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Abstract. Using the operator ∇ of F. Bergeron, Garsia, Haiman and Tesler [2] acting on the k-Schur

functions [15, 16, 17] indexed by a single column has a coefficient in the expansion which is an analogue

of the (q, t)-Catalan number with a level k. When k divides n we conjecture a representation theoretical
model in this case such that the graded dimensions of the module are the coefficients of the (q, t)-Catalan

polynomials of level k. When the parameters t is set to 1, the Catalan numbers of level k are shown to count
the number of Dyck paths that lie below a certain Dyck path with q counting the area of the path.

1. Introduction

In the study of the (q, t)-Catalan polynomials, Bergeron, Garsia, Haiman and Tesler [2] introduced a
remarkable operator on symmetric functions, ∇, to help explain the conjectured graded Frobenius series of
the space of the diagonal harmonic alternants. The operator ∇ has Macdonald’s symmetric functions as
eigenfunctions (see equation (4) for a definition) and it was a necessary tool for arriving at a combinatorial
formula for the (q, t)-Catalan numbers [4]. The original definition of the (q, t)-Catalan numbers is equivalent
to the coefficient of the symmetric function s1n(X) in the expression ∇s1n(X).

The authors Lapointe, Lascoux, Morse [15] introduced and Lapointe, Morse [16], [17], [18], [19] further
developed an analogue of the Schur basis of the space of symmetric functions that they called k-Schur
functions. Here the parameter k ≥ 1 indicates a level of a filtration of the space of symmetric functions
and the parts of the partitions indexing the k-Schur functions are all less than or equal to k. In summary,
the k-Schur functions {s(k)λ (X; t)}λ1≤k are the ‘fundamental’ basis of the space linearly spanned by the
elements {sλ(X/(1− t))}λ1≤k where f(X/(1− t)) is the symmetric function f(X) with the primitive power
sum elements pk(X) replaced by pk(X)/(1− tk). k-Schur functions are a remarkable analogue of the Schur
basis and the Schur functions and the k-Schur functions are equal when k → ∞. In special cases, k-Schur
functions are equal to Hall-Littlewood symmetric functions, but in general there is currently no relatively
simple definition of these symmetric functions.

Since the k-Schur functions are an analogue of the Schur functions, we decided to consider the action of the
operator ∇ on these symmetric functions, in particular in the case when k-Schur functions are indexed by a
single column. We found that when ∇ acts on the k-Schur function s(k)1n (X; 1/t) then this expands positively
again in the k-Schur functions s(k)λ (X; 1/t). In fact, our experiments suggest that ∇ acting on the k-Schur
functions s(k)λ (X; 1/t) where λ = (ab) is a rectangle also expands positively in the k-Schur functions with
inverted parameter, however it is not true for arbitrary λ that ∇s(k)λ (X; 1/t) again lies in the space linearly
spanned by the k-Schur functions with inverted parameter (the first failed example is ∇s(4)2211(X; 1/t))

We define a version of the (q, t)-Catalan polynomials that includes a level k by setting C
(k)
n (q, t) to

be the coefficient of s(k)(1n)(X; 1/t) in the expression ∇s(k)1n (X; 1/t) or more simply (or, more simply, their

definition is 〈s1n(X),∇s(k)1n (X; 1/t)〉). Experimental evidence and special cases lead us to believe that these
numbers form a filtration of the (q, t)-Catalan numbers (see Conjectures 12 and 14) and so we suspect that
C

(k)
n (q, t) is a (q, t)-counting of some subsets of Dyck paths. In certain cases, we can provided a combinatorial

interpretation of these polynomials in terms of subsets of Dyck paths. Because the operator ∇ is an algebra
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homomorphism at t = 1, we are able to give an explicit interpretation of the polynomials C(k)
n (q, 1) as the

sum over q raised to the area statistic for each Dyck path which lies below the path which has k steps up
followed by k steps over, followed by k steps up, followed by k steps over, etc., followed finally by n mod k
steps up and n mod k steps over.

It is interesting to remark that s
(k)
(1n)(X; 1/t) is equal to the modified Hall-Littlewood polynomials

t−n(µ)ωQ′µ(X; t) where µ = (kn div k, nmod k) [See Eq. (6)]. From this one can refine our filtration fur-
ther and define for any partition µ ` n the µ-Catalan number Cµ(q, t) to be the coefficient of s(1n)(X) in the
expression ∇t−n(µ)ωQ′µ(X; t). This would would give a filtration of the (q, t)-Catalan numbers compatible
with the dominance order of partitions of n. All the results and conjecture presented here work in the same
way. We do not consider that generality since J. Haglund and J. Morse [11] have comunicated to us an even
more refined definition indexed by composition of n, see Remark 11.

The remainder of this paper is divided into 4 sections. In section 2, we discuss necessary definitions. In
section 3, we introduce the Catalan numbers indexed by a level k and consider special cases and specializa-
tions. In section 4, we briefly consider the analogous filtrations of the Schröder paths and parking functions.
Finally in the last section we define a filtration of the space of diagonal harmonic alternants. We conjecture
based on experimental data that for k dividing n that the graded dimensions of this space are given by the
polynomials C(k)

n (q, t).

2. Basic definitions

2.1. Symmetric functions. For symmetric functions, we mainly follow the notations of [23]. Let X =
{x1, x2, . . .} be a sequence of variables. The complete homogeneous symmetric function of degree n in the
variables X are defined by

hn(X) =
∑

i1≤i2≤···≤in

xi1xi2 · · ·xin .

The space of symmetric functions Sym over a field F is the polynomial ring F [h1, h2, . . .], where hn = hn(X).
This is a graded ring where deg(hn) = n. It is convenient to index bases of Sym by partitions which are
sequences λ = (λ1, λ2, . . . , λk) where λ1 ≥ λ2 ≥ · · · ≥ λk > 0. The sequence λ is a partition of n if
n = λ1 + · · ·+ λk and its length `(λ) is k. The homogeneous basis can be defined by

hλ = hλ1hλ2 · · ·hλk .

