
ar
X

iv
:0

70
5.

45
48

v3
  [

m
at

h.
Q

A
] 

 1
1 

Fe
b 

20
11

A PERMANENT FORMULA FOR THE JONES POLYNOMIAL

MARTIN LOEBL AND IAIN MOFFATT

Abstract. The permanent of a square matrix is defined in a way similar to the determinant, but without
using signs. The exact computation of the permanent is hard, but there are Monte-Carlo algorithms that
can estimate general permanents. Given a planar diagram of a link L with n crossings, we define a 7n× 7n

matrix whose permanent equals to the Jones polynomial of L. This result accompanied with recent work of
Freedman, Kitaev, Larson and Wang provides a Monte-Carlo algorithm to any decision problem belonging
to the class BQP, i.e. such that it can be computed with bounded error in polynomial time using quantum
resources.

1. Introduction and statement of results

The permanent of an n× n matrix A = (aij) is defined to be

per(A) =
∑

σ∈Symn

n∏

i=1

aiσ(i)

where Symn is the permutation group on {1, . . . , n}. It is well known that if A is the (V ×W ), 0, 1 adjacency
matrix of a bipartite graph G = (V,W,E), then per(A) is the number of perfect matchings of G. The
permanent of A is syntactically similar to its determinant det(A), which is a signed variation of the above
sum. This mild sign variation leads to a radical change in computability: computing permanents is hard
(see 2.2), whereas determinants can be computed in a polynomial time.

It is a seminal result of Valiant (see [V3]) that many graph and knot polynomials, including the Jones
polynomial, may be written as permanents. Here we are interested in the expression of the Jones polynomial
as a permanent and in the implications of this expression. In the case of the Jones polynomial, the general
reduction of [V3] leads to matrices of size at least n2 × n2, n being the number of crossings of the link
diagram. The large size of these matrices severely restricts a computational applicability of this result. It is
clear that in order to efficiently calculate the Jones polynomial as a permanent, a new approach is needed.
In this paper we exploit a well-known combinatorial interpretation of the permanent to find an expression
of the Jones polynomial as the permanent of a matrix that grows linearly in the number of crossings.

The Jones polynomial ([J1]) is a celebrated invariant of links in S3. A link is a disjoint union of embedded
circles in 3-space. The Jones polynomial J of a link can be uniquely characterized by the following skein
relation:

q2J

( )
− q−2J

( )
= (q − q−1)J

( )

together with the initial condition J(unknot) = q + q−1. From this skein relation, it follows that the Jones
polynomial of a link can be computed in exponential time (with respect to the number of crossings). Although
the skein relation above provides the best known definition of the Jones polynomial, there are several other
ways to construct the Jones polynomial. Below we will use a statistical mechanical construction of the Jones
polynomial that is due to Turaev [Tu] and Jones [J2]. This state sum formulation for the Jones polynomial
is described in Subsection 3.1.

In this paper we provide a permanent formula for the Jones polynomial and discuss applications and
implications of this formula. This formulation of the Jones polynomial as a permanent of a 7n× 7n matrix
(where n is the number of crossings of the link diagram) is described below.
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Consider a diagram DL of an oriented link L, that is an oriented, 4-valent plane graph, where each vertex
has a crossing structure of one of two types:

positive: ; or negative: .

We form a graph D̂L, from the link diagram DL, by replacing a neighbourhood of each crossing of DL with
one of the graphs shown in Figure 1. We say that D̂L is a blown-up version of DL. D̂L is an immersed
directed graph with 7n vertices, where n is the number of crossings of DL. We will refer to the the two
graphs shown in Figure 1, minus the incoming and outgoing edges (which come from the link diagram), as

gadgets. We emphasize the fact that the four edges in D̂L that enter and exit a gadget are all parallel when
they meet the gadget.

