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Abstract. The Franel numbers given by fn =
∑n

k=0

(

n

k

)

3
(n = 0, 1, 2, . . . )

play important roles in both combinatorics and number theory. In this paper we

initiate the systematic investigation of fundamental congruences for the Franel
numbers. We mainly establish for any prime p > 3 the following congruences:

p−1
∑

k=0

(−1)kfk ≡

(p

3

)

(mod p2),

p−1
∑

k=0

(−1)kkfk ≡ −

2

3

(p

3

)

(mod p2),

p−1
∑

k=1

(−1)k

k
fk ≡ 0 (mod p2),

p−1
∑

k=1

(−1)k

k2
fk ≡ 0 (mod p).

1. Introduction

In 1894, Franel [F] noted that the numbers

fn =
n
∑

k=0

(

n

k

)3

(n = 0, 1, 2, . . . ) (1.1)

(cf. [Sl, A000172]) satisfy the recurrence relation:

(n+ 1)2fn+1 = (7n2 + 7n+ 2)fn + 8n2fn−1 (n = 1, 2, 3, . . . ). (1.2)

Such numbers are now called Franel numbers. For a combinatorial interpre-
tation of the Franel numbers, see Callan [C]. Recall that the Apéry numbers
given by

An =
n
∑

k=0

(

n

k

)2(
n+ k

k

)2

=
n
∑

k=0

(

n+ k

2k

)2(
2k

k

)2

(n = 0, 1, 2, . . . )
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were introduced by Apéry [A], and they can be expressed in terms of Franel
numbers as follows:

An =
n
∑

k=0

(

n

k

)(

n+ k

k

)

fk (1.3)

(see Strehl [St92]). The Franel numbers are also related to the theory of modular
forms, see, e.g., Zagier [Z].

In this paper we study congruences for the Franel numbers systematically.
As usual, for any odd prime p and integer a, (a

p
) denotes the Legendre symbol,

and qp(a) stands for the Fermat quotient (ap−1 − 1)/p if p ∤ a.
Now we state our main result.

Theorem 1.1. Let p > 3 be a prime. For any p-adic integer r we have

p−1
∑

k=0

(−1)k
(

k + r

k

)

fk ≡

p−1
∑

k=0

(

2k

k

)(

k + r

k

)2

(mod p2). (1.4)

In particular,

p−1
∑

k=0

(−1)kfk ≡
(p

3

)

(mod p2), (1.5)

p−1
∑

k=0

(−1)kkfk ≡−
2

3

(p

3

)

(mod p2), (1.6)

p−1
∑

k=0

(−1)kk2fk ≡
10

27

(p

3

)

(mod p2), (1.7)

and
p−1
∑

k=0

(

2k
k

)

fk

(−4)k
≡

p−1
∑

k=0

(

2k
k

)3

16k
(mod p2). (1.8)

We also have

p−1
∑

k=1

(−1)k

k
fk ≡0 (mod p2), (1.9)

p−1
∑

k=1

(−1)k

k2
fk ≡0 (mod p), (1.10)

p−1
∑

k=1

(−1)k

k
fk−1 ≡3qp(2) + 3p qp(2)

2 (mod p2), (1.11)
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Remark 1.1. Fix a prime p > 3. In contrast with (1.5), we conjecture that

p−1
∑

n=0

(−1)n
n
∑

k=0

(

n

k

)3

(−8)k ≡

p−1
∑

k=0

fk
8k

≡
(p

3

)

(mod p2).

As fk ≡ (−8)kfp−1−k (mod p) for all k = 0, . . . , p − 1 by [JV, Lemma 2.6],
(1.11) implies that

p−1
∑

k=1

fk
k8k

≡

p−1
∑

k=1

(−1)k

k
fp−1−k =

p−1
∑

k=1

(−1)p−k

p− k
fk−1 ≡ 3qp(2) (mod p).

Motivated by (1.5) and (1.6), we conjecture that both (
∑n−1

k=0(−1)kfk)/n
2 and

(
∑n−1

k=0(−1)kkfk)/n
2 are 3-adic integers for any positive integer n. Concerning

(1.8) the author [S11, Conj. 5.2(ii)] conjectured that

p−1
∑

k=0

(

2k
k

)3

16k
≡

{

4x2 − 2p (mod p2) if p = x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 2 (mod 3).

See also [S13] for other connections between p = x2 +3y2 and Franel numbers.
(1.10) can be extended as

p−1
∑

k=1

(−1)kr

kr−1
f
(r)
k ≡ 0 (mod p), (1.12)

where r is any positive integer and f
(r)
k :=

∑k
j=0

(

k
j

)r
. Note that f

(2)
k =

(

2k
k

)

and
∑p−1

k=1

(

2k
k

)

/k ≡ 0 (mod p2) by [ST10].

