
THE STRUCTURE OF SYMMETRIC N-PLAYER GAMES WHEN
INFLUENCE AND INDEPENDENCE COLLIDE

DENALI MOLITOR, MIKE STEEL, AND AMELIA TAYLOR

Abstract. We study the mathematical properties of probabilistic processes in which the
independent actions of n players (‘causes’) can influence the outcome of each player (‘ef-
fects’). In such a setting, each pair of outcomes will generally be statistically correlated,
even if the actions of all the players provide a complete causal description of the players’
outcomes, and even if we condition on the outcome of any one player’s action. This corre-
lation always holds when n = 2, but when n = 3 there exists a highly symmetric process,
recently studied, in which each cause can influence each effect, and yet each pair of effects
is probabilistically independent (even upon conditioning on any one cause). We study such
symmetric processes in more detail, obtaining a complete classification for all n ≥ 3. Us-
ing a variety of mathematical techniques, we describe the geometry and topology of the
underlying probability space that allows independence and influence to coexist.

1. Introduction

The study of causality is a long-standing topic at the interface of statistics and the phi-
losophy of science. It is also an area where the mathematical analysis of graphical models
has led to some important recent advances (see e.g. [2, 5]). In this paper, we investigate
a particular class of symmetric causal processes which achieves two apparently conflicting
requirements: ‘independence’ and ‘influence’ which we define shortly.

In Section 2, we provide formal definitions, but give the main ideas here to facilitate the
discussion. Let E1, . . . , En be n dichotomous (two states) random variables with the same
state spaces, which we call ‘effects’ and let C1, . . . , Cn be n independent dichotomous random
variables, also with the same state spaces, which we call ‘causes’.

We say that an effect Ei is ‘influenced by’ Ci if there exists at least one assignment of
states for the remaining causes such that a change in the state of Cj changes the (conditional)
probability of at least one state of Ei [8]. ‘Independence’ refers to pairwise probabilistic
independence of the effects either absolutely, or conditional on knowing the state of any one
cause.

We explore a symmetric system because it is applicable to any scenario in which the
probability of Ei depends only on how many causes take the same value as Ci. We can
view this process as a game where we identify Ci with the action of some player i and the
outcome, Ei, for each player i then depends solely on how many of the other players chose
the same action.
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For example, suppose there are n flowering plants in an area of study. For plant i, the
cause Ci might describe whether the plant flowers early or late. The corresponding effect
Ei could denote whether or not a plant is pollinated. For example, flowering early with
many other flowers might be advantageous because such a mass flowering attracts more bees
and increases the probability the plant is pollinated. On the other hand, there may be a
limit in the number of bees, so flowering early with many other flowers may instead be a
disadvantage. Either way, the probability of an effect (pollination of plant i) depends on
the number of causes which match the cause of that particular effect (i.e. how many other
plants flower at the same time as plant i).

Recently, such processes have been studied in the philosophy of science literature as they
provide insights into the extent to which subsets of causes can render effects independent
(Theorem 5b of [8]). The authors of [8] illustrated such a process with an entertaining
application involving n people playing a tequila drinking game. In [8] they consider just the
case n = 3. In the game, the n people simultaneously and independently reveal a clenched
fist or an open hand (with equal probability), and the states of the n hands are regarded
as the n causes. The event that person i drinks tequila is Ei, for 1 ≤ i ≤ n. The rules for
determining if person Ei drinks when n = 3 are that if a player’s hand position is unique
then they drink with probability p1 = 1. For the ties (e.g. a tie of two or three), those in
the tie drink independently with probability p2 = 1

2
when there are two people in the tie

and probability p3 = 1
3

when there are three people in the tie (see Fig. 1). The probabilities
used here are quite special when we consider influence and independence in relation to each
other and the effect on the system. We study what is special and how it can generalize.
We call this extension of this game to n players the ‘extended symmetric tequila problem’
(EST) but, as noted in the previous paragraph, the relevance of such processes extends well
beyond bar drinking games.

p3               p1 
 

p3                                p3            p2                    p2 

Figure 1. A simple three-player game exhibiting independence and influence,
for various values of (p1, p2, p3); including (1, 1

2
, 1
3
) from [8], and (3−1, 3−2, 3−3)

from Section 4.1.

Our main results assume the system has some symmetry, as explained at the beginning
of Section 3 and we define three spaces in this context: Infn, Indn and ESTn = Infn ∩ Indn.
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These spaces are formally defined in Section 3 but, in short, are the set of probabilities for
the fully symmetric system which lead to influence, independence and both, respectively.

We fully analyze the case n = 3 (Section 3), we establish a useful equivalence relation on
Indn (Section 6), we show that Indn is contractible (Section 7) but not convex (Section 6),
and that ESTn is neither.

We establish a characterization (Proposition 3.1) for the system to be in Infn. We show,
via a quadratic form and its Hessian matrix, that ESTn contains infinitely many points for
any n ≥ 3. We use this structure to investigate the topology and geometry of the space
ESTn, with a main objective being to determine whether or not it is connected. We show
that ESTn is disconnected for n = 3, 4 and connected when n ≥ 5 in Theorem 7.2.

Our results involve an interplay of linear algebra, analysis, combinatorics and topology,
including some classical results in these fields, such as Sylvester’s Inertia Theorem, Alexander
Duality and Smith’s theorem on periodic maps.

2. Formal Setup

We begin by giving the formal set-up of the system of causes and effects, and proceed to
provide formal definitions of influence, and conditional independence.

Let E1, . . . , En and C1, . . . , Cn be random variables with two possible states (also called
‘dichotomous’), labeled throughout this paper as 0 and 1. We assume that the Ci are (mutu-
ally) independent, and each event Ej depends on the outcome of the events Ci; accordingly
we call the Ci causes and the Ej effects. To simplify notation, we write conditional prob-
abilities of the form P(Ei = 1|∗) more simply as P(Ei|∗) (i.e. Ei = 1 is the event that Ei
‘occurs’). The model we study makes the following assumptions:

(A1) The causes are (mutually) independent, with P(Ci = 1) = r for some 0 < r < 1.
(A2) The effects are conditionally independent, given the joint outcome of the causes.

P(Ei|
n∧
j=1

Cj = xj) =

{
pk, xi = 0, and k total causes are in state 0;

qk, xi = 1, and k total causes are in state 1.

Property (A2) states that the probability of Ei depends on the state of Ci and the number
of causes in that same state. If we assume pk = qk, then P(Ei) depends only on the number
of causes in the same state as Ci. In our examples, flowers often seem to flower with some
dependence on the number of other flowers which have also flowered and in the tequila
example, p1 = q1 = 1, p2 = q2 = 1

2
and p3 = q3 = 1

3
.

In this paper we will mostly deal with the case where pk = qk for all k, and r = 1
2

(the
fully-symmetric (or EST) model), but it is helpful to pose the problem more generally.

2.1. Influence and Independence. While the set-up we explore has the same number of
causes as effects, we give the definitions here for arbitrary numbers of causes and effects.

Definition 2.1. (Influence)

• Given a set of s causes C1, . . . , Cs of an effect E we say that E is influenced by cause
Cj if there exists at least one assignment of states for the remaining s− 1 causes, so
that some change in the state of Cj alters the probability of at least one state of E.
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• A set of s causes of t effects satisfies the influence property if each effect is influenced
by each cause.