The elementary basis is defined by eλ = eλ1eλ2 · · · eλk , where en is defined by the recurrence
e−k = h−k = 0 for k > 0 ,
e0 = 1 ,
0 =

∑
i+j=n(−1)ihiej .

And for any partition λ of n, the Schur basis can be defined in an algebraic way by

sλ = det [hλi+i−j ]1≤i,j≤n .

The usual scalar product on the space Sym is defined on the Schur basis by

(1) 〈sλ , sµ〉 =

{
1 if λ = µ ,

0 otherwise.

2.2. Macdonald polynomials and Hall-Littlewood functions. For any partition λ, we denote by λ′

the conjugate partition of λ. The usual normalization constant n(λ) is defined by

(2) n(λ) =
∑
i≥1

(i− 1)λi .
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Let us now recall some basic definitions on Macdonald polynomials. The modified Macdonald polynomials
H̃λ(X; q, t) are defined by

(3) H̃λ(X; q, t) = tn(λ)Jλ

(
X; q,

1
t

)
,

where Jλ(X; q, t) is the integral version of Macdonald polynomials defined in VI.8 of [23]. The modified
Hall-Littlewood polynomials can be obtained as a specialization of the Macdonald polynomials

Q′λ(X; t) = H̃λ(X; 0, t) .

The linear operator ∇ introduced in [2] is defined by

(4) ∇H̃λ(X; q, t) = tn(λ)qn(λ′)H̃λ(X; q, t) .

There exist a long list of conjectures about the action of ∇ on different bases of symmetric functions.
For many of them, recent work in this area has developed combinatorial models (proved or conjectural
[4, 5, 7, 8, 9, 10, 21, 22]) which explains the different properties.

2.3. k-Schur functions. The k-Schur functions s(k)λ (X; t) of Lapointe, Lascoux, Morse (see [15, 16, 17, 18])
are the fundamental basis of the space L{Q′λ(X; t) with λ1 ≤ k}, where L represents the vector space linear
span of the elements.
We are interested in this short note only in the explicit definition of the elements s(k)1n (X; t). Let µ be the
partition defined by

(5) µ = (kn div k, nmod k) .

For these symmetric functions, we simply define them to be

(6) s
(k)
1n (X; t) = tn(µ)ω

(
Q′µ

(
X;

1
t

))
.

This definition permits us to give the explicit expansion of s(k)1n (X), for the special cases k > n/2

(7) s
(k)
1n (X; t) = s1n(X) + ts21n−2(X) + . . . + tn−ks2n−k12k−n(X) .

For a complete definition of the k-Schur functions with the parameter t, we refer the reader to the refer-
ences [15, 16]. Note that these two references provide two different definitions which are conjectured to be
equivalent. In the case of the indexing partition equal to 1n we can show that they are both equal to (7).

3. Generalizations of (q, t)-Catalan numbers

The (q, t)-Catalan numbers Cn(q, t) defined in [6], are related to the operator ∇ applied to an elementary
symmetric function en(X). As defined in the previous section, the k-Schur functions indexed by column
partitions are a generalization of these elementaries functions which are equal to en(X), for k ≥ n. Hence, a
natural way to obtain filtrations of (q, t)-Catalan numbers is to replace in this picture, the functions en(X)
by the k-Schur functions. With this process, we obtain new polynomials in q and t with positive coefficients,
which are smaller than the usual (q, t)-Catalan numbers. By specializing q = 1 and t = 1 in these filtrations,
we obtain different generalizations of Catalan numbers than those given in [13].

3.1. (q, t)-Catalan numbers. Let first recall the definition and the combinatorial interpretation for the
(q, t)-Catalan numbers in terms of Dyck paths [4, 5, 6, 7, 8].

Definition 1 ((q,t)-Catalan numbers). The (q, t)-Catalan numbers are the polynomials in the parameters q
and t defined by

(8) Cn(q, t) = 〈∇en(X) , s1n(X)〉 ,

where 〈 , 〉 is the usual scalar product on symmetric functions.
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These polynomials are in N[q, t]. Their specialization at t = 1 and q = 1 gives the usual Catalan numbers
Cn

Cn(1, 1) = Cn .

The (q, t)-Catalan numbers are symmetric in the variables q and t, i.e. Cn(q, t) = Cn(t, q). The maximum
degree in these parameters are

degq(Cn(q, t)) = degt(Cn(q, t)) = (n2 ) .

Example 2. For n = 6, the (q, t)-Catalan number C6(q, t) can be represented by an array, where the entry
(i, j) corresponds to the coefficient of qi t(

n
2 )−j.

q
i

1
1

1 1
1 1 1

1 1 2 1
1 1 2 2 1

1 1 2 3 2
1 1 2 3 3 1

1 1 2 3 4 2 1
1 1 2 3 4 3 2

1 1 2 3 4 3 2
1 1 2 3 4 3 2 1

1 1 2 3 3 2 2
1 1 2 2 2 1 1

1 1 1 1 1
1

t(
n
2 )−j

In [7], the authors proved that these polynomials have positive coefficients by interpreting them as gen-
erating polynomials of Dyck paths with two statistics area for the t and dinv for the q. We should also
mention that the original combinatorial interpretation, given in [5], uses the statistics of area and bounce
with the two parameters interchanged.

Definition 3. A Dyck path of length n is a lattice path from the point (0, 0) to the point (n, n) consisting of
n north steps and n east steps that never go below the line y = x.

We denote by DPn, the set of all the Dyck paths of length n. Dyck paths of length n are in bijection with
sequences (g0, . . . , gn−1) of n nonnegative integers satisfying the two conditions

(9)
{
g0 = 0 ,
gi+1 ≤ gi + 1 , ∀i < n− 1 .

