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ABSTRACT. If E is a set of matroids, then Ex(E ) denotes the set of matroids
that have no minor isomorphic to a member of E . If E ′ ⊆ E , we say that E ′ is
superfluous if Ex(E−E ′)−Ex(E ) contains only finitely many 3-connected ma-
troids. We characterize the superfluous subsets of six well-known collections
of excluded minors.

1. INTRODUCTION

If E is a set of matroids, then let Ex(E ) be the set of matroids such that
M ∈ Ex(E ) if and only if M has no minor isomorphic to a member of E . Thus,
if P = {U2,4, F7, F∗7 , M(K3,3), M(K5), M∗(K3,3), M∗(K5)}, then Ex(P ) is the set
of graphic matroids of planar graphs. Hall’s classical theorem on the graphs
without a K3,3-minor [5] can be interpreted as saying that

Ex(P −{M(K5)})− Ex(P )

contains only a single 3-connected matroid, namely M(K5) itself. This moti-
vates the following definition: if E is a set of matroids, then E ′ ⊆ E is a super-
fluous subset of E if Ex(E −E ′)−Ex(E ) contains only finitely many 3-connected
matroids. Thus {M(K5)} is a superfluous subset of P . Obviously every subset
of a superfluous subset is itself superfluous. In this article we characterize the
superfluous subsets of six well-known collections of excluded minors.

We will concentrate on the excluded minors for classes of matroids rep-
resentable over partial fields. Partial fields were introduced by Semple and
Whittle [15], prompted by Whittle’s investigation of classes of ternary matroids
[20, 21]. A partial field is a pair (R, G), where R is a commutative ring with
identity, and G is a subgroup of the multiplicative group of R, such that −1 ∈ G.
Note that every field, F, can be seen as a partial field, (F,F− {0}). For more
information on partial fields, and matroid representations over them, we refer
to [14].

To date, the class of matroids representable over a partial field has been
characterized via excluded minors in only six cases. Those cases are: the fields
GF(2), GF(3), and GF(4), the regular partial field, and two of the partial fields
discovered by Whittle, namely the sixth-roots-of-unity partial field, and the
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near-regular partial field. We will characterize the superfluous subsets of all
these collections of excluded minors.

First of all, Tutte [19] showed that the only excluded minor for the class
of GF(2)-representable matroids is U2,4. It is clear that the only superfluous
subset in this case is the empty set. For a more interesting example, we examine
the regular partial field, U0 := (Z, {1,−1}). Tutte also proved that the set of
excluded minors for U0-representable matroids is {U2,4, F7, F∗7}. It is a well-
known application of Seymour’s Splitter Theorem [18] that F7 is a splitter for
the class Ex({U2,4, F∗7}). The next theorem follows easily from this fact.

Theorem 1.1. The only non-empty superfluous subsets of {U2,4, F7, F∗7} are {F7}
and {F∗7}. The only 3-connected matroid in Ex({U2,4, F∗7})− Ex({U2,4, F7, F∗7}) is
F7.

Next we consider the excluded-minor characterization of GF(3)-
representable matroids, due to Bixby and Seymour [1, 17].

Theorem 1.2. The set of excluded minors for GF(3)-representable matroids is
{U2,5, U3,5, F7, F∗7}.

Theorem 1.3. The only non-empty superfluous subsets of {U2,5, U3,5, F7, F∗7}
are {F7} and {F∗7}. The only 3-connected matroid in Ex({U2,5, U3,5, F∗7}) −
Ex({U2,5, U3,5, F7, F∗7}) is F7.

The set of excluded minors for GF(4)-representable matroids was character-
ized by Geelen, Gerards, and Kapoor [3].

Theorem 1.4. The set of excluded minors for the class of GF(4)-representable
matroids is {U2,6, U4,6, F−7 , (F−7 )

∗, P6, P8, P=8 }.

Let O be the set of excluded minors in Theorem 1.4. Geelen, Oxley, Vertigan,
and Whittle showed the following:

Theorem 1.5 ([4, Theorem 1.1]). Let M be a 3-connected matroid. Then one of
the following holds:

(i) M is GF(4)-representable;
(ii) M has a minor isomorphic to one of O − {P8, P=8 };

(iii) M is isomorphic to P=8 ;
(iv) M is isomorphic to a minor of S(5,6, 12).

This implies that {P8, P=8 } is a superfluous subset of O . We complement this
theorem by showing that it is best possible:

Theorem 1.6. The only superfluous subsets of O are the subsets of {P8, P=8 }. The
only 3-connected matroids in Ex(O −{P8, P=8 })−Ex(O ) are isomorphic to P=8 , or
minors of S(5, 6,12).

Let S := (C, {z ∈ C | z6 = 1}) be the sixth-roots-of-unity partial field, so
that a matroid is S-representable if and only if it is both GF(3)- and GF(4)-
representable. By combining Theorems 1.2 and 1.4, Geelen, Gerards, and
Kapoor derived the following result [3, Corollary 1.4].
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Theorem 1.7. The set of excluded minors for the class of S-representable matroids
is {U2,5, U3,5, F7, F∗7 , F−7 , (F−7 )

∗, P8}.

Let S be the set of excluded minors in Theorem 1.7.

Theorem 1.8. The only superfluous subsets of S are the subsets of {F7, P8} and
{F∗7 , P8}. The only 3-connected matroids in Ex(S −{F7, P8})−Ex(S ) are isomor-
phic to F7, or minors of S(5,6, 12).

Let U1 := (Q(α), {±αi(1−α) j | i, j ∈ Z}) be the near-regular partial field. A
matroid is U1-representable if and only if it is representable over GF(3), GF(4),
and GF(5). The next theorem is proved in [6].

Theorem 1.9. The set of excluded minors for the class of U1-representable ma-
troids is

{U2,5, U3,5, F7, F∗7 , F−7 , (F−7 )
∗, AG(2,3)\e, (AG(2, 3)\e)∗,∆3(AG(2, 3)\e), P8}.

Let N be the set featured in Theorem 1.9.

Theorem 1.10. The only superfluous subsets of N are the subsets of
{F7, AG(2, 3)\e, (AG(2,3)\e)∗} and {F∗7 , AG(2,3)\e, (AG(2, 3)\e)∗}. The only 3-
connected matroids in Ex(N −{F7, AG(2,3)\e, (AG(2,3)\e)∗})−Ex(N ) are iso-
morphic to F7, AG(2, 3)\e, (AG(2,3)\e)∗, AG(2, 3), or (AG(2,3))∗.

