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Universitat Politècnica de Catalunya∗

Abstract

For each value of k ≥ 2, we determine the number pn of ways of dissecting a polygon
in the projective plane into n subpolygons with k + 1 sides each. In particular, if k = 2
we recover a result of Edelman and Reiner (1997) on the number of triangulations of the
Möbius band having n labelled points on its boundary. We also solve the problem when
the polygon is dissected into subpolygons of arbitrary size. In each case, the associated
generating function

∑
pnzn is a rational function in z and the corresponding generating

function of plane polygon dissections. Finally, we obtain asymptotic estimates for the
number of dissections of various kinds, and determine probability limit laws for natural
parameters associated to triangulations and dissections.
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1 Introduction

Counting polygon dissections in the plane is a well studied problem, beginning with the classical
result of Euler that the number of triangulations of an (n + 2)-gon whose vertices are labelled
1, 2, . . . , n is the Catalan number Cn. The result can also be phrased in terms of triangulations
of a polygon in the sphere in which the diagonals are all of them either inside or outside the
polygon. The aim of this paper is to start a similar study in surfaces other than the sphere.

Let P denote the real projective plane, obtaining by adding a cross-cap to the sphere. We
fix a polygon Q in P, that is, a simple contractible closed curve, in which n points are labelled
1, 2, . . . , n circularly. By a triangulation of Q we mean a 2-cell decomposition of the outside of
Q into triangles using as vertices only the n labelled points, such that two intersecting triangles
meet only in a common vertex or in a common edge. In the sequel by a triangulation we mean
a triangulation of Q.

There are two possible ways of drawing Q and the cross-cap: either Q is drawn inside the
cross-cap and the edges of a triangulation are outside Q, or the cross-cap is drawn inside Q
and the edges of a triangulation are inside Q (see Figure 1). Throughout this paper we stick to
the second representation, that is, the non-boundary edges of a decomposition of Q are drawn
inside. For such an edge we have three possibilities: either it crosses the cross-cap, or it leaves
the cross-cap to the right or to the left. In principle there are many more possibilities, since an
edge can reenter the cross-cap several times, but from a combinatorial point of view there are
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only these three cases: the proof of this fact can be found in [2] and is based on the fact that
the fundamental group of the projective plane is cyclic of order two.
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Figure 1: Two representations of the unique triangulation of a pentagon in the projective plane.

More generally, we are interested in dissections into quadrangles, pentagons, and so on, and
in dissections into cells of any size. In each case we require that two cells of a dissection intersect
only at a vertex or at an edge. Since removing the interior of a simple closed contractible curve in
P we obtain a Möbius band, our problem is equivalent to that of dissecting a Möbius band, where
n points labelled 1, 2, . . . , n are placed in the boundary. The number of triangulations of the
Möbius band in this sense was first determined in [2]. We reprove the same result with a different
approach, using the symbolic method for handling generating functions [4]. We believe our proof
is more transparent and moreover this approach allows us to solve other related problems which
appear difficult to obtain using recurrence equations as in [2].

In Section 2 we present our derivation for computing the number of triangulations. In Section
3 we obtain the number of dissections into (k + 1)-gons for each value of k ≥ 2; the cases k = 3
an k = 4 are somehow exceptional and need a special treatment. And in Section 4 we compute
the number of dissections into arbitrary cells. In each case our result gives a closed form for
the corresponding generating function (GF for short), which is always a rational function of the
independent variable z and the corresponding GF of plane polygon dissections.

In Section 5 we obtain precise asymptotic estimates for the numbers of polygon dissections
of various kinds. Finally, in Section 6 we derive limit laws for two parameters of interest: the
number of cyclic triangles (to be defined later on) in triangulations; and the number of cells in
arbitrary polygon dissections. In the second case we obtain a classical normal law, whereas in
the first case the limit law is the absolute value of a normal law.

For more general surfaces it is possible to obtain the asymptotic number of simplicial trian-
gulations depending on the genus and the number of components of the boundary [1]. The case
of arbitrary maps was treated in [5], which contains many interesting results.

Acknowledgements We are very grateful to Michael Drmota for showing us the proof of
Theorem 6.3, to Anna de Mier for useful comments, and to the referee for pointing out refer-
ence [6].

Note added. After this paper was submitted for publication, we have learned of an unpub-
lished preprint [6] which contains a proof of Theorem 2.1 very similar to ours. It also contains
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an estimate for the expected value of the random variable discussed in Section 6.1 in agreement
with ours.

1.1 Preliminaries

First notice that in a triangulation τ the number of triangles equals the number of vertices. This
follows from Euler’s formula

v − e + f = 1

for a 2-cell decomposition of the projective plane and double counting incidences between edges
and faces. More generally, in a dissection into (k + 1)-gons, the number of vertices is (k − 1)n,
where n is the number of (k + 1)-gons. Finally, in an arbitrary dissection, the number of cells is
equal to the number of internal edges.

The generating function C(z) of plane triangulations of a polygon whose vertices are labelled
1, 2, . . . , n circularly, where z marks a triangle, is the GF of Catalan numbers and satisfies

C = 1 + zC2.

Similarly, if z marks a (k+1)-gon, the generating function L(z) of plane dissections into (k+1)-
gons satisfies

L = 1 + zLk

and

[zn]L(z) =
1

(k − 1)n + 1

(
kn

n

)

Finally, the bivariate generating function D(z) of plane dissections of a polygon, where z now
marks a vertex of the polygon to be dissected and u marks a region, satisfies

(1 + u)D2 − z(1 + z)D + z3 = 0. (1)

See, for instance, [3] for a simple proof.

