
ar
X

iv
:1

11
1.

54
67

v1
  [

cs
.F

L
] 

 2
3 

N
ov

 2
01

1

Independent sets of words and the

synchronization problem ∗

Arturo Carpi

Dipartimento di Matematica e Informatica,
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Abstract

The synchronization problem is investigated for the class of locally
strongly transitive automata introduced in [9]. Some extensions of this
problem related to the notions of stable set and word of minimal rank of
an automaton are studied. An application to synchronizing colorings of
aperiodic graphs with a Hamiltonian path is also considered.

Keywords: Černý conjecture, road coloring problem, synchronizing automaton

1 Introduction

A deterministic automaton is called synchronizing if there exists an input-
sequence, called synchronizing or reset word, such that the state attained by
the automaton, when this sequence is read, does not depend on the initial state
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of the automaton itself. Two fundamental problems which have been inten-
sively investigated in the last decades are based upon this concept: the Černý
conjecture and the Road coloring problem.

The Černý conjecture [11] claims that a deterministic synchronizing n-state
automaton has a reset word of length (n − 1)2. This conjecture and some
related problems have been widely investigated in several papers (cf. [2, 3,
4, 5, 8, 9, 11, 13, 14, 15, 18, 19, 20, 23]). The interested reader is refered to
[26] for a historical survey of the Černý conjecture and to [7] for synchronizing
unambiguous automata.

In [9], the authors have introduced the notion of local strong transitivity. An
n-state automaton A is said to be locally strongly transitive if it is equipped by
a set W of k words and a set R of k distinct states such that, for all states s of
A and all r ∈ R, there exists a word w ∈ W taking the state s into r. The set
W is called independent while R is called the range of W. The main result of
[9] is that any synchronizing locally strongly transitive n-state automaton has a
reset word of length not larger than (k−1)(n+L)+ ℓ, where k is the cardinality
of an independent set W and L and ℓ denote respectively the maximal and the
minimal length of the words of W .

In the case where all the states of the automaton are in the range, the
automaton A is said to be strongly transitive. Strongly transitive automata
have been studied in [8]. This notion is related with that of regular automata
introduced in [20]. A remarkable example of locally strongly transitive automata
is that of 1-cluster automata introduced in [5]. An automaton is called 1-cluster
if there exists a letter a such that the graph of the automaton has a unique
cycle labelled by a power of a. One can easily verify that a n-state automaton
is 1-cluster if and only if it has an independent set of words of the form

{an−1, an−2, . . . , an−k}.

Moreover one can take k equal to the length of the unique cycle labelled by a
power of a.

In this paper, by developing the techniques of [9] and [10] on locally strongly
transitive automata, we investigate the synchronization problem and some re-
lated topics. A remarkable result we prove, shows that any synchronizing locally
strongly transitive n-state automaton has a reset word of length not larger than

(k − 1)(n+ L+ 1)− 2k ln
k + 1

2
+ ℓ,

where k is the cardinality of an independent set W and L and ℓ denote respec-
tively the maximal and the minimal length of the words of W . As a straightfor-
ward corollary of this result, we prove that every n-state 1-cluster synchronizing
automaton has a reset word of length not larger than

2n2 − 4n+ 1− 2(n− 1) ln
n

2
,

so recovering, for such automata, some results of Béal et al. [6] and Steinberg
[21] with an improved bound.
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We further investigate two notions that are strongly related with some ex-
tensions of the synchronization problem: the notion of stable set and that of
word of minimal rank of an automaton. Given an automaton A = 〈Q,A, δ〉, a
set K of states of A is reducible if there exists a word w ∈ A∗ taking all the
states of K into a fixed state. A set K ⊆ Q is stable if for any p, q ∈ K, and
for any w ∈ A∗, the set {δ(p, w), δ(q, w)} is reducible. The concept of stability
was introduced in [12] and plays a fundamental role in the solution [24] of the
Road coloring problem. Clearly if A is synchronizing, then every subset of Q is
stable. Thus a question that naturally arises in this context is to evaluate, for a
given stable subset K in a non-synchronizing automaton, the minimal length of
a word w such that Card(δ(K,w)) = 1. We prove that if A is a locally strongly
transitive n-state automaton, then the minimal length of such a word w is at
most

(M − 1)(n+ L+ 1)− k lnM + L, (1)

where k is the cardinality of any independent set W , L denotes the maximal
length of the words of W , and M is the maximal cardinality of reducible subsets
of the range of W .

The second topic that we investigate concerns the construction of words of
minimal rank of an automaton. The rank of a word w in an automaton A is
the cardinality of the set of states δ(Q,w). Clearly w is a reset word if and only
if its rank is 1. The length of words of minimal rank in an automaton was first
investigated by Pin in [18, 19] for deterministic automata and by Carpi in [7] for
unambiguous automata. In this context, we prove that, if A is a locally strongly
transitive automaton, and t is the minimal rank of its words, then there exists
a word u of rank t and length

|u| ≤ ℓ+ (k − t)(L+ n+ 1)− tk ln
k

t
,

where, as before, k is the cardinality of an independent set W and L and ℓ
denote respectively the maximal and the minimal length of the words of W . It
is also proved that the maximal cardinality of reducible subsets of the range of
W is M = k/t so that (1) can be written as

(
k

t
− 1

)
(n+ L+ 1)− k ln

k

t
+ L .