Let p > 3 be a prime. Similar to (1.5)-(1.7), we are also able to show that

p−1
∑

k=0

(−1)kk3fk ≡ −
10

81

(p

3

)

(mod p2) and

p−1
∑

k=0

(−1)kk4fk ≡ −
14

243

(p

3

)

(mod p2).

In general, for any positive integer r and prime p > max{r, 3} there should be
an odd integer ar (not dependent on p) such that

p−1
∑

k=0

(−1)kkrfk ≡
2ar
32r−1

(p

3

)

(mod p2).
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2. Proof of Theorem 1.1

We first establish an auxiliary theorem on the polynomials

fn(x) :=
n
∑

k=0

(

n

k

)2(
2k

n

)

xk =
n
∑

k=0

(

n

k

)(

k

n− k

)(

2k

k

)

xk (n = 0, 1, 2, . . . ).

Theorem 2.1. Let p be an odd prime and let r be any p-adic integer. Then

p−1
∑

l=0

(−1)l
(

l + r

l

)

fl(x) ≡

p−1
∑

k=0

(

2k

k

)

xk

(

k + r

k

)2

(mod p2). (2.1)

Proof. Observe that
p−1
∑

l=0

(−1)l
(

l + r

l

)

fl(x) =

p−1
∑

l=0

(−1)l
(

l + r

l

) l
∑

k=0

(

l

k

)(

k

l − k

)(

2k

k

)

xk

=

p−1
∑

k=0

(

2k

k

)

xk

min{2k,p−1}
∑

l=k

(−1)l
(

l

k

)(

k

l − k

)(

l + r

l

)

.

If (p− 1)/2 < k 6 p− 1 and p 6 l 6 2k, then
(

2k

k

)

=
(2k)!

(k!)2
≡ 0 (mod p) and

(

l

k

)

=
l!

k!(l − k)!
≡ 0 (mod p).

Thus
p−1
∑

l=0

(−1)l
(

l + r

l

)

fl(x) ≡

p−1
∑

k=0

(

2k

k

)

xk
2k
∑

l=k

(−1)l
(

l

k

)(

k

l − k

)(

l + r

l

)

(mod p2),

and hence it suffices to show the identity
2k
∑

l=k

(−1)l
(

l

k

)(

k

l − k

)(

x+ l

l

)

=

(

x+ k

k

)2

. (2.2)

By the well-known Chu-Vandermonde identity (cf. (3.1) of [G, p.22]),

k
∑

j=0

(

y

j

)(

z

k − j

)

=

(

y + z

k

)

.

Therefore
2k
∑

l=k

(−1)l
(

l

k

)(

k

l − k

)(

x+ l

l

)

=

2k
∑

l=k

(

l

k

)(

k

l − k

)(

−x− 1

l

)

=

(

−x− 1

k

) 2k
∑

l=k

(

−x− 1− k

l − k

)(

k

l − k

)

=

(

−x− 1

k

) k
∑

j=0

(

−x− 1− k

j

)(

k

k − j

)

=

(

−x− 1

k

)2

=

(

x+ k

k

)2

.

This proves (2.2) and hence (2.1) follows. �
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Lemma 2.1. For any nonnegative integer n, the integer fn(1) coincides with

the Franel number fn.

Proof. The identity
∑n

k=0

(

n
k

)2(2k
n

)

= fn is a known result due to Strehl
[St94]. �

Lemma 2.2. For each positive integer m we have

n−1
∑

k=0

Pm(k)

(

2k

k

)

= nm

(

2n

n

)

for all n = 1, 2, 3, . . . ,

where Pm(x) := 2(2x+ 1)(x+ 1)m−1 − xm.

Proof. The desired result follows immediately by induction on n. �

Lemma 2.3. Let m be a positive integer. For n = 0, 1, . . . , m we have

n
∑

k=0

(

x

k

)(

−x

m− k

)

=
m− n

m

(

x− 1

n

)(

−x

m− n

)

.

Remark 2.1. This is a known result due to Andersen, see, e.g., (3.14) of [G,
p. 23].

Lemma 2.4 ([S11, Lemma 2.1]). Let p be an odd prime. For any k = 1, . . . , p−
1 we have

k

(

2k

k

)(

2(p− k)

p− k

)

≡ (−1)⌊2k/p⌋−12p (mod p2).