In Definition 3.2 below, we define local weights on the edges of D̂L. Let ML denote the adjacency matrix
of weights of D̂L. ML has size the number of vertices of D̂L, and the (i, j) entry of ML is the weight of the

corresponding directed edge (ij) of D̂L.
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Figure 1. Gadgets at positive and negative crossings.

The next theorem is the main result of the paper. This result was inspired by the observation (see [GL],
[BG]) that the weight system associated with the colored Jones function is a permanent.

Theorem 1. For every link L we have

J(L) = q−2ω(DL)qrot(L)per(ML).

Definitions of the rotation number rot(L) and writhe ω(DL) are given in Subsection 3.1.
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2. Computational implications

2.1. Jones and quantum computing. We follow an exposition of the results of Freedman, Kitaev, Larsen
and Wang (see [FKLW]) written by Bordewich, Freedman, Lovasz and Welsh (see in particular the proof of
Theorem 5.1 in [BFLW]).

Suppose that we have a BQP language and an input x. Then we can construct a link L, of size polynomial

in |x|, such that if x is in the language then |J(L, e2πi/5)| < [2]
|x|+1
5 0.39. On the other hand, if x is not in

the language then |J(L, e2πi/5)| > [2]
|x|+1
5 0.65. We use the standard notation [2]5 = 2 cos(π/5).

It is also shown in [FKLW] that this kind of approximation of the Jones polynomial (called the additive

approximation in [BFLW]) is in BQP. This was proven in a different way also by Aharonov, Jones and Landau
[AJL]. The BQP-hardness of approximating the Jones polynomial is also discussed by Aharonov and Arad
in [AA].

2.2. Exact computation of Jones polynomial and permanent. The complexity class #P consists of
the counting versions of the decision problems in NP ; an example of a problem in #P is: given a graph,
how many Hamiltonian cycles does it have? It is considered very unlikely that #P = P . Exact computation
of the permanent of 0, 1 matrices is #P-complete (see Valiant [V1]) and exact computation of the Jones
polynomial J(L, t) is #P−hard except when t is a root of unity of order r ∈ {1, 2, 3, 4, 6} (see Jaeger,
Vertigan and Welsh [JVW]). Kuperberg (see [Kup]) showed that stronger than additive approximations of
the Jones polynomial are hard. This contrasts with the approximations of the permanents, as we explain
next.

2.3. Monte-Carlo algorithms for a permanent. Jerrum, Sinclair and Vigoda constructed fully polyno-

mial randomized approximation scheme (FPRAS, in short) for approximating permanents of matrices with
nonnegative entries, [JSV]. For an introduction to FPRAS, the reader may consult [H, p. xvii], [B] and
[JSV]. Unfortunately, the result of [JSV] is the best possible. If one could approximate by a FPRAS the
permanent of matrices with (say) integer entries, then P = #P .

There are however several approximation algorithms for general permanents, which do not yield a polynomial-
time complexity bound. Perhaps the simplest one is based on the following theorem, noticed by several
researchers (Hammersley, Heilman, Lieb, Gutman, Godsil).

Theorem 2. Let A be a matrix and let B be the random matrix obtained from A by taking the square root of

minimal argument of each non-zero entry and then multiplying each non-zero entry by an element of {1,−1}
chosen independently uniformly at random. Then E((det(B))2) = per(A).

This leads to a Monte-Carlo algorithm for estimating the permanent. The algorithm was described and
studied first by Karmarkar, Karp, Lipton, Lovasz and Luby (see [KKLLL]). Clearly, for general matrices the
Monte-Carlo algorithm described above may have to run an exponential time; however, with regard to the
connection to the quantum computing, the experimental study of the algorithm applied to the particular
matrices which come from knot and link diagrams is an attractive task and it is our work in progress jointly
with Petr Plechac.