We note here that all undefined matroids appearing in the paper can be
found in the appendix of Oxley [10]. We assume that the reader is familiar
with the terminology and notation from that source. We use the terms line and
plane to refer to rank-2 and rank-3 subsets of the ground set. By performing a
∆-Y exchange on AG(2,3)\e, we obtain ∆3(AG(2, 3)\e), which is represented
over GF(3) by [I4 A], where A is the following matrix.

(1) A=











5 6 7 8

1 1 0 −1 0
2 1 0 1 1
3 1 1 0 1
4 0 1 1 −1











.

The paper is built up as follows. In Section 2 we use Seymour’s Splitter
Theorem to prove that certain subsets are superfluous. To prove that a subset
{M} is not superfluous, we need to generate an infinite number of 3-connected
matroids in Ex(E −{M})−Ex(E ). We do so by the simple expedient of growing
arbitrarily long fans. Section 3 proves the technical lemmas that allow us to do
so. In Section 4 we introduce several matroids to which our method of growing
fans will be applied, and in Section 5 we will round up the results. Note that
the proofs in Sections 2 and 4 are finite case-checks that could be replaced by
computer checks. However, at the moment of writing no sufficiently reliable
software for this existed.



4 HALL, MAYHEW, AND VAN ZWAM

2. APPLYING THE SPLITTER THEOREM

The following result is very well-known [10, Proposition 12.2.3].

Proposition 2.1. The matroid F7 is a splitter for the class Ex({U2,4, F∗7}).

Our next result, which seems not to be in the literature, proves a generaliza-
tion of Proposition 2.1.

Theorem 2.2. The matroid F7 is a splitter for the class Ex({U2,5, U3,5, F∗7}).

Proof. By Seymour’s Splitter Theorem we only have to check that F7 has no 3-
connected single-element extensions and coextensions in Ex({U2,5, U3,5, F∗7}).
If M is a 3-connected matroid such that M\e ∼= F7, then either e is on exactly
one line of F7, or e is on no line of F7. In either case M/e contains a U2,5-minor.

Therefore we will assume that M is a 3-connected matroid such that M/e ∼=
F7 and M belongs to Ex({U2,5, U3,5, F∗7}). Let M be the class of matroids that
are either binary or ternary. NowM is a minor-closed class, and its excluded
minors are characterized in [8]. Certainly M is not binary, since that would lead
to a contradiction to Proposition 2.1. Moreover, M is not ternary, as it contains
an F7-minor. Therefore M is not contained in M . Hence [16, Theorem 4.1]
implies that M contains a 3-connected excluded minor forM . There are only
4 such excluded minors, and as M does not contain U2,5 or U3,5 as a minor, M
must contain one of the matroids obtained from the affine geometry AG(3, 2)
or from T12 by relaxing a circuit-hyperplane. As M contains only 8 elements,
M must be isomorphic to the unique relaxation of AG(3,2). But this matroid
has an F∗7 -minor ([10, Page 646]). This contradiction completes the proof. �

We can make short work of the case in which we do not exclude P8. Geelen
et al. [4, Theorem 1.5] proved the following result:

Theorem 2.3. If M is a 3-connected matroid in Ex({U2,6, U4,6, P6, F−7 , (F−7 )
∗}),

and M has a P8-minor, then M is a minor of S(5,6, 12).

Since each of U2,6, U4,6, P6 has a minor in {U2,5, U3,5}, we immediately have

Corollary 2.4. If M is a 3-connected matroid in Ex({U2,5, U3,5, F−7 , (F−7 )
∗}), and

M has a P8-minor, then M is a minor of S(5, 6,12).

Next, we determine what happens if we don’t exclude AG(2, 3)\e. Our start-
ing point is the automorphism group of AG(2, 3)\e. Note that it is transitive on
elements of the ground set ([10, Page 653]). For each element p in AG(2, 3)\e,
there is a unique element p′ such that p and p′ are not on a 3-point line of
AG(2, 3)\e. Any automorphism will map {p, p′} to another such pair, so speci-
fying the image of p also specifies the image of p′. Consider automorphisms of
the diagram in Figure 1 that pointwise fix 1 and 8. It is easy to confirm that the
permutations below (presented in cyclic notation),

(2) (1)(2, 4)(3, 7)(5,6)(8)

and

(3) (1)(2, 3,5)(4,6, 7)(8)
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FIGURE 1. The matroid AG(2, 3)\e.

are two such automorphisms. The next result follows easily from this discus-
sion.

Lemma 2.5. Let p and p′ be points in AG(2, 3)\e such that there is no 3-point
line containing p and p′. The subgroup of the automorphism group of AG(2, 3)\e
that pointwise fixes p and p′ is transitive on E(AG(2,3)\e)− {p, p′}.

Lemma 2.6. Let B and B′ be bases of AG(2, 3)\e such that every pair p, q ∈ B, and
every pair k, l ∈ B′ spans a 3-point line. There is an automorphism of AG(2,3)\e
mapping B to B′.

Proof. If x is any element of AG(2,3)\e, then let x ′ be the point that is in no
3-point line with x . Let B = {p, q, r}. The hypotheses of the lemma imply that
|{p, q, r, p′, q′, r ′}| = 6. Let epq be the unique point such that {p, q, epq} is a
circuit. Define epr and eqr in the same way. Then |{p, q, r, epq, epr , eqr}| = 6.
As AG(2,3)\e contains only 8 points, we can relabel as necessary, and assume
eqr is in {p′, q′, r ′}. Since eqr is in a non-trivial line with q and r, it follows
that eqr = p′, so that {p′, q, r} is a circuit. Let B′ = {k, l, m}. By relabeling and
using the same arguments, we can assume that {k′, l, m} is a 3-point line of
AG(2,3)\e.