The i-th entry gi of the sequence g corresponds to the number of complete lattice squares between the north
step of the i-th row of the Dyck path and the diagonal y = x. Such sequences are called Dyck sequences.
We denote by DSn, the set of all the Dyck sequences of length n. From now, we use indifferently Dyck
sequences or Dyck paths.

Example 4. The Dyck sequence g = (0, 0, 1, 2, 0, 1, 1, 2, 3, 0) corresponds to the Dyck path

Definition 5. The statistic area associated to a Dyck sequence g is defined by

(10) area(g) =
n−1∑
i=0

gi .
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On the corresponding Dyck path, this statistic is the number of complete lattice squares between the path
and the diagonal y = x.

Definition 6. The statistic dinv, which is the number of inversions of a Dyck sequence g, is defined by

(11) dinv(g) =
∑

0≤i<j<n

χ(gi − gj ∈ {0, 1}) .

We recall a graphical interpretation of this statistic on Dyck path. Let us call a north point, a point where
a north step arrives. Two north points give a contribution of 1 in dinv, if they are in the same diagonal or
if the second point is in the diagonal just below the diagonal of the first one.

Example 7. The fourth entry of the Dyck sequence g = (0, 0, 1, 2, 0, 1, 1, 2, 3, 0) gives 3 inversions. One
inversion comes from the same diagonal and the two others come from the diagonal just below.

Theorem 8 ([5, 7]). The (q, t)-Catalan numbers Cn(q, t) are the generating polynomials of Dyck sequences
of size n with the two statistics area and dinv

(12) Cn(q, t) =
∑

g∈DSn

tarea(g)qdinv(g) .

Example 9. The (q, t)-Catalan number C3(q, t) = q3+q2t+qt2+qt+t3 can be computing using the following
five Dyck paths and the two previous statistics.

The black linked points correspond to pairs of points which give a contribution of 1 in the statistic dinv.

3.2. Definition of a filtration of Catalan numbers. By definition, the k-Schur functions indexed by
column partitions (1n) are generalizations of the elementary functions en(X) in the space of symmetric
functions over C(t, q). Hence, we can replace elementary functions in Definition 1 by these k-Schur functions,
in order to obtain a k-level version of (q, t)-Catalan numbers.

Definition 10. Let k and n be two positive integers. The generalized (q, t)-Catalan numbers of level k are
defined by

(13) C(k)
n (q, t) =

〈
∇s(k)1n

(
X;

1
t

)
, s1n(X)

〉
,

where 〈 , 〉 is the usual scalar product on symmetric functions.

Remark 11. In fact, k-Schur function s(k)1n

(
X; 1

t

)
are special cases of Hall-Littlewood functions (see Equation

6). We can define more general extensions of the (q, t)-Catalan numbers indexed by partitions by

(14) Cλ(q, t) =
〈
∇
(
tn(λ)ωQ′λ

(
X;

1
t

))
, s1n(X)

〉
.

Recently J. Haglund and J. Morse [11] have defined generalizations of (q, t)-Catalan numbers indexed by
compositions using Jing operators on Hall-Littlewood functions and have found the corresponding combina-
torial interpretation on Dyck paths. These generalizations are equivalent to our definition (14) in the case
of partitions.
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Conjecture 12 (Positivity). Let k and n be two positive integers. The polynomial C(k)
n (q, t) is in N[q, t].

In [2], the authors make the conjecture (originally formulated by Lascoux) that the Schur expansions of
the operator ∇ applied on the modified Hall-Littlewood functions Q′λ(X; t) are positive, up to a global sign.
The positivity of our generalizations follows directly from this conjecture.

Remark 13. It is important to invert the parameter t inside the k-Schur functions in order to obtain
polynomials in q and t with integral positive coefficients.

Conjecture 14 (Filtration). Let n be a positive integer. The family of polynomials
(
C

(k)
n (q, t)

)
k≥1

is a

filtration of the usual (q, t)-Catalan numbers Cn(q, t). More precisely, we have

(15)

{
∀k ≥ 1, C

(k+1)
n (q, t)− C(k)

n (q, t) ∈ N[t, q],
∀k ≥ n, C

(k)
n (q, t) = Cn(q, t) .

Proof: The first statement is a consequence of Conjecture 3 of [2]. The second statement of the proposition
follows immediately from the stability property

(16) ∀k ≥ n, s(k)1n (X; t) = en(X) .

Example 15. Using the same conventions as in Example 2, the generalized (q, t)-Catalan numbers C(k)
6 (q, t)

are given by the following matrices

C
(1)
6 C

(2)
6 C

(3)
6

1

1
1 1 1

1 1 1
1

1
1 1

1 1 2 1
1 1 2 2

1 1 2 1 1
1 1 1 1

1

C
(4)
6 C

(5)
6

1
2

1 2
1 1 2 1

1 1 2 2
1 1 2 1 1

1 1 1 1
1

1
1

1 1
1 1 1

1 2 2
1 2 2

2 2 2 1
1 2 2 2

1 1 2 1 1
1 1 1 1

1

Conjecture 16. At the level k = 2, the generalized (q, t)-Catalan numbers statisfy the recursive formula for
n > 1, {

C
(2)
n+1(q, t) = tnC

(2)
n (q/t, t) if n is even,

C
(2)
n+1(q, t) = tnC

(2)
n (q, t) + qtn−1C

(2)
n−1(q, t) if n is odd.

Example 17. In the even case, for n = 2

(17) C
(2)
3 (q, t) = t2C

(2)
2 (q, t) = t2(t+ q/t) = t3 + qt .

In the odd case, for n = 5

C
(2)
6 (q, t) = t5C

(2)
5 (q, t) + qt4C

(2)
4 (q, t)

= t5(q2t4 + qt7 + qt6 + t10) + qt4(q2t2 + qt4 + qt3 + t6)
= q3t6 + q2t9 + q2t8 + q2t7 + qt12 + qt11 + qt10 + t15
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Definition 18. By specializing q = 1 and t = 1 in the generalized (q, t)-Catalan numbers C(k)
n (q, t), we

define a new filtration C
(k)
n of the usual Catalan numbers Cn

C(k)
n = C(k)

n (1, 1) .

