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Abstract

We adapt the classical 3-decomposition of any 2-connected graph to the case of
simple graphs (no loops or multiple edges). By analogy with the block-cutpoint tree
of a connected graph, we deduce from this decomposition a bicolored tree tc(g) asso-
ciated with any 2-connected graph g, whose white vertices are the 3-components of
g (3-connected components or polygons) and whose black vertices are bonds linking
together these 3-components, arising from separating pairs of vertices of g. Two
fundamental relationships on graphs and networks follow from this construction.
The first one is a dissymmetry theorem which leads to the expression of the class
B = B(F) of 2-connected graphs, all of whose 3-connected components belong to a
given class F of 3-connected graphs, in terms of various rootings of B. The second
one is a functional equation which characterizes the corresponding class R = R(F)
of two-pole networks all of whose 3-connected components are in F . All the root-
ings of B are then expressed in terms of F and R. There follow corresponding
identities for all the associated series, in particular the edge index series. Numerous
enumerative consequences are discussed.

1 Introduction

A graph is assumed to be simple, that is, with no loops or multiple edges. A graph G is
called k-connected if at least k of its vertices and their incident edges must be deleted to
disconnect it. In general, a k-connected graph is assumed to have more than k vertices.
However, by convention, the complete graph K2 will be considered as a 2-connected
graph. A connected graph G is planar if there exists a 2-cell embedding (i.e. each face is
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homeomorphic to an open disk) of G on the sphere, with similar definitions for toroidal
and projective-planar graphs.

A species is a class C of labelled combinatorial structures (for example, graphs or rooted
trees) which is closed under isomorphism. Each C-structure has an underlying set (for
example, the vertex set of a graph), and isomorphisms are obtained by relabelling along
bijections between the underlying sets. Unlabelled structures are defined as isomorphism
classes of structures. We sometimes denote a species by the name of representatives of the
isomorphism classes. For example, Kn is used to denote the species of complete graphs
on n vertices. One advantage of species is that very often combinatorial identities can
be expressed at this structural level, within the algebra of species and their operations
(sum, product, substitution and a special substitution, of networks for edges, etc.). There
follow corresponding identities for the various generating series that are used for labelled
and/or unlabelled enumeration. The reader is referred to the book [1] for more details on
species, their operations and associated series.

The two-pole networks that we use have distinguished poles 0 and 1 and are called
01-networks. A 01-network (or more simply a network) is defined as a connected graph
N with two distinguished vertices 0 and 1, such that the graph N ∪ 01 is 2-connected,
where the notation N ∪ ab is used for the graph obtained from N by adding the edge ab
if it is absent. See Figure 1 for an example. The vertices 0 and 1 are called the poles of
N , and all the other vertices of N are called internal vertices. The internal vertices of a
network form its underlying set. The trivial network, consisting of only the poles 0 and 1
and having no edges, is denoted by 11.

byx

z

1a

c

0

Figure 1: A 01-network

In this paper, we first adapt to the case of simple graphs the classical 3-decomposition
of 2-connected multigraphs (see Maclaine [12] Tutte [18, 19], Hopcroft and Tarjan [9]
and Cunningham and Edmonds [4]). By analogy with the block-cutpoint tree bc(c) of a
connected graph c, we deduce from this decomposition a bicolored tree tc(g) associated
with any 2-connected graph g, whose white vertices are the 3-components of g (3-connected
components or polygons) and whose black vertices are bonds linking together these 3-
components, arising from separating pairs of vertices of g, acting as hinges.

Two fundamental relationships on graphs and networks follow from this construction.
The first one is a dissymmetry theorem which leads to the expression of the class B = B(F)
of 2-connected graphs, all of whose 3-connected components belong to a given class F of
3-connected graphs in terms of various rootings of B. See Theorem 1 below. The second
one is a functional equation which characterizes the corresponding classR = R(F) of non-
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trivial 01-networks all of whose 3-connected components are in F . See Theorem 8. Note
that the 3-components of a network N are obtained by considering the 3-decomposition
of the graph N ∪ 01.

All the rootings of B are then expressible in terms of F and R and hence also B itself
by virtue of the dissymmetry theorem. Although more or less implicit in previous work
of one of the authors (see [21, 22]), these identities are given here for the first time in the
structural context of species. There follow corresponding identities for all the associated
series, in particular the edge index series, and numerous enumerative consequences are
obtained.

Among the examples that we have in mind and that will be discussed further in this
paper are the following:

1. If we take F = Fall, the class of all 3-connected graphs, then we have B(F) = Ball,
the class of all 2-connected graphs, and R(F ) = Rall, the class of all non-trivial
01-networks.

2. If we take F = 0, the empty species, then B and R are the classes of 2-connected
series-parallel graphs and of series-parallel networks, respectively.

3. One of the motivations for the present paper was to extend some earlier tables for
the number of K3,3-free projective planar and toroidal 2-connected graphs (see [7]),
which require the enumeration of strongly planar networks, that is of non-trivial
networks N such that the graph N ∪ 01 is planar. This class, denoted by NP , can
be obtained by considering the class F = FP of planar 3-connected graphs. Then
the corresponding species BP = B(FP ) is the class of planar 2-connected graphs,
since a graph is planar if and only if all its 3-connected components are planar, and
R(FP ) = NP , the class of strongly planar networks.

4. As quoted by Thomas (see [16], Theorem 1.2, page 1), Wagner [20] has shown that
a 2-connected graph is K3,3-free if and only if it can be obtained from planar graphs
and K5’s by means of 2-sums (see also Kelmans [11]). This means that if we take
F = FP +K5, then the corresponding B = B(F) is the class of K3,3-free 2-connected
graphs. This fact was also observed by Gimenez, Noy and Rué in [8].

Section 2 contains the dissymmetry theorem. Section 3 discusses various operations
on 01-networks, in particular series and parallel composition and the substitution of net-
works for edges in graphs or networks. It also presents the fundamental relationship
characterizing the species R = R(F) and the expressions of the various rootings of B
in terms of F and R. Applications to the labelled enumeration of these species are also
presented. Section 4 is devoted to the series techniques for species of graphs and networks
that are necessary for their unlabelled enumeration. These results are then applied to the
enumeration of several classes of graphs and networks in Section 5.
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2 A dissymmetry theorem for 2-connected graphs.

In the standard decomposition of a 2-connected multigraph (multiple edges allowed but no
loops) into 3-components (see [18, 19, 9] and [4]), the components are either 3-connected
graphs (here called 3-connected components), polygons with at least three sides, or bonds,
that is sets of at least 3 multiple edges.

g
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Figure 2: A 2-connected graph g

However, in the case of simple graphs, bonds are not needed as 3-components and the
decomposition is simpler. We illustrate the construction with the graph g of Figure 2.
By definition, a separating pair of a 2-connected graph g is a pair of vertices {x, y} whose
removal disconnects the graph. One can then in each resulting connected component
re-introduce the two vertices x and y together with their incident edges and the edge xy.

e
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f

Figure 3: The 3-decomposition of g

4



We also note whether the edge xy is present or not in the original graph g. This has
been done in Figure 3 for the separating pairs {a, b}, {c, d}, {c, f} and {e, f} and we see
the 3-components appearing: the 3-connected components A, B, and C, and the polygons
P , T and U . The above dissection could also be performed for the separating pairs {a, e}
or {c, e}, for example, but that would cut the polygon P into smaller polygons; so it is
not done since the maximality of the polygonal components ensures the unicity of the
decomposition. We refer the reader to the bibliography for more details. The essential
separating pairs of g, ({a, b}, {c, d}, {c, f} and {e, f} in the example) will be referred
to as the bonds of the 3-decomposition. Hence a bond {x, y} links together 2 or more
3-components, together with possibly the edge xy, with the exception of two polygons
alone which is forbidden.

By analogy with the block-cutpoint tree bc(c) of a connected graph c, we deduce from
this decomposition a bicolored tree tc(g) associated with any 2-connected graph g, whose
white vertices are the 3-components of g (3-connected components or polygons) and whose
black vertices are the separating pairs linking together these 3-components (the bonds).
See Figure 4.

ab
cf

cd

ef
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U

C

A

T

P

Figure 4: The tc-tree of g

Now let F be a given species of 3-connected graphs and B = BF be the class of 2-
connected graphs all of whose 3-connected components are in F . Note: by convention, K2

is in B. We introduce the following classes of rooted graphs in B, relative to the concept
of tc-tree:
B ◦ denotes the class of all graphs g ∈ B, rooted at a distinguished 3-component

(3-connected component or polygon);
B • denotes the class of all graphs g ∈ B together with a distinguished bond;
B ◦−• denotes the class of all graphs g ∈ B with a distinguished pair of adjacent

3-component and bond.