2 Triangulations

In this section we recover a result from [2]. Our approach is similar but we deal directly with
the generating functions involved, thus avoiding working with recurrence relations with one and
two indices. The purpose of including a new proof is to exemplify in a simple case the tools we
use in later sections.

The expression for the GF P (z) obtained in [2] is written differently from ours but it can
be checked they are in fact the same. The sequence 1, 14, 113, 720, . . . counting triangulations is
A007817 in the On-Line Encyclopedia of Integer Sequences.

Theorem 2.1 Let pn be the number of triangulations of a polygon with n vertices in the pro-
jective plane, and let C(z) be the generating function for the Catalan numbers. Then

P (z) =
∑

n≥5

pnzn =
(2− 9z + 6z2 + 7z3 − 2z4)C(z)− (2− 7z + z2 + 5z3)

z(1− 4z)

= z5 + 14z6 + 113z7 + 720z8 + 4033z9 + · · ·
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Proof. Let τ be a triangulation of an n-gon, and let 12x be the unique triangle of τ that contains
the side 12 of the polygon. In principle this triangle can appear as a very involved closed curve
in the projective plane, but in fact there are only three possibilities from a combinatorial point of
view, as shown in Figure 2; the proof that this is indeed the case is again based on the fact that
the fundamental group of the projective plane is cyclic of order two. This implies the following
equation

P (z) = z (2C(z)P (z) + T (z)) ,

where T (z) is the GF associated to triangulations of the region T indicated in Figure 2, C(z)
is the GF of plane triangulations, and the factor z takes account of the root polygon. Thus we
have

P (z) =
zT (z)

1− 2zC(z)
, (2)

and it only remains to compute T (z).

T

2 1

xx

P

C

2 1

x

PC

2 1

Figure 2: Three cases for the root polygon 12x, shown shaded.

By a “cut and paste” argument, it is clear that region T is homeomorphic to a polygon with
n + 1 vertices (if there are n vertices in region T ) in which two vertices labelled x are identified.
For triangulating T it is necessary that in the arc between vertex 1 and the non-adjacent copy of
vertex x there is at least one vertex, and similarly in the arc between vertex 2 and the other copy
of x (see Figure 3), since otherwise we cannot triangulate the polygon in a way compatible with
the root triangle 12x. It follows that region T must contain at least 6 vertices or, equivalently,
4 triangles are needed for triangulating it.

x

x 1

2x

x 1

2 x

x 1

2

Figure 3: The first case can be extended to a valid triangulation; in the two other cases, any
triangulation would not be compatible with the root triangle 12x.

We must find the number of plane triangulations of an (n + 1)-gon in which two points are
identified that give rise to compatible triangulations with the root triangle 12x in the projective
plane. To this end, we compute the total number of triangulations and subtract, using the
principle of inclusion-exclusion, a complete set of forbidden configurations.
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Let Cr = C −∑r−1
i=0 ciz

i be the GF of plane triangulations with at least r triangles; observe
that Cr is just a truncation of the Catalan series C(z). The total number of triangulations
of region T is counted by C4 (as noticed before, we need at least four triangles), modified in
order to mark the double vertex x. Another way to put it is the following: we have to split
n− 3 = (n + 1)− 4 points between the arcs 1̂x and 2̂x in such a way that there is at least one
point in each arc, and this can be done in n− 3 different ways. Hence the associated generating
function is Θ(C4)− 3C4, where Θ(f(z)) = zf ′(z) is the “pointing” operator.
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Figure 4: From left to right: forbidden configurations, pairwise intersections and triple-wise
intersections.

On the other hand, the forbidden configurations are those shown on the left of Figure 4:
edges 12, 1x, 2x and xx cannot be used, since either of them gives rise to a triangle sharing
exactly two vertices with the root polygon; and no point y can be joined to both copies of x,
since we would have two triangles sharing only vertices x and y.

The pairwise intersections of these configurations are shown in the middle of the figure, and
finally the triple-wise intersections are on the right of the figure. The GFs associated to each
configuration are computed easily: for instance, the presence of edge xx (first configuration)
leaves us with two triangulations with at least two triangles each, hence the term C2

2 . Similarly,
when there is a triangle we add a factor z, and where there is a quadrangle we add a factor
2z2 (there are two ways of triangulating a quadrangle). Applying symbolically the principle of
inclusion-exclusion, we arrive at

T = Θ(C4)− 3C4

− (
2C2

2 + 2(1 + C0)C1C3

)

+
(
2z(2 + C0)C1C2 + 2z2C2

1 (1 + C0)2
)

− (
z2C2

1 + z2C2
1 (1 + C0)2

)
.

A simple calculation, together with Equation (2) and the fact that C ′(z) = C(z)2(1−2zC(z))−1,
gives the result as claimed. 2

3 Dissections into r-gons

In this section we study cellular dissections (or decompositions) of a polygon in the projective
plane where all the cells are r-polygons, i.e., polygons with r edges; we call such a decomposition
simply an r-dissection. The case of triangulations (3-polygons) has been treated in the previous
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section. For r-dissections the essence is the same: we find a combinatorial encoding of the cellular
decompositions, we compute generating functions associated to dissections of some particular
regions, we single out forbidden configurations, and we put everything together to obtain the
desired generating function.