Consider the automorphism that maps k to p. It must map k′ to p′. By
composing this automorphism with an automorphism that fixes p and p′, and
referring to Lemma 2.5, we can assume that l is mapped to q. But an auto-
morphism maps lines to lines, so then m must be mapped to r, and the result
follows. �

In the proof of the next lemma we will show several times that a matroid
M = M[I A] is isomorphic to one of ∆3(AG(2, 3)\e), P8, F−7 , or (F−7 )

∗. Un-
less the isomorphism is obvious (i.e. one merely needs to permute rows and
columns), we will specify which isomorphism we use. For this we use the rep-
resentation of ∆3(AG(2, 3)\e) with elements labeled as in (1). Moreover, we
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will label the elements of P8, F−7 , (F−7 )
∗ so that P8 = [I4 A8], F−7 = [I3 A7], and

(F−7 )
∗ = [−AT

7 I4], where A7 and A8 are the following matrices over GF(3).

A8 =











5 6 7 8

1 0 1 1 −1
2 1 0 1 1
3 1 1 0 1
4 −1 1 1 0











A7 =







4 5 6 7

1 1 1 0 1
2 1 0 1 1
3 0 1 1 1







Lemma 2.7. Let M be a 3-connected S-representable matroid such that M/ f ∼=
AG(2,3)\e for some f ∈ E(M). Then M has ∆3(AG(2,3)\e) as minor.

Proof. Suppose that M is a counterexample. Let M ′ := M\ f .

Claim 2.7.1. There exists a set X ⊆ E(M)− f such that |X |= 5 and r(X ) = 3.

Proof. Suppose M ′ has no 5-point planes. First we show that M ′ has no 3-point
lines. Observe that each line of M ′ is a line of AG(2, 3)\e, so M ′ has no 4-point
lines. Suppose {x , y, z} is a line of M ′. If x is on another 3-point line, then
the union of those lines would be a 5-point plane, a contradiction. It follows
that M ′/x\y is simple. Furthermore, z is in no 3-point line in M ′/x\y , or else
the union of this line with {x , y} is a 5-point plane in M ′. Therefore M ′/x\y/z
is simple, has rank 2, and contains 5 points. Therefore M ′ has a U2,5-minor,
which is impossible since it is S-representable. Hence M ′ has no 3-point lines.

Let e be an arbitrary point in E(M ′). Then M ′/e is a simple rank-3 matroid
with 7 points. Since M ′ has no 5-point planes, M ′/e has no 4-point lines.
Hence M ′/e cannot be the union of two lines, so it is 3-connected. Then M ′/e
is isomorphic to one of the matroids F7, F−7 , P7, or O7 (see [3, Page 292]).
Since M ′/e is S-representable, it is not isomorphic to F7 or F−7 . Furthermore,
O7 contains a 4-point line, so M ′/e must be isomorphic to P7. By the uniqueness
of representation over GF(3), we can assume that the following GF(3)-matrix
A′ is such that M ′ = [I4 A′].

A′ :=











4 5 6 7

1 1 1 0 −1
2 1 0 1 1
3 0 1 1 1
e α β γ δ











.

As M ′ has no 3-point lines, all of α, β , and γ are non-zero. By scaling the
row labeled e, we assume that α = 1. If γ = δ then {1,6, 7} is a triangle. It
follows that γ 6= δ.

If β = 1, then γ 6= 1, or else M ′\7∼= (F−7 )
∗. Therefore γ=−1. If δ = 0, then

A′ represents P8, which is impossible as M is GF(4)-representable. Therefore
δ = 1. By the discussion above, M ′/1 ∼= P7. But in M ′/1, the sets {2,4, e},
{3,5, e}, and {6,7, e} are triangles containing e, whereas {3, 5, e}, {4,5, 6}, and
{2,5, 7} are triangles containing 5. This is a contradiction, since P7 has only
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one element that is on three lines. Therefore β = −1. It follows that δ 6= 0, or
else {4,5, 7} is a triangle of M ′.

Assume that γ = −1, from which it follows that δ = 1. Then we find that
M ′ ∼= P8, with isomorphism

1→ 1 2→ 2 3→ 5 4→ 7 5→ 8 6→ 3 7→ 6 e→ 4.

Therefore we must have γ = 1, and hence δ = −1. But then again M ′ ∼= P8,
with isomorphism

1→ 1 2→ 5 3→ 3 4→ 8 5→ 6 6→ 2 7→ 7 e→ 4.

From this final contradiction we conclude that the claim holds. �

Let X be a set of 5 points of a plane of M ′, and Y := E(M ′)− X . Note that
f /∈ clM (X ), as M/ f contains no rank-2 flat with 5 elements.

Since M/ f is isomorphic to AG(2,3)\e, we can distinguish three cases. Either
Y is a 3-point line of M/ f , or Y is a basis of M/ f , and every pair of elements
of Y spans a 3-point line in M/ f , or Y is a basis of M/ f , and there is exactly
one pair of elements in Y that does not span a 3-point line of M/ f . We can use
Lemmas 2.5 and 2.6, and the fact that the automorphism group of AG(2,3)\e
is transitive on 3-point lines ([10, Page 653]), and thereby assume that either
Y = {4,6, 7} or Y = {4, 6,8} or Y = {4, 5,6}, where the elements of AG(2,3)\e
are labeled as in Figure 1.
Case I. Suppose Y = {4,6, 7}, so that X = {1, 2,3, 5,8}. Since f is not a coloop
and not in a series pair, there are two elements in Y that are not spanned by X
in M ′. Let σ be the automorphism in Equation (3), so that Y is an orbit of σ.
There is some i ∈ {0, 1,2} such that σi takes the two elements in Y − clM ′(X )
to {4,6}. Now σi induces a relabeling of the elements of M ′ that set-wise fixes
X . After applying this relabeling, M/ f is still equal to AG(2,3)\e, as labeled in
Figure 1. Moreover, X is a 5-point plane of M ′ that does not span 4 or 6. By
the uniqueness of representations over GF(3) we can assume that M = M[I A]
for some GF(3)-matrix of the form

A :=











4 5 6 7 8

f 1 0 α β 0
1 1 0 1 1 1
2 1 1 0 −1 1
3 0 1 1 −1 −1











with α 6= 0. If α= 1 then M\{5,7} ∼= (F−7 )
∗, with isomorphism

1→ 5 2→ 7 3→ 6 4→ 4 6→ 2 8→ 3 f → 1.

Hence α=−1. But now M\7∼=∆3(AG(2,3)\e). This completes the analysis in
Case I.