Theorem 1 (Dissymmetry Theorem for 2-connected graphs). Let F be a given
species of 3-connected graphs and B = BF be the class of 2-connected graphs all of whose
3-connected components are in F . We then have the following identity (species isomor-
phism):

B ◦ + B • = B − K2 + B ◦−• . (1)
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Proof. The proof uses the concept of center of a tree. Notice that all the leaves of a
tc-tree are of the same color (white). This implies that its center is a vertex, black or
white. Now a structure s belonging to the left-hand side of (1) is a graph g ∈ B which
is rooted at either a tricomponent or a bond of g, that is at a white or black vertex of
tc(g). It can happen that the rooting is performed right at the center. This is canonically
equivalent to doing nothing and is represented by the term B − K2 in the right-hand
side of (1). On the other hand, if the rooting is done at an off-center vertex, black or
white, then there is a unique adjacent vertex of the other color in tc(g) which is located
closer to the center, thus defining a unique B ◦−•-structure. It is easily checked that this
correspondence is bijective and independent of any labelling, giving the desired species
isomorphism.

Our next goal is to find closed form expressions for the species B ◦, B • and B ◦−•. This
will be achieved using the operation of substitution of 01-networks for the edges of core
graphs, as explained in the next section.

3 Operations on networks and their exponential gen-

erating functions.

We first describe the exponential generating functions which are used for the labelled
enumeration of graphs and networks and of related species, according to the number of
edges. For a species G of graphs the exponential generating function G(x, y), where the
variable y acts as an edge counter, is defined by

G(x, y) =
∑
n≥0

gn(y)
xn

n!
=
∑
n≥0

∑
m≥0

gn,my
mx

n

n!
, (2)

where gn,m is the number of graphs in G with m edges over a given n-element set of
vertices. Similar definitions can be given for associated (for example rooted) species of
graphs. For a species N of 01-networks, the exponential generating function N (x, y) is
defined by

N (x, y) =
∑
n≥0

νn(y)
xn

n!
=
∑
n≥0

∑
m≥0

νn,my
mx

n

n!
, (3)

where νn,m is the number of 01-networks in N with m edges over an n-element set of
internal vertices.

We define an operator τ acting on 01-networks, N 7−→ τ · N , that interchanges the
poles 0 and 1. A class N of networks is called symmetric if N ∈ N =⇒ τ ·N ∈ N .

If M is a species of networks not containing the edge 01, then we denote by yM
the class obtained by adding this edge to all the networks in M. Observe that there are
two distinct networks on the empty set, namely, the trivial network 11 consisting of two
isolated vertices 0 and 1, and the one-edge network y11.
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Let B be a given species of 2-connected graphs, for example B = Ball, the class of all
2-connected graphs, B = K2, or B = BP , the class of all 2-connected planar graphs. We
denote by B(y) the species of graphs obtained by selecting and removing an edge from
graphs in B in all possible ways. Note that the removed edge is remembered so that

B(y)(x, y) =
∂

∂y
B(x, y). (4)

If, moreover, the endpoints of the selected and removed edge are unlabelled and numbered
as 0 and 1, in all possible ways, the resulting class of networks is denoted by B0,1. For
example, (Ball)0,1 is the class of networks having non-adjacent poles, (K2)0,1 = 11, and the
class of strongly planar networks can be expressed as NP = (1 + y)(BP )0,1 − 11, where
the multiplication y · B0,1 corresponds to adding the edge 01 to all networks in B0,1. As
another example, (K5)0,1, is illustrated in Figure 11. Relabelling the two poles yields the
identity

x2B0,1(x, y) = 2B(y)(x, y) (5)

so that

B0,1(x, y) =
2

x2

∂

∂y
B(x, y). (6)

3.1 Series composition

Definition 2 a) Let M and N be two non-trivial disjoint networks. The series composi-
tion of M followed by N , denoted by M ·sN , is a vertex-rooted network whose underlying
set is the union of the underlying sets of M and N plus an extra element. It is obtained
by taking the graph union of M and N , where the 1-pole of M is identified with the
0-pole of N , and this connecting vertex is labelled by the extra element and is the root of
M ·s N . See Figure 5.
b) The underlying (unrooted) network of a series composition is called an s-network.
c) The series composition M·sN of two species of non-trivial networksM and N is the
class obtained by taking all series compositions M ·s N of networks with M ∈ M and
N ∈ N .

The speciesM·sN can be expressed as the species productMXN , where the factor X
corresponds to the connecting vertex, and we have

(M ·s N )(x, y) = xM(x, y)N (x, y). (7)

If for any M ·s N -structure the two components M ∈ M and N ∈ N are uniquely
determined by the resulting network (for example if no M ∈ M is an s-network), then
the series composition is called canonical and the rooting of the connecting vertex can be
neglected. We say that a species of networks R is closed under series composition and
decomposition if for any s-network R, R is in R if and only if each individual factor of R
is in R.
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Figure 5: Series composition of networks

Proposition 3 Let R be a species of networks which is closed under series composition
and decomposition and let S denote the class of s-networks in R. Then we have

S = (R− S) ·s R (8)

the series composition being canonical, and also

S =
XR2

1 +XR
. (9)

Proof . Any s-network in R can be decomposed uniquely into a first network which is
not an s-network followed by an arbitrary network of R, whence (8). We also have
S = (R− S)XR and solving for S yields (9).

Corollary 4 Under the hypothesis of Proposition 3, we have, for the exponential gener-
ating function,

S(x, y) =
xR2(x, y)

1 + xR(x, y)
. (10)

Remark. Iterating the idea behind the decomposition (8), one has the more symmetric
canonical decomposition

S = (R− S) ·s (R− S) + (R− S) ·s (R− S) ·s (R− S) + · · · . (11)

3.2 Parallel composition

Definition 5 a) Let N be a finite set of disjoint non-trivial 01-networks having non-
adjacent poles. The parallel composition of N is the partitioned 01-network obtained by
taking the union of the graphs in N , where all 0-poles are merged into one 0-pole, and
similarly for the 1-poles; the partition of the internal vertices into those of the networks
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of N is part of the structure. An example is given in Figure 6. By convention, the par-
allel composition of an empty set of networks is the trivial network 11, while the parallel
composition of one network is the network itself.
b) The underlying (unpartitioned) network of a parallel composition of at least two net-
works is called a p-network. Any network having adjacent poles is also considered as a
p-network.
c) If N is a species of non-trivial 01-networks having non-adjacent poles, then the par-
allel composition of N is defined as the class of all parallel compositions of finite sets of
disjoint networks in N . This operation is denoted by E(N ), the ordinary composition of
species, where E denotes the species of sets, since a parallel composition can be seen as
an assembly of networks, with all 0-poles identified and also all 1-poles. As mentioned
above, 11 = E0(N ) and N = E1(N ).

f

0 1d
0

1

0 1e

f

ba

0 c 1

a b

c
d

e

Figure 6: Parallel composition of networks

If each network in a class M can be viewed unambiguously as a parallel composition
of networks in N , then we say that the parallel composition is called canonical. This
happens if and only if none of the networks in N is a p-network. Then we can write
M = E(N ) and for the exponential generating functions, we have

M(x, y) = exp(N (x, y)). (12)

3.3 The ↑-composition (substitution of networks for edges)

Definition 6 LetM be a species of graphs (or networks) and N be a symmetric species
of non-trivial networks. We denote by T =M ↑ N the class of pairs (M,T ) such that

1. the graph (or network) M (called the core) is in M,

2. there exists a family {Ne} of networks in N (called the components) such that the
graph T can be obtained from M by substituting Ne for each edge e of M , the poles
of Ne being identified with the extremities of e.
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Figure 7: Example of a (M ↑ N )-structure (M,T ), with M = K4\e

An example of an (M ↑ N )-structure (M,T ) is presented in Figure 7, where M =
K4\e and N is the class of all networks. Notice that if the network Ne which is substituted
for the edge e = xy is not the one-edge network y11, then the pair of vertices {x, y} is a
separating pair of T .

As another example, take G = K2 and let N be any symmetric species of networks.
Then K2 ↑ N consists of rooted graphs obtained from networks in N by labelling the two
poles 0 and 1, the rooting being at this pair of vertices.

Proposition 7 Let M be a species of graphs (or networks) and N be any symmetric
species of non-trivial networks. Then we have, for the labelled enumeration,

(M ↑ N )(x, y) =M(x,N (x, y)). (13)

Proof . See [21] or [5].

The composition M ↑ N is called canonical if for any structure (M,T ) ∈M ↑ N the
core M ∈ M is uniquely determined by the graph (or network) T . In this case, we can
identify M ↑ N with the species of resulting graphs (or networks) T .