The influence property (called ‘weak influence’ in [8]) is equivalent to the requirement
that none of the causes can be eliminated for any effect – that is, for each i, there is no
proper subset J of {1, . . . , s} for which P(Ei|

∧s
j=1Cj = xj) can be written as a function of

(xj : j ∈ J), for all (x1, . . . , xs).
We also study probabilistic independence. Recall that two eventsX and Y are independent

with respect to a third event Z if and only if P(X ∧Y |Z) = P(X|Z)P(Y |Z). In the language
of causality and graphical models we would say that Z screens off X from Y . We use the
standard probabilistic language of independence throughout the paper. The independence
condition is that any two events are independent with respect to any cause.

For example, in the tequila drinking game, any pair of effects are independent with respect
to any cause Ck as P(Ei ∧ Ej | Ck = xk) = P(Ei | Ck = xk)P(Ej | Ck = xk) for xk = 0 and
xk = 1 (so the game has the independence condition). However, the reason this example is
of interest in [8] is because any pair of effects Ei and Ej are not independent with respect
to any pair of causes (Ck1 , Ck2) and yet they are independent with respect to the set of all
three causes. This provides a contrast to what happens when n = 2. In that case, Theorem
2 of [8] shows the independence condition fails whenever

(a) the causes have non-zero joint probability for any combination of states,
(b) both E1 and E2 are independent with respect to the pair of causes.
(c) the causes each influence E1 and E2.

3. The fully symmetric (EST) model: structure of the probabilities

We call the model where pk = qk and rk = 1
2

the extended symmetric tequila (EST) setting,
as it generalizes the tequila example in [8], where n = 3.1 The EST setting is of particular
interest, as it is tractable and leads to interesting results when we couple influence with
independence.

We explore the case n = 3 further to characterize all the solutions satisfying influence and
independence, before turning to general values of n as it serves to further understand the
example in [8]; it also serves as a ‘boundary’ example for larger n, and we return to this
example throughout the text.

Firstly, notice that in the EST setting, P(Ei|Cj = x) takes the same value for each choice
of i, j and x (this probability is given formally in the proof of Proposition 3.2). In particular,
Ei and Cj are (pairwise) independent, for any pair i, j (including i = j). If influence applies
then Ei ‘depends on’ Cj (and the other causes) but this does not translate through to
probabilistic independence.

In the EST setting, the conditions (A1) and (A2), coupled with influence and indepen-
dence, can be stated more succinctly as:

(i) The causes represent independent tosses of a fair coin;

1We note that taking rk = 1
2 is the natural choice for symmetric games where it is beneficial to each player

to play a minority action (for example, if pk = qk is decreasing with k), as this provides a Nash equilibrium
strategy.
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(ii) The effects are mutually (probabilistically) independent once we specify the states of
all the causes;

(iii) The probability of Ei depends (exactly) on the number of causes that take the same
value as Ci;

(iv) Each pair of effects is (probabilistically) independent;
(v) Each cause can influence each effect.

3.1. The cases n = 2 and n = 3. In the case where n = 2, it is easy to verify that any
process that satisfies properties (i)–(iv) must have p1 = p2 and so must fail to satisfy the
influence condition (v).

The case where n = 3 is more interesting. We study independence by studying the
following equation, which follows from direct computation.

0 = P(Ei | Cj = 0)2 − P(Ei, Ej | Cj = 0)

=

(
1

16

)
(p3 + 2p2 + p1)

2 −
(

1

4

)
(p23 + p22 + 2p2p1)

=
1

16
(p1 − p3)(p1 − 4p2 + 3p3)

(1)

Notice that p1 = 1, p2 = 1
2
, p3 = 1

3
is a solution to the equation which corresponds to the

solution presented for the original tequila game in [8].
Observe that the space of probabilities leading to independence consists of two planes.

Further, any solution with p1 = p3 corresponding to the vanishing of the first term (p1− p3)
in Eqn. (1) fails to satisfy the influence property. The intersection of the two planes is p1 =
p2 = p3, where influence clearly fails. For the remaining points on the plane p1−4p2+3p3 = 0,
p1 6= p2 6= p3 which implies influence. Therefore the space of probabilities satisfying both
influence and independence for n = 3 consists of two connected pieces formed by removing
the line p1 = p2 = p3 from the plane p1 − 4p2 + 3p3 = 0.

3.2. Characterizing influence. For the fully symmetric model we can characterize when
the system satisfies the influence property.

Proposition 3.1. Assume the EST setting, so r = 1
2

and pi = qi. Then the following are
equivalent:

(i) The system satisfies the influence property.
(ii) There exists s ∈ [n] such that ps 6= pn−s+1.

Proof. ((i) ⇒ (ii)) We prove the contrapositive. Assume that ps = pn−s+1 for all 1 ≤ s ≤ n.
Then

P(Ei | Ci = 0
∧
j 6=i

Cj = xj) = pk+1 = pn−k = P(Ei | Ci = 1
∧
j 6=i

Cj = xj),

where k is the number of zeros occurring in the sequence (xj : j 6= i). Therefore Ei is not
influenced by Ci, and so the system fails to satisfy the influence property.

((ii) ⇒ (i)) Suppose that ps 6= pn−(s+1) for some s ∈ [n]. As above, since

P(Ei | Ci = 0
∧
j 6=i

Cj = xj) = pk+1 6= pn−k = P(Ei | Ci = 1
∧
j 6=i

Cj = xj),
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where k is the number of zeros occurring in the sequence (xj : j 6= i), Ei is influenced by
Ci. We must also show that Ei is influenced by Cj for each j 6= i. To this end, observe that
if ps 6= pn−(s+1) for some s ∈ [n], there must exist some t ∈ [n] such that pt 6= pt+1. Let
j 6= i ∈ [n]. Set xk = 0 for any t− 1 values of k 6= i, j, and xk = 1 for the remaining values
of k 6= i, j. Then

P(Ei | Ci = 0, Cj = 0,
∧
k 6=i,j

Ck = xk) = pt+1 6= pt = P(Ei | Ci = 0, Cj = 1,
∧
k 6=i,j

Ck = xk).

Therefore each Ei is influenced by Cj for all i, j ∈ [n] and so the system satisfies the influence
property.

�

To aid in further discussions, set Infn to be the set of points p ∈ [0, 1]n such that the
system has influence.

3.3. Characterizing independence. We continue to assume the EST setting, that is r = 1
2

and pi = qi. For the vector p = (p1, p2, . . . , pn), let

(2) ψ(p) =

(
1

2n−1

n−1∑
k=0

(
n− 1

k

)
pk+1

)2

− 1

2n−1

n−2∑
k=0

(
n− 2

k

)
(p2k+2 + pk+1pn−(k+1)).

The function ψ allows us to characterize independence as follows.

Proposition 3.2. The effects are pairwise independent if and only if ψ(p) = 0.

Proof. The symmetry in the EST model implies that for all i, j ∈ {1, . . . , n}

P(Ei) = P(Ei | Cj = x) = P(E1 | C1 = 0) =
1

2n−1

n−1∑
k=0

(
n− 1

k

)
pk+1.

This last expression comes from summing the binomial probability (
(
n−1
k

)
2−(n−1)) that k of

the causes C2, . . . , Cn are also in state 0, times the probability (pk+1) of E1 given that k
causes are also in state 0 and that C1 = 0. This gives the first term in ψ(p).