Let k > 2 be an arbitrary but fixed integer. We use the same notation as in the case of
triangulations: P is the generating function of projective (k + 1)-dissections, L =

∑
n≥0 lnzn

the GF of planar (k +1)-dissections and Ls =
∑

n≥s lnzn, the truncation of L of order s. Recall
that L satisfies L = 1 + zLk, where z marks a cell in the dissection. As opposed to the case
of triangulations, in a (k + 1)-dissection the number of vertices cannot be arbitrary; it must be
of the form (k − 1)n, where n is the number of cells in the dissection. It is necessary also that
n ≥ 3.

Theorem 3.1 Let k > 4 be fixed. Let pn be the number of dissections into n (k + 1)-gons of
a polygon with (k − 1)n vertices in the projective plane, and let L(z) be the generating function
for plane dissections into (k + 1)-gons, which satisfies L = 1 + zLk. Then

P (z) =
∑

n≥3

pnzn =
(k − 1)(L− 1)α

2L3(L− kL + k)2
,

where

α =
(
4 k3 − 12 k2 + 12 k − 4

)
L6 +

(−14 k3 + 46 k2 − 38 k + 6
)
L5 +

(
18 k3 − 72 k2 + 42 k

)
L4

+
(
(k3 − 6k2 + 5k)z + (−10k3 + 68k2 − 25k − 4)

)
L3

+
(
(−k3 + 5k2)z + (2k3 − 47k2 + 9k + 4)

)
L2 +

(
21 k2 + 2 k − 2

)
L− (4k2 + 2k).

For k = 3 and L = 1 + zL3 we have

P (z) =
(128z2 − 216z + 32)L2 + (−105z2 + 263z − 32)L + (18z2 − 79z)

4− 27z

= z3 + 25 z4 + 348 z5 + 3703 z6 + 34240 z7 + 291485 z8 + 2353422 z9 + · · ·
and for k = 4 and L = 1 + zL4 we have

P (z) = 3
(316z2 − 84z)L3 + (80z2 + 1454z − 162)L2 + (−64z2 − 2574z + 261)L + (1267z − 99)

256z − 27
= 12 z3 + 336 z4 + 5499 z5 + 73302 z6 + 880548 z7 + 9951336 z8 + 108136104 z9 + · · ·

Proof. Let γ be a dissection into (k + 1)-gons. As in the case of triangulations, we fix the
(k + 1)-polygon in γ which has the edge 12 as the root, and consider the possible ways in which
this polygon crosses the cross-cap. In Figure 5 we show the basic cases for 4-dissections: for
instance, in the first picture, the cross-cap could be instead on the left or right white region;
and in the third picture, the “leg” to the right of the cross-cap could be instead to the left. The
combinatorial definition of region T is the same as in the case of triangulations. Region S is
similar but now there are no repeated points.

This gives the equation

P = z

(
kPLk−1 + (k − 1)Lk−2T +

(
k − 1

2

)
SLk−2

)
,

where S and T stand for the GFs associated to the number of compatible dissections of regions S
and T , respectively. The term kPLk−1 arises because there are k slots for placing the cross-cap;
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Figure 5: Different combinatorial cases for 4-dissections.

the term (k − 1)Lk−2T since there are k − 1 choices for x; and the last term because there are(
k−1
2

)
choices for x and y. As before, the factor z indicates the root polygon. Solving for P we

have

P =
zLk−2

(
2(k − 1)T + (k2 − 3k + 2)S

)

2(1− zkLk−1)
.

Hence in order to find P we must compute S and T . Denote by E the GF of planar
(k + 1)−dissections incompatible with the root polygon (we call them externally incompatible);
and by I the GF of planar (k + 1)−dissections which are compatible with the root polygon, but
internally incompatible because of the existence of a repeated point. Both E and I consist of
forbidden configurations.

The total number of possible (k+1)−dissections of S and T is counted by (k−1)Θ(L2)−3L2,
where Θ(f(z)) = zf ′(z). The argument is the same as in the case of triangulations, with two
differences:

1. We take L2 instead of C4 because now the minimum number of polygons needed to dissect
the projective plane is 3 instead of 5.

2. We consider the planar relation (k − 1)n + 2 = v, where v denotes the number of vertices
instead of n + 2 = v, the latter being a particular case when k = 2 (triangulations).

By construction, a forbidden dissection in S comes from an externally incompatible dissection,
so that

S = (k − 1)Θ(L2)− 3L2 − E.

In the case of T , a forbidden dissection comes from either an externally incompatible dissection
or an internally incompatible dissection, so that

T = (k − 1)Θ(L2)− 3L2 − E − I = S − I.

We first find the generating function for E. The possible forbidden configurations are those
shown in Figure 6, but there is an essential difference with Figure 4. The incompatibility with
the root polygon is produced if any of 2x, 1y, 12 or xy are either edges or diagonals of some cell.
A solid line indicates that it is an edge of some (k + 1)-polygon, and a dashed edge that it is a
diagonal; and otherwise it is neither an edge nor a diagonal. This means that the configurations
are mutually exclusive and there is no need in this case to apply inclusion-exclusion.

Some of the labels correspond in fact to several configurations. For instance, there are four
possibilities for U2, depending on whether the solid edge is 2x or 1y and wether the diagonal
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dashed edge is 12 or xy. The associated GFs are shown in Table 1, together with their multiplic-
ities, that is, the number of times we have to consider the configuration. For instance, the GF
for U2 is zL2

1L
k−2: z marks the cell c containing 12 as a diagonal; one factor L1 is for the cell

containing edge 2x and the point to the left; and the remaining factor L1L
k−2 accounts for the

cells arising from the remaining edges of cell c. The multiplicity is 4 since, as we have discussed,
there are four different possibilities.