3.4 Functional equations

Let F be a species of 3-connected graphs and let B = BF (resp. R = RF) denote
the class of all 2-connected graphs (resp. non-trivial networks) all of whose 3-connected
components are in F , where the 3-components of a network N are defined by applying
the 3-decomposition to the graph N ∪ 01. Then

R = (1 + y)B0,1 − 11, (14)

where multiplication by y corresponds to adding the edge 01 to all networks in B0,1.
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One example of a non-canonical ↑-composition is given by F ↑ R which represents the
species of 2-connected graphs in B rooted at some 3-connected component. By contrast,
as stated in Theorem 8 below, any composition of the form F0,1 ↑ N is canonical.

Let S denote the subclass of R consisting of s-networks. By virtue of Proposition 3,
we have

S =
XR2

1 +XR
. (15)

Parts a) and b) of the next theorem can be seen as a species form of Trakhtenbrot’s
decomposition theorem [17] which was originally stated and proved for networks in which
parallel edges are allowed. See [21, 22] for a precise statement of Trakhtenbrot’s Theorem.
A proof in English is available from the fourth author on request.

Theorem 8 Let F be a species of 3-connected graphs and R = RF be the corresponding
class of 01-networks associated to F . Then:
a) For any (symmetric) species N of non-trivial networks, the composition F0,1 ↑ N is
canonical.
b) Let H denote the subclass of h-networks, defined by

H = F0,1 ↑ R. (16)

Then we have
R = S + P +H, (17)

where P denotes the subclass of p-networks of R (see Definition 5 b)), which satisfies

P = (1 + y)E≥2(H + S) + y(H + S) + y11. (18)

c) The species R is characterized by the functional relation

R = (1 + y)E(F0,1 ↑ R+
XR2

1 +XR
)− 11. (19)

Proof . As mentioned above, parts a) and b) are essentially a reformulation of Trakhten-
brot’s decomposition theorem for networks, where parallel edges are not allowed. Intu-
itively, for a), observe that in any F0,1-network M , the poles are non-adjacent. Hence, the
same will be true for any network T arising from a F0,1 ↑ N -structure (M,T ). Applying
the 3-decomposition of 2-connected graphs of Section 2 to the graph T ∪ 01, we can see
that there is a unique 3-connected component in T containing the vertices 0 and 1, namely
M itself.
For b), it is easy to see whether a network N having non-adjacent poles is an s-network
(the graph is not 2-connected) or a p-network (the poles form a separating pair) and,
otherwise, that N is in fact of the form F0,1 ↑ R, again using the 3-decomposition of
2-connected graphs. If the network has adjacent poles, then it must be of the form
y(11 +H + S + E≥2(H + S) = yE(H + S)) so that (17) and (18) are satisfied.
c) Putting (17) and (18) together, we find that

R = H + S + y11 + y(H + S) + (1 + y)E≥2(H + S)

= (1 + y)E(H + S)− 11 (20)
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and (19) follows from (20), (16) and (15).

We are now in position to express the three rootings B ◦, B • and B ◦−• of the species
B = BF associated with a given species of 3-connected graphs F , which occur in the
Dissymmetry Theorem for 2-connected graphs (Theorem 1), in terms of the corresponding
classR = RF of 01-networks. Let C denote the species of polygons, that is of (unoriented)
cycles of length ≥ 3.

Theorem 9 We have the following identities:

B ◦ = F ↑ R + C ↑ (R− S), (21)

B • = K2 ↑
(
(1 + y)E≥2(H + S)− E2(S)

)
(22)

= K2 ↑
(
R− (1 + y)(H + S)− y11− E2(S)

)
, (23)

B ◦−• = K2 ↑
(
(H + S)(R− y11)− S2

)
, (24)

where R is characterized by equation (19), S = XR2

1+XR and H = F0,1 ↑ R.

Proof . Recall that B ◦ denotes the class of all graphs g ∈ B rooted at a distinguished
3-component. If the distinguished component C is a 3-connected graph, then g is obtained
by replacing each edge of C by a network in R. Otherwise, C is a polygon and g will be
obtained by replacing each edge of C by a network in R−S, by virtue of the maximality
of polygonal 3-components. This establishes (21).

Also recall that the K2 ↑ operator transforms networks into rooted graphs by labelling
the two poles 0 and 1, the rooting being at this pair of vertices. Now B • denotes the
class of all graphs g ∈ B together with a distinguished bond. This separating pair {a, b}
decomposes g into two or more pieces which can be seen as either h-networks or s-networks.
This yields the term (1 + y)E≥2(H+ S), the factor (1 + y) accounting for the possibility
that the vertices a and b be adjacent. However, the case of a non-adjacent separating pair
joining two s-networks has to be excluded since this would imply decomposing a polygon
into two smaller ones, which is prohibited. Hence (22). Formula (23) then follows easily,
using (20).

The proof of (24) is similar, the difference being that now one of the separated com-
ponents is also distinguished. Details are left to the reader.

Corollary 10 (Explicit form of the Dissymmetry Theorem) Let F be a given spe-
cies of 3-connected graphs and B = BF be the species of 2-connected graphs all of whose
3-connected components are in F . Also let R = RF denote the corresponding species of
01-networks. We then have the following identity:

B = F ↑ R + C ↑ (R− S)

+K2 ↑
(
R− (H + S)(R+ 1)− E2(S) + S2

)
, (25)

where R is characterized by equation (19), S = XR2

1+XR and H = F0,1 ↑ R.
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4 Series techniques for the unlabelled enumeration

of graphs and networks

Traditionally, two generating series are used for the unlabelled enumeration of structures:
the ordinary (tilde) generating function and the cycle index series. These are now reviewed
in the context of graphs and networks where the number of vertices and the number of
edges are taken into account and where a variant of the cycle index series is necessary
when dealing with the ↑-composition, the substitution of networks for edges. This variant,
the edge index series, is introduced in [22] and called Walsh index series in [7]. Detailed
proofs of most of their main properties can be found in [7].

For a species M of (possibly rooted) graphs or networks, the ordinary (tilde) gener-

ating function M̃(x, y) =M (̃x, y) is defined as follows:

M̃(x, y) =
∑
n≥0

µ̃n(y)xn =
∑
n≥0

∑
m≥0

µ̃n,my
mxn, (26)

where µ̃n,m is the number of isomorphism classes of graphs (resp. networks) inM having
n vertices (resp. internal vertices) and m edges.

Let G be a species of graphs and let N be a species of networks. The three edge
index series WG(a; b; c), W+

N (a; b; c) and W−
N (a; b; c), in variables a = (a1, a2, . . .), b =

(b1, b2, . . .) and c = (c1, c2, . . .) are defined in what follows.
Let G = (V (G), E(G)) be a graph in G. A permutation σ of V (G) that is an au-

tomorphism of the graph G induces a permutation σ(2) of the set E(G) of edges whose
cycles are of two possible sorts: if c is a cycle of σ(2) of length l, then either σl(a) = a
and σl(b) = b for each edge e = ab of c (a cylindrical edge cycle), or else σl(a) = b
and σl(b) = a for each edge e = ab of c (a Möbius edge cycle). For example, the au-
tomorphism σ = (1, 2, 3, 4)(5, 6, 7, 8) of the graph of Figure 8 (i) induces the cylindrical
edge cycle (15, 26, 37, 48), and the automorphism σ = (1, 2, 3, 4, 5, 6, 7, 8) of the graph of
Figure 8 (ii) induces the Möbius edge cycle (15, 26, 37, 48).

1 3

4

5
6

8

1 3

4

5
6

7

8

2 2

7

i) ii)

Figure 8: (i) Cylindrical edge cycle, (ii) Möbius edge cycle.

For an automorphism σ ∈ Aut(G) of G, denote by σk the number of cycles of length k
of σ, by cylk(G, σ) the number of cylindrical edge cycles of length k, and by möbk(G, σ)
the number of Möbius edge cycles of length k induced by σ in G. Given a graph G ∈ G
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and an automorphism σ of G, the weight w(G, σ) of such a structure is the following cycle
index monomial:

w(G, σ) = aσ1
1 a

σ2
2 · · · b

cyl1(G,σ)
1 b

cyl2(G,σ)
2 · · · cmöb1(G,σ)

1 c
möb2(G,σ)
2 · · · . (27)

The edge index series WG(a; b; c) of G is defined as

WG(a; b; c) =
∑

G∈Typ(G)

1

|Aut(G)|
∑

σ∈Aut(G)

w(G, σ), (28)

where the notation G∈Typ(G) means that the summation should be taken over a set of
representatives G of the isomorphism classes of graphs in G.

