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ABSTRACT. In 1992 Strauss, Shallit and Zagier proved that for any posi-
tive integer a we have

3%-1

2k
,;) (k) =0 (mod 32%)
and furthermore
391
k
32% Z <2k) = 1(mod 3).
k=0

Recently a g-analogue of the former congruence was conjectured by Guo
and Zeng. In this paper we prove the conjecture of Guo and Zeng, and
also give a g-analogue of the latter congruence.

1. INTRODUCTION

Partially motivated by the work of Pan and Sun [PS], Sun and Tauraso
[ST1] proved that for any prime p and a € Z* = {1,2,3,...} we have

p*—1
2k @
Z ( ) = (Z)—) (mod p?),
k 3
k=0
where (—) denotes the Legendre symbol. (See also [ST2, ZPS, S09a, S09b,
S09¢| for related results.) When checking whether there are composite

numbers n such that
n—1
2k n
Z (k:) = <§> (mod n?),
k=0

2010 Mathematics Subject Classification. Primary 11B65; Secondary 05A10, 05A30,
11A07, 11599.

Keywords: 3-adic valuation, central binomial coefficient, congruence, g-analogue.

The second author is the corresponding author. He was supported by the Na-
tional Natural Science Foundation (grant 10871087) and the Overseas Cooperation
Fund (grant 10928101) of China.

1


http://arxiv.org/abs/0910.4170v2

2 HAO PAN AND ZHI-WEI SUN

Sun and Tauraso found that

39—1
2k
V3<Z<k))>2a fora=1,2,3,..., (1.1)

k=0

where v3(m) denotes the 3-adic valuation of an integer m (i.e., v3(m) =
sup{a € N: 3% | m} with N = {0,1,2,...}). However, a refinement of
this was proved earlier by Strauss, Shallit and Zagier [SSZ] in 1992.

Theorem 1.1 (Strauss, Shallit and Zagier [SSZ]). For any a € Z* we
have

39—-1
> (2:) = 329 (mod 3%e+1). (1.2)
k=0

Furthermore,

()
W = —1 (mod 3) forallneZ™.

n

Recall that the usual g-analogue of n € N is

=)

0<k<n

[n]q =
which tends to n as ¢ — 1. For d € Z* the d-th cyclotomic polynomial is

given by
d
H ( 27rm"/d> e Z[Q]
r=1
(r,d)=1

Given a positive integer n > 1 we obviously have

nly = L= = (q 2’”’“/”) I (=

k=1 d|n
d>1

It is well known that if dy,dy € ZT are distinct then ®4, (¢) and ®g4,(q)
are relatively prime in the polynomial ring Z[q]. If p is a prime and a is a
positive integer, then

L__l = [p]po—1 and [p%]g = H(I)pﬂ'(Q)

0 (Q) = "
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For n, k € N the usual g-analogue of the binomial coefficient (Z) is the
folloging ¢-binomial coefficient:

([nlg---In—k+1g)/([Lg---[kly) HO<Ek<n,
m — {1 if k=0,
1 0 if k > n.

Note that [Z}q — (%) as ¢ — 1. Many combinatorial identities and con-

gruences involving binomial coefficients have their g-analogues (cf. [St]).
Recently Guo and Zeng [GZ] proposed a g-analogue of (1.1), namely
they formulated the following conjecture.

Conjecture 1.2 (Guo and Zeng [GZ, Conjecture 3.5]). Let a be a positive

integer. Then

3%m—1 o
Z q" { I } =0 (mod [36”]2) for any m € Z7. (1.3)
k=0 q

Concerning this conjecture, Guo and Zeng [GZ] were able to show (1.3)
with the modulus [3%]2 replaced by [3%],.
In this paper we confirm Conjecture 1.2 and give a g-analogue of (1.2).

Theorem 1.3. Let a € Z". Then (1.3) holds. Furthermore, we have the
following q-analogue of (1.2):

13 ok
w2 ], = 2R (o 0o (14)
9 k=0 q
where
- (k+2)(k—1) (—1 k kE—1 3a—1 +1
- £ e (55 0-0)
k=1 4
3lk—1
(1.5)
Remark 1.4. Let a € Z*. Then lim, 1 R(a,q) = —1 (mod 3) since
3%—1 3a—1_7q ) ga—1_1
(=1 Z (—1)37+1 Z .
Z - e L2 = (—1)) = =1 (mod 3).
2 2
3l\€k:11 ‘ 7=0 (37 +1) j=0

Also, for k € Z™ with k = 1 (mod 3), [k], is relatively prime to [3%], since
k is relatively prime to 3. Therefore (1.4) implies both (1.2) and (1.3) in
the case m = 1.