From now on, we assume that Y is not a triangle of M/ f . We will also
assume that if X spans an element y ∈ Y , then there is no triangle T of M/ f
that contains Y − y . To justify this assumption, note that if y ∈ clM ′(X ), then
(Y − y) ∪ f must be a triad of M , so that rM (X ∪ y) = 3. Furthermore, Y is
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not a triangle in M/ f , so T contains exactly one element of X . Therefore, if T
exists, we can replace X with (X − T )∪ y , and replace Y with T , and reduce to
Case I.
Case II. Suppose Y = {4, 6,8}. Since any pair of elements from {4,6, 8} is in a
triangle of M/ f , we can assume that X spans no element of Y , by the argument
in the previous paragraph. Hence we have M = M[I A] for some GF(3)-matrix
of the form

A :=











4 5 6 7 8

f 1 0 α 0 β
1 1 0 1 1 1
2 1 1 0 −1 1
3 0 1 1 −1 −1











,

where α and β are non-zero.
If (α,β) = (1,1), then M\5∼=∆3(AG(2,3)\e), with isomorphism

1→ 1 2→ 2 3→ 4 4→ 3 6→ 8 7→ 7 8→ 6 f → 5.

If (α,β) = (1,−1), then M\5∼= P8, with isomorphism

1→ 2 2→ 3 3→ 4 4→ 6 6→ 1 7→ 5 8→ 8 f → 7,

contradicting GF(4)-representability of M .
If (α,β) = (−1,1), then M/1\5∼= F−7 , with isomorphism

2→ 2 3→ 3 4→ 1 6→ 7 7→ 6 8→ 5 f → 4.

If (α,β) = (−1,−1), then M\5∼=∆3(AG(2,3)\e), with isomorphism

1→ 2 2→ 7 3→ 5 4→ 4 6→ 3 7→ 6 8→ 8 f → 1.

Thus M has a ∆3(AG(2, 3)\e)-minor.
Case III. Suppose Y = {4,5, 6}. Since {4,6, 7} and {5,6, 8} are triangles of
M/ f , we assume that neither 4 nor 5 is in the span of X , by the argument
immediately preceding Case II. Hence M = M[I A] for some GF(3)-matrix of
the form

A :=











4 5 6 7 8

f 1 α β 0 0
1 1 0 1 1 1
2 1 1 0 −1 1
3 0 1 1 −1 −1











,

where α 6= 0. If α= 1 then M\{6, 8} ∼= (F−7 )
∗, with isomorphism

1→ 5 2→ 6 3→ 7 4→ 1 5→ 4 7→ 3 f → 2.

Therefore α=−1. But now M\6∼=∆3(AG(2,3)\e), with isomorphism

1→ 8 2→ 3 3→ 2 4→ 7 5→ 1 7→ 4 8→ 6 f → 5.

The result follows. �

We must now study coextensions of AG(2,3). Luckily our previous analysis
can be used for this.
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Lemma 2.8. Let M be a 3-connected S-representable matroid such that M/ f ∼=
AG(2,3) for some f ∈ E(M). Then M has an element g 6= f such that M\g is
3-connected.

Proof. Let M be as stated, and suppose the result is false, so for each element
g 6= f , M\g is not 3-connected. Since M\g/ f is 3-connected, g must be in a
triad with f . Two distinct triads T1 and T2, both containing f , intersect only
in f , or else M/ f ∼= AG(2, 3) contains a triad. From this we find that M\ f can
be partitioned into series pairs. However, this matroid has an odd number of
elements, a contradiction. �

Corollary 2.9. Let M be a 3-connected S-representable matroid such that M/ f ∼=
AG(2,3) for some f ∈ E(M). Then M has ∆3(AG(2,3)\e) as minor.

Proof. Let g be an element as in Lemma 2.8. Then M\g is a matroid satisfying
all conditions of Lemma 2.7, and the result follows. �

Now we combine the previous results and the Splitter Theorem to prove the
following theorem.

Theorem 2.10. Let M be a 3-connected matroid in

Ex({U2,5, U3,5, F7, F∗7 , F−7 , (F−7 )
∗,∆3(AG(2, 3)\e), P8}).

Then either M is near-regular, or one of M and M∗ is isomorphic to a member of
{AG(2, 3)\e, AG(2,3)}.

Proof. By the excluded-minor characterization of S-representable matroids
(Theorem 1.7), it follows that M is S-representable. We assume that M is
not U1-representable. Then Theorem 1.9 implies that M contains a minor
isomorphic to AG(2, 3)\e or its dual. By duality, we assume that M has an
AG(2,3)\e-minor. If M ∼= AG(2,3)\e, we are done, so we assume otherwise.
By Seymour’s Splitter Theorem, M contains a 3-connected minor M ′, such
that M ′ is a single-element extension or coextension of AG(2,3)\e. Lemma
2.7 implies that M ′ is a single-element extension of AG(2, 3)\e. Thus M ′ is
simple and r(M ′) = 3. Moreover |E(M ′)| = 9, so [12, Theorem 2.1] implies
that M ′ ∼= AG(2, 3). If M = M ′, we are done, so we assume that M has a
3-connected minor M ′′, such that M ′′ is a single-element extension or coexten-
sion of AG(2,3). But r(M ′′) > 3, or else we have contradicted [12, Theorem
2.1]. Therefore M ′′/ f ∼= AG(2,3), for some element f . Corollary 2.9 implies
that M ′′ has a ∆3(AG(2, 3)\e)-minor, a contradiction. �

3. CREATING BIGGER FANS

In this section we prove two results that allow us to replace a fan by a big-
ger fan while keeping a certain minor N , without losing 3-connectivity, and
without introducing an undesired minor N ′ (subject to the conditions that N ′

is 3-connected and has no 4-element fans). We will use Brylawski’s generalized
parallel connection [2] for this. We refer the reader to Oxley [10, Section 11.4]
for definitions and elementary properties, including the following:
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Lemma 3.1. Let M and N be matroids having a common restriction T, which is
moreover a modular flat of N. Let M ′ := PT (N , M).

(i) A subset F ⊆ E(M ′) is a flat of M ′ if and only if F ∩ E(N) is a flat of N
and F ∩ E(M) is a flat of M;

(ii) M ′|E(N) = N and M ′|E(M) = M;
(iii) If e ∈ E(N)− T then M ′\e = PT (N\e, M);
(iv) If e ∈ E(N)− clN (T ) then M ′/e = PT (N/e, M);
(v) If e ∈ E(M)− T then M ′\e = PT (N , M\e);

(vi) If e ∈ E(M)− clM (T ) then M ′/e = PT (N , M/e).