Examples. 1. The edge index series of the species K2 is given by

WK2 =
1

2
(a2

1b1 + a2c1). (29)

2. The edge index series of the species Cn of (unoriented) cycles of length n is a refinement
of the usual cycle index polynomial for Cn. It is given by

WCn(a; b; c) =
1

2n

∑
d|n

φ(d)a
n
d
d b

n
d
d +

1

2

{
a1a

n−1
2

2 b
n−1

2
2 c1, n odd

1
2
(a

n
2
2 b

n−2
2

2 c21 + a2
1a

n−2
2

2 b
n
2
2 ), n even

(30)

where φ is the Euler φ-function. See [22] and [7] which contains a typo in formula (43).
By summing over n ≥ 3, we obtain the edge index series of C. The result is

WC =
1

2

∑
d≥1

φ(d)

d
log

1

1− adbd
− 1

2
a1b1 −

1

4
a2

1b
2
1 −

1

4
a2b2

+
1

4
(2a1c1 + a2c

2
1 + a2

1b2)
a2b2

1− a2b2
. (31)

Note that any isomorphism of networks ϕ : N−̃→N ′ is assumed to be pole-preserving,
i.e. ϕ(0) = 0 and ϕ(1) = 1. In particular, any automorphism of a network N should
be pole-preserving. It will be necessary to consider the subclass Nτ of N consisting of
τ -symmetric networks, i.e.

Nτ = {N ∈ N | τ ·N ' N}. (32)

Let U be the underlying set of a network N and suppose that σ is in S[U ], i.e. σ is
a permutation of U . We can extend σ to permutations on U ∪ {0, 1}, σ+ = (0)(1)σ and
σ− = (0, 1)σ; in other words, σ+ preserves the poles and σ− exchanges them. For any
network N ∈ N , denote by N̂ the corresponding graph on U ∪ {0, 1}. Then we introduce
the notation

Aut+(N) = {σ ∈ S[U ] | σ+ ∈ Aut(N̂)} (33)
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and
Aut−(N) = {σ ∈ S[U ] | σ− ∈ Aut(N̂)}. (34)

In other words, a σ+ in (33) is a pole-preserving graph automorphism, i.e. a network
automorphism, while a σ− in (34) is a pole-reversing graph automorphism. Notice that
Aut+(N) = Aut(N) and that if Aut−(N) is not empty, then |Aut−(N)| = |Aut+(N)|.
This can be seen by using the composition of automorphisms. For N ∈ N and σ ∈
Aut+(N), we assign the weight

w(N, σ) =
w(N̂ , σ+)

a2
1

, (35)

where the second w is defined by (27), and for N ∈ N and σ ∈ Aut−(N), we set

w(N, σ) =
w(N̂ , σ−)

a2

. (36)

In other words, only the internal vertex cycles are accounted for. Then, for a species N
of networks, the following two edge index series are defined by

W+
N (a; b; c) =

∑
N∈Typ(N )

1

|Aut+(N)|
∑

σ∈Aut+(N)

w(N, σ), (37)

W−
N (a; b; c) =

∑
N∈Typ(Nτ )

1

|Aut−(N)|
∑

σ∈Aut−(N)

w(N, σ). (38)

As the next proposition shows, the edge index series contain all the enumerative (la-
belled and unlabelled) information.

Proposition 11 ([7, 22]) Let G be a species of graphs and N be a species of networks.
Then the following series identities hold:

G(x, y) = WG(x, 0, 0, . . . ; y, y
2, y3, . . . ; y, y2, y3, . . .), (39)

G̃(x, y) = WG(x, x
2, x3, . . . ; y, y2, y3, . . . ; y, y2, y3, . . .), (40)

N (x, y) = W+
N (x, 0, 0, . . . ; y, y2, y3, . . . ; y, y2, y3, . . .), (41)

Ñ (x, y) = W+
N (x, x2, x3, . . . ; y, y2, y3, . . . ; y, y2, y3, . . .), (42)

Nτ (x, y) = W−
N (x, 0, 0, . . . ; y, y2, y3, . . . ; y, y2, y3, . . .), (43)

Ñτ (x, y) = W−
N (x, x2, x3, . . . ; y, y2, y3, . . . ; y, y2, y3, . . .). (44)

Another description of the edge index series is very useful for understanding them
and for establishing their properties. It consists of expressions which involve exponential
generating functions of labelled enumeration. These are recalled from Section 6 of [7].
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Following an idea of Joyal [10], we introduce the auxiliary weighted species Gaut = Gaut
w .

For any finite set U (of vertices), Gaut[U ] is defined as the set of graphs in G[U ] equipped
with an automorphism σ, i.e.

Gaut[U ] = {(G, σ) | G ∈ G[U ], σ ∈ S[U ] : σ ·G = G},

where S[U ] is the set of all permutations of U . The relabelling rule of Gaut-structures
along a bijection β : U −̃→ U ′ is defined as follows:

β · (G, σ) = (β ·G, β◦σ◦β−1),

where β · G is the graph obtained from G by relabelling along β and the composition
◦ is taken from right to left. It is easy to verify that Gaut

w is a well-defined weighted
species, where the weight function w(G, σ) is the cycle index monomial defined by (27).
Recall that |Gaut[n]|w denotes the total weight of Gaut

w -structures over the vertex set [n] :=
{1, 2, . . . , n}, i.e.

|Gaut[n]|w =
∑

(G,σ)∈Gaut
w [n]

w(G, σ).

Proposition 12 ([7]) Using the exponential generating function of labelled Gaut
w -structures,

we have

WG(a; b; c) =
∑
n≥0

1

n!
|Gaut[n]|w = Gaut

w (x) |x=1. (45)

Proof . The proof follows from the fact that the number of distinct graphs on [n] obtained
by relabelling a given graph G with n vertices is given by n!

|Aut(G)| .

A similar approach can be used for the edge index series W+
N and W−

N of a given species
of 2-pole networks N . We introduce the sets

N+[U ] = {(N, σ) | N ∈ N [U ], σ ∈ Aut+(N)}

and
N−[U ] = {(N, σ) | N ∈ N [U ], σ ∈ Aut−(N)},

where Aut+(N) and Aut−(N) are defined by (33) and (34), respectively. Then, using the
weight functions given by (35) and (36), N+

w and N−w are weighted species whose labelled
enumerations yield by specialization the series W+

N and W−
N .

Proposition 13 ([7]) For a species of networks N , the edge index series W+
N and W−

N
can be expressed by the formulas

W+
N (a; b; c) = N+

w (x)|x=1 , W−
N (a; b; c) = N−w (x)|x=1 . (46)
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In order to describe the edge index series of an ↑-composition, we introduce the fol-
lowing familiar plethystic notation. For any series of edge index type f(a; b; c) and any
integer k ≥ 1, we set

fk = fk(a; b; c) = f(ak, a2k, a3k, . . . ; bk, b2k, b3k, . . . ; ck, c2k, c3k, . . .). (47)

Morevover, for any series ` = `(a; b; c), f = f(a; b; c), g = g(a; b; c), h = h(a; b; c), we
set

`[f ; g;h](a; b; c) = `(f1, f2, f3, . . . ; g1, g2, g3, . . . ;h1, h2, h3, . . .) (48)

and for series α = α(x, y), β = β(x, y) and γ = γ(x, y), we also set

`[α; β; γ](x, y) = `
(
α(x, y), α(x2, y2), α(x3, y3), . . . ; β(x, y), β(x2, y2), β(x3, y3), . . . ;

γ(x, y), γ(x2, y2), γ(x3, y3), . . .
)
. (49)

Theorem 14 ([7, 22]) Let G be a species of graphs and N be a symmetric species of
networks. Then the edge index series and the tilde series of the species G ↑ N are given
by

WG↑N (a; b; c) = WG(a1, a2, . . . ;W
+
N ,W

+
N ,2, . . . ;W

−
N ,W

−
N ,2, . . .)

= WG[a1;W
+
N ;W−

N ] (50)

and

(G ↑ N )̃ (x, y) = WG(x, x
2, . . . ; Ñ (x, y), Ñ (x2, y2), . . . ; Ñτ (x, y), Ñτ (x2, y2), . . .)

= WG[x; Ñ (x, y); Ñτ (x, y)]. (51)

Proof . See [7].
Similarly, for a composition of networks M ↑ N , we have the following.

Theorem 15 ([22]) Let M be a species of networks and N be a symmetric species of
networks. Then the edge index series and the tilde series of the species M ↑ N are given
by

W+
M↑N (a; b; c) = W+

M[a1;W
+
N ;W−

N ], (52)

W−
M↑N (a; b; c) = W−

M[a1;W
+
N ;W−

N ], (53)

and

(M ↑ N )̃ (x, y) = W+
M[x; Ñ (x, y); Ñτ (x, y)], (54)

(M ↑ N )τ̃ (x, y) = W−
M[x; Ñ (x, y); Ñτ (x, y)]. (55)
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Proof . The proof is similar to that of Theorem 14, given in [7]. For (52) and (53), one
uses the fact that the poles of an M ↑ N -structure are preserved (resp. exchanged) if
and only if the poles of its core are preserved (resp. exchanged). Notice that (54) and
(55) are consequences of (52) and (53) by virtue of Proposition 11.