2

1x

y

U0 U1 U2 U3

V1 V2 V3

W0 W1 W2 W3

2

x 1

y

Figure 6: Forbidden configurations for an external incompatible planar k-dissection. The labels
of the four marked points are shown on the left.

Configuration GF Multiplicity
U0 zL2

1 1
U1 zL1L

k−2 2
U2 zL2

1L
k−2 4

U3 zL3
1L

k−2 2
V1 z2L2k−2 2
V2 z2L1L

2k−2 4
V3 z2L2

1L
2k−2 2

W0 zLk−1 − z 1
W1 zL1L

k−1 4
W2 zL2

1L
k−1 2

W3 zL2
1L

k−1 2

Table 1: Generating functions and multiplicities of forbidden configurations.

In order to obtain E we only need to sum the corresponding terms. There are however some
exceptional cases depending on the value of k.

• k = 3, that is, we are considering dissections into quadrangles. In this case configurations
U1,W0,W1 cannot occur, since they imply the existence of a polygon with more than four
sides. Hence

E = U0 + 4U2 + 2U3 + 2V1 + 4V2 + 2V3 + 2W2 + 2W3.

• k = 4, In this case configurations U0 and W0 cannot occur, hence

E = 2U1 + 4U2 + 2U3 + 2V1 + 4V2 + 2V3 + 4W1 + 2W2 + 2W3.
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• k > 4. Configuration U0 does not occur, since it implies the existence of a quadrangle.
Hence

E = 2U1 + 4U2 + 2U3 + 2V1 + 4V2 + 2V3 + W0 + 4W1 + 2W2 + 2W3.

In all cases, the series S is a polynomial in z and the corresponding planar generating function L.
To obtain the GF associated to T , we need only to compute I. It corresponds to those

“decompositions” which are internally non-compatible; we use quotes to denote that in a planar
sense it is a cellular decomposition into (k+1)-polygons, but when we introduce a repeated point
it is not a cellular decomposition in the projective plane. A decomposition which is internally
non-compatible is a planar decomposition in which either:

• There are two polygons whose intersection is exactly the repeated point and an edge which
does not contain the repeated point. We denote them by X1, X2, X3.

• There are two polygons whose intersection consists of the repeated point and a second
point. We denote them by Y1, Y2.

X
1

x

x

X
3

x

x

Y
1

x

x

Y
2

x

x

X
2

x

x

Figure 7: Configurations internally incompatible for a planar k-decomposition with marked
points.

Configuration GF Multiplicity
X1 (k − 2)2z2L2k 1
X2 (k − 2)z2L2k−1L1 2
X3 z2L2k−2L2

1 1
Y1 (k − 2)(k − 1)z2L2kL1 2
Y2 (k − 1)z2L2k−1L2

1 2

Table 2: Forbidden configurations for a compatible planar k-decomposition.

These restrictions are summarized in Figure 7, and their respective GFs appear in Table 2,
together with their multiplicities. These configurations do not depend on the value of k, and we
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obtain
I = X1 + X2 + X3 + Y1 + Y2,

which is also a polynomial in z and L. Observe that the configurations in Figure 7 are disjoint
from the ones in Figure 6, so that there is no need for inclusion-exclusion.

Having computed both S and T , we can write down in an explicit way the generating function
P (z), and a routine computation using L = 1 + zLk for simplifying the final expressions proves
the claim. 2

4 Unrestricted dissections

In this section we consider dissections of a polygon in the projective plane into cells of any size
at least three. We count them according to the number of vertices and to the number of cells in
the dissection. Again we demand that two intersecting cells meet only in a common vertex or
in a common edge.

Theorem 4.1 Let pn,q be the number of dissections into m cells of a polygon with n vertices
in the projective plane, and let D(z, u) be the generating function for plane dissections, which
satisfies (1 + u)D2 − z(1 + z)D + z3 = 0. Then

P (z, u) =
∑

n≥5

pn,mumzn =
α + βD(z, u)

γ

= u5z5 + (u3 + 6u4 + 18u5 + 14u6)z6 + (7u3 + 56u4 + 182u5 + 245u6 + 113u7)z7 + · · ·

where

α = −z9 +
(
u2 + 9 u + 7

)
z8 +

(−5 u3 − 29 u2 − 43 u− 19
)
z7 +

(
5 u4 + 32 u3 + 73 u2 + 70 u + 24

)
z6

+
(−5 u4 − 25 u3 − 46 u2 − 37 u− 11

)
z5 +

(−u3 − 7 u2 − 11 u− 5
)
z4 +

(
7 u2 + 14 u + 7

)
z3

+(−2 u− 2) z2

β = (u + 1) z7 +
(−u3 − 9 u2 − 15 u− 7

)
z6 +

(
4 u4 + 26 u3 + 59 u2 + 56 u + 19

)
z5

+
(−2 u5 − 19 u4 − 65 u3 − 105 u2 − 81 u− 24

)
z4 +

(
7 u4 + 29 u3 + 48 u2 + 37 u + 11

)
z3

+
(
6 u3 + 17 u2 + 16 u + 5

)
z2 +

(−9 u2 − 16 u− 7
)
z + 2 u + 2

γ = u2z3
(−4 zu + z2 − 2 z + 1

)

Proof. Let D(z, u) =
∑

n dn(u)zn, where dn(u) is a polynomial of degree n− 1. As usual we set
Dr =

∑
i≥r di(u)zi. As a general rule it is convenient to work with D/z, since we work with

sequences of consecutive planar dissections, and each vertex is counted twice in the sequence.
Hence let C = D/z. As before S and T are the GFs of marked planar dissections without and
with a repeated point, respectively.