Similarly, for any i 6= j

P(Ei ∧ Ej) = P(E1 ∧ E2|C1 = 0) =
1

2n−1

n−2∑
k=0

(
n− 2

k

)
(p2k+2 + pk+1pn−(k+1))

The last equality follows from considering the two cases C2 = 0 or C2 = 1, each of which
has probability 1

2
. The binomial probabilities arise as above and in the case C2 = 0 we use

that the probability of E1 and E2 given that k of the causes are also in state zero and given
that C1 = 0 and C2 = 0 is p2k+2. Similarly when C2 = 1 the probability of E1 and E2 in this
context is pk+1pn−(k+1). �

As with influence, to aid our discussion set

Indn := {p ∈ [0, 1]n | ψ(p) = 0};
that is Indn is the set of all points so that the system has independence. Finally, we set

ESTn := Indn ∩ Infn.
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While our discussion is entirely in the “EST setting,” meaning that we assume r = 1
2

and pk =
qk, we will only use the notation ESTn when talking about subsets of the probability space
[0, 1]n consisting of points which give a system exhibiting both influence and independence.

4. Some special points in ESTn

Before we dig deep into the geometric and topological structure of ESTn, we show the
space is non-empty by explicitly establishing a few useful points in the space. We start with
Indn and move on to points that are in ESTn.

The quadratic form discussed in the next section gives us an easy way, from details in
the proof of Theorem 7.2, to show that there are infinitely many points in ESTn. However,
we found the following explicit points useful for proving that both ESTn and Indn are not
convex. These examples also illustrate the challenge of trying to write down explicit points
and are interesting because “natural” points like pi = p for all 1 ≤ i ≤ n are in Indn but not
Infn and pi = 1

i
for 1 ≤ i ≤ n (which naturally generalizes the tequila example) are in Infn

but not Indn.

4.1. Explicit points in ESTn with all coordinates non-zero. For the first set of points
set pk = θk for some 0 < θ < 1. Then pi 6= pj for all i 6= j, which implies influence. We
claim there exists at least one θ that implies independence of effects. Since we are in the
EST setting we use Eqn. (2) and substitute θk for pk to obtain:

ψ(p) =

(
1

2n−1

n−1∑
k=0

(
n− 1

k

)
θk+1

)2

− 1

2n−1

n−2∑
k=0

(
n− 2

k

)
((θk+2)2 + θk+1θn−(k+1))

=

(
1

2n−1
θ(1 + θ)n−1

)2

− 1

2n−1
(θ4(1 + θ2)n−2 + 2n−2θn)

=
1

22n−2 θ
2

(
(1 + θ)2n−2 − 2n−1θ2(1 + θ2)n−2 − 22n−3θn−2

)
.

(3)

To determine θ such that two events are independent, given a cause, we need to determine
when Eqn. (3) is equal to zero. Of course, θ = 0 is a solution but it fails to satisfy influence,
by Proposition 3.1. So we study the equation

(4) (1 + θ)2n−2 − 2n−1θ2(1 + θ2)n−2 − 22n−3θn−2 = 0.

When n = 3 Eqn. (4). factors as

(1− θ2)(1− 4θ + 3θ2) = 0,

The solution θ = 1 corresponds to no influence by Proposition 3.1, and θ = −1 is not
stochastic. That leaves 1 − 4θ + 3θ2 = (1 − 3θ)(1 − θ) = 0, showing two solutions: θ = 1
and θ = 1

3
. Therefore, for n = 3, there is one value of θ which is stochastic and all the

probabilities involved are distinct, so the causes influence the effects (i.e. the system satisfies
influence). Note that θ = 1

3
provides a different point in ESTn than that used in [8].

Set f(θ) = (1 + θ)2n−2 − 2n−1θ2(1 + θ2)n−2 − 22n−3θn−2. Notice that

f(0) = 1,

f(1) = 22n−2 − 22n−3 − 22n−3 = 0.



8 MOLITOR, STEEL, AND TAYLOR

(a) n = 4 (b) n = 9 (c) n = 11

Figure 2. Graphs of f(θ).

Further, straightforward computation of f ′ and f ′′ show that f ′(1) = 0 and f ′′(1) < 0 for
all n ≥ 3. Therefore, since f is 0 at x = 1, is positive at x = 0 and has a local maximum at
x = 1, it must be 0 for some x in (0, 1).

The few graphs of f(θ), given in Fig. 2, are instructive. We observe that for n = 4, 9 there
is only the root guaranteed by the argument above, but starting with n = 11, f has three
roots strictly between zero and one.

4.2. Explicit points in ESTn with many zero coordinates. A second way to construct
explicit elements of ESTn is to look at ‘boundary points’.

Proposition 4.1. For any n ≥ 4, there is exactly one value of pn such that the point
p = (1, 0, 0, 0, 0, . . . , 0, pn) lies in ESTn.

Proof. To simplify initial computations, we let N = 2n−1 to obtain:

ψ(p) =
1

N2

( n−1∑
k=0

(
n− 1

k

)
pk+1

)2

− 1

N

n−2∑
k=0

(
n− 2

k

)
p2k+2 −

1

N

n−2∑
k=0

(
n− 2

k

)
pk+1pn−(k+1)

=
1

N2
(1 + pn)2 − 1

N
(p2n).

Thus the quadratic formula gives

pn =
−2±

√
4− 4(1−N)

2(1−N)
=
−1±

√
N

1−N
.

Then for any N > 1, one root lies between 0 and 1, namely −1−
√
N

1−N = 1√
N−1 . The point

p = (1, 0, 0, 0, 0, . . . , 0, 1√
N−1) also satisfies influence as 1 6= 1√

2n−1−1
for any n ≥ 4 and so is

in ESTn. �

The computations in the proof above work for n = 3, but when n = 3, 1√
23−1−1

= 1. There-

fore, the point we get, using this approach is (1, 0, 1), which satisfies independence, but not

influence. Similar computations (or Remark 6.1 below) show that 1−p = (0, 1, . . . , 1,
√
N−2√
N−1)

is an element of ESTn as well.
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5. The quadratic form ψ

To understand ESTn, we use the structure of ψ given in Eqn. (2). Since ψ is a quadratic
form, the Hessian matrix, denoted Hn, seems to be most helpful in our study of the geometry
and topology of ESTn and we explore the structure of Hn in this section. However, there
are other helpful facts about ψ, like the fact that the first partial derivatives of ψ are zero
at p = (1

2
, 1
2
, . . . , 1

2
), that we will pick up over the course of the next three sections. This

turns out to be one piece of evidence that this point is special; another is that there are
lots of lines, which are mostly in ESTn, passing through this point, as we show and use in
Section 7.

To compute the Hessian matrix we begin with the first derivative. Throughout this section
we use N = 2n−1 to simplify expressions. For all i 6= 1, n,

(5)
∂ψ

∂pi
=

2

N2

(
n− 1

i− 1

)( n−1∑
k=0

(
n− 1

k

)
pk+1

)
− 2

N

[(
n− 2

i− 2

)
pi +

(
n− 2

i− 1

)
pn−i

]
.

When i = 1 simply remove the term 2
N

[
(
n−2
i−2

)
pi] and when i = n remove the term 2

N
[
(
n−2
i−1

)
pn−i].

From this the second partial derivatives are easy to compute.

(6)
∂2ψ

∂pi∂pj
=

2

N2

(
n− 1

i− 1

)(
n− 1

j − 1

)
−


2
N

(
n−2
i−2

)
i = j 6= 1, n

2
;

2
N

(
n−2
i−1

)
j = n− i, j 6= n

2
;

2
N

(
n−2
i−2

)
+ 2

N

(
n−2
i−1

)
i = j = n

2
;

0 otherwise.