In the case of 1-cluster n-state automata, the previous bound becomes

2nk

t
− n− 1− k ln

k

t
.

Finally another application of our techniques concerns the study of a conjecture
related to the well-known Road coloring problem. This problem asks to deter-
mine whether any aperiodic and strongly connected digraph, with all vertices
of the same outdegree (AGW-graph, for short) has a synchronizing coloring,
that is, a labeling of its edges that turns it into a synchronizing deterministic
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automaton. The problem was formulated in the context of Symbolic Dynamics
by Adler, Goodwyn and Weiss and it is explicitly stated in [1]. In 2007, Traht-
man [24] has positively solved it. The solution by Trahtman has electrified the
community of formal language theorists and recently Volkov has raised in [25]
(see also [3]) the problem of evaluating, for any AGW-graph G, the minimal
length of a reset word for a synchronizing coloring of G. This problem has been
called the Hybrid Černý–Road coloring problem. It is worth to mention that
Ananichev has found, for any n ≥ 2, an AGW-graph of n vertices such that the
length of the shortest reset word for any synchronizing coloring of the graph
is (n − 1)(n − 2) + 1 (see [3]). In [9], the authors have proven that, given an
AGW-graph G of n vertices, without multiple edges, such that G has a simple
cycle of prime length p < n, there exists a synchronizing coloring of G with a
reset word of length (2p − 1)(n − 1). Moreover, in the case p = 2, that is, if
G contains a cycle of length 2, then, also in presence of multiple edges, there
exists a synchronizing coloring with a reset word of length 5(n− 1).

In this paper, we continue the investigation of the Hybrid Černý–Road col-
oring problem on a very natural class of digraphs, those having a Hamiltonian
path. The main result of this paper states that any AGW-graph G of n vertices
with a Hamiltonian path admits a synchronizing coloring with a reset word of
length

2n2 − 4n+ 1− 2(n− 1) ln
n

2
.

The paper is organized as follows: Section 2 contains the definitions and ele-
mentary results necessary for our pourposes. In Section 3, we present locally
strongly transitive automata. Reducible sets of states of a locally strongly tran-
sitive automaton are studied in Section 4. In Section 5, we obtain upper bounds
for the minimal length of a reset word of a locally strongly transitive synchro-
nizing automaton and, more generally, for the minimal length of a word taking
a reducible set of states of a locally strongly transitive automaton into a single
state. The construction of short words of minimal rank is studied in Section 6.
Finally, in Section 7 we consider the hybrid Černy-Road coloring problem for
graphs with a Hamiltonian path.

Some of the results of this paper were presented in undetailed form at MFCS
2009 [9] and at DLT 2010 [10].

2 Preliminaries

We assume that the reader is familiar with the theory of automata and rational
series. In this section we shortly recall a vocabulary of few terms and we fix the
corresponding notation used in the paper.

Let A be a finite alphabet and let A∗ be the free monoid of words over the
alphabet A. The identity of A∗ is called the empty word and is denoted by ǫ.
The length of a word w ∈ A∗ is the integer |w| inductively defined by |ǫ| = 0,
|wa| = |w| + 1, w ∈ A∗, a ∈ A. For any positive integer n, we denote by A<n

the set of words of length smaller than n.
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For any finite set of words, W , we denote respectively by LW and ℓW the
maximal and minimal lengths of the words of W .

A finite automaton is a triple A = 〈Q,A, δ〉 whereQ is a finite set of elements
called states and δ is a map

δ : Q×A −→ Q.

The map δ is called the transition function of A. The canonical extension of
the map δ to the set Q×A∗ is still denoted by δ.

If P is a subset of Q and u is a word of A∗, we denote by δ(P, u) and δ(P, u−1)
the sets:

δ(P, u) = {δ(s, u) | s ∈ P}, δ(P, u−1) = {s ∈ Q | δ(s, u) ∈ P}.

In the sequel, if no confusion arises, for any set of states K and any w ∈ A∗,
we denote by Kw−1 the set δ(K,w−1). With any automaton A = 〈Q,A, δ〉, we
can associate a directed multigraph G = (Q,E), where the multiplicity of the
edge (p, q) ∈ Q × Q is given by Card({a ∈ A | δ(p, a) = q}. If the automaton
A is associated with G, we also say that A is a coloring of G. An automaton
is transitive if the associated graph is strongly connected. If n = Card(Q), we
will say that A is a n-state automaton.

The rank of a word w is the cardinality of the set of states δ(Q,w). A
synchronizing or reset word of A is any word u ∈ A∗ of rank 1. A synchronizing
automaton is an automaton that has a reset word. The following conjecture has
been raised in [11].

Černý Conjecture. Each synchronizing n-state automaton has a reset word
of length not larger than (n− 1)2.