Example 19. The triangle of the specialization of the generalized (q, t)-Catalan at q = 1 and t = 1 is

(18)

n : k 1 2 3 4 5 6
1 1
2 1 2
3 1 2 5
4 1 4 5 14
5 1 4 10 14 42
6 1 8 25 28 42 132

The first diagonal below the main diagonal corresponds to the sequence Cn−1 and the second diagonal
below the main one corresponds to the sequence 2Cn−2. The others diagonal sequences are unknown in
Sloane’s integer encyclopedia. But using the combinatorial interpretation at t = 1, we give an explicit
expression for these numbers in the next section.

3.3. Combinatorial interpretation at t = 1. When the parameter t is specialized at 1 in the general-
ized (q, t)-Catalan numbers C(k)

n (q, t), we are able to give an explicit combinatorial interpretation of these
polynomials. This interpretation is based on the fact that ∇ is multiplicative at t = 1 and was remarked in
[2].

Proposition 20. Let n and k be two positive integers. The generalized (q, t)-Catalan numbers satisfy the
following factorisation formula at t = 1

(19) C(k)
n (q, 1) = Cn(q, 1)n div k

C(n mod k)(q, 1) .

Proof: By definition, we have

s
(k)
1n (X; 1) = ω

(
H(kn div k, n mod k) (X; 1)

)
= ω

(
h(kn div k, n mod k)(X)

)
= e(kn div k, n mod k)(X) .

Now, since the operator ∇ at t = 1 is multiplicative, we can write

C(k)
n (q, 1) = 〈∇t=1

(
s
(k)
1n (X; 1)

)
, en(X)〉

= 〈∇t=1(ek(X))n div k ∇t=1(en mod k(X)) , en(X)〉 .

By consideration of degree, the coefficient in en(X) in the right part of the scalar product can only be
obtained as the product of the coefficient of en(X) in ∇t=1(ek(X))n div k and in ∇t=1(en mod k(X)) . �

Remark 21. Using the previous proposition, we obtain an explicit expression for the generalized Catalan
numbers C(k)

n in terms of usual Catalan numbers

(20) C(k)
n = (Ck)n div k

Cnmod k .

Corollary 22. Let n and k be two positive integers. The combinatorial interpretation of C(k)
n is given by

(21) C(k)
n (q, 1) =

∑
g

qarea(g) ,

where the sum is taken over the Dyck paths g, which are below the Dyck path built with n div k blocks of k
steps up and k steps right and a last block of n mod k steps up and n mod k step right.

Example 23. The set of Dyck paths for the combinatorial interpretation of C(3)
7 (q, 1) are those under the

following Dyck path.
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3.4. Combinatorial interpretation of C(k)
n (q, t). We find some conjectural combinatorial models for spe-

cial cases of these generalizations of (q, t)-Catalan numbers. We use the combinatorics of configurations of
Dyck paths which permits to give some conjectures on a combinatorial model for 〈∇sλ(X) , s1n(X)〉. It is
known that the Schur expansion of ∇sλ(X) on the Schur basis is always positive, up to a global sign. This
sign is interpreted by M. Bousquet-Mélou using determinants of Catalan numbers. In the special case of
t = 1, a proof using configurations of Dyck paths is given in [20]. More recently, an interpretation using
nested Dyck paths is given in [22] and the following interpretation is mainly based on this work.

3.4.1. A combinatorial interpretation of 〈∇sλ(X) , s1n(X)〉. We recall the combinatorial interpretation of
the scalar product 〈∇sλ(X) , s1n(X)〉 given in [22] in terms of nested Dyck paths. For a given partition, we
can describe a set of configurations of Dyck paths with two statistics which permits to express the previous
scalar product as a generating polynomial. The global sign of these expressions and the characterization of
the corresponding configurations of Dyck paths can be computed directly from the partition λ.

For a given partition λ = (λ1, . . . , λp), we will associate a sequence of λ1 nonnegative integers ñ(λ) =
(ñ0, . . . , ñλ1), called the dissection sequence of λ. Define the maximal rim-hook of a partition µ as the skew
diagram µ/(µ2 − 1, µ3 − 1, . . . , µ`(µ) − 1). We consider the tiling of the conjugate partition of λ obtained by
removing successively the maximal rim-hooks. The entry ñi of ñ(λ) is the length of the maximal rim-hook
of the tilling starting in the (λ1 − i)-th row and is 0 if no rim-hook starts in the (λ1 − i)-th row.

Example 24. The dissection sequence corresponding to the partition λ = (53222) is ñ(53222) = (9, 0, 0, 5, 0)
as described by the picture

9

0

5

0

0

We define the spin of a partition λ by

(22) sp(λ) =
∑
R

(h(R)− 1) ,

where the sum is over all the border rim-hooks of λ′ and h(R) the height of these ribbons. The sign of a
partition λ, corresponding to the global sign of 〈∇sλ(X) , s1n(X)〉, is defined by

(23) sgn(λ) = (−1)sp(λ) .

We also define the diagonal inversion adjustment by

(24) adj(λ) =
λ1−1∑
i=0

(λ1 − 1− i)χ(ñi > 0) =
λ1−1∑
i=0

λ′i χ(ñi > 0) .

The adjustment is the sum of the row indices of λ′ (starting from the top of the diagram of the partition)
where a border rim-hook starts.

Example 25. For the partition λ = (53222), the spin and the sign are

(25) sp(λ) = 4 + 1 = 5 and consequently sgn(λ) = −1 .
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In this case, the adjustment is

(26) adj(λ) = 1 + 4 = 5 .