We fix the root polygon containing edge 12 and we argue as follows. Assume first the
root polygon r does not cross the cross-cap. If r has k edges, then it determines (k − 2)
planar dissections and one projective dissection, and there are k− 1 ways of choosing the region
containing the cross-cap. This contributes a term u(k − 1)PCk−2, where u marks the root
polygon. Summing up we obtain

uP
(
2C + 3C2 + 4C4 + . . .

)
= uP

2C − C2

(1− C)2
.
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If the cross-cap is crossed then we distinguish three kinds of edges in r: those found before
crossing the cross-cap, those found after first crossing the cross-cap, and finally those found after
crossing the cross-cap a second time. This decomposition gives rise to three sequences of planar
dissections, drawn as grey zones in Figure 8. Each grey zone must contain at least one vertex,
and those at the bottom of the first three pictures contain at least two vertices.

The final equation is

P = uP
2C − C2

(1− C)2
+

u

z

(
C

1− C
+ 2

(
C

1− C

)2

+
(

C

1− C

)3
)

S +
u

z

1
(1− C)2

T. (3)

The first term is the one obtained above. The second term corresponds to the three cases where
we have region S; and the final term to the case where we have region T . The series C/(1−C)
is the GF for a non-empty sequence of planar dissections.

Solving for P , and recalling that C = D/z, we obtain

P =
uz (DS + zT −DT )

(D − z) (−(1 + u)D2 + 2(1 + u)zD − z2)
.

2 12 1 2 1 2 1

u u u u

S S

S T

Figure 8: Possible cases where the polygon crosses the cross-cap. The GF associated to the grey
zones is always (1−D/z)−1.

In order to compute S and T , we proceed as in the case of k-dissections. Define E and I as
in the previous section. We count the number of marked planar dissections and we subtract E
to obtain S or E + I to obtain T .

To count marked planar dissections we proceed as follows. If n is the number of vertices, we
have to distribute n − 4 points into two non-empty sets. This can be done in n − 5 ways; the
minimum number of vertices is 6, hence we must consider D6. As a conclusion, the corresponding
GF is Θ(D6)− 5D6. Then

S = Θ(D6)− 5D6 − E, T = Θ(D6)− 5D6 − E − I = S − I.

We consider the computation of S and T separately.

Computing S. In this case, we count marked planar dissections and subtract those which are
externally incompatible, that is, we only consider E.

To compute E we use again exclusion-inclusion. Basic configurations are shown in Figure 9,
and their combinatorial specification is shown in Table 3; the difference now is that a diagonal
can be either an edge of a face (which introduces the factor u) or a diagonal in a face (which
introduces the factor 1/u).

For instance, the GF associated to V0 must have four terms. In the case with edges bd and
bc (first row, first column in V0, Figure 9) the four possible configurations are those showed in
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0U V WU0 1 1V 0

a b

cd

Figure 9: Forbidden dissections for an external incompatible planar dissection.

Configuration GF Multiplicity
U0

1
z2 D3D5

(
1 + 1

u

)
2

U1
1
z2 D2

4

(
1 + 1

u

)
2

V0
u
z

(
1 + 1

u

)2
D3D4 4

V1 u
(
1 + 1

u

)2 (u + 2u2)D2
3 1

W0 u2
(
1 + 1

u

)3
D2

3 2

Table 3: Forbidden configurations for external incompatible planar dissections.

Figure 10. The corresponding GFs are, from left to right, u/z(D4D3), 1/z(D4D3), 1/z(D4D3)
and 1/(zu)(D4D3). In all cases we consider two planar dissections (D4 on the left and D3 on
the right) which can be pasted together using the diagonals bd and bc. There is always a term
z in the denominator because in all cases we are counting the point b twice. Adding these four
terms we obtain the expression in Table 3.

In conclusion, we obtain

S = Θ(D6)− 5D6 − E = Θ(D6)− 5D6 − 2U0 − 2U1 + 4V0 + V1 − 2W0. (4)

Computing T. In this case we have identified points, hence we count marked planar dissec-
tions and we subtract those which are externally and internally incompatible. The ones which
are externally incompatible where counted by S, and this has been done already. We must
compute now the number of internally incompatible dissections which are externally compatible

d

b

c

a

d

b

c

a

d

b

c

a

d

b

c

a

Figure 10: A particular case of external incompatible dissection. A continuous line denotes an
edge, and a dashed line denotes a diagonal.
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with the root polygon. We have

T = Θ(D6)− 5D6 − E − I = S − I.

To describe the possible internal incompatible configurations, we define three fundamental blocks
and show how to build from hem all possible forbidden configurations. See Figure 11, where
dashed lines must be taken either as edges or diagonals.

x

j j'

x

j j'

x

j j'
F0 F1

F2

Figure 11: Blocks used to construct all possible forbidden configurations.

Configuration GF
F0

1
z (u + 2 + 1

u )D2
3

F1 z(1 + u)D3

F2 uz3

Table 4: Translation of the previous configurations into generating functions.