Proposition 16 ([7, 22]) Let B be a species of 2-connected graphs, with K2 ∈ B. Then
the edge index series of the associated species of networks B0,1 and NB = (1 + y)B0,1 − 11
are given by

W+
B0,1

(a; b; c) =
2

a2
1

∂

∂b1
WB(a; b; c), (56)

W−
B0,1

(a; b; c) =
2

a2

∂

∂c1
WB(a; b; c), (57)

W+
NB(a; b; c) = (1 + b1)W

+
B0,1

(a; b; c)− 1, (58)

W−
NB(a; b; c) = (1 + c1)W

−
B0,1

(a; b; c)− 1. (59)

Note that for the operator N 7→ yN , where N is a species of networks with non-adjacent
poles, which consists in adding the edge 01 to all networks in N , we have

W+
yN = b1W

+
N and W−

yN = c1W
−
N . (60)

For the series composition of networks, we have the following edge index series iden-
tities.

Theorem 17 Let M and N be species of non-trivial networks. Then we have

W+
M·sN (a; b; c) = a1W

+
M(a; b; c)W+

N (a; b; c), (61)

W−
M·sM(a; b; c) = a1W

+
M,2(a; b; c), (62)

W−
M·sN·sM(a; b; c) = a2W

+
M,2(a; b; c)W−

N (a; b; c). (63)

Proof . We can use the representations (46) for the edge index series W+ and W− which
interpret these series as exponential generating functions of labelled structures. Thus
in the first case we are interested in the exponential generating function (M ·s N )+

w(x).
Now a M·s N -structure is a pair (M ·s N, σ), where M ·s N is a series composition with
M ∈ M and N ∈ N and σ is a pole-preserving automorphism of M ·s N . It is clear
that the connecting vertex of the series composition is left fixed by σ and that σ can
be restricted to pole-preserving automorphisms σM and σN of M and N , respectively.
Moreover, for the weight w defined by (35), we have

w(M ·s N, σ) = a1w(M,σM)w(N, σN).

Hence the generating functions satisfy

(M ·s N )+
w(x) = xa1M

+
w (x)N+

w (x)

and (61) follows.
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In order to prove (62), one should enumerate structures of the form (M ·sM ′, σ), where
M ·s M ′ is a τ -symmetric series-composition network, with M and M ′ in M, and σ is
a pole-reversing graph automorphism. In this case σ will leave the connecting vertex c
fixed and will induce two network isomorphisms

ϕ = σ|M : M→̃τM ′ and ρ = σ2|M : M→̃M. (64)

See Figure 9 where the isomorphism ϕ is represented as x 7→ x′, for x = a, d, e, f . Con-
versely, the data of ρ and ϕ determines σ since σ = ϕ ∪ (c) ∪ ρ ◦ ϕ−1. Moreover, all
the vertex- and edge-cycles of ρ have their lengths doubled in σ. For example, taking
ρ = (a)(d, e, f) in Figure 9, we find that σ = (a, a′)(d, d′, e, e′, f, f ′). It follows that

(M ·sM)−w(x) = xa1M
+
(w)2

(x2),

where we set (w)2(G, σ) = w(G, σ)2, corresponding to the plethystic notation (47).

f’

a’0 1a e’c

d’

f

e

d

Figure 9: τ -symmetric series composition of networks

In the case of (63), the reasoning is similar. Here a pole-reversing automorphism σ of
a series composition M ·s N ·s M ′ will exchange M and M ′ and, furthermore, induce a
pole-reversing automorphism of N and interchange the two connecting vertices. Details
are left to the reader.

Proposition 18 Let R = RF be the class of non-trivial networks all of whose 3-connected
components are in a given species F and let S denote the class of s-networks in R. Then
we have

W+
S (a; b; c) =

a1(W
+
R )2

1 + a1W
+
R

(65)

and

W−
S (a; b; c) =

(a1 + a2W
−
R )W+

R,2

1 + a2W
+
R,2

. (66)

Proof . From Proposition 3, we have

S = (R− S) ·s R = R ·s R− S ·s R (67)

and, by Theorem 17,
W+
S = a1(W

+
R )2 − a1W

+
S W

+
R . (68)
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Solving for W+
S , we obtain (65). However, formula (67) can not be used for computing

the edge index series W−
S since the decomposition is not preserved by a pole-reversing

automorphism. One should rather use the more symmetric canonical decomposition (11)
and then apply (62) and (63). Regrouping the even and the odd ·s-powers yields

W−
S =

a1(W
+
R,2 −W

+
S,2)

1− a2(W
+
R,2 −W

+
S,2)

+
a2(W

+
R,2 −W

+
S,2)(W

−
R −W

−
S )

1− a2(W
+
R,2 −W

+
S,2)

, (69)

and, after simplification,

W−
S = (W+

R,2 −W
+
S,2)(a1 + a2W

−
R ). (70)

Formula (65) can then be used and the result follows.

Theorem 19 Let N be a species of non-trivial networks having non-adjacent poles. Then
the edge index series of the species of parallel compositions E(N ) are given by

W+
E(N )(a; b; c) = exp

(
∞∑
m=1

W+
N ,m

m

)
(71)

and

W−
E(N )(a; b; c) = exp

( ∑
m even

W+
N ,m

m
+
∑
m odd

W−
N ,m

m

)
. (72)

We also have

W+
E2(N ) =

1

2
((W+

N )2 +W+
N ,2) and W−

E2(N ) =
1

2
((W−

N )2 +W+
N ,2). (73)

Proof . We use again the representations (46) for the edge index series W+ and W−. In the
first case we are interested in the exponential generating function E(N )+

w(x). An E(N )+-
structure consists of a parallel composition of networks in N together with a network
automorphism σ. This σ induces a permutation σ0 on the set of individual networks
involved in the parallel composition. Decomposing σ0 into (oriented) cycles yields a
natural notion of connected E(N )+-structure, namely when σ0 is a circular permutation
leading to an oriented cycle of network isomorphisms. These are known as cylindrical
m-wreaths of networks (see [10, 7]),

cm : N1
ϕ1−→ N2

ϕ2−→ . . .
ϕm−2−→ Nm−1

ϕm−1−→ Nm
ϕm−→ N1, (74)

where m ≥ 1. Let Km(N ) denote the species of cylindrical m-wreaths of networks and
K•m(N ) species of rooted cylindrical m-wreaths of networks, where one network is dis-
tinguished from the others. In fact the description (74) includes a rooting at N1. In
the unrooted case, all the possible rootings are considered equivalent. It follows that any
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E(N )+-structure can be seen as an assembly of (unrooted) cylindrical wreaths of networks
and we have a weighted species isomorphism

E(N )+
w = E

(∑
m≥1

Km(N )w

)
. (75)

Given a rooted cylindrical m-wreath of networks cm in K•m(N ), of the form (74), the
composite ϕ0 = ϕm ◦ ϕm−1 ◦ . . . ϕ2 ◦ ϕ1 is an automorphism of N1, and we obtain a N+-
structure (N1, ϕ0). Moreover the sequence of network isomorphisms (ϕ1, . . . , ϕm−1) can be
encoded in a set of lists of length m, (u1, u2, . . . , um), where u1 runs over the underlying set
of N1 and ui+1 = ϕi(ui), i = 1 . . .m−1, and we can consider the N+-structure (N1, ϕ0) to
“live” on this set of lists. In other words, what we have obtained is an N+(Xm)-structure.
Since the isomorphism ϕm can be recovered from ϕ0 and the other isomorphisms ϕi, this
correspondence is bijective. Moreover the weight of the connected E(N )+-structure cm is
given by (w)m(N1, ϕ0) since all the cycle lengths of ϕ0 are multiplied by m in ϕ0. Hence
we have an isomorphism of weighted species (see also Proposition 14 of [7])

K•m(N )w = N+
(w)m

(Xm) (76)

and the exponential generating function equality

Km(N )w(x) =
1

m
K•m(N )w(x) =

1

m
N+

(w)m
(xm). (77)

Using (75) and the classical exponential formula, we find that

E(N )+
w(x) = exp

(∑
m≥1

1

m
N+

(w)m
(xm)

)
(78)

and (71) follows.
For (72), one should compute the exponential generating function E(N )−w(x). An

E(N )−-structure consists of a parallel composition of networks in N together with a
pole-reversing automorphism σ. Here two kinds of connected components can occur. The
first kind arises from a cylindrical m-wreath of networks such as (74), with m even, which
is reinterpreted as a sequence of pole-reversing network isomorphisms

N1
ϕ1−→ τN2

ϕ2−→ N3
ϕ3−→ . . .