Let M be a matroid on the ground set E. A subset of E is fully-closed if it is
closed in M and M∗. If X ⊆ E, then fcl(X ) is the intersection of all fully-closed
sets that contain X . We can obtain fcl(X ) by applying the closure operator to
X , applying the coclosure operator to the result, and so on, until we cease to
gain any new elements.

Lemma 3.2. Let M be a simple, cosimple, connected matroid, and let (A, B) be a
2-separation of M. Then (fclM (A), B− fclM (A)) is a 2-separation.

Proof. It is simple to verify that λM (fclM (A)) ≤ λM (A). If (fclM (A), B− fclM (A))
is not a 2-separation, then |B − fclM (A)| < 2. This means that we can order
the elements of B as (b1, . . . , bk), so that bi is in clM (A ∪ {b1, . . . , bi−1}) or
cl∗M (A∪{b1, . . . , bi−1}), for all i ∈ {1, . . . , k−1}. Hence λM (A∪{b1, . . . , bk−2})≤
1, so 1≥ λM ({bk−1, bk}) = rM ({bk−1, bk})+r∗M ({bk−1, bk})−2. Thus {bk−1, bk}
is either dependent or codependent. In either case we have a contradiction. �

Definition 3.3. Let M be a matroid, and F = (x1, x2, . . . , xk) an ordered subset
of E(M), with k ≥ 3. We say F is a fan of M if, for all i ∈ {1, . . . , k − 2},
Ti := {x i , x i+1, x i+2} is either a triangle or a triad, and if Ti is a triad, then Ti+1
is a triangle; if Ti is a triangle then Ti+1 is a triad.

Assume that F = (x1, . . . , xk) is a fan. Then F is a fan of M∗. We say
that F is a maximal fan if there is no fan (y1, . . . , yl) such that l > k and
{x1, . . . , xk} ⊆ {y1, . . . , yl}. We say x i is a rim element if 1 < i < k and x i is
contained in exactly one triangle that is contained in {x1, . . . , xk}, or if i ∈ {1, k}
and x i is contained in no such triangle. We say x i is a spoke element if it is not
a rim element.

Lemma 3.4. Let M be a simple, cosimple, connected matroid, let F = (x1, . . . , xk)
be a fan of M, and let (A, B) be a 2-separation of M. Then M has a 2-separation
(A′, B′) with {x1, . . . , xk} ⊆ A′.

Proof. Let M , F , and (A, B) be as stated. Assume, by dualizing M if necessary,
that T := {x1, x2, x3} is a triangle. Clearly one of A∩ T and B ∩ T has size
at least two; by relabeling assume |A∩ T | ≥ 2. By Lemma 3.2, we can replace
(A, B) with (fclM (A), B−fclM (A)). If {x1, . . . , xk} ⊆ fclM (A) then we are done, so
assume that i ∈ {1, . . . , k} is the smallest index such that x i /∈ fclM (A). Certainly
T is contained in fclM (A), so i ≥ 4. But then either x i ∈ clM ({x i−1, x i−2}) or
x i ∈ cl∗M ({x i−1, x i−2}), which leads to a contradiction. �
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In what follows, the elements of the wheel M(Wn) and whirlW n are labeled
{s1, r1, s2, . . . , sn, rn} where, for all indices i (interpreted modulo n), {si , ri , si+1}
is a triangle and {ri , si+1, ri+1} is a triad. Hence, {s1, . . . , sn} is the set of spokes
and {r1, . . . , rn} is the set of rim elements.

Theorem 3.5. Let M be a 3-connected matroid, and let F = (x1, . . . , xk) be
a fan of M with T := {x1, x2, x3} a triangle. Let n ≥ 3 be an integer, and
relabel the elements s1, rn, sn of M(Wn) by x1, x2, x3, in that order. Let M ′ :=
PT (M(Wn), M), and M ′′ := M ′\x2. Then M ′′ has the following properties:

(i) (x1, r1, s2, r2, . . . , sn−1, rn−1, x3, . . . , xk) is a fan of M ′′;
(ii) M is isomorphic to a minor of M ′′, with the isomorphism fixing all ele-

ments but x2;
(iii) M ′′ is 3-connected;

Proof. Let M , F , T , n, M ′, and M ′′ be as stated, and define N := M(Wn).
It follows immediately from [10, Corollary 6.9.10] that T is a modular
flat of N , so M ′ = PT (N , M) is defined. It follows from Lemma 3.1 that
(s1, r1, . . . , sn−1, rn−1, sn) is a fan of M ′ and of M ′′, since the complement in
M ′ of each triad of N is a hyperplane of M ′, and each triangle of N other
than T is a triangle of M ′. If k = 3, then (i) holds. Hence we assume that
k ≥ 4. We only need to show that {rn−1, sn, x4} is a triad of M ′′. Consider
H := E(M ′)− {rn−1, sn, rn, x4}. Since H ∩ E(N) and H ∩ E(M) are hyperplanes
of their respective matroids, H is a flat of M ′. Since clM ′(H ∪ sn) = E(M ′), it
follows that {rn−1, sn, rn, x4} is a cocircuit of M ′. But then {rn−1, sn, x4} is a
cocircuit of M ′′, as desired.

Statement (ii) is a straightforward consequence of Lemma 3.1 and the ob-
servation that M(Wn) has a minor in which {s1, rn, sn} is a triangle and some
element is in parallel with rn. Statement (iii) follows immediately from [13,
Corollary 2.8]. �

We will denote the matroid M ′′, as described in the statement of Theorem
3.5, by �n

T (M). Theorem 3.5 shows that we can make a fan arbitrarily long
while keeping 3-connectivity. Our next task is to show that we can do so with-
out introducing certain minors. The following lemma, whose elementary proof
we omit, will be useful:

Lemma 3.6. Let N be a 3-connected matroid without 4-element fans. Let M be a
3-connected matroid having N as minor, and let F be a 4-element fan of M. Then
|F ∩ E(N)| ≤ 3.

Recall that if T is a coindependent triangle of the matroid M , then ∆T (M)
is the matroid obtained from M by a ∆-Y exchange (see [10, Section 11.5]).