Definition 26. Let λ = (λ1, . . . , λp) be a partition of dissection sequence ñ(λ) = (ñ0, . . . , ñλ1−1). Let
Π = (π0, . . . , πλ1−1) be a sequence of Dyck paths πi of length ñi from (i, i) to (i+ ñi, i+ ñi). If ñi is equal to
0, πi is a degenerate Dyck path consisting in a single vertex at (i, i). The sequence Π is a nested Dyck path
for the partition λ, if for all i 6= j, no edge or vertex of πi coincides with any edge or vertex of πj.

We denote by NDPλ the set of all the nested Dyck paths for the partition λ.

Example 27. A nested Dyck path of NDP(53222) corresponding to the dissection sequence ñ(53222) =
(9, 0, 0, 5, 0).

The encoding of Dyck paths using Dyck sequences can be extended to nested Dyck paths. Let Π =
(πo, . . . , πl−1) a nested Dyck path. The nested Dyck configuration corresponding to Π is an l-tuple of words
G = (g(0), . . . , g(l−1)), where g(i) is the Dyck sequence encoding the Dyck path πi. The indexing of the
letters in these Dyck sequences are chosen to match the alignment of paths in the picture. In the following,
we use indifferently nested Dyck paths and nested Dyck configurations.

Example 28. The nested Dyck path of Example 27 corresponds to the following nested Dyck configuration

(27) G =


g(0) : 0 1 2 2 2 3 4 3 3
g(1) : · × · · · · · · ·
g(2) : · · × · · · · · ·
g(3) : · · · 0 1 1 0 1 ·
g(4) : · · · · × · · · ·

 .

The statistic area and dinv can be extended to nested Dyck paths. The area of a nested Dyck path G,
written area, is the sum of the areas of the Dyck paths of G:

(28) area(G) =
l−1∑
i=0

area(gi) =
l−1∑
i=0

∑
i≤j<i+ni

g
(i)
j .

The diagonal inversion statistic for a nested Dyck path G, written dinv, is defined by

(29)
dinv(G) = adj(λ) +

∑
a,b,u,v χ

(
g
(u)
a − g(v)

b = 1
)
χ(a ≤ b)

+
∑
a,b,u,v χ

(
g
(u)
a − g(v)

b = 0
)
χ((a < b) or (a = b and u < v)) .

The dinv of a nested Dyck path G = (g(0), . . . , g(l)) corresponds to the sum of the dinv of each Dyck path
g(i) plus the number of pairs of points coming from different g(i)’s which form a inversion. A pair of points
which form an inversion and which are in the same row are just counted one time.

Example 29. The statistics area(G) and dinv(G) for the nested Dyck path G of Example 27 are

(30) area(G) = 24 and dinv(G) = 37 .

One of the main conjectures of [22] gives the following expression for the coefficient of ∇sλ(X) on the
Schur function s1n(X)

(31) 〈∇sλ(X) , s1n(X)〉 = sgn(λ)
∑

G∈NDPλ

qarea(G)tdinv(G) .
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Example 30. For λ = (221), we have

(32) 〈∇s221(X) , s15(X)〉 = −
(
q6t3 + q5t4 + q4t5 + q3t6

)
.

The dissection vector of the partition λ = (221) is n = (4, 1) and adj(λ) = 1. The combinatorial interpretation
of (32) is given by the following four nested Dyck paths where we have linked the pairs of points which give
a contribution of 1 in dinv.

3.4.2. Combinatorial interpretation for the filtration in some special cases. We give an explicit combinato-
rial interpretation of the generalizations of (q, t)-Catalan numbers in the cases of the level k = n − 1 and
k = n − 2 using the combinatorial materials given in the previous section. The goal is to find bijections
between sets of nested Dyck paths and usual Dyck paths. These bijections have to be compatible with the
statistics (area, dinv) and (area, dinv) in order to explain why the terms are canceling in the right way,
giving at the end, a polynomial with only positive coefficients.

For level n− 1

For the level k = n − 1, we have an explicit characterization of the Schur functions which appear in the
k-Schur functions we are considering. Using Equation (7), we have that

(33) s
(n−1)
1n (X; t) = s1n(X) + t s21n−2(X) .

Conjecture 31 (Combinatorial interpretation for k = n − 1). Let DP (1,1)
n denotes the set of Dyck paths

which go through the lattice point (1, 1). The generalized (q, t)-Catalan numbers of level (n− 1) are given by

(34) C(n−1)
n (q, t) =

∑
g∈DP (1,1)

n

qarea(g)tdinv(g) .

Proof (based on Conjecture (31)): As s1n(X) = en(X), we know that

(35) 〈∇s1n(X) , s1n(X)〉 =
∑

g∈DPn

qarea(g)tdinv(g) ,

where the sum is over all the Dyck paths of length n.
Let now compute the combinatorial interpretation of 〈∇s21n−2(X) , s1n(X)〉 in terms of nested Dyck paths.
The dissection vector of the partition (21n−2) is ñ(21n−2) = (n, 0), as described by the following picture

This implies that the nested Dyck paths corresponding to the partition (21n−2) are the sequences of two non
intersecting Dyck paths G = (g(0), g(1)), such that

- Dyck path g(0) is a Dyck path of length n avoiding the lattice point (1, 1),
- Dyck path g(1) is reduced to the degenerated Dyck path of size 0 at the lattice point (1, 1).

Hence, we have

(36) 〈∇s21n−2(X) , s1n(X)〉 = −
∑

G∈NDP21n−2

qarea(G)tdinv(G) .

Let denote by DP (1,1)c

n the set of all Dyck paths of size n avoiding the lattice point (1, 1). Let consider the
following bijection Φn defined by

(37) Φn : NDP21n−2 −→ DP
(1,1)c

n

(g(0), g(1)) 7−→ g(0) .
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The compatibility of Φn with the statistics area and dinv is given by

(38)
{

dinv(Φn(g(0), g(1))) = dinv(G)− 1 ,
area(Φn(g(0), g(1))) = area(G) .