Let A = 〈Q,A, δ〉 be any n-state automaton. One can associate with A a
morphism

ϕA : A∗ → QQ×Q,

of the free monoid A∗ in the multiplicative monoid QQ×Q of matrices over the
field Q of rational numbers, defined as: for any u ∈ A∗ and for any s, t ∈ Q,

ϕA(u)st =

{
1 if t = δ(s, u)
0 otherwise.

Let us consider a linear order on Q so that Q = {q1, . . . , qn}. If K is a subset
of Q, then one can associate with K its characteristic vector K ∈ QQ defined
as: for every i = 1, . . . , n,

Ki =

{
1 if qi ∈ K,

0 if qi /∈ K.

It is easily seen that, for any S1, S2 ⊆ Q and v ∈ A∗, one has:

S1ϕA(v)S2
t = Card(S2v

−1 ∩ S1). (2)

The following well-known lemma will be used in the sequel. The proof can
be found for instance in [15] or in [17].
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Lemma 1 (Fundamental lemma) Let ϕ : A∗ −→ QQ×Q be a monoid morphism.
Let V be a linear subspace of dimension k of the vector space QQ and let v ∈ QQ.
If vϕ(w) /∈ V for some word w ∈ A∗, then there exists a word w′ ∈ A∗ such that

vϕ(w′) /∈ V , and |w′| ≤ k.

3 Independent systems of words

In this section, we will present some results that can be obtained by using some
techniques on independent systems of words. We begin by recalling a definition
introduced in [9].

Definition 1 Let A = 〈Q,A, δ〉 be an automaton. A set of k words W =
{w1, . . . , wk} is called independent if there exist k distinct states q1, . . . , qk of A
such that, for all s ∈ Q,

{δ(s, w1), . . . , δ(s, wk)} = {q1, . . . , qk}.

The set R = {q1, . . . , qk} will be called the range of W.

An automaton is called locally strongly transitive if it has an independent set
of words. The following example shows that local strong transitivity does not
imply transitivity.

Example 1 Consider the 4-state automaton A over the alphabet A = {a, b}
defined by the following graph:

?>=<89:;3 a,b
//?>=<89:;1

b

EE

a //oo
a

?>=<89:;2

b

��
?>=<89:;4

a,b
oo

The automaton A is not transitive. On the other hand, one can easily check
that the set {a, a2} is an independent set of A with range R = {1, 2}.

The following useful properties can be derived from Definition 1 (see [9],
Section 3).

Lemma 2 Let A be an automaton and let W be an independent set of A with
range R. Then, for every u ∈ A∗, the set uW is an independent set of A with
range R.

Proposition 1 Let W = {w1, . . . , wk} be an independent set of a locally strongly
transitive automaton A = 〈Q,A, δ〉 with range R. Then, for every subset P of
R,

k∑

i=1

Card(Pw−1
i ∩R) = kCard(P ).
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Proof Because of Definition 1, for every s ∈ S and r ∈ R, there exists exactly
one word w ∈ W such that s ∈ {r}w−1. This implies that the sets {r}w−1

i ,
1 ≤ i ≤ k, give a partition of S. Hence, for any r ∈ R, one has:

k = Card(R) =

k∑

i=1

Card(R ∩ {r}w−1
i ). (3)

Let P be a a subset of R. If P is empty then the statement is trivially true. If
P = {p1, . . . , pm} is a set of m ≥ 1 states, then one has:

k∑

i=1

Card(R ∩ Pw−1
i ) =

k∑

i=1

Card




m⋃

j=1

R ∩ {pj}w
−1
i


 .

Since A is deterministic, for any pair pi, pj of distinct states of P and for every
u ∈ A∗, one has:

{pi}u
−1 ∩ {pj}u

−1 = ∅,

so that the previous sum can be rewritten as:

k∑

i=1

m∑

j=1

Card(R ∩ {pj}w
−1
i ).

The latter equation together with (3) implies that

k∑

i=1

Card(Pw−1
i ∩ R) = kCard(P ).

✷

Remark 1 As an immediate consequence of Proposition 1, one derives that
either Card(Pw−1

i ∩ R) = Card(P ), for all i = 1, . . . , k or Card(Pw−1
j ∩ R) >

Card(P ), for some j ∈ N with 1 ≤ j ≤ k.

4 Reducible sets

Let A = 〈Q,A, δ〉 be a n-state automaton. We say that a set K of states of A
is reducible if, for some word w, δ(K,w) is a singleton.

We now introduce the important notion of stability [12]. Given two states p, q
ofA, we say that the pair (p, q) is stable if, for all u ∈ A∗, the set {δ(p, u), δ(q, u)}
is reducible. The set ρ of stable pairs is a congruence of the automaton A, which
is called stability relation. It is easily seen that an automaton is synchronizing
if and only if the stability relation is the universal equivalence. A set K ⊆ Q is
stable if for any p, q ∈ K, the pair (p, q) is stable. Any stable set K is reducible.
Thus, even if A is not synchronizing, one may want to evaluate the minimal
length of a word w such that Card(δ(K,w)) = 1.