Since ψ is a quadratic polynomial, the Hessian matrix is constant, as expected. Furthermore,
since ψ is a quadratic form corresponding to a symmetric matrix we label Qn, Hn = Qn +
QT
n = 2Qn. Therefore, knowing Hn gives us Qn as well.
To determine for which values of n the space ESTn is connected – our main goal – we need

several results regarding the eigenvalues and eigenspaces of the Hessian matrix Hn, which
we collect here.

Proposition 5.1. For all n ≥ 3, the Hessian matrix Hn has 0 as an eigenvalue with asso-
ciated eigenvector 1.

Proof. The vector 1 is an eigenvector for the eigenvalue 0 if and only if the row sums are 0.
The sum of the the entries in the ith row of Hn, for i 6= 1, n, using Eqn. (6), is

n∑
j=1

2

N2

(
n− 1

i− 1

)(
n− 1

j − 1

)
− 2

N

(
n− 2

i− 2

)
− 2

N

(
n− 2

i− 1

)
=

2

N

(
n− 1

i− 1

)
− 2

N

(
n− 1

i− 1

)
= 0.

This uses
∑n

j=1

(
n−1
j−1

)
= 2n−1 = N and

(
n−2
i−2

)
+
(
n−2
i−1

)
=
(
n−1
i−1

)
. The arguments for i = 1, n

are similar, with simpler computations. �

Remark 5.2. Observe from Eqn. (6) that the Hessian matrix Hn = vvT − X, where v

is the vector with ith entry equal to
√
2
N

(
n−1
i−1

)
. The matrix X has non-zero entries on the

diagonal, except for the (1, 1) location, which is 0, and there are non-zero entries on the
opposite diagonal given by i+ j = n. For example, below are the matrices X for n = 4 and
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n = 5, in both cases scaled by multiplying by N/2 = 2n−2. These two cases also illustrate
the differences in X for odd vs. even values of n. Finally, it is helpful to keep the shape of
the matrix X in mind for many of the following arguments.


0 0

(
2
0

)
0

. . . ...
0

(
2
0

)
0 0

... . . .(
2
2

)
0

(
2
1

)
0

. . .
0 0 0

(
2
2

)

 ,



0 0 0
(
3
0

)
0

. . . ...
0

(
3
0

) (
3
1

)
0 0

.... . .
0

(
3
1

) (
3
1

)
0 0

... . . .(
3
3

)
0 0

(
3
2

)
0

. . .
0 0 0 0

(
3
3

)


Lemma 5.3. The matrix X has rank n.

Proof. Observing that rows 1, n, and, when n is even, row n
2

each have only one non-zero
entry, and that rows i and n− i for all other i 6= n− 1 have two entries in the same columns,
which are i and n− i we see that it is easy to use elementary row operations to convert X
into an upper triangular matrix with all non-zero entries on the diagonal. �

Proposition 5.4. For all n ≥ 4, the eigenspace of Hn corresponding to the eigenvalue 0 has
dimension 1.

Proof. It is enough to prove that rk(Hn) = n−1. Since Hn = vvT −X, the subaddativity of
matrix rank applied to −X = Hn−vvT gives rk(X) ≤ rk(Hn)+rk(vvT ). Since rk(X) = n by
Lemma 5.3 and rk(vvT ) = 1, n− 1 ≤ rk(Hn). Since 0 is an eigenvector, n− 1 = rk(Hn). �

Remark 5.5. Since ψ(x) = xTQnx is a quadratic form, we can diagonalize Qn using an
orthogonal matrix P , that is P TQnP = D, where D is a diagonal matrix of real eigenvalues
of Qn. Since Hn = 2Qn, we could equivalently write ψ(x) = 1

2
xTHnx and diagonalize Hn

instead. Furthermore, all the results in this section apply equally to Qn, but are easier to
prove and think about in terms of Hn. However, in later arguments, we use Qn instead of
Hn to avoid having to keep track of the factor 1

2
.

We prove in Theorem 7.2 that the connectedness of ESTn depends on the number of
strictly positive and strictly negative eigenvalues of Hn. We establish here that Hn has
“enough” of each type of eigenvalue for n ≥ 6. For ease of notation, we use H = Hn in the
following discussion.

Theorem 5.6. For all n ≥ 6, H (equivalently, Qn) has at least two strictly positive and at
least two strictly negative eigenvalues.

Proof. Let A = H + εB where ε > 0 and

Bij =

{
1, if i+ j = n+ 1;

0, otherwise.
.

Let Ak denote the submatrix of A consisting of the first k rows and columns of A so that
det(Ak) is the kth leading principal minor of A. Then Ak = Hk for all 1 ≤ k ≤ bn

2
c. Therefore,
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for all 1 ≤ k ≤ bn
2
c, Ak = (vvT )k −Xk for a vector v and a matrix X, where Xk is diagonal

and its first entry is 0 (see Remark 5.2). Hence elementary row operations on Ak transform
it into an upper triangular matrix T such that T11 = A11 = 2

N2 and Tii = Xii = 2
N

(
n−2
i−2

)
6= 0

for all 2 ≤ i ≤ k. Thus det(Ak) 6= 0 for all 1 ≤ k ≤ bn
2
c.

If k ≥ bn
2
c+ 1, then det(Ak) is a polynomial in ε (for example, when k = bn

2
c+ 1, and n

is odd, ε appears in the (bn
2
c+ 1, bn

2
c+ 1) entry). Set pk(ε) = det(Ak) for bn

2
c+ 1 ≤ k ≤ n.

This is a finite set of polynomials, each with a finite number of zeros. Call that set of zeros
Z, and let

(7) εZ = min({|z| : z ∈ Z} − {0}),
which is strictly positive (since Z is finite). Then for any ε ∈ (0, εZ) we have that det(Ak) 6= 0
for all bn

2
c+1 ≤ k ≤ n. Therefore all the leading principal minors of A are non-zero (including

det(A) = det(An)).
Since all of the leading principal minors ofA are non-zero, A has a unique LU -decomposition

[6, Theorem 2.13]. Since A is symmetric, the LU -decomposition can be transformed into an
LDLT -decomposition where L is lower triangular and D is diagonal [6, Theorem 2.14 and
discussion]. Furthermore, simply writing this expression out gives the following recursive
formulae for the entries of D and L, assuming i > j:

Dj =Ajj −
j−1∑
k=1

L2
jkDk(8)

Lij =
1

Dj

(
Aij −

j−1∑
k=1

LikLjkDk

)
.(9)

We show that D1 > 0, Di < 0 for 2 ≤ i ≤ bn
2
c and Dbn

2
c+1 > 0. Therefore D has at least two

strictly negative eigenvalues and two strictly positive eigenvalues for n ≥ 6. By Sylvester’s
Theorem [10], A and D have the same index (or inertia) and hence A also has at least two
strictly negative eigenvalues and two strictly positive eigenvalues for n ≥ 6. Before digging
into computing Di we argue that H must also have at least two strictly negative eigenvalues
and two strictly positive eigenvalues for n ≥ 6.