ϕm−2−→ Nm−1
ϕm−1−→ τNm

ϕm−→ N1. (79)

Here also the composite ϕ0 = ϕm ◦ ϕm−1 ◦ . . . ϕ2 ◦ ϕ1 is an automorphism of N1 and this
accounts for the fisrt term on the right-hand side of (72).

The second kind of connected component corresponds to a Möbius m-wreath of net-
works, withm odd, which is defined as a sequence of network isomorphismsN1

ϕ1−→ N2
ϕ2−→

. . .
ϕm−2−→ Nm−1

ϕm−1−→ Nm followed by a pole-reversing isomorphism ϕm : Nm −→ τN1, which
can be reinterpreted as a sequence of pole-reversing isomorphisms

N1
ϕ1−→ τN2

ϕ2−→ N3
ϕ3−→ . . .

ϕm−2−→ τNm−1
ϕm−1−→ Nm

ϕm−→ τN1. (80)
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Notice that the composite ϕ0 = ϕm ◦ ϕm−1 ◦ . . . ϕ2 ◦ ϕ1 is a pole-reversing automorphism
of N1 and this accounts for the second term on the right-hand side of (72). See also [7].

The proof of (73) relies on the fact that

E2(N )+
w = E2(N+

w ) +K2(N )w and E2(N )−w = E2(N−w ) +K2(N )w . (81)

Details are left to the reader.

Remark. A proof of (71) and (72) obtained by expressing a parallel composition as
an ↑-composition whose core is a “network” with parallel edges and no internal vertices
appears in [22].

5 Enumerative applications

Again let F be a given class of 3-connected graphs and let B = BF denote the class of
2-connected graphs all of whose 3-connected components are in F . Also let R = RF
denote the class of networks all of whose 3-connected components are in F . Given F ,
the species R can be determined recursively, as well as its associated series, from the
fundamental relations of Theorem 8. Using the dissymmetry theorem, the species B and
its series can also be determined.

The formulas of the previous sections can be applied to obtain both the labelled and
unlabelled enumeration of species of 2- or 3-connected graphs. The labelled enumeration
is usually simpler since it is not necessary to use the Dissymmetry Theorem in order
to unroot the structures and since also the composition formulas are simpler for the
exponential generating functions. For unlabelled enumeration, the formulas are more
delicate and are reviewed below. Some standard applications and some new ones are also
presented.

5.0.1 Labelled enumeration

For the network species R = RF , we deduce the following functional equation for the
exponential generating function:

R(x, y) = (1 + y) exp

(
F0,1(x,R(x, y)) +

xR2(x, y)

1 + xR(x, y)

)
− 1. (82)

Setting g(x, y) = F0,1(x, y) + xy2

1+xy
, and ζ(x, y) = R(x, y)<−1>y , the compositional inverse

of R(x, y) with respect to y, we have, from (82),

1 +R(x, y) = (1 + y) exp(g(x,R(x, y))) (83)

and
1 + ζ(x, y) = (1 + y) exp(−g(x, y)). (84)
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Notice that ζ(x, y) is of the form

ζ(x, y) = y

(
1 + (1 + y)

exp(−g(x, y))− 1

y

)
(85)

so that Lagrange inversion can be used to find R(x, y), knowing F0,1(x, y).
Conversely, taking logarithms in (84) yields F0,1(x, y) in terms of R(x, y):

F0,1(x, y) = log
1 + y

1 + ζ(x, y)
− xy2

1 + xy
. (86)

Finally, note that

F(x, y) =
x2

2

∫
F0,1(x, y)dy and B(x, y) =

x2

2

∫
1 +R(x, y)

1 + y
dy. (87)

This is essentially the approach used in [21] for the enumeration of labelled 3-connected
graphs, starting with 1- and 2-connected graphs, and in [2], where labelled 2-connected
planar graphs are enumerated, starting from 3-connected planar graphs.

5.0.2 Unlabelled enumeration

We introduce the following abbreviations for the edge index series of the species R, S, of
s-networks, and H = F0,1 ↑ R, of h-networks:

ρ+(a; b; c) = W+
R (a; b; c), ρ−(a; b; c) = W−

R (a; b; c), (88)

σ+(a; b; c) = W+
S (a; b; c), σ−(a; b; c) = W−

S (a; b; c), (89)

and
η+(a; b; c) = W+

H (a; b; c), η−(a; b; c) = W−
H (a; b; c). (90)

It follows from equations (15), (16) and (19) and from the properties of the edge index
series, that

ρ+ = (1 + b1) exp

(
∞∑
i=1

η+
i + σ+

i

i

)
− 1, (91)

ρ− = (1 + c1) exp

(∑
i even

η+
i + σ+

i

i
+
∑
i odd

η−i + σ−i
i

)
− 1, (92)

η+ = W+
F0,1

[a1; ρ
+; ρ−], η− = W−

F0,1
[a1; ρ

+; ρ−], (93)

σ+ =
a1(ρ

+)2

1 + a1ρ+
, σ− =

(a1 + a2ρ
−)ρ+

2

1 + a2ρ
+
2

. (94)

These equations make it possible to compute recursively the series ρ+, ρ−, η+, η−, σ+

and σ−, knowing W+
F0,1

and W−
F0,1

. The dissymmetry formula (25) will then yield WB,
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knowing WF :

WB(a; b; c) = WF [a1; ρ
+; ρ−] + WC[a1; ρ

+ − σ+; ρ− − σ−]

+
a2

1

2

(
ρ+ − (η+ + σ+)(ρ+ + 1)− 1

2
(σ+

2 − (σ+)2)

)
+
a2

2

(
ρ− − (η− + σ−)(ρ− + 1)− 1

2
(σ+

2 − (σ−)2)

)
, (95)

where WC is given by (31). If only the tilde generating functions are desired, for the
unlabelled enumeration, equations (91 – 94) yield the following:

R̃(x, y) = (1 + y) exp

(
∞∑
i=1

(H + S )̃ (xi, yi)

i

)
− 1, (96)

R̃τ (x, y) = (1 + y) exp

(∑
i even

(H + S )̃ (xi, yi)

i
+
∑
i odd

(H + S)τ̃ (x
i, yi)

i

)
− 1, (97)

H̃(x, y) = W+
F0,1

[x; R̃(x, y); R̃τ (x, y)], (98)

H̃τ (x, y) = W−
F0,1

[x; R̃(x, y); R̃τ (x, y)], (99)

where the notation of (49) is used, and

S̃(x, y) =
xR̃2(x, y)

1 + xR̃(x, y)
, (100)

S̃τ (x, y) =
(x+ x2R̃τ (x, y))R̃(x2, y2)

1 + x2R̃(x2, y2)
. (101)

Finally, equation (95) gives the following dissymmetry formula:

B̃(x, y) = WF [x; R̃; R̃τ ] + WC[x; R̃ − S̃; R̃τ − S̃τ ]

+
x2

2

(
R̃ − (H̃ + S̃)(R̃+ 1)− S̃2 +

1

2
S̃ 2

)
+
x2

2

(
R̃τ − (H̃τ + S̃τ )(R̃τ + 1) +

1

2
S̃ 2
τ

)
, (102)

where S̃2(x, y) = S̃(x2, y2).

5.1 3-connected graphs

The first application of the above formulas is the enumeration of unlabelled 3-connected
graphs in 1982 (see [22], [15]). In this case, where F = Fa and B = Ba, the species of all
3-connected and all 2-connected (simple) graphs, respectively, it is possible to compute

24



the edge index series WB directly, going from all graphs, to connected graphs and then
to 2-connected graphs. Since R = (1 + y)B0,1 − 1, the edge index series ρ+ = W+

R and
ρ− = W−

R can be readily computed, as well as σ+ = W+
S and σ− = W−

S , using (94),
and then η+ = W+

H and η− = W−
H , recursively, using equations (91) and (92). The edge

index series WF is then extracted recursively, using the dissymmetry formula (95) and

the generating function F̃(x, y) is then immediately deduced. In [15], the computations
are greatly simplified by introducing two auxiliary series β(x, y) and γ(x, y) satisfying

ρ+[x, β(x, y), γ(x, y)] = y ρ−[x, β(x, y), γ(x, y)] = y. (103)

The readers are referred to [15] for more details. See [22] and [15] for tables.

5.2 Series-parallel graphs and networks

At the other extreme lies the case where F = 0, where the corresponding species of
2-connected graphs is the class B = Gsp of series-parallel graphs. Thus a series-parallel
graph G is a 2-connected graph all of whose 3-components are polygons. G can also be
characterized by the fact it contains no subdivision of K4.