In the sequel, we assume that W = {w1, . . . , wk} is an independent set of A
with range R. We denote by M the maximal cardinality of reducible subsets of
R. The following proposition characterizes maximal reducible subsets of R.
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Proposition 2 Let K be a non-empty reducible subset of R. The following
conditions are equivalent:

1. Card(K) = M ,

2. for all w ∈ W , v ∈ A∗, Card(K(vw)−1 ∩R) ≤ Card(K),

3. for all w ∈ W , v ∈ A∗, Card(K(vw)−1 ∩R) = Card(K).

4. K is a maximal reducible subset of R.

Proof Implication 1. ⇒ 2. is tivial, since K(vw)−1 ∩R is reducible.
Implication 2. ⇒ 3 is a straightforward consequence of Remark 1, taking

into account that for any v ∈ A∗, the set vW is independent by Lemma 2.
Now, let us prove implication 3. ⇒ 4. Let X be a reducible subset of R with

Card(X) = M . One has δ(X, v) = {q} and δ(q, w) ∈ K for some v ∈ A∗, q ∈ Q,
w ∈ W . Hence, X ⊆ K(vw)−1∩R so that Card(K) = Card(K(vw)−1∩R) ≥ M .
One concludes that K is maximal.

Finally, let us prove implication 4. ⇒ 1. Let X be a reducible subset of R
with Card(X) = M . One has δ(K, v) = {q} and δ(q, w) ∈ X for some v ∈ A∗,
q ∈ Q, w ∈ W . Hence, K ⊆ X(vw)−1∩R. Since X(vw)−1∩R is reducible, from
the maximality of K one obtains K = X(vw)−1 ∩R. We have yet proved that
1. ⇒ 3. It follows that Card(X(vw)−1 ∩R) = Card(X), that is, Card(K) = M .
✷

Our next goal is to evaluate the length of a word v such that δ(K, v) is a
singleton for some maximal reducible subset K of R.

Lemma 3 The condition

Card(K(vwi)
−1 ∩R) = Card(K), i = 1, . . . , k,

holds if and only if the vector RϕA(v) is a solution of the system





(
Kw−1

i − Card(K)
Card(R)Q

)
x = 0

i = 1, . . . , k.

(4)

Proof By taking into account Equation (2), we obtain

(
Kw−1

i −
Card(K)

Card(R)
Q

)
(RϕA(v))

t = RϕA(v)

(
Kw−1

i −
Card(K)

Card(R)
Q

)t

= Card(Kw−1
i v−1 ∩R)−

Card(K)

Card(R)
Card(Qv−1 ∩R)

= Card(K(vwi)
−1 ∩R)− Card(K).

The statement then follows from the equality above. ✷
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Lemma 4 Let A be a matrix with k rows. Suppose that no row is null and any
column of A has at most t > 0 non-null entries. Then rank(A) ≥ k/t.

Proof Let {c1, . . . cr} be a maximal set of linearly independent columns of A.
Hence we have r = rank(A). If rt < k, there exists an index i, with 1 ≤ i ≤ k,
such that the entries at position i of c1, . . . , cr are null. Since all columns of
A linearly depend on {c1, . . . cr}, this implies that the ith row of A is null,
contradicting our assumption. Thus rt ≥ k and the conclusion follows. ✷

Lemma 5 Assume that Kw−1
i 6= ∅ and Kw−1

i 6= Q, for 1 ≤ i ≤ k. The rank
of the system (4) is larger or equal than

max

{
Card(R \K)

Card(K)
,

Card(K)

Card(R \K)

}
.

Proof Let C be the matrix of the system (4). One has

C = A−
Card(K)

k
U,

where

A =




Kw−1
1

...
Kw−1

k


 ,

and U is the matrix with all entries equal to 1.
Since W is an independent set, any column of A has exactly Card(K) non-

null entries. By Lemma 4, one has rank(A) ≥ k/Card(K), so that

rank(C) ≥ rank(A)− rank(U) ≥
k

Card(K)
− 1 =

Card(R \K)

Card(K)
.

Similarly, one has also that

C = A− U +

(
1−

Card(K)

k

)
U.

We notice that an entry of the matrix A−U is non-null if and only if the corre-
sponding entry of A is null. Thus any column of A−U has exactly k−Card(K)
non-null entries. By Lemma 4, one has rank(A − U) ≥ k/(k − Card(K)), so
that

rank(C) ≥ rank(A− U)− rank(U) ≥
k

k − Card(K)
− 1 =

Card(K)

Card(R \K)
.

✷

Lemma 6 Let K be a non-empty reducible subset of R such that Card(K) 6= M .
Then there exist a word v ∈ A∗ and a positive integer i with 1 ≤ i ≤ k such that

Card(K(vwi)
−1 ∩R) > Card(K),
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and

|v| ≤ n−max

{
Card(R \K)

Card(K)
,

Card(K)

Card(R \K)

}
. (5)

Proof Taking into account that, by Lemma 2, for any word v ∈ A∗, {vw1, . . . , vwk}
is an independent set with range R, in view of Remark 1, it is sufficient to find
a word v such that

Card(K(vwi)
−1 ∩R) 6= Card(K),

for some i with 1 ≤ i ≤ k. Moreover, we may suppose that

Kw−1
i 6= ∅ and Kw−1

i 6= Q,

since, otherwise, the inequality above is trivially verified with v = ǫ.
Let V be the space of solutions of the system (4). Since, by hypothesis,

Card(K) 6= M , by Proposition 2 and by Lemma 3, there exists v ∈ A∗ such that
RϕA /∈ V . Moreover, by Lemma 1, we may suppose that |v| ≤ dimV . By Lemma
5, (5) holds true. Hence, by Lemma 3, we have Card(K(vwi)

−1∩R) 6= Card(K),
for some i and the claim is proved. ✷

Now we are ready to prove the announced result.