Theorem 3.7. Let N be a 3-connected matroid with no 4-element fan. Let M be
a 3-connected matroid with at least 5 elements that does not have an N-minor.
Let F = (x1, . . . , xk) be a fan of M, where T := {x1, x2, x3} is a triangle, and let
n≥ 3 be an integer. If �n

T (M) has an N-minor, then so does ∆T (M).
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Proof. We will assume that n ≥ 3 has been chosen so that it is as small as
possible, subject to the condition that �n

T (M) has an N -minor. Let N ′ be a
minor of �n

T (M) that is isomorphic to N .
First assume that n ≥ 4. Since {r1, s2, r2, s3} is a 4-element fan of �n

T (M), it
follows from Lemma 3.6 that this set is not contained in E(N). We claim that
�n

T (M)/r1\s2 has an N -minor. Assume this is not the case. If �n
T (M)/r1 has

an N -minor, then, as {s1, s2} is a parallel pair, �n
T (M)/r1\s2 has an N -minor.

Therefore �n
T (M)/r1 does not have an N -minor. Similarly, {r1, r2} is a series

pair in �n
T (M)\s2, so we assume that �n

T (M)\s2 has no N -minor. As {s2, s3}
is a parallel pair in �n

T (M)/r2, this means that �n
T (M)/r2 has no N -minor.

Moreover, {r2, r3} is a series pair in �n
T (M)\s3, so this matroid does not have

an N -minor. As {s2, r2} is a series pair in �n
T (M)\r1, and we concluded that

�n
T (M)/r2 has no N -minor, neither does �n

T (M)\r1. Since {r1, s1} is a parallel
pair in �n

T (M)/s2, and deleting r1 destroys all N -minors, �n
T (M)/s2 has no N -

minor. Deleting r2 creates the series pair {r1, s2}, and contracting r1 destroys
all N -minors, so �n

T (M)\r2 does not have an N -minor. Lastly, contracting s3
creates the parallel pair {s2, r2}, so�n

T (M)/s3 does not have an N -minor, or else
�n

T (M)\s2 does. From this discussion, we conclude that {r1, s2, r2, s3} ⊆ E(N ′),
contradicting our earlier conclusion. Therefore �n

T (M)/r1\s2 has an N -minor.
Since contracting r1 and deleting s2 from M(Wn) produces a copy of

M(Wn−1), it follows easily from Lemma 3.1 that �n
T (M)/r1\s2 is isomorphic

to �n−1
T (M). Thus our assumption on the minimality of n is contradicted. Now

we must assume that n= 3.
If {r1, s2, r2} * E(N ′), then as this set is a triad in �n

T (M), obtaining N ′

involves contracting one of {r1, s2, r2}. Contracting any of these elements in
M(W3) produces a matroid consisting of the triangle {s1, r3, s3} with parallel
points added to two distinct elements. Now we can use Lemma 3.1 to show
that contracting an element in {r1, s2, r2} from �n

T (M) produces a matroid that
is isomorphic to M or M\x2, up to the addition of parallel elements. Therefore
M has an N -minor, contrary to hypothesis. It follows that {r1, s2, r2} ⊆ E(N ′).

Since {s1, s2, r2} is a triangle in �n
T (M), we deduce that s1 /∈ E(N ′), or

else (s1, r1, s2, r2) is a 4-element fan in N ′. Since {r1, s2} is a parallel pair in
�n

T (M)/s1, and N ′ contains no parallel pairs, N ′ is a minor of �n
T (M)\s1. As

{s2, r2, s3} is also a triangle in �n
T (M), we can use exactly the same arguments

to show that N ′ is a minor of �n
T (M)\s3. So N ′ is a minor of PT (M(W3), M)\T .

Since |E(M)| ≥ 5, it is easy to prove that any triangle of M is coindependent
([10, Lemma 8.7.5]). Therefore PT (M(W3), M)\T is isomorphic to ∆T (M),
and we are done. �

4. INFINITE FAMILIES

In this section we describe a collection of matroids to which we can apply
our operation of growing fans. Recall that O , S , and N , respectively, denote
the sets of excluded minors for GF(4)-representable, S-representable, and U1-
representable matroids, as listed in Theorems 1.4, 1.7, and 1.9.
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Let M8 be the rank-3 matroid shown in Figure 2. Then M8 is represented
over GF(3) by [I3 A], where A is the following matrix.







4 5 6 7 8

1 1 1 0 1 0
2 1 0 1 1 1
3 0 1 1 1 −1







1

2 3

4

5

6

7

8

FIGURE 2. Geometric representation of M8.

Lemma 4.1. Let T be the triangle {3, 6,8} of M8. If n ≥ 3 is an integer, then
�n

T (M8) is 3-connected, and contains an F−7 -minor but no minor in (O ∪ S ∪
N )− {F−7 }.

Proof. Clearly M8 is 3-connected, and (3, 6,8) is a fan, so we can apply Theorem
3.5. Thus �n

T (M8) is 3-connected, by statement (iii). Since M8\8 is isomorphic
to F−7 , it follows from statement (ii) that �n

T (M8) has an F−7 -minor for any
n≥ 3.

Now assume that �n
T (M8) has a minor in (O ∪ S ∪N )− {F−7 }. Therefore

either M8 or ∆T (M8) has such a minor, by Theorem 3.7. Since M8 and ∆T (M8)
are both ternary ([10, Lemma 11.5.13]), neither has a minor isomorphic to
U2,6, U4,6, P6, P=8 , U2,5, U3,5, F7, or F∗7 . As r(M8) = 3, and r(∆T (M8)) = 4,
neither contains (AG(2, 3)\e)∗. Since r(M8) = 3, and ∆T (M8) contains the
triangle {2,5, 7} and has 8 elements, neither contains P8. As ∆T (M8) has rank
4, and 8 elements, it does not contain AG(2, 3)\e. As M8 has 8 elements and
a 4-point line, it does not contain AG(2, 3)\e. Similarly, M8 has rank 3, so it
does not contain ∆3(AG(2, 3)\e). Also ∆T (M8) has two triangles, {2,5, 7} and
{1,2, 4}, so it does not contain ∆3(AG(2,3)\e) either. The only matroid left to
check is (F−7 )

∗. Obviously M8 does not contain an (F−7 )
∗-minor. Assume that

∆T (M8) does. As (F−7 )
∗ has no triangles, ∆T (M8)\2 must be isomorphic to

(F−7 )
∗. Now {3, 6,8} is a triad of this matroid, and performing a Y -∆ exchange

on this triad should produce a copy of F−7 . Instead it produces a copy of M8\2,
which contains disjoint triangles, and is therefore not isomorphic to F−7 . �
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Let M9 be the matroid represented by [I4 A] over GF(3), where A is the
following matrix.