Dissections that are internally incompatible appear because there is one point (denoted by
x) that is a vertex of two polygons in the dissection. Denote this two polygons by P1 and P2.
Because we are dealing with cellular decompositions, P1 ∩ P2 must be a cell. The existence of
the double point x produces internally incompatible configurations in two different ways:

1. The ones such that P1 ∩ P2 is {x, j}, where j is another vertex.

2. The ones such that P1 ∪ P2 = {x} ∪ {jj′}.
That is, P1 ∩ P2 can be the union of two points or the union of an edge and a third point, and
in either case it is not a cell. The two cases are shown in Figure 12, and the corresponding GFs
are shown in Table 5. In G0 and G1 a factor 2 appears because we can choose the point j in the
two sides of the polygon.

Configuration GF Multiplicity
F 1

z2 (F0 + F1)2 1
G0 (F0 + F1)2D3

1
z4 2

G1 (F0 + F1)(F1 + F2)D3
1
z4 2

Table 5: Translation of the previous configurations into GFs.

The final expression for S is
T = S − F −G0 −G1. (5)
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x

x
j'

j'

x

x

j
j'

j'

j

x

x

j j'

F G0
G1

Figure 12: Blocks used to construct all possible forbidden configurations.

It only remains to substitute (5) and (4) into (1), and a routine computation give the result as
claimed. 2

Notice that the sequence [ukzk]P (z, u) is precisely the sequence of triangulations obtained
before. This is because, for a fixed number of vertices, the dissections having a larger number
of cells are triangulations.

5 Asymptotic estimates

In this section we obtain precise asymptotic expressions for the number of polygon dissections
studied before. It turns out that they are invariably of the form

pn ∼ c · ρ−n,

where c is a constant, and ρ is the radius of convergence of the corresponding planar generating
function. In the planar case, it was shown in [3] that the estimates where always of the form
c · n−3/2ρ−n. Thus we can say that 0 is the universal exponent for dissections in the projective
plane, whereas in the plane it is −3/2.

In order to obtain estimates for coefficients of generating functions defined implicitly, we
follow [4, Ch. 5]. Let L(z) = zφ(L(z)), and assume that:

1. φ(0) 6= 0, φ′′(z) 6= 0.

2. φ(z) is analytic at z = 0, and has an expansion with positive coefficients.

3. Let R be the radius of convergence of φ. There exists a unique positive real solution
0 < τ < R of the equation φ(τ)− τφ′(τ) = 0.

Then the radius of convergence of L(z) is equal to ρ = τ/φ(τ), and he singular expansion of
L(z) at z = ρ is of the form

L(z) ∼ τ −
√

2φ(τ)
φ′′(τ)

(1− z/ρ)1/2 + O
(
(1− z/ρ)1/2

)
.

The generating functions we have obtained in the previous sections are all of the form

P (z) =
1

Q(z)

r∑

j=0

Pj(z)L(z)j ,

14



where Pj(z) and Q(z) are polynomials, L(z) is an algebraic function that verifies a relation of
the form L(z) = zφ(L(z)), and the smallest real root of Q(z) is precisely equal to the radius of
convergence of L(z). Hence, the singular expansion of P (z) at z = ρ is of the from

P (z) =
∞∑

j=r

aj (1− z/ρ)j/2
,

where the integer r (possibly negative) depends on the given generating function.
To make calculations easier, we set Z =

√
1− z/ρ and make a change of variables. Then we

expand the function that is obtained at Z = 0, obtaining a development of the form

P (Z) =
∞∑

j=s

ajZ
j ,

where the integer s can be a negative. In our case s is always equal to −2. Performing this
calculations for all types of dissections we have studied, we obtain the following singular expan-
sions:

• Triangulations: P (Z) ∼ 1
4Z−2 + O(Z−1)

• Quadrangulations: P (Z) ∼ 2
4Z−2 + O(Z−1)

• Decomposition into 5-gons: P (Z) ∼ 3
4Z−2 + O(Z−1)

• Decomposition into k-agons, k > 5: P (Z) ∼ k−1
4 Z−2 + O(Z−1)

• Dissections: P (Z) ∼ 1
4Z−2 + O(Z−1)

Observe that the constant term in the first four cases is k−1
4 . The corresponding result is

summarized in the following theorem.

Theorem 5.1 For fixed k ≥ 2, the number of dissections of a polygon in the projective plane
with (k − 1)n vertices into (k + 1)-gons is asymptotically

k − 1
4

(
kk

(k − 1)k−1

)n

.

Proof. Let L(z) be the solution of L = 1+zLk. The radius of convergence of L(z) is (k−1)k−1/kk.
This is a well-known result and is obtained by solving

Φ(y, z) = 0,
∂

∂y
Φ(y, z) = 0,

where Φ = y−zyk is the polynomial equation satisfied by L. The transfer theorems of singularity
analysis apply and we obtain the estimate as claimed. 2

Theorem 5.2 The number of dissections of a polygon in the projective plane with n vertices is
asymptotically

1
4

(
3 + 2

√
2
)n

.

Proof. The equation satisfied by the generating function D(z) of plane dissections is (just set
u = 1 in Equation (1))

2D2 − z(1 + z)D + z3.