Proposition 3 Let q ∈ R. There exist K ⊆ R and v ∈ A∗W ∪ {ǫ} such that

Card(K) = M , |v| ≤ (M − 1)(LW + n+ 1)− k lnM , δ(K, v) = {q} .

Proof If M = 1, the statement is trivially verified by v = ǫ. Thus we assume
M ≥ 2. Let K0 = {q}. By Lemma 6, there are subsets K1, . . . ,Kt of R, with
t ≥ 1, such that

1 = Card(K0) < Card(K1) < . . . < Card(Kt) = M,

where, for every i = 0, . . . , t− 1,

Ki+1 = Ki(viwγi
)−1 ∩R,

and

|vi| ≤ n−
Card(R \Ki)

Card(Ki)
,

with γi ∈ N, 1 ≤ γi ≤ k. By taking K = Kt and v = vt−1wγt−1
· · · v0wγ0

, we
have Card(K) = M and δ(K, v) = {q}.

Moreover, we have

|v| ≤
t−1∑

i=0

(
n−

Card(R \Ki)

Card(Ki)
+ LW

)
≤

M−1∑

j=1

(
n−

k − j

j
+ LW

)

= (M − 1)(n+ LW + 1)− k

M−1∑

j=1

1

j
≤ (M − 1)(n+ LW + 1)− k lnM.

The statement of the proposition is therefore proved. ✷
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5 Some applications

We now present some applications of the results proved in Section 4 to stable sets
and to synchronizing automata. As before, let A = 〈Q,A, δ〉 be a n-state locally
strongly transitive automaton where W = {w1, . . . , wk} is an independent set of
A with range R. We denote by M the maximal cardinality of reducible subsets
of R. We start by proving a useful lemma.

Lemma 7 Let K be a reducible subset of R of maximal cardinality. There is
no stable pair in K × (R \K).

Proof By contradiction, let (p, q) ∈ K × (R \ K) be a stable pair. Then,
δ(K, v) = {δ(p, v)} and δ(p, vu) = δ(q, vu) = s, s ∈ Q for some u, v ∈ A∗. Thus
δ(K ∪ {q}, vu) = {s}, contradicting the maximality of K. ✷

Proposition 4 For any stable set C there exists a word v such that

Card(δ(C, v)) = 1 , |v| ≤ (M − 1)(n+ LW + 1)− k lnM + LW .

Proof By Proposition 3, there exist K ⊆ R and u ∈ A∗ such that Card(K) =
M , Card(δ(K,u)) = 1, |u| ≤ (M − 1)(n + LW + 1) − k lnM . Since W is
an independent set with range R, there is w ∈ W such that δ(C,w) ∩ K 6= ∅.
Moreover, δ(C,w) is a stable subset ofR. By Lemma 7, one derives δ(C,w) ⊆ K,
so that Card(δ(C,wu)) = Card(δ(K,u)) = 1. The statement is thus verified for
v = wu. ✷

The following result refines the bound of [8].

Proposition 5 Any synchronizing n-state automaton with an independent set
W has a reset word of length not larger than

(k − 1)(n+ LW + 1)− 2k ln
k + 1

2
+ ℓW .

Proof In case M = k, by following the first part of the proof of Proposition 3,
one obtains a word v such that Card(δ(R, v)) = 1 where

v = vk−1wγk−1
· · · v1wγ1

,

with wγ1
, . . . , wγk−1

∈ W and

|vi| ≤ n−max

{
Card(R \Ki)

Card(Ki)
,

Card(Ki)

Card(R \Ki)

}
.

Therefore one obtains

|v| ≤ (k − 1)(n+ LW )−
k−1∑

j=1

max

{
k − j

j
,

j

k − j

}

= (k − 1)(n+ LW + 1)− k

k−1∑

j=1

1

min{j, k − j}
.

11



Let us verify that

k−1∑

j=1

1

min{j, k − j}
≥ 2 ln

k + 1

2
. (6)

Let t = ⌊(k−1)/2⌋. One easily verifies that
∑t

j=1 1/j =
∑k−1

j=k−t 1/(k−j) ≥
ln(t+ 1), and consequently

t∑

j=1

1

j
+

k−1∑

j=k−t

1

k − j
≥ 2 ln(t+ 1).

Thus, if k is odd, then
∑k−1

j=1 1/min{j, k − j} ≥ 2 ln(t+1) = 2 ln((k +1)/2). If

on the contrary k is even, then
∑k−1

j=1 1/min{j, k − j} ≥ 2 ln(t+1)+2/k. Since
ln((k+1)/2)− ln(t+1) = ln(1+1/k) ≤ 1/k, we obtain again (6). From (6) one
derives

|v| ≤ (k − 1)(n+ LW + 1)− 2k ln
k + 1

2
.