3. Proofs

3.1. State sums and gadgets. The Jones polynomial has deep connections with statistical mechanics
(see [J2, Wu] for example). In particular, the Jones polynomial can be defined as an ‘ice-type’ or ‘vertex’
statistical mechanical model. (The Jones polynomial can also be defined using other types of statistical
mechanical models.) This means that the Jones polynomial can be defined as a state sum which uses a
planar diagram of a link. This ice-type model for the Jones polynomial is due to Turaev [Tu] and Jones [J2]
and is described below. We will use this model in our construction of a permanent formula of the Jones
polynomial.
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Choose a diagram DL of a link L. Then, the Jones polynomial is given by the state sum

J(L)(q) = q−2ω(DL)
∑

s

qrot0(s)−rot1(s)
∏

v

Rsgn(v)
v (s).

where

• A state s is a coloring of the edges of DL by 0 or 1 such that around each vertex (positive or negative)
of DL the coloring looks like one of the following possibilities:

where edges colored by 0 or 1 are depicted as dashed or solid respectively.
• The local weight R±

v (s) of a state s at a vertex v of DL (positive or negative) is given by

+

R+
v (s) q q − q̄ 1 1 0 q

(1)

−

R−
v (s) q̄ 0 1 1 q̄ − q q̄

(2)

where q̄ = q−1. (These weights come from the R-matrix of the quantum group Uq(sl2) and we
follow the conventions of [CP, p.235]).

• ω(L) is the writhe of DL, that is the sum of the signs of the crossings of DL.
• To define the rotation numbers rot0(s) and rot1(s) of a state s, we first define the the rotation number
rot(a) of a curve a immersed in the plane to be the ψ/(2π), where ψ is the total rotation angle of
the tangent vector of a. (The direction of the counter-clockwise rotation is taken to be positive.)
If s is a state of DL, then roti(s), for i = 1, 2, is the sum of the rotation numbers of each of the
i-colored circles in s. The rotation numbers can also be defined combinatorially as follows: smooth
any 4-valent vertex of s as follows:

The result is a collection of oriented planar circles, colored by 0 or 1. roti(s) is the number of
counter-clockwise 0-colored circles minus the number of clockwise i-colored circles.

It will be convenient to include the phase factors qrot in the R-matrix. This can be achieved as follows:

Let D̃L be the diagram obtained by isotoping DL so that at each crossing the over and undercrossing arcs
meet each other at a tangent where they cross. This means that the rotation number of a cycle c of DL

equals
∑

e∈c rot(ẽ), where rot(ẽ) is the rotation number of the edge ẽ of D̃L corresponding to edge e of DL.
Now, for a state s and a vertex v of DL, consider its two outgoing edges e1, e2 (see Figure 1) and the

rotation numbers r1 = rot(ẽ1) and r2 = rot(ẽ2). Of course, r1 and r2 depend on v. We now define the
modified weights B±

v (s) of a state s at a vertex v by:

+

B+
v (s) qqr1+r2 (q − q̄)qr1−r2 q−r1+r2 qr1−r2 0 qq−r1−r2

(3)

−

B−
v (s) q̄qr1+r2 0 q−r1+r2 qr1−r2 (q̄ − q)q−r1+r2 q̄q−r1−r2

.

With these weights, we have
4



Lemma 3.1. Suppose that DL is a diagram for a link L. Let D̃L be the diagram obtained by isotoping DL

so that at each crossing the over and undercrossing arcs meet each other at a tangent where they cross. Then

J(L) = J(D̃L) = q−2ω(D̃L)
∑

s

∏

v

Bsgn(v)
v (s).