The radius of convergence is 3− 2
√

2, and the result follows again by singularity analysis. 2

Table 6 summarizes the results in this section, together with the corresponding results for
plane dissections taken from [3].
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Class In the plane In the projective plane

Dissections into (k + 1)-gons
√

k
2π(k−1) n−3/2

(
(k−1)k−1

kk

)n
k−1
4

(
(k−1)k−1

kk

)n

Unrestricted dissections
√
−140+99

√
2

4
√

π
n−3/2(3 + 2

√
2)n 1

4 (3 + 2
√

2)n

Table 6: Asymptotic estimates for planar and projective-planar dissections.

6 Limit laws

There are two statistical parameters we study in this section: the number of “cyclic” triangles
in a triangulation (defined below), and the number of cells in an arbitrary polygon dissection.
In the first case we obtain as a limit the absolute value of a normal law with expected value of
order

√
n and variance of order n. In the second case we obtain a normal limit law with linear

expected value and variance.

6.1 Cyclic triangles in triangulations

Let τ be a polygon triangulation in the projective plane, and let τ∗ be the dual graph, whose
vertices are the triangles of τ and edges are pairs of triangles sharing a diagonal. Then τ∗ is
a connected unicyclic graph, that is a graph with a unique cycle. This is most easily seen by
considering τ as a triangulation of the Möbius band where the vertices are on the boundary:
the triangles corresponding to the unique cycle of τ∗ are those whose deletion disconnect the
Möbius band.

We say that a triangulation is cyclic if its dual graph is a cycle.

Lemma 6.1 The number sn of cyclic triangulations of a polygon with n vertices is equal to
2n−1 − n2 + 2n.

Proof. Let us analyze the proof of Theorem 2.1 and see how we can obtain a cyclic triangulation.
First of all, the unique triangle 12x containing edge 12 has to cross the cross-cap, otherwise there
would be non cyclic triangles. In the sequel we refer to the left picture in Figure 3, corresponding
to a valid triangulation. Notice that x varies between 4 and n− 1.

For a triangulation to be cyclic, all diagonals must join a point on the left with a point on the
right, forming a zigzag pattern. This can be done in

(
n−1
x−2

)
ways. However, we have to subtract

the configurations giving raise to a non valid triangulation. These are those containing one of
the edges 12, xx, (x−1)x or x(x+1). A simple computation shows that for each x there exactly
n forbidden configurations. The total number of cyclic triangulations is thus

sn =
n−3∑
x=4

(
n− 1
x− 2

)
− n(n− 4) = 2n−1 − n2 + 2n.

2

From the previous lemma it follows that the GF of cyclic triangulations is equal to

S(z) =
∑

n≥5

snzn =
z5

(
1 + 3z − 2z2

)

(1− 2z) (1− z)3
.

Given a triangulation τ , let α(τ) be the length of the unique cycle in τ∗. We are interested in
the distribution of the parameter α among all triangulations of size n. Let pn,k be the number
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of triangulations with n vertices and α = k, and let

P (z, u) =
∑

pn,kukzn.

Lemma 6.2 The generating functions P (z, u) and S(z) are related through the equation

u
∂

∂u
P (z, u) = z

∂

∂z
S(zuC(z)). (6)

Proof. Let τ be a triangulation and let σ be the union of all triangles in τ that belong to the
unique cycle of τ∗. Then σ is a cyclic triangulation of a polygon Q with k = α(τ) vertices, and
τ is obtained from σ by gluing planar triangulations to the boundary edges of Q.

Equation (6) expresses in two different ways the GF of triangulations with vertices labeled
1, 2, . . . , n in circular order and one cyclic triangle marked. In the left term the triangle is
marked by means of the ∂/∂u operator. In the right term, the triangle is marked using the ∂/∂z
operator. The substitution z → uzC(z) means that to the outer edge of each cyclic triangle we
glue a plane triangulation. 2

From this equation we obtain an alternative proof for the enumeration of triangulations of a
polygon in the projective plane. We must integrate the previous expression, taking care of the
initial conditions. The result is

P (z, u) =
(

1 +
zC ′(z)
C(z)

)
S(uzC(z)). (7)

The first terms are

P (z, u) = u5z5 + (6u5 + 8u6)z6 + (28u5 + 56u6 + 29u7)z7 + O(z8).

Setting u = 1, we recover the series for polygon triangulations in the projective plane.
Let Xn be the discrete random variable on the set of all triangulations of a polygon with n

vertices in the projective plane, defined by Xn(τ) = α(τ). Our next result gives the limit law
for the normalized variable Xn/

√
n. We denote by N (0, 1) the standard normal law with zero

mean and unit variance.

Theorem 6.3 Let Y =
√

2|Z|, where Z ∼ N (0, 1). Then Xn/
√

n → Y in distribution.

Proof. The proof is based on the method of moments. Let Yn = Xn/
√

n. We show that the
k-moments E(Y k

n ) converge to E(Y k) as n → ∞ for each k, and that Y is characterized by its
moments. It follows then that Yn converges in distribution to Y .

In order to compute moments from the generating function P (z, u), it is convenient to work
with the factorial moments E ((Xn)k) = E(Xn(Xn − 1)(Xn − 2) . . . (Xn − k + 1)). Using the
identity xk =

∑k
j=0 S(j, k)(x)j , where the S(j, k) are Stirling numbers of the second kind and

(x)j = x(x− 1) . . . (x− j + 1), it follows easily that E(Xk
n) ∼ E((Xn)k). Hence, it is enough to

compute the factorial moments.
The density probability function of Y is

f(u) =
1√
π

e−u2/4, u ≥ 0.

