(a)

pe
′−e

i

qd
′−d

i

=
4γ2K

′

µ(a)

(

pi
qi

)e′−e

−→
4γ2K

′

µ(a)

(

logα

log β

)e′−e

< 1.

Using (5.10) we obtain Ti is strictly smaller than 1 for some large enough i. We
conclude with the argument (5.13).

5.6.2. α and β are multiplicatively dependent. We can suppose α = β. From the
hypothesis, we necessarily have d 6= e. From (5.17) and for i ≥ j0 we have:

Ti ≤
4γ2K

′

µ(a)

(

pi
qi

)e′−e

.

From (5.9) we observe that limi→∞ pi/qi = 1. We conclude using (5.10).

5.7. α > α′ > 1 and β > β′ > 1 . From Proposition 21, we necessarily have

logα′

logα
=

log β′

log β
and e′ − e

logα′

logα
= d′ − d

logα′

logα
.

5.7.1. α and β multiplicatively independent. From (5.18) and (5.9) we have:

Ti ≤
2K ′(2γ2)

log α′

log α

µ(a)
·

(

pi
qi

)e′−e log α′

log α

−→
2K ′(2γ2)

log α′

log α

µ(a)
·

(

logα

log β

)e′−e log α′

log α

which is, from (5.10), strictly smaller than 1 for large enough i.

5.7.2. α and β are multiplicatively dependent. We can suppose α = β. We neces-
sarily have d 6= e. It suffices to proceed as in the paragraph 5.6.2.

5.8. α > α′ = 1 and β > β′ = 1 . From Proposition 21 we obtain that e′ − d′ ≤ 1

and d′ − e′ ≤ 1, hence |d′ − e′| ≤ 1.
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5.8.1. α and β are multiplicatively independent. From (5.14) and (5.17) and for
i ≥ j0 we have:

Si ≤
K ′

µ(b)

nd′

i

me′
i

and Ti ≤
K ′

µ(a)

pe
′

i

qd
′

i

.

a) Suppose |e′ − d′| = 1. From (5.9) we deduce that either (Ti)i∈N or (Si)i∈N tends
to 0 for i tending to infinity.
b) Suppose e′ = d′. In this case for i sufficiently large we have

Ti ≤
K ′

µ(a)

(

pi
qi

)e′

≤
2K ′

µ(a)

(

logα

log β

)e′

.

We conclude using (5.10).

5.8.2. α and β multiplicatively dependent. W.l.o.g. we suppose α = β. We neces-
sarily have α = β > 1 and d 6= e. From Proposition 21, we obtain |d′ − e′| ≤ 1.

a) Suppose e′ = d′. From (5.17) and for i ≥ j0 we have:

Ti ≤
2K ′

µ(a)

(

pi
qi

)e′

.

But, from (5.9) we know (pi/qi)i tends to 1. We conclude using (5.10).

b) d′ = e′ + 1. From (5.17) and for i ≥ j0 we have:

Ti ≤
2K ′

µ(a)

pe
′

i

qe
′+1

i

.

Using (5.9) (Ti) clearly goes to 0.

c) e′ = d′ + 1. It can be treated as the case b).

5.9. Consequence for the words and application to abstract numeration

systems. In the previous section we proved under the assumptions of Theorem 17
that the letters having infinitely many occurrences in x appear in x with bounded
gaps. In this section we deduce that the same result holds not only for letters but
also for words.
Consequently, we obtain an analogue of Cobham’s theorem for one substitution of
polynomial growth (the other being exponential). Theorem 26 combined with the
main theorem of [Du1] leads therefore to an extended version of Cobham’s theorem.
This latter result expressed in terms of subsitutions can easily be translated into
the formalism of abstract numeration systems (see Corollary 27 and Remark 28).

Corollary 24. Under the assumptions of Theorem 17, the words having infinitely
many occurrences in x appear in x with bounded gaps.

Proof. The proof is essentially the same as in [Du1]. Let u be a word having
infinitely many occurrences in x. We set |u| = n. To prove that u appears with
bounded gaps in x it suffices to prove that the letter 1 appears with bounded gaps
in the sequence t ∈ {0, 1}N defined by

ti = 1, if x[i,i+n−1] = u;

and 0 otherwise.
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The sequence y(n) = ((yi · · · yi+n−1); i ∈ N) is a fixed point of the substitution
σn : An → A∗

n where An is the alphabet An, defined for all (a1 · · · an) in An by

σn((a1 · · · an)) = (b1 · · · bn)(b2 · · · bn+1) · · · (b|σ(a1)| · · · b|σ(a1)|+n−1)

where σ(a1 · · · an) = b1 · · · bk (for more details see Section V.4 in [Qu] for example).
Let ρ : An → A∗ be the letter-to-letter morphism defined by ρ((b1 · · · bn)) = b1 for
all (b1 · · · bn) ∈ An. We have ρ ◦σn = σ ◦ ρ, and then ρ ◦σk

n = σk ◦ ρ. σ is of growth
type (α, d) then y(n) is (α, d)-substitutive.
Let f : An → {0, 1} be the letter-to-letter morphism defined by

f((b1 · · · bn)) = 1 if b1 · · · bn = u and 0 otherwise.

It is easy to see that f(y(n)) = t hence t is (α, d)-substitutive. We proceed in the
same way with τ and Theorem 17 concludes the proof. �

Lemma 25. [Pa, Théorème 4.1] Let x be a proper fixed point of a substitution
σ : A→ A∗. Let B be the set of non-growing letters of A. If in x occur arbitrarily
long words belonging to B∗, then there exists a growing letter a ∈ A and i ∈ N such
that σi(a) = vau (or uav) with u ∈ B \ {ǫ}.

Theorem 26. Let x ∈ CN being both (d, α)-substitutive and (e, β)-substitutive for
two substitutions satisfying the point (3) of the hypothesis of Theorem 17. Then x
is ultimately periodic.

Proof. From Theorem 24 we know that the words appearing infinitely many times
in x occur with bounded gaps in x. Suppose β = 1 and let z be the fixed point of τ
that projects onto x. The substitution τ being polynomial one can prove that there
exists a word u for which un occurs in z for all n (for the sake of completeness, we
recall Lemma 25). We assume there is no shorter word having this property. Then
using the arguments of Theorem 18 in [Du1] we achieve the proof. �

Corollary 27. Let S = (L,Σ, <) (resp. T = (M,Γ,≺)) be an abstract numeration
system where L is a polynomial regular language (resp. M is an exponential regular
language). If a set X of integers is both S-recognizable and T -recognizable, then X
is a finite union of arithmetic progressions.

Proof. This is a direct consequence of Theorem 26 and the discussion made in
subsection 4.4. �

Remark 28. If S = (L,Σ, <) and T = (M,Γ,≺) are abstract numeration systems
built on two exponential languages then a Cobham’s theorem holds with the same
assumptions as the ones considered in [Du1].

We address the following conjecture for which partial answers are given here and
in [Du1].

Conjecture 29. Let σ and τ be two independent substitutions having proper fixed
points mapped on the sequence x by letter-to-letter morphisms. Then x is ultimately
periodic.
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