The claim follows by remarking that, for every w ∈ W , Card(δ(Q,wv)) = 1. ✷

In the case of 1-cluster automata the following corollary recovers the results of
Béal et al. [6] and Steinberg [21] with an improved bound.

Corollary 1 Any synchronizing 1-cluster n-state automaton has a reset word
of length

2n2 − 4n+ 1− 2(n− 1) ln
n

2
.

Proof A synchronizing 1-cluster n-state automaton has an independent set of
the form W = {an−1, . . . , an−k}, where a is a letter and k is the length of the
unique cycle labelled by a power of a. If k = n, then the considered automaton
is circular and therefore [13] it has a reset word of length (n− 1)2. Since

(n− 1)2 ≤ 2n2 − 4n+ 1− 2(n− 1) ln
n

2
,

in such a case, the statement is verified. Thus, we assume k ≤ n − 1. By
Proposition 5 and taking into account that LW = n − 1 and ℓW = n − k, one
has that there exists a reset word of length not larger than

2nk − n− k − 2k ln
k + 1

2
.

In order to complete the proof, let us verify that, for 1 ≤ k < n,

2nk − n− k − 2k ln
k + 1

2
≤ 2n2 − 4n+ 1− 2(n− 1) ln

n

2
.

This inequality can be rewritten as

2(n− 1) lnn− 2k ln(k + 1) ≤ (2n− 1 + 2 ln 2)(n− k − 1) . (7)
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Using the inequality lnx ≤ x− 1, one has

2(n− 1) lnn− 2k ln(k + 1) = 2k ln
n

k + 1
+ 2(n− k − 1) lnn

≤ 2k
n− k − 1

k + 1
+ 2(n− k − 1)(n− 1) ≤ 2n(n− k − 1) .

This proves (7) and the proof is complete. ✷

6 Words of minimal rank

We now present some applications of the results proved in Section 4 to estimate
the length of a shortest word of minimal rank. As before, let A = 〈Q,A, δ〉 be
a n-state locally strongly transitive automaton where W = {w1, . . . , wk} is an
independent set of A with range R. We denote by M the maximal cardinality
of reducible subsets of R. The following lemma is useful.

Lemma 8 Let 1 ≤ t ≤ ⌈k/M⌉. There are t pairwise distinct states q1, . . . , qt ∈
R and a word v ∈ A∗ such that

Card(qiv
−1 ∩R) = M , i = 1, . . . , t , (8)

|v| ≤ t(M − 1)(LW + n+ 1)− tk lnM . (9)

Proof We proceed by induction on t. If t = 1, the claim follows from Propo-
sition 3.

Let us prove the inductive step. For the sake of induction, suppose we have
found pairwise distinct states q1, . . . , qt−1 ∈ R and a word v′ ∈ A∗ such that

Card(qiv
′−1 ∩R) = M , i = 1, . . . , t− 1 ,

|v′| ≤ (t− 1)(M − 1)(LW + n+ 1)− (t− 1)k lnM .

Since (t − 1)M < k, there exists q ∈ R \
⋃t

i=1 qiv
′−1. By Proposition 3, there

exist K ⊆ R and u ∈ A∗W ∪ {ǫ} such that

Card(K) = M , |u| ≤ (M − 1)(LW + n+ 1)− k lnM , δ(K,u) = {q} .

Set qt = δ(q, v′) and v = uv′. Clearly, v satisfies (9). Taking into account
Proposition 2, one verifies that also (8) is satisfied, concluding the proof. ✷

Proposition 6 The minimal rank of the words of A is t = k/M . Moreover,
there is a word u of rank t with

|u| ≤ ℓW + (k − t)(LW + n+ 1)− tk ln
k

t
. (10)
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Proof Applying the previous lemma in the case t = ⌈k/M⌉, one finds a word
v satisfying (9) such that R may be partitioned by the sets qiv

−1, i = 1, . . . , t,
of cardinality M . Hence, k = tM .

Let us verify that t is the minimal rank of the words of A. Indeed, let u′ be
a word of rank smaller than t. Then one has δ(qi, u

′) = δ(qj , u
′) = q for some

i, j, 1 ≤ i < j ≤ t, q ∈ Q. It follows that (qiu
−1 ∪ qju

−1) ∩ R is reducible,
which contradicts the fact that this set has cardinality 2M . On the other side,
if u = wv with w ∈ W , then δ(Q, u) ⊆ δ(R, v) = {q1, . . . , qt} so that u has rank
t.

To complete the proof, it is sufficient to check that, choosing w ∈ W of
minimal length, (10) holds true. ✷

As an immediate consequence of Proposition 4 and Proposition 6, we obtain
the following three corollaries.

Corollary 2 Let t be the minimal rank of A. Then, for any stable set C there
exists a word v such that

Card(δ(C, v)) = 1 , |v| ≤

(
k

t
− 1

)
(n+ LW + 1)− k ln

k

t
+ LW .