We are going to prove an auxiliary result in the next section and then
show Theorem 1.3 in Section 3.
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2. AN AUXILIARY THEOREM

Theorem 2.1. Let a,m € Z* and let v : Z — 7 be a function such that
forany k € Z and j =1,...,a we have

(k) = (k) (mod 3%) and (k+37) =(k) (mod 37).
Then

k=1 q
In particular,

il< )[2 3tm Lzo(mod 307). (2.2)

k=1

Proof. Clearly [z]; = [y], (mod ®4(q)) provided that x = y (mod d). By
the g-Lucas congruence (cf. [Sal),

rid+yr | _ [T |u
= do
{xzd—i—WL <332) [yzL (mod @4(q))
for x1,x2,y1,y2 € N with 0 < yq,y2 < d— 1. Recall that

= H ®3;(q)

Since these ®3;(q) are relatively prime and [2 - 3%m|, = 0 (mod [3%],), we
only need to show that

i ( ) e [2'2@1_ 1L = 0 (mod ®4;(q))

k=1

for every j =1,... ,a.
Forany 1 < j <aand 1 <k < 3% — 1 with 31k, write k = 37s + ¢
where 1 < ¢ < 37 — 1. Then, by the g-Lucas congruence,

B G ICE R

And we have

311 o 33—]
t—1

.’:1

Jj=1

_ ]j q_j<[3E;Tq_ []]Q) = (_1>t—1q—(§) (mod ®3j (Q)>
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i ( qW“) [2~3“m—1}
k—1
k= q

f s (338—|—t) gV (st [2-3%—1}
J _
— [Bis+1t], [s+t—1

=0

o R O
Clearly,
3 ()

O

e g ®-() ()13
Z < ) ( ) [t]q + ( )_qi]t[t]q ) =0 (mod ®3;(q)).
S

)_n

So (2.1) holds.
Note that (2.2) is just (2.1) with 1 replaced by the zero function from
Z — Z. So (2.2) is also valid. This concludes the proof. [

3. PROOF OF THEOREM 1.3

Lemma 3.1. Suppose that k = | (mod 3%) where k,l € Z and a € 7.

Then . L . l

2k% — k (5) =20% -1 (g) (mod 3*1).
Proof. Observe that

2(k+1) — <§) = 4k — (g) =0 (mod 3).

G CRI0)
e v ()=

We are done. [

Thus

(mod 3°*1).
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Lemma 3.2. Leta € Z* and let v be a function as in Theorem 2.1. Then

B E G

301 (C1it (3.1)
= Z g - “TRE (14 We(k)(1 —q")) (mod P34 (q))
3\k Y

where

U, (k) = + k. (3.2)

w
Q
ok
—
VR
Wl &
~_
ﬁQ
EA
Q \./
| —
)
ono
[
=
—_
_

U (R @ e (23— [)

=t <3) [kl 31;[1 714

:3a—1 E (_1)k_1q¢(k)_(’;) B k—1 [3a]q i
a k=1 <3) [k]q (1 2]_21 []]q) (mOd (I)3a<q) )7

237 = 3,1 +¢*) = 342+ ¢*" — 1) =2[37], (mod [3]3).

Note that for s =0,1,2,... we have

s—1
S RIS )

=0
=1+ s(¢> —1) (mod ®3.(q)?)