Over the complex numbers, roots of a polynomial are continuous functions of the coef-
ficients of the polynomial [3, Theorem (1,4)] which implies that each eigenvalue of A cor-
responds to an eigenvalue of H. More formally, let pA(x) = xn + c1x

n−1 + · · · + cn denote
the characteristic polynomial of A and pH(x) = xn + d1x

n−1 + · · ·+ dn be the characteristic
polynomial of H. By construction, di = ci + εi for 1 ≤ i ≤ n and each εi approaches 0 as ε
(in the definition of A) goes to 0. Suppose that:

pA(x) = Πq
k=1(x− ai)

mi

with the distinct ai ∈ R, since A is symmetric. Then for any

0 < rk < min{|ak − ai|, i = 1, 2, · · · , k − 1, k + 1, · · · q},
there exists a δ such that if |cj − dj| < δ for all 1 ≤ j ≤ n, then pH(x) has mk roots in a
circle of radius rk centered at ak. Since H is also symmetric, its roots are also real and if ak
is positive (resp. negative), then for small enough values of rk, the corresponding roots of
pH(x) are also positive (resp. negative). Let ε (in the definition of A), be less than εZ from
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(7), and also small enough so that if A has at least two strictly positive eigenvalues and at
least two strictly negative eigenvalues for n ≥ 6, then H does also.

We finish by showing that D1 > 0, Di < 0 for 2 ≤ i ≤ bn
2
c and Dbn

2
c+1 > 0 for A.

Throughout this discussion, we assume i > j and use Eqns. (8) and (9). For all i 6= n−j+1,
Aij = Hij. Thus D1 = H11 = 2

N2 > 0. Furthermore,

Li1 =
1

D1

(
D1

(
n− 1

i− 1

)(
n− 1

0

))
=

(
n− 1

i− 1

)
, for 1 ≤ i ≤ n− 1.

Therefore
Aij = Hij = D1Li1Lj1, for all i 6= n− j, n− j + 1.

We use this fact repeatedly throughout the remaining discussion. Also note that i 6= n −
j, n− j + 1 for all 1 ≤ i, j ≤ bn

2
c. Hence,

Lij = − 1

Dj

( j−1∑
k=2

LikLjkDk

)
for all i 6= n− j, n− j + 1.

By induction on j, Lij = 0 for all 1 < i, j ≤ bn
2
c since Li2 is trivially zero. Therefore the

sum for Lij only includes expressions where the second index is strictly less than j. Hence

Di = Hii −
j−1∑
k=1

L2
jkDk = − 2

N

(
n− 2

i− 2

)
< 0, for all 1 < i ≤

⌊
n

2

⌋
.

Thus we have D1 > 0 and, for n ≥ 6, at least two strictly negative eigenvalues for D.
Finally, we need to argue that Dbn

2
c+1 > 0. While the arguments are similar, they differ

slightly for even and odd values of n and are somewhat technical so we placed them in the
appendix. When n ≥ 6 is odd, we get

Dbn
2
c+1 =

2

N

(
n− 2

bn
2
c

)(
2

bn
2
c − 1

)
+ ε > 0,

and when n ≥ 6 is even, bn
2
c = n

2
, so that

Dn
2
+1 =

2

N

(
n− 2

t− 1

)(
n− 1

n
2
(n
2
− 2)

)
+

ε2N(
n−2
t−2

) > 0.

�

6. The Geometry of ESTn

The space ESTn is a bounded (but not closed) subspace of Rn. Recall that computations
from Section 3 show that when n = 3, this space consists of a pair of two-dimensional
components, each of which is convex. Many of the ideas we develop in this section are useful
in our discussion of connectivity in Section 7.

Remark 6.1. For any n, the symmetry of the states 0 and 1 in the EST problem implies if
p ∈ ESTn then 1− p = (1− p1, 1− p2, . . . , 1− pn) ∈ ESTn. Therefore the map p 7→ 1− p
is a involution from the solution space to itself; in the case n = 3, this maps each connected
component onto the other. This involution also moves every point, since the unique fixed
point has pi = 1

2
for all i and this point fails influence.
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Furthermore, if p ∈ ESTn lies in the EST solution space then for any constant 0 < c ≤ 1,
the scaled vector c · p ∈ ESTn, since ψ is a homogeneous quadratic in the coordinates of p.

These observations are part of the following more general result.

Proposition 6.2.

(i) For any real values x and y and real vector p = (p1, . . . , pn),

ψ(xp + y1) = x2ψ(p).

(ii) In particular, if p ∈ [0, 1]n satisfies independence then xp + y1 does also, provided
this vector also lies in [0, 1]n.

Proof. Part (i) holds for y = 0, since ψ is a homogeneous quadric polynomial, so it suffices
to establish part (i) when x = 1. In that case, if we replace pi by pi + y in ψ, we see that
the coefficient of y2 is ψ(y1) = 0, and the coefficient of y0 is ψ(p). The remaining terms
correspond to the coefficient of y1. Checking that this coefficient is equal to 0 requires more
careful algebraic analysis (and the use of the combinatorial identity:

(
n−2
k−1

)
+
(
n−2
k

)
=
(
n−1
k

)
),

but the computation is straightforward. This establishes part (i). Part (ii) now follows from
Proposition 3.2. �

This proposition has a few consequences of note. First, it provides an alternative argument
for the point made in Remark 6.1. However, it proves further that if p ∈ Indn then the entire
line between p and 1 − p also lies in Indn. Note that any such line must pass through the
‘middle point’ of [0, 1]n, namely

m =

(
1

2
,
1

2
, . . . ,

1

2

)
,

and this point will play an important role in forthcoming arguments.
Furthermore, if we want to explore points near m ∈ Indn (which is helpful for the proof

of Theorem 7.2) – say, points of the form p = (1
2

+ x1, . . . ,
1
2

+ xn) where −1
2
< xi <

1
2

–
then p ∈ Indn if and only if ψ(x1, . . . , xn) = 0. Note that (x1, . . . , xn) may or may not be
in Indn since the coordinates may or may not all be non-negative. The question of which of
these points are in ESTn is a bit more subtle but, generally, they will be so if p ∈ ESTn to
start with.

Remark 6.3. Let p,q ∈ Indn. We note that Proposition 6.2 gives an equivalence relation
on Indn. We say p ∼ q if and only if p = aq+b1 for some a, b ∈ R with a 6= 0. For example,
the two points given in Section 4.2 are equivalent, as are the two solutions to EST3 shown
in Fig. 1 (use a = 9

4
and b = 1

4
). Also note that if p,q ∈ [0, 1]n and p ∼ q then p ∈ ESTn if

and only if q ∈ ESTn.

The more general expression ψ(xp + yq) for two points p and q in Rn is helpful for
investigating the convexity of Indn and ESTn, and is useful for our next result regarding the
equivalence relation ∼ which we use in our discussion of convexity in the next section.

ψ(xp + yq) =(xp + yq)TQn(xp + yq)

=x2ψ(p) + y2ψ(q) + xyCT (p,q)



14 MOLITOR, STEEL, AND TAYLOR

where the ‘cross term’ CT is given by

CT (p,q) = 2pTQnq.(10)

Proposition 6.4. For any n ≥ 3, a point x ∈ Indn has the property that for all p ∈ Indn
the line segment from p to x lies in Indn if and only if x ∼ 1.

Proof. The ‘if’ direction is readily established. If x ∼ 1 and p ∈ Indn then Eqn. (10) and
the identity Qn1 = 0, imply that CT (p,x) = 0. Thus, ψ(tp + (1− t)x) = 0 for all t ∈ [0, 1],
and thus each point on this line lies in Indn.