Recall that the harmonic numbers and the second-order harmonic numbers
are given by

Hn =
∑

0<k6n

1

k
and H(2)

n =
∑

0<k6n

1

k2
(n = 0, 1, 2, . . . )

respectively. Let p > 3 be a prime. In 1862, Wolstenholme [W] proved that

Hp−1 ≡ 0 (mod p2) and H
(2)
p−1 ≡ 0 (mod p).

Note that

H
(2)
(p−1)/2 ≡

1

2

(p−1)/2
∑

k=1

(

1

k2
+

1

(p− k)2

)

=
1

2
H

(2)
p−1 ≡ 0 (mod p).

In 1938, Lehmer [L] showed that

H(p−1)/2 ≡ −2qp(2) + p qp(2)
2 (mod p2). (2.3)
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Lemma 2.5. Let p > 3 be a prime. Then

fp−1 ≡ 1 + 3p qp(2) + 3p2qp(2)
2 (mod p3). (2.4)

Proof. For any k = 1, . . . , p− 1, we obviously have

(−1)k
(

p− 1

k

)

=

k
∏

j=1

(

1−
p

j

)

≡1− pHk +
p2

2

∑

16i<j6k

2

ij
= 1− pHk +

p2

2

(

H2
k −H

(2)
k

)

(mod p3).

Thus

fp−1 − 1 =

p−1
∑

k=1

(

p− 1

k

)3

≡

p−1
∑

k=1

(−1)k
(

1− pHk +
p2

2

(

H2
k −H

(2)
k

)

)3

≡− 3p

p−1
∑

k=1

(−1)kHk +
9

2
p2

p−1
∑

k=1

(−1)kH2
k −

3

2
p2

p−1
∑

k=1

(−1)kH
(2)
k (mod p3).

Clearly

p−1
∑

k=1

(−1)kHk =

p−1
∑

k=1

k
∑

j=1

(−1)k

j
=

p−1
∑

j=1

∑p−1
k=j(−1)k

j
=

p−1
∑

j=1
2|j

1

j

=
1

2
H(p−1)/2 ≡ −qp(2) +

p

2
qp(2)

2 (mod p2) (by (2.3))

and

p−1
∑

k=1

(−1)kH
(2)
k =

p−1
∑

j=1

∑p−1
k=j(−1)k

j2
=

(p−1)/2
∑

i=1

1

(2i)2
=

H
(2)
(p−1)/2

4
≡ 0 (mod p).

Observe that

p−1
∑

k=1

(−1)kH2
k =

p−1
∑

k=1

(−1)p−kH2
p−k =

p−1
∑

k=1

(−1)k−1

(

Hp−1 −
∑

0<j<k

1

p− j

)2

≡−

p−1
∑

k=1

(−1)k
(

Hk −
1

k

)2

=−

p−1
∑

k=1

(−1)kH2
k + 2

p−1
∑

k=1

(−1)k

k
Hk −

p−1
∑

k=1

(−1)k

k2
(mod p).
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Clearly,

p−1
∑

k=1

(−1)k

k2
≡

p−1
∑

k=1

1 + (−1)k

k2
=

(p−1)/2
∑

j=1

2

(2j)2
≡ 0 (mod p),

and

p−1
∑

k=1

(−1)k

k
Hk =

p−1
∑

k=1
2|k

Hk

k
−

p−1
∑

k=1
2∤k

Hk

k
≡

qp(2)
2

2
−

(

−
qp(2)

2

2

)

(mod p)

by [S12a, Lemma 2.3]. Therefore

p−1
∑

k=1

(−1)kH2
k ≡

p−1
∑

k=1

(−1)k

k
Hk ≡ qp(2)

2 (mod p).

Combining the above, we finally obtain

fp−1 − 1 ≡− 3p
(

−qp(2) +
p

2
qp(2)

2
)

+
9

2
p2qp(2)

2 (mod p3)

and hence (2.4) holds. �

Lemma 2.6. Let p be any prime. Then
(

p− 1

k

)(

p+ k

k

)

≡ (−1)k (mod p2) for k = 0, 1, . . . , p− 1,

and

(

2k

k

) p−1
∑

n=k

(2n+ 1)

(

n+ k

2k

)

≡ p2
(−1)k

k + 1
(mod p4) for k = 0, . . . , p− 2.

Proof. Let k ∈ {0, 1, . . . , p− 1}. Clearly
(

p− 1

k

)(

p+ k

k

)

=
∏

0<j6k

(

p− j

j
·
p+ j

j

)

≡ (−1)k (mod p2).