In order to prove this compatibility, let G = (g(0), g(1)) be a nested Dyck path of NDP21n−2 . By definition
of G, the corresponding Dyck configuration is of the form

(39)
(
g(0) : 0 1 g

(0)
2 · · · g

(0)
n−1

g(1) : · × · · · · ·

)
.

Hence, the Dyck path g(1) always give a contribution of 1 in dinv(G). Using the property of Φn given in
(38), Equation (36) can be rewritten as

〈s21n−2(X) , s1n(X)〉 = −
∑
G∈NDP(21n−2)

qarea(G)tdinv(G)(40)

= −
∑
g∈DP (1,1)c

n
qarea(g)tdinv(g)+1 .(41)

Hence, we have for generalized (q, t)-Catalan of level (n− 1)

C(n−1)
n (q.t) =

∑
g∈DPn

qarea(g)tdinv(g) − 1
t

∑
g∈DP (1,1)c

n

qarea(g)tdinv(g)+1(42)

=
∑

g∈DP (1,1)
n

qarea(g)tdinv(g) .(43)

�

Corollary 32. The generalized Catalan numbers of level (n− 1) are given by

(44) C(n−1)
n (1, 1) = Cn−1 .

The proof is immediate using the combinatorial interpretation given in the previous theorem.

For level n− 2

In order to give a combinatorial interpretation for generalized (q, t)-Catalan numbers of level (n − 2), we
use the combinatorial interpretation for level (n − 1) combined with the combinatorial interpretation of
〈∇s221n−4(X) , s1n(X)〉. Using Equation (7), we have

(45) s
(n−2)
1n (X; t) = s1n(X) + t s21n−2(X) + t2 s221n−4(X) .

Conjecture 33. Let denote by DP (1,1),(3,2)
n the set of Dyck paths which go through the lattice points (1, 1)

and (3, 2). The generalized (q, t)-Catalan numbers of level (n− 2) are given by

(46) C(n−2)
n (q, t) =

∑
g∈DP (1,1),(3,2)

n

tdinv(g)qarea(g) .

Proof (based on Conjecture (31)): Let us compute the combinatorial interpretation of 〈∇s221n−4(X) , s1n(X)〉.
The dissection vector of the partition (221n−4) is ñ(221n−4) = (n− 1, 1) and adj(221n−4) = 1, as described
in the following picture

Hence, a nested Dyck paths G = (g(0), g(1)) is a couple of non intersecting Dyck path (g(0), g(1)) satisfying

- g(0) is a Dyck path of length n− 1 avoiding the lattice point (2, 1),
- g(1) is the unique Dyck path of length 1 starting from the lattice point (1, 1).
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Hence, we have

(47) 〈∇s221n−4(X) , s1n(X)〉 =
∑

G∈NDP221n−4

qarea(G)tdinv(G) .

Let denote by DP
(1,1),(3,2)c

n the set of Dyck paths which go through the lattice point (1, 1) and avoid the
lattice point (2, 1). Let consider the following bijection Ψn defined by

(48) Ψn : NDP221n−4 −→ DP
(1,1),(3,2)c

n

G = (g(0), g(1)) 7−→ g(1) · g(0) ,

where g(1) · g(0) is the Dyck path of length n obtained by concatenation of g(1) and g(0). The compatibility
of Ψn with the statistics area and dinv is given by

(49)
{

dinv(Ψn(g(0), g(1))) = dinv(G)− 2 ,
area(Ψn(g(0), g(1))) = area(G) .

In order to prove this compatibility, let G = (g(0), g(1)) be a nested Dyck path in NDP221n−4 . The corre-
sponding Dyck configuration is of the form

(50) G =
(
g(0) : 0 1 2 g

(0)
3 · · · g

(0)
n−2

g(1) : · 0 · · · · · ·

)
The zero of g(1) give a contribution of 2 in dinv(G). By definition of the statistic dinv of a Dyck configuration,
we have

(51) dinv(G) = adj(221n−4) + 2 + dinv
(
g(0)

)
= 3 + dinv

(
g(0)

)
.

The concatenation of Dyck paths g(1) · g(0) corresponds to the following Dyck sequence

(52) g(1) · g(0) =
(
g
(1)
1 = 0, 0, 1, 2, g(0)

3 , · · · , g(0)
n−2

)
.

The first 0 gives now a contribution of 1 to dinv
(
g(1) · g(0)

)
. Hence,

(53) dinv
(

Ψn

(
g(0), g(1)

))
= dinv

(
g(1) · g(0)

)
= 1 + dinv

(
g(0)

)
.

Finally, by combining (51) and (53), we have dinv
(
Ψn

(
g(0), g(1)

))
= dinv(G)− 2.

Using Equation (49), we have

(54) 〈∇s221n−4(X) , s1n(X)〉 = −
∑

g∈DP (1,1),(3,2)c
n

qarea(g)tdinv(g)+2 .

Hence, using Expression (45) of k-Schur functions when k = n− 2 and the combinatorial interpretation for
level n− 1, we obtain〈

∇s(n−2)
1n

(
X;

1
t

)
, s1n(X)

〉
=

∑
g∈DP (1,1)

n

qarea(g)tdinv(g) − 1
t2

∑
g∈DP (1,1),(3,2)c

n

qarea(g)tdinv(g)+2

=
∑

g∈DP (1,1),(3,2)
n

tdinv(g)qarea(g) .

�

Corollary 34. The generalized Catalan numbers of level (n− 2) are given by

(55) C(n−2)
n (1, 1) = 2 Cn−2 .

Proof: There are two configurations for the first two steps of Dyck paths in DP
(1,1),(3,2)
n given in the

following picture
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And it is well known that the number of lattice paths of length n − 3 starting at the lattice point (3, 2) is
Cn−2. Hence the cardinality of DP (1,1),(3,2)

n is 2 Cn−2. �

For the level 2

In the special case of k = 2, we have a conjectural interpretation for the generalized (q, t)-Catalan numbers.