For the ‘only if’ part, suppose that x ∈ [0, 1]n satisfies the property described (we will
say that x is permissible). For all q ∈ [−1

3
, 1
3
]n for which ψ(q) = 0 we have m + q ∈ Indn

by Proposition 6.2(ii). Thus, since x ∈ Indn and by the special assumption concerning this
point, we have:

0 = CT (x,m + q) = CT (x,m) + CT (x,q) = 0 + CT (x,q),

which gives

(11) CT (x,q) = 0

for all q ∈ [−1
3
, 1
3
]n for which ψ(q) = 0. Let P and D be as given in Remark 5.5. If we let

(fixed) y = P Tx and (variable) z = P Tq, then for all z ∈ B = P T [−1
3
, 1
3
]n for whichzTDz = 0

(i.e. ψ(q) = 0) we have (from (11)):

(12) 2yTDz = 0.

By Proposition 5.4, we can order the diagonal entries D as d1, . . . , dn so that d1 = 0, and
dj 6= 0 for j > 1. Set ci = diyi for each i. Then for all z in B for which

(13)
n∑
i=2

diz
2
i = 0,

we must also have (from Eqn. (12)):

n∑
i=2

cizi = 0.

Now, D not only has n− 1 non-zero eigenvalues, but at least one is strictly positive and
at least one is strictly negative. This is readily verified for 3 ≤ n ≤ 5, and for n ≥ 6 it is an
immediate consequence of the stronger result stated in Proposition 5.6. Consequently, for
any j > 1, the equation

∑n
i=2 diz

2
i = 0 has a solution for z ∈ B with zj 6= 0.

Now, suppose that cj 6= 0 for some value of j. Let z be a vector in B that satisfies
Eqn. (13) and has zj 6= 0, and let z′ be the vector obtained from z by flipping the sign of
zj while leaving the zi values unchanged for all i 6= j. Then z′ still lies in B and satisfies
Eqn. (13) but

∑n
i=2 cizi and

∑n
i=2 ciz

′
i cannot both be zero, since they differ by a term of

magnitude 2|cizi| 6= 0. Thus if x is permissible then ci must be zero for all i > 1 and since
di 6= 0 for all i > 1, we must have:

y2 = y3 = . . . yn = 0.
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Thus, the set of possible values of y for which x is permissible is precisely the set

{y = (y, 0, 0, . . . , 0) : Py ∈ [0, 1]n},

and this is simply {p ·1 : p ∈ [0, 1]}, since (1, 1, . . . , 1) is the eigenvector of Hn corresponding
to 0.

�

6.1. Convexity. As previously noted, Proposition 6.2 shows that if p ∈ ESTn then 1 − p
and the line segment (1− t)p + t(1− p), for 0 ≤ t ≤ 1, between them are all in Indn. Easy
computations show that the point m = (1

2
, . . . , 1

2
) lies on the line (1 − t)p + t(1 − p) for

any point p but m fails influence and hence is not in ESTn. Therefore ESTn is not convex.
However, in this example, all the points still lie in independence space and so it might still
seem possible that Indn is convex. Using the cross term given in Eqn. (10) and the points
from Section 4, we see that there are points points in ESTn where the line between them
does not lie in Indn and hence independence space is not convex either.

If we take the point (1, 0, . . . , 0, 1√
N−1) and a point (θ, θ2, . . . , θn) where θ is a solution to

f(θ) = 0, then a bit of computation and proceeding by contradiction shows that CT (p,q) 6=
0 and every point on the line tp + (1 − t)q, except for p and q, is outside independence
space and hence outside ESTn. For example, if n = 11 and we use θ = .340336, then
CT (p,q) = 14.3457.

7. The Topology of ESTn

As noted previously, the space ESTn is a bounded (but not closed) subspace of Rn. The
discussion in Section 3 shows that when n = 3, this space consists of a pair of two-dimensional
components, each of which is contractible.

7.1. Contractible. Recall that a space is contractible if it can be continuously shrunk to a
point (i.e. if the identity map is homotopic to the constant map).

Proposition 7.1. For each n ≥ 3, Indn is contractible, but ESTn is not.

Proof. For Indn, select any point x ∈ Indn for which x ∼ 1 (e.g. x = 0 or m = (1
2
, . . . , 1

2
)).

Then we have the homotopy:

F : Indn × [0, 1]→ Indn

(p, t) 7→ (1− t)p + tx,

for which F (·, 0) is the identity map, F (·, 1) maps Indn to x, and F (p, t) ∈ Indn for all
t ∈ [0, 1] by Proposition 6.2.

An early classical topological result of Smith [7] implies that any subset S of Euclidean
space is not contractible if there is a continuous function f : S → S that has period two
(i.e. f ◦ f is the identity map) and which has no fixed point. For ESTn, the map p 7→ 1−p
is such a function, and since ESTn is a subset of Euclidean space it follows that ESTn is not
contractible. �
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7.2. Connectedness of ESTn. Since Indn is contractible, it is connected. The connected-
ness of ESTn is much more subtle and depends on the eigenvalues of the Hessian matrix Hn

of ψ. Consider any two points p,q ∈ ESTn. By Proposition 6.4, there are straight-line-paths
from p to m = (1

2
, . . . , 1

2
), and from m to q and the concatenation of these two paths lies

entirely in Indn. However, exactly one point on this concatenated path, namely m, fails to
lie in Infn. It is not enough to show there is a ‘perturbed’ path within Indn from p to q that
avoids m; we must also avoid all points not in Infn.

Theorem 7.2. If n = 3, 4, then ESTn is disconnected and consists of exactly two connected
components. If n ≥ 5 then ESTn is connected.

The case n = 3 was covered in Section 3. We give rather different proofs for the cases
n = 4, 5, 6, 7 as opposed to the case n ≥ 8. We use some computation for the small dimensions
that does not generalize easily to the larger dimensions and we use cohomology theory for
the larger dimensions that requires n ≥ 8. However, some of the argument applies to all
dimensions, so we begin with that.

All Dimensions. Let Infcn denote the complement of influence space, which is the linear
subspace of Rn of dimension dn/2e defined by:

xi − xn−i+1 = 0 for all i ∈ [n].

Since Qn is a matrix corresponding to a quadratic form there exist matrices P , a real
orthogonal matrix, and D, the diagonal matrix of real eigenvalues of Qn (Remark 5.5). Let
y = P Tx (so x = Py).

By Proposition 5.4, D has zero as an eigenvalue with geometric multiplicity one. Suppose
thatD has k strictly positive eigenvalues, and l strictly negative eigenvalues, so that k+l+1 =
n. By Theorem 5.6, and direct computation for n = 4, 5, we have that k > 0 and l > 0. We
may assume that the first eigenvalue is 0 and that the next k eigenvalues λ1, . . . , λk are all
strictly positive, while the final l eigenvalues, µ1, . . . , µl are all strictly negative. Then for
any s > 0 and t ≥ 0, the set

(14) Ss,t := {y ∈ Rn : −s < y1 < s,
k∑
i=1

λiy
2
i+1 = t and

l∑
j=1

(−µj)y2k+j+1 = t}

is a set of solutions to the equation

yTDy = 0.

Observe that Ss,t ∼= Is × Sk × Sl, where Is is an open interval of length s.
Let L be the image of Infcn under the transformation P T , that is

L = {P Tx : x ∈ Infcn}.