In view of the known identity
∑m

n=0

(

n
l

)

=
(

m+1
l+1

)

(l,m = 0, 1, . . . ) (see, e.g.,

(1.52) of [G, p. 7]) which can be easily proved by induction, we have

p−1
∑

n=k

2n+ 1

2k + 1

(

n+ k

2k

)

=

p−1
∑

n=k

(

2(n+ k + 1)

2k + 1
− 1

)(

n+ k

2k

)

=2

p−1
∑

n=k

(

n+ k + 1

2k + 1

)

−

p−1
∑

n=k

(

n+ k

2k

)

=2

(

p+ k + 1

2k + 2

)

−

(

p+ k

2k + 1

)

=
p

k + 1

(

p+ k

2k + 1

)



8 ZHI-WEI SUN

and hence

(

2k

k

) p−1
∑

n=k

(2n+1)

(

n+ k

2k

)

= p
2k + 1

k + 1

(

2k

k

)(

p+ k

2k + 1

)

=
p2

k + 1

(

p− 1

k

)(

p+ k

k

)

.

Thus, if k < p− 1 then

(

2k

k

) p−1
∑

n=k

(2n+ 1)

(

n+ k

2k

)

≡
p2

k + 1
(−1)k (mod p4)

as desired. �

Proof of Theorem 1.1. In view of Lemma 2.1, (2.1) with x = 1 gives (1.4).
(2.1) with r = 0 yields the congruence

p−1
∑

k=0

(−1)kfk(x) ≡

p−1
∑

k=0

(

2k

k

)

xk (mod p2).

In the case x = 1, this gives (1.5) since
∑p−1

k=0

(

2k
k

)

≡ ( p3 ) (mod p2) by [ST11,
(1.9)].

By (2.1) with r = 0, 1,

p−1
∑

k=0

(3(k + 1)− 1)(−1)kfk(x)

≡

p−1
∑

k=0

(

2k

k

)

xk
(

3(k + 1)2 − 1
)

=

p−1
∑

k=0

P2(k)

(

2k

k

)

xk (mod p2)

where P2(x) = 2(2x + 1)(x + 1) − x2 = 3x2 + 6x + 2. Thus, with the help of
Lemmas 2.1-2.2, we have

p−1
∑

k=0

(3k + 2)(−1)kfk ≡ 0 (mod p2) (2.5)

and hence (1.6) holds in view of (1.5).
Taking r = 2 in (2.1) we get

2

p−1
∑

k=0

(k2 + 3k + 2)(−1)kfk(x) ≡

p−1
∑

k=0

(

2k

k

)

xk((k + 1)(k + 2))2 (mod p2).

In view of (2.5), this yields

2

p−1
∑

k=0

(−1)kk2fk ≡

p−1
∑

k=0

(

2k

k

)

(k2 + 3k + 2)2 (mod p2).
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Note that

27(k2 + 3k + 2)2 = 9P4(k) + 12P3(k) + 23P2(k) + 20

where Pm(x) is given by Lemma 2.2. Therefore, with the help of Lemma 2.3
and [ST11, (1.9)], we have

54

p−1
∑

k=0

(−1)kk2fk ≡

p−1
∑

k=0

(9P4(k)+12P3(k)+23P2(k)+20)

(

2k

k

)

≡ 20
(p

3

)

(mod p2)

and hence (1.7) follows.

Putting r = −1/2 in (2.1) and noting that
(

k−1/2
k

)

=
(

2k
k

)

/4k, we then obtain

p−1
∑

k=0

(

2k
k

)

fk(x)

(−4)k
≡

p−1
∑

k=0

(

2k
k

)3

16k
xk (mod p2). (2.6)

In the case x = 1 this gives (1.8).
Now we prove (1.9). Observe that

p−1
∑

l=1

(−1)l

l

l
∑

k=0

(

l

k

)(

k

l − k

)(

2k

k

)

xk =

p−1
∑

k=1

(

2k
k

)

k
xk

p−1
∑

l=k

(−1)l
(

l − 1

k − 1

)(

k

l − k

)

.