Hence the moments are

E(Y k) =
∫ ∞

0

f(u)ukdu =
2k

√
π

Γ
(

k + 1
2

)
< 2kk!.
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The latter inequality implies that the moment generating function E(etY ) has positive radius of
convergence, so that the distribution Y is determined by its moments (see, for instance, Theorem
5.7.12 in [7]).

Disregarding the terms in (7) which are analytic, we obtain that the singular expansion of
P (z, u) at (z, u) = (1/4, 1) is

P (z, u) ∼ 1
4

1√
1− 4z

1
1− u

(
1−√1− 4z

)

and from this it follows that

∑

n≥0

pnE((Xn)k) =
∂k

∂uk
P (z, u)

∣∣∣∣
u=1

∼ 1
4

k!
(1− 4z)1+k/2

.

Extracting coefficients and using singularity analysis we arrive at

pnE((Xn)k) ∼ 1
4

k!nk/2

Γ
(
1 + k

2

) 4n.

Using the estimate pn ∼ 4n−1 from Theorem 5.1, we obtain

E((Xn)k) ∼ k!nk/2

Γ
(
1 + k

2

) .

The same estimate holds for the ordinary moment E(Xk
n), since E(Xk

n) ∼ E((Xn)k). Finally,
using the multiplication formula Γ(k)Γ(k + 1/2) =

√
2π21/2−2kΓ(2k), the result follows. 2

A direct consequence of the previous result is the following.

Corollary 6.4 The first two moments of Xn are, asymptotically,

E(Xn) ∼ 2√
π

√
n,

σ2(Xn) ∼
(

2− 4
π

)
n.

Proof. These are cases k = 1 and k = 2 in the previous proof. 2

6.2 Cells in dissections

Let Xn be the number of cells in a dissection of a polygon in the projective plane with n vertices.
Intuitively, one should expect that Xn behaves very much like in the planar case, and this is
indeed true. The first term asymptotic term for the mean and variance is the same as for planar
dissections (see [3]). However, there is a difference in the second term. Taking additional terms
in the computations from the planar case in [3], the expected value is shown to be asymptotically

√
2

2
n−

(
3
√

2
4

− 1
8

)
+ O(n−1)

where one should notice that 3
√

2
4 − 1

8 is positive. If we compare it with the result in the next
theorem, we see that the expected number of cells in projective dissections is larger than in
plane projections just by an additive constant.
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Theorem 6.5 Xn is asymptotically normal and

E(Xn) ∼
√

2
2

n + A
1√
n

+ O(n−1), σ2(Xn) ∼
√

2
8

n + B
√

n + O(1),

where A = 1
16
√

π

√
4 + 3

√
2(1089

√
2− 1536) ≈ 0.4129,

and B = 1
128

√
π

√
4 + 3

√
2(3820

√
2− 6015) ≈ −7.7535.

Proof. From Theorem 4.1, the bivariate GF for dissections is

P (z, u) =
α + βD(z, u)

γ
,

where D(z, u) satisfies (1). Hence P (z, u) is an algebraic function and its defining equation can
be computed directly using resultants. If follows that P satisfies the quadratic equation

aP 2 + bP + c = 0

where

a = u2z6 − (
8 u3 + 4 u2

)
z5 +

(
16 u4 + 16 u3 + 6 u2

)

z4 − (
8 u3 + 4 u2

)
z3 + u2z2

b = z10 − (
u2 + 14 u + 10

)
z9 +

(
10 u3 + 79 u2 + 109 u + 43

)
z8 +

− (
32 u4 + 211 u3 + 423 u2 + 348 u + 103

)
z7 +(

32 u5 + 232 u4 + 648 u3 + 875 u2 + 574 u + 147
)
z6 +

− (
48 u5 + 272 u4 + 648 u3 + 790 u2 + 485 u + 119

)
z5 +(

32 u4 + 126 u3 + 186 u2 + 129 u + 35
)
z4 +

(
75 u3 + 146 u2 + 106 u + 27

)
z3

− (
72 u2 + 92 u + 32

)
z2 + (21 u + 13) z − 2

c =
(
u4 + u3

)
z9 − (

u6 + 9 u5 + 13 u4 + 3 u3
)
z8

+
(
4 u7 + 22 u6 + 36 u5 + 13 u4 + u3

)
z7 +

(
7 u6 + 23 u5 + 12 u4 + 2 u3

)
z6 + 2 z5u5

In order to compute the expected value and the variance it is enough (see [4]) to estimate
∂P (z, 1)/∂u and ∂2P (z, 1)/∂u2. Since we have an explicit expression for P (z, u), this can be
achieved by singularity analysis as in the previous section. The necessary singular expansions
are

∂P (z, u)
∂u

∣∣∣∣
u=1

=
√

2
8

Z−4 +
√

4 + 3
√

2
(
−23

8

√
2 +

61
16

)
Z−3 −

√
2

8
Z−2 + O(Z−1)

and

∂2P (z, u)
∂u2

∣∣∣∣
u=1

= 1
4Z−6 +

√
4 + 3

√
2

(
183
64

√
2− 69

16

)
Z−5 +

(− 3
8 − 3

32

√
2
)
Z−4 +

√
4 + 3

√
2

(− 587
128

√
2 + 4063

512

)
Z−3 + O(Z−2)

where Z =
√

1− z/ρ and ρ = 3− 2
√

2. Using singularity analysis we estimate the coefficient of
zn in the two series above, and find the asymptotics for n →∞. The computations are routine
using Maple. Together with Theorem 5.2, we obtain the result as claimed. 2
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