The corresponding species of networks is the class R = Rsp of series-parallel networks.
An example of a series-parallel network is given in Example 1. This class R is defined
recursively by the functional equation

R = (1 + y)E(
XR2

1 +XR
)− 11, (104)

which is a specialization to F = 0, of equation (19). We set ρ+ = W+
R (a; b; c) and

ρ− = W−
R (a; b; c). Equations (91) and (92) then imply the following:

Corollary 20 For the edge index series ρ+ and ρ− of the species R = Rsp of series-
parallel networks, we have the system of equations

ρ+ = (1 + b1) exp

(
∞∑
i=1

1

i

ai(ρ
+
i )2

1 + aiρ
+
i

)
− 1, (105)

ρ− = (1 + c1) exp

(∑
i even

1

i

ai(ρ
+
i )2

1 + aiρ
+
i

+
∑
i odd

1

i

(ai + a2iρ
−
i )ρ+

2i

1 + a2iρ
+
2i

)
− 1. (106)

These edge index series can be computed recursively and the edge index series WGsp of
series parallel graphs can be deduced by specializing equation (95):

WGsp(a; b; c) = WC[a1; ρ
+ − σ+; ρ− − σ−] +

a2
1

2
(ρ+ − σ+ − σ+ρ+ − 1

2
(σ+

2 − (σ+)2))

+
a2

2
(ρ− − σ− − σ−ρ− − 1

2
(σ+

2 − (σ−)2)), (107)
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where σ+ and σ− are defined by (94). The exponential and tilde generating functions are
then immediately obtained. For example, for unlabelled series-parallel graphs counted
according to the number of vertices (where we set y = 1), we find

G̃sp(x) = x2 + x3 + 2x4 + 5x5 + 15x6 + 51x7 + 230x8 + 1142x9

+ 6369x10 + 37601x11 + 232259x12 + 1476120x13 + 9599522x14 + · · · (108)

Similarly, for unlabelled series-parallel networks counted according to the number of in-
ternal vertices, we find that

R̃sp(x) = 1 + 2x+ 8x2 + 38x3 + 208x4 + 1220x5 + 7592x6 + 49006x7

+325686x8 + 2212112x9 + 15290182x10 + 107191458x11 + 760349722x12

+5447100396x13 + 39354320204x14 + · · · (109)

and for those that are τ -symmetric, we have

R̃spτ (x) = 1 + 2x+ 4x2 + 10x3 + 24x4 + 64x5 + 168x6 + 458x7 + 1250x8 + 3492x9

+9734x10 + 27582x11 + 78078x12 + 223644x13 + 639948x14 + · · · (110)

In comparing with the existing literature on series-parallel networks, recall that here,
we are considering 01-networks without parallel edges.

5.3 2-connected planar graphs and strongly planar networks.

Let FP denote the species of 3-connected planar graphs. Then the corresponding species
B(FP ) = BP is the class of 2-connected planar graphs and R(FP ) = NP is the class of
strongly planar networks, that is of non-trivial networks N such that N ∪ 01 is planar.
As before, we have

NP = (1 + y)(BP )01 − 11.

Here we compute all the edge index series and generating functions of these species up to
14 vertices.

The enumeration of unlabelled planar graphs is one of the classical fundamental open
problems in graph theory and combinatorics. A bridge between planar graph enumeration
and planar map enumeration is provided by the fact that a 3-connected planar graph
admits a unique embedding on the sphere up to homeomorphisms that either preserve or
reverse the orientation of the sphere and that any graph automorphism of a 3-connected
planar graph is a map automorphism of the corresponding unsensed map, and conversely
(see [13]).

In order to obtain the desired series, we used the program Plantri [3] to generate all
the 3-connected planar maps (alias plane graphs) up to 14 vertices. In fact, version 4.2 of
Plantri contains an option which yields the graphs together with all their automorphisms
and we computed their edge cycle indices, both cylindrical and Möbius. In this way, the
edge index series WFP of 3-connected planar graphs was secured up to 14 vertices. This

26



yields successively the edge index series W+ and W− for the species (FP )01, R(FP ) =
NP , S and H (recursively), and eventually the edge index series WBP of 2-connected
planar graphs, using the formulas of section 5.0.2. The corresponding generating functions

n m gn,m n m gn,m n m gn,m

2 1 1 10 10 1 13 13 1
3 3 1 10 11 9 13 14 15
4 4 1 10 12 121 13 15 428
4 5 1 10 13 1018 13 16 8492
4 6 1 10 14 5617 13 17 107771
5 5 1 10 15 20515 13 18 903443
5 6 2 10 16 52068 13 19 5287675
5 7 3 10 17 94166 13 20 22514501
5 8 2 10 18 123357 13 21 71869047
5 9 1 10 19 116879 13 22 175632924
6 6 1 10 20 79593 13 23 333410770
6 7 3 10 21 37859 13 24 496146048
6 8 9 10 22 12066 13 25 581318637
6 9 13 10 23 2306 13 26 536073583
6 10 11 10 24 233 13 27 386948719
6 11 5 11 11 1 13 28 216020293
6 12 2 11 12 11 13 29 91369743
7 7 1 11 13 189 13 30 28288016
7 8 4 11 14 2210 13 31 6047730
7 9 20 11 15 16650 13 32 797583
7 10 49 11 16 83105 13 33 49566
7 11 77 11 17 289532 14 14 1
7 12 75 11 18 727243 14 15 18
7 13 47 11 19 1347335 14 16 616
7 14 16 11 20 1861658 14 17 15350
7 15 5 11 21 1926664 14 18 243897
8 8 1 11 22 1485235 14 19 2550530
8 9 6 11 23 841152 14 20 18598574
8 10 40 11 24 339390 14 21 98777626
8 11 158 11 25 92751 14 22 394640925
8 12 406 11 26 15362 14 23 1214212848
8 13 662 11 27 1249 14 24 2926745166
8 14 737 12 12 1 14 25 5594151239
8 15 538 12 13 13 14 26 8546948259
8 16 259 12 14 292 14 27 10481908901
8 17 72 12 15 4476 14 28 10324262525
8 18 14 12 16 44297 14 29 8139338353
9 9 1 12 17 290680 14 30 5095275794
9 10 7 12 18 1333029 14 31 2497740781
9 11 70 12 19 4434175 14 32 937658515
9 12 426 12 20 10992850 14 33 260094850
9 13 1645 12 21 20663187 14 34 50215417
9 14 4176 12 22 29764598 14 35 6022143
9 15 7307 12 23 32990517 14 36 339722
9 16 8871 12 24 28087447
9 17 7541 12 25 18199252
9 18 4353 12 26 8814281
9 19 1671 12 27 3088000
9 20 378 12 28 740272
9 21 50 12 29 108597

12 30 7595

Table 1: The number gn,m of unlabelled 2-connected planar graphs having n vertices and
m edges.
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are immediately deduced. Thus, we extended to 14 vertices the generating function
B̃P (x, y) of unlabelled 2-connected planar graphs and to 12 internal vertices the generating

functions ÑP (x, y) and ÑP τ (x, y) of unlabelled strongly planar networks. The coefficients

of B̃P (x, y) are given in Table 1. Setting y = 1, we have

B̃P (x) = x2 + x3 + 3x4 + 9x5 + 44x6 + 294x7 + 2893x8 + 36496x9 + 545808x10

+ 9029737x11 + 159563559x12 + 2952794985x13 + 56589742050x14 + · · · (111)

ÑP (x) = 1 + 2x+ 10x2 + 72x3 + 696x4 + 8530x5 + 124926x6

+2068888x7 + 37204942x8 + 708076350x9 + 14038364914x10

+287091103062x11 + 6016760068874x12 + · · · (112)

and

ÑP τ (x) = 1 + 2x+ 6x2 + 20x3 + 96x4 + 470x5 + 3074x6 + 23408x7 + 243482x8

+3221018x9 + 51729286x10 + 929983374x11 + 17911049418x12 + · · · (113)

Remark. Finding the edge index series for 3-connected planar maps without generating
them is still an open problem. Wormald enumerated planar maps up to homeomorphism
(see [23, 24] for 1-connected maps) without using cycle indices.