Since P has full rank, it follows that L is a linear subspace of Rn of dimension dn/2e. We
recall that P T is a homeomorphism since it is orthogonal and transforms ESTn = Indn∩ Infn
into ( ∪

s,t≥0
Ss,t)− L where studying the connectivity of the space is much easier. We use the

following lemma in arguments for all dimensions.
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Remark 7.3. We note that for all s, points in Ss,0 are in the vectorspace spanned by
(1, 0, . . . , 0) which is isomorphic to the vectorspace spanned by (1, 1, . . . , 1) under the trans-
formation given by P . Therefore Ss,0 ⊆ L and therefore none of the corresponding x satisfy
influence and hence are not in ESTn. We use this fact repeatedly in what follows.

Lemma 7.4. If Ss,t − L is connected for all s ≥ 0 and t > 0, then for n ≥ 3, ESTn is
connected also.

Proof. Let m =
(
1
2
, 1
2
, . . . , 1

2

)
. Let s, t > 0 be sufficiently small so that m + Px ∈ [0, 1]n for

all x ∈ Ss,t. Consider any points p and q ∈ ESTn. Recall that for any point x in ESTn,
y = P Tx satisfies

k∑
i=1

λiy
2
i+1 = M and

l∑
j=1

(−µj)y2k+j+1 = M, for some M.

Denote the value of M corresponding to p and q within this probability space as Mp and
Mq respectively. Since p,q ∈ ESTn, Remark 7.3 implies Mp,Mq > 0 and therefore we can

choose c1 = t′

Mp
and c2 = t′

Mq
for some t′ ∈ (0, t]. Then for yp = c1P

Tp and yq = c2P
Tq, we

have yp,yq ∈ Ss,t′ . Since Ss,t −L is connected for all s, t > 0, there exists a path from yp to
yq in Ss,t′−L. By the fact that P T is a homeomorphism, there also exists a continuous path
from Pyp to Pyq satisfying Indn and Infn, but not necessarily within the probability space
[0, 1]n. In order to ensure that there is a path within this probability space, we scale the path
from Pyp to Pyq by adding m =

(
1
2
, 1
2
, . . . , 1

2

)
to the entire path. For small enough t and

t′, this path from m + Pyp to m + Pyq remains in [0, 1]n and hence is in ESTn. Note that
Pyp = P (c1P

Tp). Using Proposition 6.2 and Remark 6.3, we know that the straight-line
paths from Pyp to m +Pyp and Pyq to m +Pyq, remain in [0, 1]n and are in ESTn as well.
Therefore, if Ss,t − L is connected for all t > 0, then ESTn is connected also. �

Dimension n = 4. We examine the space Ind4 ∩ Infc4 by setting Ψ(x) = 0, x1 = x4 and
x2 = x3 getting 0 = − 1

16
(x1 − x2)

2. Since − 1
16

(x1 − x2)
2 ≤ 0 for all real x1, x2, the only

solution to this equation is x1 = x2. Therefore, if x ∈ Ind4 ∩ Infc4, then x1 = x2 = x3 = x4.
Hence Ind4 ∩ Infc4 forms a one-dimensional linear space with basis vector (1, 1, 1, 1). The
result of applying P T to this space gives the one-dimensional space with basis (1, 0, 0, 0). By
Remark 7.3, P T (Ind4∩Infc4) = Ss,0 ⊆ L and hence for all t > 0 and for all s ≥ 0, L∩Ss,t = ∅.
Furthermore, by Lemma 7.4, it is enough to prove that Ss,t − L is connected for all t > 0
and hence we proceed to argue Ss,t is connected for all t > 0 and all s ≥ 0.

Fix t > 0 and s ≥ 0 arbitrary. Using Mathematica we verify that H4 has exactly one

positive eigenvalue. Then recalling Eqn. (14), for any y ∈ Ss,t, y2 = ±
√

t
λ2

. Let p ∈ Ss,t,
be any point where p2 < 0 and q ∈ Ss,t be any point where q2 > 0, then the Intermediate
Value Theorem implies that any continuous path between these two points must contain
a point y with y2 = 0. However, y2 = 0 implies y ∈ Ss,0 = L and hence there does not
exist a continuous path from p to q contained in Ss,t. Therefore EST4 consists of at least
two components. In fact each Ss,t is homeomorphic to the union of the disjoint cylinders

A1 = Is×
√

t
λ2
×S1 and A2 = Is×−

√
t
λ2
×S1 and each cylinder is connected. Observe that
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the argument used in Lemma 7.4 implies that ∪
s,t
A1 and ∪

s,t
A2 are connected and therefore

EST4 consists of two connected components.

Remark 7.5. The only role that n = 4 plays in this argument is that H4 has exactly 1
positive eigenvalue and two negative eigenvalues.

Dimensions n = 5, 6, 7. Just as in the case of n = 4 we consider the set of equations
consisting of setting Ψ(x) = 0 and the linear equations that specify Infcn. We get

0 = − 3

64
(x1 − x3)2 for n = 5,

0 =
1

28
(−7x21 − 15x22 − 28x23 − 6x1x2 + 20x1x3 + 36x2x3) for n = 6, and

0 =
1

210
(−15x21 − 60x22 − 15x23 − 60x24 − 20x1x2 + 30x1x3

+ 20x1x4 + 20x2x3 + 120x2x4 − 20x3x4) for n = 7.

For n = 5, this implies x1 = x3 and hence x1 = x3 = x5. For n = 6 solving for x1 gives

x1 =
1

7

(
− 3x2 + 10x3 ±

√
−(x2 − x3)2

)
and hence real solutions require x2 = x3. Substituting this back into the equation Ψ(x) = 0
we get that x1 = x2 and hence x1 = x2 = x3 = x4 = x5 = x6. Similarly for n = 7, solving
for x4 gives

x4 =
1

6

(
x1 + 6x2 − x3 − 2

√
2
√
−(x1 − x3)2

)
and so real solutions require x1 = x3. Making this substitution into the equation Ψ(x) = 0
we get x4 = x2, so x1 = x3 = x5 = x7 and x2 = x4 = x6.

In the case n = 6, we see that Indn ∩ Infc6 forms a one-dimensional linear space with basis
vector (1, 1, 1, 1, 1, 1). The result of applying P T to this space gives the one-dimensional
space with basis (1, 0, 0, 0, 0, 0). So just as for the case n = 4, L ⊆ Ss,0. Thus for all t > 0,
Ss,t−L = Ss,t when n = 6. Recalling Eqn. (14) and using Mathematica to get the eigenvalues
for H6, Ss,t for n = 6 is homeomorphic to Is × S1 × S2, a path connected space. Therefore
by Lemma 7.4, ∪

s≥0,t>0
Ss,t is connected and hence EST6 is as well.

In the cases n = 5 and n = 7, Indn ∩ Infcn is a two-dimensional linear space that can be
written in terms of x1 and x2. The argument for n = 5 is a simplified version of that for
n = 7, so for ease of reading, we give only the argument for n = 7 here.

Applying the matrix P T to the two dimensional linear space Ind7 ∩ Infc7 results in a two-
dimensional space with basis vectors b1 = (1, 0, 0, 0, 0, 0) and b2 = (0, b22, b23, b24, b25, b26, b27).
Recall that for t = 0, Ss,0 ⊆ L (Remark 7.3) and so fix an s ≥ 0 and t > 0. Now, from
Mathematica, H7 has exactly three positive and three negative eigenvalues. Then using
Eqn. (14) again, Ss,t is homeomorphic to Is × S2 × S2 and further for any y ∈ Ss,t,

λ2y
2
2 + λ3y

2
3 + λ4y

2
4 = t.
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Substituting cbij in for yj for j ∈ {2, 3, 4} and solving for c we get

(15) c = ±

√
t

λ2b222 + λ3b223 + λ4b224
.