5 6 7 8 9

1 1 0 −1 0 1
2 1 0 1 1 1
3 1 1 0 1 0
4 0 1 1 −1 0











Then M9 is represented by the geometric diagram in Figure 3.

3

2

8

4

6

1

7

5

9

FIGURE 3. Geometric representation of M9.

Lemma 4.2. Let T be the triangle {3, 5,9} of M9. If n ≥ 3 is an integer, then
�n

T (M9) is 3-connected, and contains an ∆3(AG(2,3)\e)-minor, but no minor in
N −{∆3(AG(2,3)\e)}.

Proof. It is clear that we can apply Theorem 3.5. Thus �n
T (M9) is 3-connected.

Since M9\9 is isomorphic to ∆3(AG(2,3)\e), it follows that �n
T (M9) has a

∆3(AG(2,3)\e)-minor for any n ≥ 3. If the lemma is false, then by The-
orem 3.7, either M9 or ∆T (M9) contains as a minor a ternary member of
N − {∆3(AG(2, 3)\e)}, which is to say, one of F−7 , (F−7 )

∗, P8, AG(2, 3)\e, or
(AG(2,3)\e)∗.

We start by noting that in M9/7, the sets {3,5, 8,9} and {1,2, 4,9} are 4-
point lines. Therefore any 7-element restriction of M9/7 has either a 4-point
line or two disjoint triangles. It follows that M9/7 has no minor in N . As
{2, 3,4,6} and {3, 5,7,9} are 4-point lines of M9/8, we can also see that M9/8
has no minor in N .

The triangles of M9 are {1, 2,9}, {3,5, 9}, and {3, 4,6}. It follows easily that
every 8-element restriction of M9 contains at least one triangle, so M9 does not
have P8 as minor. The rank of M9 is too low to have (AG(2, 3)\e)∗ as minor.
If M9 has AG(2, 3)\e as minor, then this minor must be obtained by a single
contraction. Since AG(2,3)\e is simple, we cannot contract an element from a
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3-point line. This leaves only elements 7 and 8, and we have already decided
that contracting either of these does not produce a minor in N .

Suppose M9 has a (F−7 )
∗-minor. To obtain this minor we must delete two

elements in such a way that no triangles remain. Since deleting 9 gives us
∆3(AG(2,3)\e) again, which has no (F−7 )

∗-minor, we must delete 3 and one
of {1, 2}. But M9\{1, 3} has disjoint triads {2,4, 6} and {5, 7,9}, whereas
M9\{2,3} has disjoint triads {1, 7,8} and {4, 5,9}. Hence neither is isomor-
phic to (F−7 )

∗.
Therefore we assume that M9 has an F−7 -minor. We must contract a single

element from M9, and then delete a single element to obtain a copy of F−7 . If
we contract either 3 or 9, then we produce two disjoint parallel pairs, which
cannot be rectified with a single deletion. If we contract one of 1, 2, 4, or 6
then we create a single parallel pair, so up to isomorphism we must delete,
respectively, 2, 1, 6, or 4 to obtain a copy of F−7 . But in these minors, the
triangle {3, 5,9} is disjoint from, respectively, the triangles {6,7, 8}, {4,6, 8},
{1, 2,7}, and {1,7, 8}. Therefore we do not contract 1, 2, 3, 4, 6, 7, 8, or 9.
If we contract 5, then up to isomorphism we must delete 3 to obtain a copy of
F−7 , but in this minor {1,4, 8} and {2,6, 7} are disjoint triangles. Thus M9 does
not contain a minor in N −{∆3(AG(2,3)\e)}.

Assume that ∆T (M9) contains a minor N ′ that is isomorphic to a ternary
member of N − {∆3(AG(2, 3)\e)}. If T * E(N ′), then an element x ∈ T
is contracted to obtain N ′. But ∆T (M9)/x ∼= M9\x , by [11, Lemma 2.13],
so N ′ is isomorphic to a minor of M9. Since this contradicts the conclu-
sion of the previous paragraph, it follows that T is a triad of N ′. There-
fore N ′ is isomorphic to (F−7 )

∗, or (AG(2, 3)\e)∗. It follows easily from [11,
Corollary 2.17] and Seymour’s Splitter Theorem, that ∇T (N ′) is a minor of
∇T (∆T (M9)) = M9. If N ′ ∼= (F−7 )

∗, then ∇T (N) ∼= F−7 , and this leads to a
contradiction. Therefore N ′ ∼= (AG(2,3)\e)∗. The definition of Y -∆ exchange
implies that∇T (N ′)∼= (∆3(AG(2,3)\e))∗. But∆3(AG(2,3)\e) is a self-dual ma-
troid, so M9 has a minor isomorphic to ∆3(AG(2, 3)\e) that contains {3, 5,9}
in its ground set. To obtain this minor, we must delete a single element, but
in each case the result has two triangles, namely {3,5, 9} and at least one of
{1,2, 9} and {3, 4,6}. This is a contradiction as AG(2, 3)\e has only one trian-
gle. �

For a third infinite class, consider the following matrix, A, over GF(8). Here
α is an element that satisfies α3 + α+ 1 = 0. Let M7 be [I3 A]. A geometric
representation of M7 can be found in Figure 4.







4 5 6 7

1 1 1 0 1
2 1 0 1 α
3 0 1 α α2









16 HALL, MAYHEW, AND VAN ZWAM

1

2 3

4 5

7

6

FIGURE 4. Geometric representation of M7.

Lemma 4.3. Let T be the triangle {1, 2,4} of M7. If n ≥ 3 is an integer, then
�n

T (M7) is 3-connected, and contains a P6-minor, but no minor in O − {P6}.