Proof. If s is a state of DL and si is the set of i-colored circles in s, i = 0, 1 then

qrot0s−rot1(s) = qrot(s0)−rot(s1) =
∏

e

qrot(ẽ)δe,s0−rot(ẽ)δe,s1 ,

where the second equality follows since the four arcs entering an exiting a gadget are tangenial. This sum
can be written as ∏

v

q
∑

e starts at v
rot(ẽ)δe,s0−rot(ẽ)δe,s1

where δe,c = 1 (respectively 0) if e lies in c (respectively does not lie in c). Thus,
∑

s

qrot0(s)−rot1(s)
∏

v

Rsgn(v)
v (s) =

∑

s

∏

v

q
∑

e starts at v
rot(ẽ)δe,s0−rot(ẽ)δe,s1Rsgn(v)

v (s)

=
∑

s

∏

v

Bsgn(v)
v (s).

�

Note that in this proof we used the fact that in D̃L, the over and undercrossing arcs meet each other at a
tangent where they cross. We could avoid this tangent condition on the edges entering and exiting a crossing
by adding factors to the the expressions B±

v (s) that are determined by the angles formed by the crossings
in DL. See [Ba] for details on this type of construction.

Definition 3.2. Let DL be a link diagram. Then we let D̂L denote the directed, edge-weighted graph drawn
in the plane which is obtained from DL by replacing a neighbourhood of each crossing of DL with the gadgets
and their incident edges as shown in Figure 1. The edge weights W of D̂L are given by the convention that
all of the undecorated edges have weight 1,

(a, b, c, d, e) = ((q − q−1), (q + q−1)/2,−q/2, q, 1/2),

(v, w, x, y, z) = (1/2, q−1 − q, (q + q−1)/2,−q−1/2, q−1),

and each edge ê coming from an edge e of DL is assigned the weight q−2rot(ẽ).

Lemma 3.3. Let DL be a link diagram of L and D̂L be the graph constructed as described in Definition 3.2.

Then

J(L) = q−2ω(DL)qrot(L)
∑

p∈P

∏

e∈p

We,

where P denotes the set of vertex-disjoint directed cycles that cover all vertices of D̂L.

Proof. Let s be a state ofDL and s̃ be the corresponding state in D̃L (the diagram constructed in Lemma 3.1).
There is a correspondence between the state s̃ at a crossing ṽ and sets of vertex-disjoint directed cycles that
cover all vertices of D̂L. This correspondence is given in the following way: if ã is an edge incident with ṽ
in D̃L, and â is the corresponding edge in D̂L, then the edge â is in a cycle if and only if ã is colored by 1.
The correspondence is given for a positive crossing in Appendix A. From the appendix it is also readily seen
that at a positive crossing

B+
v (s) =

∑

p∈P(s,v)

qrot(ê1)+rot(ê2))
∏

e∈p

We,

where if P(s) denotes the set of vertex-disjoint directed cycles that cover all vertices of D̂L that corresponds
with the state s, then P(s, v) denotes the set of edges of P(s) that belong to the gadget at the crossing v
of DL. It is readily checked that the corresponding identity also holds at negative crossings. It then follows
that

q−2ω(DL)qrot(L)
∑

p∈P

∏

e∈p

We = q−2ω(D̃L)
∑

s

∏

v

Bsgn(v)
v (s),

5



which, by Lemma 3.1, is equal to the Jones polynomial, as required. �

We make the following definition for the matrix ML that is used in Theorem 1.

Definition 3.4. Let DL be a link diagram and D̂L be the associated graph constructed as in Definition 3.2.
Then we let ML denote the adjacency matrix of D̂L, whose (i, j)-entry is the weight of the directed edge
(i, j).

We can now prove Theorem 1.

Proof of Theorem 1. It is well known that if A is the 0, 1 adjacency matrix of a graph, then per(A) is the
number of collections of vertex-disjoint directed cycles that cover all vertices of the graph. Similarly for
general matrix A, per(A) =

∑
C a(C), where the sum is over all collections of vertex-disjoint directed cycles

that cover all vertices of the graph and a(C) =
∏

{ij}∈C Aij . Using the notation of Lemma 3.3, it follows

that per(ML) =
∑

p∈P

∏
e∈pWe. The result then follows from Lemma 3.3. �

Appendix A. Figures
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