Conjecture 35. Let DP (2)
n be the set of the Dyck paths which are under the Dyck path given by the sequence(

(10)n/2−1, 1, (10)n/2, 0
)
. The generalized (q, t)-Catalan number of level k=2 are given by

(56) C(2)
n (q, t) =

∑
g∈DP (2)

n

qarea(g)tdinv(g) .

For other levels 2 < k < n− 2

For the others levels the problem splits into two different cases. For the levels n/2 < k < n − 2, it ex-
ists an algorithm which describe how cancellations are behaving correctly but the characterizations of the
corresponding subsets of Dyck paths are not as nice as for the case of the level n− 1 and n− 2.
For the levels 2 < k < n/2, the coefficients of the k-Schur functions indexed by column partitions on the
Schur basis are not just monomials in t. Hence, the terms are more complicated and are not compatible
with the combinatorial interpretation using the same process than before.

4. Filtration of parking functions and Schröder paths

There exist other interesting polynomials of N[q, t] computed using scalar products involving the operator
∇. For each of these polynomials, a combinatorial model is associated in order to interpret them as generating
polynomials with respect with somes statistics. We are mainly interested in the following two examples

〈∇(en(X)) , h1n(X)〉 −→ (q, t)-parking functions,
〈∇(en(X)) , edhn−d(X)〉 −→ (q, t)-Schröder paths .

In order to generalize these combinatorial models, we apply the same idea as in the previous sections, i.e.
replacing the elementary functions in ∇ by the k-Schur functions indexed by column partitions.

The combinatorial model for the (q, t)-parking functions have been conjectured by Haglund and Loehr
in [10, 21]. Using k-Schur functions, we define a new filtration of these polynomials.

Definition 36. Let k and n be two positive integers. The generalized (q, t)-parking numbers of level k are
defined by

(57) P (k)
n (q, t) =

〈
∇s(k)1n

(
X;

1
t

)
, h1n(X)

〉
.

Example 37. For n = 3, the different levels of the filtration are given by

P
(1)
3 (q, t) = t3 + 2t2 + 2t+ 1

P
(2)
3 (q, t) = 2q + 2t+ 2t2 + t3 + qt+ 1

P
(3)
3 (q, t) = q3 + q2t+ 2q2 + qt2 + 3qt+ 2q + t3 + 2t2 + 2t+ 1 .
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The specialization of t = 1 and q = 1 in P (k)
n (q, t) gives new sequences of numbers P (k)

n = (Pk)n div kPn mod k,
where Pj = (j + 1)j−1.

n : k 1 2 3 4 5 6
1 1
2 2 3
3 6 9 16
4 24 54 64 125
5 120 270 480 625 1296
6 720 2430 5120 5625 7776 16807

The combinatorial model for the (q, t)-Schröder paths have been conjectured by Egge, Haglund, Kremer and
Killpatrick in [1] and proved by Haglund in [9]. Using the same kind of idea, we can define filtration of
(q, t)-Schröder paths.

Definition 38. Let n, d, k be tree positive integers. The generalized (q, t)-Schröder numbers of level k are
defined by

(58) ∀d > 0, S
(k)
n,d(q, t) =

〈
∇s(k)1n

(
X;

1
t

)
, ed(X)hn−d(X)

〉
.

5. Representation theoretic interpretation of C
(k)
n (q, t)

The (q, t)-Catalan numbers Cn(q, t) are related to the space of diagonal harmonics DHn and the n!
conjecture on Macdonald polynomials. Using our generalized (q, t)-Catalan numbers C(k)

n (q, t), we define
subspaces DH(k)

n for k dividing n of the space DHn. In the special cases where k divides n, we give an
explicit algebraic description of these spaces. We briefly recall some basic statement on the space of diagonal
harmonics and the operator theorem of Haiman [12].

5.1. A generalization of the space of diagonal harmonics DHn. Let n be a positive integer and
Q[Xn, Yn] the space of polynomials over Q in the two sets of variables Xn = {x1, x2, . . . , xn} and Yn =
{y1, y2, . . . , yn}. We call bidegree of a polynomial f(Xn, Yn), the couple of non-negative integers (i, j) such
that degX(f) = i and degY (f) = j.

The symmetric group Sn acts diagonaly on Q[Xn, Yn] by

(59) ∀ f ∈ Q[Xn, Yn], σ.f(x1, . . . , xn, y1, . . . , yn) = f(xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n)) .

Let I be the ideal in Q[Xn, Yn] generated by all the Sn-invariant polynomials without constant term. Define
the quotient ring

(60) Rn = Q[Xn, Yn]/I .

For each Sn-invariant polynomials P (Xn, Yn) of the ideal I, the component of P in I is bihomogeneous in
Xn and Yn. Thus, I is a bihomogeneous ideal. Consequently, Rn has a structure of a doubly graded ring,
i.e.

(61) Rn =
⊕
i,j

(Rn)i,j ,

where the subspace (Rn)i,j consists of all images of homogeneous polynomials of bidegree (i, j).

Let us denote by ∂xi (resp. ∂yi) the partial derivative operator with respect to the variable xi (resp.
yi). Define the scalar product 〈 , 〉∂ on Q[Xn, Yn] by

(62) ∀f, g ∈ Q[Xn, Yn] , 〈f, g〉∂ = f (∂x1, . . . , ∂xn, ∂y1, . . . , yn) g(x1, . . . , xn, y1, . . . , ∂yn) |X=Y=0 .

For this scalar product the multplication by xi (resp. yi) is the adjoint operator of ∂xi (resp. ∂yi).
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Definition 39. The space DHn of the diagonal harmonics is defined by

(63) DHn = I⊥ = {h ∈ Q[Xn, Yn] | f(∂x1, . . . , ∂xn, ∂y1, . . . , ∂yn)h = 0} .

This definition of the diagonals harmonics is equivalent to the following caracterization

(64) DHn =

{
P (X,Y ) ∈ Q[Xn, Yn] such that

n∑
i=1

∂xhi ∂y
k
i P with h+ k > 0

}
.