Corollary 3 Let t be the minimal rank of a 1-cluster n-state automaton. Then,
for any stable set C there exists a word v such that

Card(δ(C, v)) = 1 , |v| ≤
2nk

t
− n− 1− k ln

k

t
.

Corollary 4 Let A be a 1-cluster n-state automaton which is not synchronizing.
Then, for any stable set C there exists a word v such that

Card(δ(C, v)) = 1 , |v| ≤ n2 − n− 1− n ln
n

2
.

Proof By the previous corollary, it is sufficient verify that

2nk

t
− k ln

k

t
≤ n2 − n ln

n

2
.

Indeed, one has

n ln
n

2
− k ln

k

t
= (n− k) ln

n

2
+ k ln

n

k
+ k ln

t

2

≤ (n− k)
(n
2
− 1

)
+ k

(n
k
− 1

)
+ k

(
t

2
− 1

)

≤ n(n− k) +
nk

t
(t− 2) = n2 −

2nk

t
.

The conclusion follows. ✷
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7 The Hybrid Černý-Road coloring problem

In the sequel, with the word graph, we will term a finite, directed multigraph
with all vertices of the same outdegree. A graph is aperiodic if the greatest com-
mon divisor of the lengths of all cycles of the graph is 1. A graph is called an
AGW-graph if it is aperiodic and strongly connected. A synchronizing automa-
ton which is a coloring of a graph G will be called a synchronizing coloring of
G. The Road coloring problem asks for the existence of a synchronizing coloring
for every AGW-graph. This problem was formulated in the context of Symbolic
Dynamics by Adler, Goodwyn and Weiss and it is explicitly stated in [1]. In
2007, Trahtman has positively solved this problem [24]. Recently Volkov has
raised the following problem [25] (see also [3]).

Hybrid Černý–Road coloring problem. Let G be an AGW-graph. What is
the minimum length of a reset word for a synchronizing coloring of G?

7.1 Relabeling

In order to prove our main theorem, we need to recall some basic results con-
cerning colorings of graphs. Let A = 〈Q,A, δ〉 be an automaton. A map
δ′ : Q × A −→ Q is a relabeling of A if, for each q ∈ Q, there exists a per-
mutation πq of A such that

δ′(q, a) = δ(q, πq(a)), a ∈ A .

It is clear that δ′ is a relabeling of A if and only if the automata A and A′ =
〈Q,A, δ′〉 are associated with the same graph.

Let A = 〈Q,A, δ〉 be an automaton, α be a congruence on Q and δ′ be a
relabeling of A. According to [12], δ′ respects α if for each congruence class C
there exists a permutation πC of A such that

δ′(q, a) = δ(q, πC(a)) , q ∈ C , a ∈ A .

In such a case, for all v ∈ A∗ there is a word u ∈ A∗ such that |u| = |v| and
δ′(q, u) = δ(q, v) for all q ∈ C.

As α is a congruence, we may consider the quotient automaton A/α. Any

relabeling δ̂ of A/α induces a relabeling δ′ of A which respects α. This means
that

1. α is a congruence of A′ = 〈Q,A, δ′〉 and A′/α = 〈Q/α,A, δ̂〉,

2. for all α-class C and all v ∈ A∗, there exists u ∈ A∗ such that |v| = |u|
and δ′(C, u) = δ(C, v).

We end this section by recalling the following important result proven in
[12].

Proposition 7 Let ρ be the stability congruence of an automaton A associated
with an AGW-graph G. Then the graph G′ associated with the quotient automa-
ton A/ρ is an AGW-graph. Moreover, if G′ has a synchronizing coloring, then
G has a synchronizing coloring as well.
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7.2 Hamiltonian paths

In this section we give a partial answer to the Hybrid Černý–Road coloring
problem. Precisely we prove that an AGW-graph of n vertices with a Hamil-
tonian path admits a synchronizing coloring with a reset word of length not
larger that 2n2 − 4n + 1 − 2(n − 1) ln(n/2). In order to prove this result, we
need to establish some properties concerning automata with a monochromatic
Hamiltonian path.

Let a be a letter. The graph of a-transitions of an automaton A consists of
disjoint cycles and trees with root on the cycles. The level of a vertex in such
a graph is its height in the tree to which it belongs. The following proposition
was implicitly proved in [24, Theorem 3].

Proposition 8 If in the graph of a-transitions of a transitive automaton A all
the vertices of maximal positive level belong to the same tree, then A has a stable
pair.

As an application of the previous proposition, we obtain the following.

Proposition 9 If an AGW-graph G with at least 2 vertices has a Hamiltonian
path, then there is a coloring of G with a stable pair and a monochromatic
Hamiltonian path.

Proof Let G be an AGW-graph with n ≥ 2 vertices. Let us show that one
can find in G a Hamiltonian path (q0, q1, . . . , qn−1) and an edge (qn−1, q) with
q 6= q0 (see fig.).

�������� ��������// // ��������// // ��������// ��������//��
· · · · · ·

Indeed, if G has no Hamiltonian cycle, it is sufficient to take a Hamiltonian path
(q0, q1, . . . , qn−1) and any edge outgoing from qn−1: such an edge exists because
G has positive constant outdegree.