If 1 6 k 6 (p− 1)/2, then

p−1
∑

l=k

(−1)l
(

l − 1

k − 1

)(

k

l − k

)

=

2k
∑

l=k

(−1)l
(

l − 1

k − 1

)(

k

l − k

)

=
k

∑

j=0

(−1)k+j

(

k + j − 1

j

)(

k

j

)

=(−1)k
k

∑

j=0

(

−k

j

)(

k

k − j

)

= (−1)k
(

0

k

)

= 0

by the Chu-Vandermonde identity. If (p+ 1)/2 6 k 6 p− 1, then

p−1
∑

l=k

(−1)l
(

l − 1

k − 1

)(

k

l − k

)

=

p−1−k
∑

j=0

(−1)k+j

(

k + j − 1

j

)(

k

j

)

=(−1)k
p−1−k
∑

j=0

(

−k

j

)(

k

k − j

)
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and hence applying Lemma 2.3 we get

p−1
∑

l=k

(−1)l
(

l − 1

k − 1

)(

k

l − k

)

=(−1)k
k − (p− 1− k)

k

(

−k − 1

p− 1− k

)(

k

k − (p− 1− k)

)

=(−1)p−1

(

p− k

k

)2 (
p− 1

k − 1

)(

k

p− k

)

≡(−1)k−1

(

k

p− k

)

=

(

p− 2k − 1

p− k

)

≡

(

2(p− k)− 1

p− k

)

=
1

2

(

2(p− k)

p− k

)

(mod p).

Note that
(

2k
k

)

≡ 0 (mod p) for k = (p+ 1)/2, . . . , p− 1. By the above,

p−1
∑

l=1

(−1)l

l
fl(x) ≡

p−1
∑

k=(p+1)/2

(

2k
k

)

k
xk

(

2(p−k)
p−k

)

2
≡ p

p−1
∑

k=(p+1)/2

xk

k2
(mod p2) (2.7)

with the help of Lemma 2.4. Hence (1.9) follows from (2.7) in the case x = 1
since

2

p−1
∑

k=(p+1)/2

1

k2
≡

p−1
∑

k=(p+1)/2

(

1

k2
+

1

(p− k)2

)

= H
(2)
p−1 ≡ 0 (mod p).

Instead of proving (1.10) we show its extension (1.12). Clearly,

p−1
∑

k=1

(−1)kr

kr−1
=

(p−1)/2
∑

k=1

(

(−1)kr

kr−1
+

(−1)(p−k)r

(p− k)r−1

)

≡ 0 (mod p).

Thus

p−1
∑

l=1

(−1)lr

lr−1
f
(r)
l ≡

p−1
∑

l=1

(−1)lr

lr−1

l
∑

k=1

(

l

k

)r

=

p−1
∑

k=1

1

kr−1

p−1
∑

l=k

(−1)lr
(

l − 1

k − 1

)r−1(
l

k

)

=

p−1
∑

k=1

1

kr−1

p−1−k
∑

j=0

(−1)(k+j)r

(

k + j − 1

j

)r−1(
k + j

j

)

=

p−1
∑

k=1

(−1)kr

kr−1

p−1−k
∑

j=0

(

−k

j

)r−1(
−k − 1

j

)

≡

p−1
∑

k=1

(−1)kr

kr−1

p−k−1
∑

j=0

(

p− k

j

)r−1(
p− k − 1

j

)

(mod p).
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For any positive integer n, we have

f (r)
n =

n
∑

k=0

(

k

n
+

n− k

n

)(

n

k

)r

= 2

n
∑

k=0

n− k

n

(

n

k

)r

= 2

n−1
∑

k=0

(

n

k

)r−1(
n− 1

k

)

.

Therefore,

p−1
∑

l=1

(−1)lr

lr−1
f
(r)
l ≡

p−1
∑

k=1

(−1)kr

kr−1
·
f
(r)
p−k

2
=

1

2

p−1
∑

k=1

(−1)(p−k)rf
(r)
k

(p− k)r−1

≡−
1

2

p−1
∑

k=1

(−1)kr

kr−1
f
(r)
k (mod p)

and hence (1.12) follows.
Finally we show (1.11). By (1.3) and Lemma 2.6,

1

p

p−1
∑

n=0

(2n+ 1)An =
1

p

p−1
∑

n=0

(2n+ 1)
n
∑

k=0

(

n+ k

2k

)(

2k

k

)

fk

=
1

p

p−1
∑

k=0

(

2k

k

)

fk

p−1
∑

n=k

(2n+ 1)

(

n+ k

2k

)

≡
fp−1

p

(

2p− 2

p− 1

)

(2p− 1) + p

p−2
∑

k=0

(−1)kfk
k + 1

=

(

2p− 1

p− 1

)

fp−1 − p

p−1
∑

k=1

(−1)k

k
fk−1 (mod p3).

Combining this with Wolstenholme’s congruence
(

2p−1
p−1

)

≡ 1 (mod p3) (cf. [W])

and [S12b, (1.6)] we obtain

p−1
∑

k=1

(−1)kfk−1

k
≡

fp−1 − 1

p
≡ 3qp(2) + 3p qp(2)

2 (mod p2)

by Lemma 2.5. �
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