Proof. Once again, the only way the lemma can fail is if M7 or∆T (M7) contains
a minor in O − {P6}. (Note that M7\1 ∼= P6.) As M7 and ∆T (M7) have only 7
elements, any such minor must be isomorphic to U2,6, U4,6, F−7 , or (F−7 )

∗. But
M7 and ∆T (M7) are GF(8)-representable, and therefore contain no F−7 -minors
or (F−7 )

∗-minors. Obviously M7 does not contain U4,6. It does not contain U2,6,
as every element is on at least one triangle. If ∆T (M7) contains a U2,6 minor,
then we must contract an element from T to obtain this minor, as U2,6 has
no triads. But contracting an element from T produces a matroid isomorphic
to a minor of M7, implying that M7 has a U2,6-minor. Assume ∆T (M7) has a
U4,6-minor. By the previous argument, T must be a triad of this minor. Then
M7 = ∇T (∆T (M7)) has a minor isomorphic to ∇T (U4,6) ∼= P6 that contains T .
But it is easy to see that the only way to obtain a P6-minor from M7 is to delete
the element on three triangles, namely 1. As 1 ∈ T , this is a contradiction. �

5. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.1. If M ∈ Ex({U2,4, F∗7})− Ex({U2,4, F7, F∗7}) is 3-connected,
then M has an F7-minor, and Proposition 2.1 implies that M is isomorphic to F7.
Therefore {F7} is certainly superfluous. As Ex({U2,4, F7}) − Ex({U2,4, F7, F∗7})
consists of the duals of the matroids in Ex({U2,4, F∗7}) − Ex({U2,4, F7, F∗7}), it
follows that {F∗7} is also superfluous. Since Ex({F7, F∗7}) − Ex({U2,4, F7, F∗7})
contains all non-binary rank-2 uniform matroids, {U2,4} is contained in no su-
perfluous subset. Similarly, Ex({U2,4})− Ex({U2,4, F7, F∗7}) contains all binary
projective geometries. Therefore {F7, F∗7} is contained in no superfluous subset.
The result follows. �

Proof of Theorem 1.3. Theorem 2.2 implies that the only 3-connected matroid
in Ex({U2,5, U3,5, F∗7})− Ex({U2,5, U3,5, F7, F∗7}) is F7 itself. By duality, F∗7 is the
only 3-connected matroid in Ex({U2,5, U3,5, F7})− Ex({U2,5, U3,5, F7, F∗7}). Thus
{F7} and {F∗7} are superfluous subsets. On the other hand, Ex({U3,5, F7, F∗7})−
Ex({U2,5, U3,5, F7, F∗7}) contains all the non-ternary rank-2 uniform matroids, so
{U2,5} is not contained in any superfluous subset. Similarly, Ex({U2,5, F7, F∗7})−
Ex({U2,5, U3,5, F7, F∗7}) contains all the non-ternary corank-2 uniform matroids.
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Finally, Ex({U2,5, U3,5})− Ex({U2,5, U3,5, F7, F∗7}) contains all binary projective
geometries, so {F7, F∗7} is not superfluous. �

Proof of Theorem 1.6. Theorem 1.5 implies that if M is a 3-connected ma-
troid in Ex(O − {P8, P=8 }) − Ex(O ), then M is isomorphic to P=8 or a minor
of S(5,6, 12). Thus {P8, P=8 } is superfluous. As Ex(O −{U2,6})−Ex(O ) contains
all rank-2 uniform matroids with at least 6 elements, {U2,6}, and by duality
{U4,6}, is not contained in any superfluous subset. By Lemma 4.1, the set
Ex(O −{F−7 })−Ex(O ) contains all matroids of the form �n

T (M8), so {F−7 }, and
by duality {(F−7 )

∗}, is not contained in any superfluous subset. Finally, Lemma
4.3 shows that Ex(O −{P6})−Ex(O ) contains an infinite number of 3-connected
matroids, so {P6} is not contained in any superfluous subset. �

Proof of Theorem 1.8. Let M be a 3-connected matroid in Ex(S − {F7, P8})−
Ex(S ). If M has an F7-minor, then Theorem 2.2 implies that M ∼= F7. Hence
we assume that M does not have an F7-minor, so that M has a P8-minor. Corol-
lary 2.4 says that M is a minor of S(5, 6,12). Therefore {F7, P8} is superfluous.
Duality implies that the only 3-connected matroids in Ex(S −{F∗7 , P8})−Ex(S )
are F∗7 , and minors of S(5, 6,12)∗ = S(5,6, 12), so {F∗7 , P8} is superfluous. How-
ever, Ex(S − {U2,5})− Ex(S ) contains infinitely many uniform matroids, and
Ex(S − {F−7 }) − Ex(S ) contains all matroids of the form �n

T (M8). Duality
implies that none of {U2,5}, {U3,5}, {F−7 }, {(F

−
7 )
∗} is contained in a superflu-

ous subset. Finally, Ex(S − {F7, F∗7}) − Ex(S ) contains all binary projective
geometries, so {F7, F∗7} is contained in no superfluous subset. �

Proof of Theorem 1.10. Let M be a 3-connected matroid in

Ex(N −{F7, AG(2,3)\e, (AG(2, 3)\e)∗})− Ex(N ).

If M contains an F7-minor, then Theorem 2.2 implies that M ∼= F7.
We assume that M has no F7-minor. Then Theorem 2.10 says that M
is isomorphic to AG(2,3)\e, AG(2, 3), or the dual of one of these ma-
troids. Therefore {F7, AG(2,3)\e, (AG(2,3)\e)∗} is superfluous. By duality,
{F∗7 , AG(2,3)\e, (AG(2, 3)\e)∗} is superfluous. As Ex(N −{U2,5})−Ex(N ) con-
tains infinitely many uniform matroids, and Ex(N − {F−7 })− Ex(N ) contains
all matroids of the form �n

T (M8), none of {U2,5}, {U3,5}, {F−7 }, {(F
−
7 )
∗} is

contained in a superfluous subset. Moreover, Ex(N − {∆3(AG(2,3)\e)}) −
Ex(N ) contains all matroids of the form �n

T (M9), by Lemma 4.2. Therefore
{∆3(AG(2, 3)\e)} is contained in no superfluous subset. Again, we observe that
Ex(N − {F7, F∗7}) − Ex(N ) contains infinitely many binary matroids, so the
proof is complete. �

We conclude with the remark that, although our characterizations of Ex(E )
are strong when E contains all non-superfluous excluded minors in our class,
we have made no attempt to characterize the infinite families. Clearly some of
these families are highly structured. For instance, it is known that every rank-3
matroid with a U2,5-minor also has a U3,5-minor.
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Acknowledgements. Before writing our proofs we experimented to uncover
the truth. These experiments were done using the Macek software by Hliňený
[7], and occasionally we queried Mayhew and Royle’s database of small ma-
troids [9].
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