The two rings DHn and Rn are isomorphic and an explicit isomorphism φ : DHn −→ Rn can be defined by

(65)
φ : DHn −→ Rn

h 7−→ the equivalent class of h modulo I .

In the space DHn, the subspace DHAn of the alternating harmonics is defined as the diagonals harmonics
which are alternating, i.e.

(66) DHAn = {P (Xn, Yn) ∈ DHn such that σP (Xn, Yn) = −P (Xn, Yn) ,∀σ ∈ Sn} .

Proposition 40 ([12]). Let Cn be the n-th Catalan number. The dimension of the space DHAn is given by

(67) dimDHAn = Cn .

The space DHAn is a bigraded vector space which can be decomposed as

(68) DHAn =
(n2 )⊕
i=1

(n2 )⊕
j=1

(DHAn)i,j ,

where (DHAn)i,j is the space of the polynomials in DHAn of bidegree (i, j). The Hilbert series of DHAn
is defined by

(69) FDHAn(q, t) =
∞∑
i=1

∞∑
j=1

tiqj dim(DHAn)i,j .

Theorem 41 ([12]). The (q, t)-Catalan numbers are defined by

(70) Cn(q, t) = FDHAn(q, t) .

5.2. The operator theorem. The structure of the space DHn can be more explicitly, but not entirely,
described using the operator theorem given in [12]. The idea is to introduce differential operators Ek which
generate the space DHn only from the Vandermonde determinant of level n in variables X defined by

(71) ∆n(Xn) =
∏

1≤i<j≤n

(xi − xj) .

These operators Ek are defined for all k > 0 by

(72) Ek =
n∑
i=1

yi∂x
p
i .

Theorem 42 ([12]). The space of diagonal harmonics Hn is the smallest space containing ∆n(Xn) and
closed under the action of the operators Ep for all 1 ≤ p ≤ n − 1 and the operators ∂xi for all 1 ≤ i ≤ n.
We write this statement using the following notation

(73) DHn = LE1,...,En,∂x1,...,∂xn(∆n(Xn)) .

If we consider the operators Fp obtained by interchanging Xn and Yn in Ep, the space DHn can also be
described as the smallest space containing ∆n(Yn) and closed under the action of the operators Fp for all
1 ≤ p ≤ n− 1 and the operators ∂yi for all 1 ≤ i ≤ n. In that sense, the operator conjecture is symmetric.
Our generalization of the operators conjecture is not symmetric because our generalization of (q, t)-Catalan
numbers are not symmetric and the space DH(k)

n does not contain the Vandermonde determinant ∆n(Yn)
in variables Yn.
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Corollary 43 ([12]). The space of the alternants DHAn is the smallest space containing ∆n(Xn) and closed
under the action of the operators Ep for all 1 ≤ p ≤ n− 1, i.e.

(74) DHAn = LE1,...,En(∆n(Xn)) .

5.3. Special case when k divides n.

Conjecture 44. Let k and n be two integers such that k divides n and d = n/k. Let us define the space
DHA

(k)
n by

(75) DHA(k)
n = LEd,Ed+1,...,En(∆n(Xn)) .

The Hilbert series of DHA(k)
n is given by F

DHA
(k)
n

(q, t) = C
(k)
n (q, t) .

Example 45. For n = 8 and k = 4, we have the triangle corresponding to C(4)
8 (q, t) is

q
i

1
1 1

1 1 2 1
1 1 2 3 2 1

1 1 2 3 5 3 1
1 1 2 3 5 6 4 2

1 1 2 3 5 6 7 3 1

1 1 2 3 5 6 6 5 2 1
1 1 2 3 5 5 6 4 3 1

1 1 2 3 4 4 4 3 1 1
1 1 2 2 3 2 2 1 1

1 1 1 1 1 1
1

t(
n
2 )−j

The boxed entry of coordinates (19, 7) corresponds to the subspace of DHA(4)
8 of bidegree t28−19+1q7−1 = t10q6

with dimension 7. And

rank

 E732222.∆n(Xn), E642222.∆n(Xn), E633222.∆n(Xn), E552222.∆n(Xn),
E543222.∆n(Xn), E533322.∆n(Xn), E444222.∆n(Xn), E443322.∆n(Xn),
E433332.∆n(Xn), E333333.∆n(Xn)

 = 7 .

This conjecture has been verified up to n = 8.
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[1] E.Egge, J. Haglund, D. Kremmer, K. Killpatrick, A Schröder generalization of Haglund’s statistic on Catalan paths,
Electronic Journal of Combinatorics, 10, (2003), R16, 21p.

[2] F. Bergeron, A. Garsia, M. Haiman and G. Tesler, Identities and Positivity Conjectures for Some Remarkable Operators in

the Theory of Symmetric Functions, Methods and Applications of Analysis, 6, 3, (1999), 363-420.
[3] F. Descouens, Making research on symmetric functions using MuPAD-Combinat, Lectures Notes in Computer Sciences,

Springer, 4151, (2006).

[4] A. Garsia and J. Haglund, A positivity result in the theory of Macdonald polynomials, Proc. Natl. Acad. Sci, USA, 98, 8,
(2001), 4313-4316 (electronic).

[5] A. Garsia and J. Haglund, A proof of the (q, t)-Catalan positivity conjecture, Discrete Math. 256, 3, (2002), 677-717.

[6] A. Garsia and M. Haiman, A remarkable q, t-Catalan sequence and q-Lagrange inversion, J. Algebraic Combinatorics 5,
(1996), 191-244.

[7] M. Haiman, J. Haglund, N. Loehr, J. Remmel and A. Ulyanov, A combinatorial formula of the diagonal coinvariants, Duke

Math. J., 126 (2005), pp. 195-232.
[8] J. Haglund, Conjectured statistics for the (q, t)-Catalan numbers, Adv. Maths, 175, 2, (2003), 319-334.
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