5.4 K3,3-free 2-connected graphs

A graph is called K3,3-free if it contains no subdivison of K3,3 or, equivalently, if it has
no minor isomorphic to K3,3. As mentioned in the introduction, a theorem of Wagner
[20] and of Kelmans [11] implies that if we take F = FP + K5, then the corresponding
species B = B(F) of 2-connected graphs all of whose 3-connected components are planar
or isomorphic to K5 is the class of K3,3-free 2-connected graphs. Computations are similar
to the preceding section 5.3. For example we find that

B̃(x) = x2 + x3 + 3x4 + 10x5 + 46x6 + 308x7 + 2997x8 + 37471x9 + 556637x10

+9171526x11 + 161679203x12 + 2987857791x13 + 57218439783x14 + · · · (114)

R̃(x) = 1 + 2x+ 10x2 + 74x3 + 718x4 + 8786x5 + 128006x6

+2108610x7 + 37767136x8 + 716900760x9 + 14191084858x10

+289958295858x11 + 6074048514588x12 + · · · (115)

and

R̃τ (x) = 1 + 2x+ 6x2 + 22x3 + 102x4 + 518x5 + 3362x6 + 25890x7 + 267988x8

+3524132x9 + 56099830x10 + 1001483346x11 + 19189524860x12 + · · · (116)
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5.5 K3,3-free projective-planar and toroidal graphs.

Let PP denote the species of projective-planar graphs which are K3,3-free, 2-connected
and non-planar. In [5] we proved the following structural characterization of PP:

Theorem 21 ([5]) The species PP of K3,3-free 2-connected non-planar projective-planar
graphs can be expressed as a canonical composition

PP = K5 ↑ NP , (117)

where NP denotes the species of strongly planar networks.

(i) (ii)

Figure 10: (i) The graph M (ii) The graph M∗

A similar characterization is provided in [6] for the species T of K3,3-free 2-connected
toroidal (non-planar) graphs. Given two disjoint K5-graphs, the graph obtained by iden-
tifying an edge of one of the K5’s with an edge of the other is called an M-graph (see
Figure 10 (i)), and, when the edge of identification is deleted, an M∗-graph (see Fig-
ure 10 (ii)).

A toroidal crown is a graph H obtained from an unoriented cycle Ci, i ≥ 3, by
substituting (K5)01-networks for some edges of Ci in such a way that no two unsubstituted
edges of Ci are adjacent in H (see Figure 11 (ii) for an example). Denote by H the class
of toroidal crowns. A toroidal core is defined as either K5, an M -graph, an M∗-graph, or
a toroidal crown.

1

(i)
(ii)

0

Figure 11: (i) A (K5)01-network (ii) A toroidal crown

Theorem 22 ([6]) The species T of K3,3-free 2-connected non-planar toroidal graphs can
be expressed as a canonical composition

T = TC ↑ NP , (118)

where TC denotes the class of toroidal cores, i.e. TC = K5 +M +M∗ +H.
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In [7] we give explicit formulas for the edge index series for the graphs K5, M, and
M∗ and for the species H of toroidal crowns. In order to enumerate unlabelled K3,3-
free toroidal graphs in PP or in T according to the number of vertices and edges, the
generating functions ÑP (x, y) and ÑP τ (x, y) are also required, since we have

P̃P(x, y) = WK5 [x; ÑP (x, y); ÑP τ (x, y)], (119)

T̃ (x, y) = WTC [x; ÑP (x, y); ÑP τ (x, y)]. (120)

Using the results of Section 5.3, we have extended previous tables to 17 vertices for
P̃P(x, y) and to 20 vertices for (T̃ − P̃P)(x, y).

P̃P(x) = x5 + 2x6 + 14x7 + 102x8 + 962x9 + 10662x10

+139764x11 + 2088482x12 + 34680722x13 + 622943224x14

+11854223815x15 + 235386309134x16 + 4826871283270x17 + · · · (121)

(T̃ − P̃P)(x) = 2x8 + 11x9 + 127x10 + 1388x11 + 16905x12

+214191x13 + 2890154x14 + 41748279x15 + 650024679x16

+10888386896x17 + 194674234840x18 + 3674322404851x19

+72412623360105x20 + · · · (122)

5.6 Homeomorphically irreducible graphs.

A graph is called homeomorphically irreducible if it contains no vertex of degree 2. In order
to enumerate these graphs, we can apply the method of Walsh and Robinson ([15, 22])
as follows. Any 2-connected graph G is either a series-parallel graph or contains a unique
2-connected homeomorphically irreducible core C(G), which is different from K2, and
unique components {Ne}e∈E(C(G)) which are series-parallel networks, whose composition
gives G. Let B be a species of 2-connected graphs. Denote by IB the class of graphs which
are homeomorphically irreducible cores of graphs in B. Also set Bsp = B ∩ Gsp which is
the class of series-parallel graphs in B and let Rsp denote the species of series-parallel
networks. We then have the following Proposition.

Proposition 23 ([5, 21]) Let B be a species of 2-connected graphs such that

1. IB is contained in B,

2. B is closed under edge substitution by series-parallel networks.

Then we have
B = Bsp + IB ↑ Rsp, (123)

the composition IB ↑ Rsp being canonical.
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Proposition 24 ([15]) There exist unique series β(x, y) and γ(x, y) satisfying

ρ+[x, β(x, y), γ(x, y)] = y, ρ−[x, β(x, y), γ(x, y)] = y, (124)

where ρ+ = W+
Rsp

and ρ− = W−
Rsp

. Moreover these series are given explicitly by

β(x, y) = −1 + (1 + y)
∏
j≥1

(1− x2j−1y2j)(1− x2jy2j+1)−1, (125)

γ(x, y) = −1 + (1 + y)
∏
j≥1

(1− x4j−3y4j−2)(1 + x4j−1y4j)

(1 + x4j−2y4j−1)(1− x4jy4j+1)
. (126)

Proof . We first note that

ρ+ = b1 + a1b
2
1 + a1b

3
1 + · · · ,

ρ− = c1 + a1b2 + a1b2c1 · · · ,

where the remaining terms are of higher order in the vertex-cycle variables so that equa-
tions (124) determine recursively unique series β(x, y) and γ(x, y). In fact, from (105)
and (106), we see that β(x, y) and γ(x, y) must satisfy

1 + y = (1 + β(x, y)) exp

(∑
i≥1

1

i

xiy2i

1 + xiyi

)
, (127)

1 + y = (1 + γ(x, y)) exp

(∑
i even

1

i

xiy2i

1 + xiyi
+
∑
i odd

1

i

(xi + x2iyi)y2i

1 + x2iy2i

)
, (128)

from which (125) and (126) are readily deduced.

Proposition 25 ([15]) For the species Gsp of series parallel graphs, we have

WGsp [x; β(x, y); γ(x, y)] = −x2y2 + xy(x+ xy(1− x))(1− x4y4)−1. (129)

Proof . Notice that for the edge index series σ+ = W+
S and σ− = W−

S of series-parallel
s-networks, we have, using (94),

σ+[x; β(x, y); γ(x, y)] =
xy2

1 + xy
, σ−[x; β(x, y); γ(x, y)] =

(x+ x2y)y2

1 + x2y2
. (130)

It is then possible to use the dissymmetry formula (107) and the result follows after some
simplifications.

Corollary 26 Let B be a species of 2-connected graphs such that the hypothesis of Propo-
sition 23 are satisfied. Then we have

ĨB(x, y) = (WB −WBsp)[x; β(x, y); γ(x, y)], (131)

where Bsp = B ∩ Gsp.
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5.6.1 Example: Planar graphs

For the species B = BP of 2-connected planar graphs, we have B∩Gsp = Gsp. It follows from
Proposition 25 and Corollary 26 that for the species IP of 2-connected homeomorphically
irreducible planar graphs, we have

ĨP (x, y) = WBP [x; β(x, y); γ(x, y)] + x2y2 − xy(x+ xy(1− x))(1− x4y4)−1. (132)

5.6.2 Example: K3,3-free 2-connected graphs

As seen in Section 5.4, the species B = BF associated to the class F = FP + K5 con-
sists of K3,3-free 2-connected graphs. Again we have Gsp ⊂ B and for the species I of
homeomorphically irreducible K3,3-free 2-connected graphs we have

Ĩ(x, y) = WB[x; β(x, y); γ(x, y)] + x2y2 − xy(x+ xy(1− x))(1− x4y4)−1. (133)

5.6.3 Example: K3,3-free projective planar and toroidal graphs

For the species B = PP and B = T of 2-connected K3,3-free (non-planar) projective
planar and toroidal graphs, respectively, we have B ∩ Gsp = ∅. It follows that for the
corresponding species IPP and IT of homeomorphically irreducible graphs we have

ĨPP(x, y) = WPP[x; β(x, y); γ(x, y)]

= WK5↑NP [x; β(x, y); γ(x, y)]

= WK5

[
x;W+

NP [x; β(x, y); γ(x, y)];W−
NP [x; β(x, y); γ(x, y)]

]
. (134)

and

ĨT (x, y) = WT [x; β(x, y); γ(x, y)]

= WTC
[
x;W+

NP [x; β(x, y); γ(x, y)];W−
NP [x; β(x, y); γ(x, y)]

]
. (135)
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