On the contrary, suppose thatG has a Hamiltonian cycle (q0, q1, . . . , qn−1, q0).
Since G is aperiodic, there is an edge (p, q) of G which does not belong to the
cycle. We may assume, with no loss of generality, p = qn−1, so that q 6= q0.
Thus, (q0, q1, . . . , qn−1) is a Hamiltonian path and (qn−1, q) is an edge of G.

Choose a coloring A of G where the edges of the path (q0, q1, . . . , qn−1, q)
are labeled by the same letter a. In such a way, there is a monochromatic
Hamiltonian path. Moreover, the graph of a-transitions has a unique tree, so
that, by Proposition 8, A has a stable pair. ✷

Lemma 9 If an automaton A has a monochromatic Hamiltonian path, then
any quotient automaton of A has the same property.

Proof With no loss of generality, we may reduce ourselves to the case that A is
a 1-letter automaton. Now, a 1-letter automaton has a Hamiltonian path if and
only if it has a state q from which all states are accessible. The conclusion follows
from the fact that the latter property is inherited by the quotient automaton.✷
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We are ready to prove our main result. We denote by f the real function

f(x) = 2x2 − 4x+ 1− 2(x− 1) ln
x

2
.

One easily verifies that, for x ≥ 2, one has f ′(x) ≥ x. In particular, f is strictly
increasing.

Theorem 1 Let G be an AGW-graph with n > 1 vertices. If G has a Hamil-
tonian path, then there is a synchronizing coloring of G with a reset word w of
length

|w| ≤ 2n2 − 4n+ 1− 2(n− 1) ln
n

2
. (11)

Proof The proof is by induction on the number n of the vertices of G.
Let n = 2. Since G is aperiodic, G has an edge (q, q) which immediatly

implies the statement. Suppose n ≥ 3. By Proposition 9, among the colorings of
G, there is an automaton A = 〈Q,A, δ〉 with a stable pair and a monochromatic
Hamiltonian path. In particular, A is a transitive 1-cluster automaton. If A is
synchronizing, then the statement follows from Corollary 1. Thus, we assume
that A is not synchronizing.

Let ρ be the stability congruence of A, k be its index and Gρ be the graph of
A/ρ respectively. Since A is not synchronizing, one has k > 1. By Proposition
7, Gρ is an AGW-graph with k vertices and k < n. Moreover, by Lemma 9,
Gρ has a Hamiltonian path. By the induction hypothesis, we may assume that

there is a relabeling δ̂ of A/ρ such that the automaton Â = 〈Q/ρ,A, δ̂〉 has a
reset word u such that

|u| ≤ f(k).

As viewed in Section 7.1, δ̂ induces a relabeling δ′ of A which respects ρ. More-
over, since u is a reset word of Â, C = δ′(Q, u) is a stable set of A.

First, we consider the case n ≥ 2k. By Corollary 4, there is a word v such
that Card(δ(C, v)) = 1 and |v| ≤ n2−n lnn/2−n− 1. Since δ′ respects ρ, there
is a word v′ such that |v′| = |v| and δ′(C, v′) = δ(C, v). Set w = uv′. Then
δ′(Q,w) = δ′(Q, uv′) = δ′(C, v′) = δ(C, v) is reduced to a singleton. Hence, w
is a reset word of A′ = 〈Q,A, δ′〉 and

|w| ≤ f(k) + n2 − n ln
n

2
− n− 1.

Since f is increasing and k ≤ n/2, one has

f(n)− |w| ≥ f(n)− f
(n
2

)
−
(
n2 − n ln

n

2
− n− 1

)

=
1

2
n2 − (1 + ln 2)n+ 1 + ln 4 > 0.

Hence (11) holds true.
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Now, we consider the case n < 2k. In such a case, there is a ρ-class K of
cardinality 1. Moreover, by the transitivity of Â, there is a word v ∈ A∗ such
that δ′(C, v) = K and |v| ≤ k−1. Hence, w = uv is a reset word of A′ of length

|w| ≤ f(k) + k − 1.

Since f ′(x) ≥ x, by Lagrange Theorem, one has f(n)− f(k) ≥ (n− k)k ≥ k. It
follows that |w| ≤ f(n)− 1. This concludes the proof. ✷

We close the paper with the following remark.

Remark 2 It was already observed in [9] that a bound on synchronizing 1-
cluster automata with prime length cycle leads to bounds for the Hybrid Černý–
Road coloring problem. More precisely, by a result of O’ Brien [16], every
aperiodic graph of n vertices, without multiple edges, having a simple cycle C
of prime length p < n, admits a synchronizing coloring of G such that C is the
unique cycle labelled by a power of a given letter a. Then, by Corollary 1, such
coloring has a reset word of length 2n2 − 4n + 1 − 2(n − 1) ln(n/2). Recently
this upper bound has been lowered to (n− 1)2 in [22].
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[11] J. Černý, Poznámka k. homogénnym experimenton s konečnými au-
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Thèse de 3ème cycle, Université de Paris 6, 1978.
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