a 1 1 — 8(q3”‘ — 1) a
—3%s — — 3 2
= = =1— -1 IIl()d @ a .
q 1 8(q3a 1) 1 Sz(qga 1)2 S(q ) ( 3 (Q) )
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Also, for each 1 < k < 3% — 1, we have
@ =h=("T) T (30
e 2 )
@GO 3, 1 k) (B
- PRA(EIh) (1 22 )
") (14 (PR 4 — I — 1))([3%, + [K]y)
- k]2
39-1
qj[?’a]q
X<l+2j§+1 )
__ W0 V@ k) =) 3 1Y e
=t (e (e )@ )
A PR I Ol P :
H, 2= U, . med ®ee(@))
Clearly,
391 1 : 39_1
@ L+ =1 e 1oy 1
D D P AP 7
and
3°—-1 1 1 3%—-1 1 1
> o2 o o )
1IG(1 @ 31
D) (5 -~ ) = 55 = ) (mod @ (a)
Thus we get
qw(k)—(’é) - k-1 [2 ) 3a]q q¢(3”—k)_<3”2—k) 3%—k—-1 [2 . 3a]q
o (! 2., )+ S (1 2
w(k)—=(3) o _ k) — .
__q as ( (3 §> ¢(k)+g<3a_1)_k (¢? _1))
WO B, 5 B,
., <2j1 PP T T

7
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It follows that

SOEIRay)
- kz <—1>k—1qw([}:]_(§) ([f’;]]q W (k) (1 q3”>) (mod ®5.(q)?).
3o ! !

Noting that [3?], divides both sides of the above congruence by Theorem
2.1 and [2 - 3%] = 2[3%] (mod [3%]2), we are done. [J

Proof of Theorem 1.3. Let m € Z*. By [T, (4.3)] in the case d = 0, we
have

3m—1 3*m—1
(2R _ bak) (£ [2-3%m
> %] =X e (5P e
k=0 q k=1 q
where R I
2(3%m — k)2 — (3%m — k) (Em=k) _1
d’m(k): ( : ) :

3
According to Lemma 3.1, the function 1) = 1,,, has the property described
in Theorem 2.1. Combining (2.1) with (3.3) we get (1.3).
Now it remains to prove (1.4). By (3.3) and Lemma 3.2, we finally
obtain

39—-1 39-1

B2k i) (K [2-3°

>4 [k:} == q 3 k

k=0 q k=1 q
39-1

" -1 (—1)F k—1 3141
=23"12 > ¢ ° 2 <1+< TR (1—q")

k=1 1
3lk—1

(mod ®3.(q)[3°]3).
This concludes our proof. [

Acknowledgment. The authors are indebted to Prof. J. Shallit for
informing the reference [SSZ].

REFERENCES

[GZ] V. J. W. Guo and J. Zeng, Some congruences involving central q-binomial co-
efficients, preprint, arXiv:0910.3563. http://arxiv.org/abs/0910.3563.

[PS] H. Pan and Z. W. Sun, A combinatorial identity with application to Catalan
numbers, Discrete Math. 306 (2006), 1921-1940.

[Sa] B. E. Sagan, Congruence properties of g-analogs, Adv. in Math. 95 (1992),
127-143.



[S57]
[St]
[S06]
[S09a]
[SO9b)]
[S09c]
[ST1]
[ST2]
]

[ZPS]

SOME ¢-CONGRUENCES RELATED TO 3-ADIC VALUATIONS 9

N. Strauss, J. Shallit and D. Zagier, Some strange 3-adic identities, Amer. Math.

MOnthly 99 (1992), 66—69.

R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cam-

bridge, 1999.

Z. W. Sun, Binomial coefficients and quadratic fields, Proc. Amer. Math. Soc.

134 (2006), 2213-2222.

Z. W. Sun, Binomial coefficients, Catalan numbers and Lucas quotients, preprint,
arXiv:0909.5648. http://arxiv.org/abs/0909.5648.

Z. W. Sun, Various congruences involving binomial coefficients and higher-order
Catalan numbers, preprint, arXiv:0909.3808. http://arxiv.org/abs/0909.3808.

Z. W. Sun, p-adic valuations of some sums of multinomial coefficients, preprint,

arXiv:0910.3892. http://arxiv.org/abs/0910.3892.

Z. W. Sun and R. Tauraso, On some new congruences for binomial coefficients,

Acta Arith., to appear. http://arxiv.org/abs/0709.1665.

Z. W. Sun and R. Tauraso, New congruences for central binomial coefficients,

Adv. in Math., to appear. http://arxiv.org/abs/0805.0563.

R. Tauraso, g-analogs of some congruences involving Catalan numbers, prepint,

arX1w:0905.3816. http://arxiv.org/abs/0905.3816.

L. Zhao, H. Pan and Z. W. Sun, Some congruences for the second-order Catalan
numbers, Proc. Amer. Math. Soc. 138 (2010), 37—46.