Therefore we can characterize L ∩ Ss,t as the set of line segments of the form,

L∩Ss,t>0 = {y ∈ R5|y = (y1,±c · b22,±c · b23,±c · b24,±c · b25,±c · b26,±c · b27),−s < y1 < s}.

We first observe that if p is any point in Ss,t − L then for some pi with 2 ≤ i ≤ 7,
pi 6= ±cb2i, and hence pj 6= ±cb2j or pk 6= ±cb2k for i, j, k ∈ {2, 3, 4} or i, j, k ∈ {5, 6, 7}
and i 6= j 6= k. Let q be any point in Ss,t such that qi = pi, qj = pj, and qk = pk. Then
q ∈ Ss,t − L as well. Since S2 is path-connected, there is a path in Ss,t from p to q where
every point on the path has pi as the ith coordinate. Hence this entire path is in Ss,t − L.

Now let p and q be any two points in Ss,t −L. As before, for some 2 ≤ i ≤ 7, pi 6= ±cb2i.
Without loss of generallity suppose p2 6= ±cb22. We split the argument into two cases:

Case 1: Assume q5 = ±cb25, q6 = ±cb26 and q7 = ±cb27. Then q2 6= ±cb22, q3 6= ±cb23
or q4 6= ±cb24. Without loss of generality, suppose q2 6= ±cb22. Since S2 is con-
tinuous and Ss,t>0 ∩ L is discrete, there exist s5, s6, s7 such that λ5s

2
5 + λ6s

2
6 +

λ7s
2
7 = t and s5 6= ±cb25, s6 6= ±cb26 or s7 6= ±cb27. Then, by the argument

above, there is a path in Ss,t>0 − L from p to (p1, p2, p3, p4, s5, s6, s7) and from
(p1, p2, p3, p4, s5, s6, s7) to (q1, q2, q3, q4, s5, s6, s7). Since q2 6= ±cb22, there exists a
path from (q1, q2, q3, q4, s5, s6, s7) to q. These paths combine to give a path from p
to q in Ss,t>0 − L.

Case 2: Assume q5 6= ±cb25, q6 6= ±cb26 or q7 6= ±cb27. Using the argument above, there is
a path from p to (p1, p2, p3, p4, q5, q6, q7) and a path from (p1, p2, p3, p4, q5, q6, q7) to q
both of which are in Ss,t − L.

Therefore Ss,t −L is path connected for all s and all t > 0 and hence EST7 is connected by
Lemma 7.4.

Dimensions n ≥ 8. We begin this proof with one more topological lemma.

Lemma 7.6. Let M be a compact manifold and I an open interval. Let p = (x, t) ∈M × I
and q = (y, s) ∈ M × I. Then there exists φ : M → M × I such that M is homeomorphic
to im(φ) and p,q ∈ im(φ).

Proof. Let f : M → I be any continuous function such that f(x) = t and f(y) = s. Set
φ : M → M × I to be φ(v) = (v, f(v)) for any v ∈ M . By construction, φ is continuous,
since f is continuous. It is one-to-one, since it is the identity on the first coordinate of the
image. Since M is compact, M × I is Hausdorff and φ is continuous and one-to-one, φ−1 is
also continuous [9, Corollary 5.9.2]. Hence M is homeomorphic to the image of φ. �

We use Lemma 7.4 yet again and so let p,q be any two points in Ss,t − L for some fixed
s, t > 0. Recall that we have the homeomorphism Ss,t ∼= Is×Sk−1×Sl−1 where Is is an open
interval. If min{k, l} > 1, then Sk−1 × Sl−1 is a compact orientable m = (n − 3)-manifold
which we denote by Mt.
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Set A = Mt ∩ L. Thus A is a closed and bounded subspace of Rdn/2e. Therefore, A is
a proper closed subset of Mt as long as m = n − 3 > dn/2e, which is true for n ≥ 8. In
addition, A is locally contractible (it is a CW-complex).

In the following discussion, we compute all homology modules over Z. Consider the
terminal end of the long exact sequence relating homology to relative homology:

(16) · · · → H1(Mt,Mt − A)→ H0(Mt − A)→ H0(Mt)→ H0(Mt,Mt − A)→ 0.

By Alexander Duality [1, Proposition 3.46] we have:

Hi(Mt,Mt − A) ∼= Hm−i(A).

Therefore,

H1(Mt,Mt − A) ∼= Hm−1(A) and H0(Mt,Mt − A) ∼= Hm(A).

For t > 0, 0 /∈ Mt and therefore 0 /∈ A. However, 0 ∈ Rdn/2e, so A is a proper closed
subset of Rdn/2e and hence it is a proper closed subspace of a compact manifold (sphere)
of dimension dn/2e as well. Since dn/2e ≤ m − 1 for n ≥ 8, by [4, Proposition 6.5],

Hm−1(A) = Hm(A) = 0 (we are using that A is a CW-complex so C̆ech cohomology coincides
with singular cohomology). Hence the exactness of the sequence in (16) implies

H0(Mt − A) ∼= H0(Mt) ∼= Z.

Therefore, Mt − A is connected.
The connectivity of Mt − A and the fact that φ is a homeomorphism, imply Ss,t − L is

connected and hence by Lemma 7.4, ESTn is connected.

8. Concluding comments

Our proof of Theorem 7.2 treats the dimensions n < 8 different from those for n ≥ 8.
Our proof for n ≥ 8 requires larger dimensions to apply the cohomology theorems we use.
We have good evidence that our argument for n < 8 extends to all n. Such a proof requires
proving our conjecture that dim(Indn ∩ Infcn) has dimension 1 for n even or dimension 2 for
n odd.

Further exploration of the topology of ESTn may be of interest, for example classification
up to homotopy or homeomorphism.

We gave a thorough analysis of the EST set-up where r = 1
2

and pk = qk. One possible
approach to the study of the probabilities where influence and independence collide for more
general values of r, pk, and qk might be to treat r, pk, qk as variables in a polynomial ring
R = K[r, p1, . . . , pn, q1, . . . , qn] over a field K and use polynomial ring theory.

From a practical point of view, the flexibility to allow r to vary seems interesting. For
independence conditioned on a single cause, we verified computationally that for n = 3, 4, the
only value of r that allows influence and independence to collide is r = 1

2
. For independence

without conditioning we have duplicated all of the results in Section 5 (much more technical
than the arguments here), except the fact that Dbn

2
c+1 > 0 — the last step of the proof of

Theorem 5.6.
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10. Appendix

We include here some details for the computations of Dbn
2
c+1 from the end of Section 5.

As in that section, we set H = Hn to clean up the notation.
We need to argue that Dbn

2
c+1 > 0. We recall a few of the formulae found in the proof of

Theorem 5.1 since we use them all:

D1 = H11 =
2

N2
, Aij = Hij = D1Li1Lj1, for all i 6= n− j, n− j + 1,

Li1 =

(
n− 1

i− 1

)
, for 1 ≤ i ≤ n− 1, Lij = − 1

Dj

( j−1∑
k=2

LikLjkDk

)
for all i 6= n− j, n− j + 1,

Lij = 0 for all 1 < i, j ≤ bn
2
c, Di = − 2

N

(
n− 2

i− 2

)
< 0, for all 1 < i ≤ b1

2
c.

We first assume that n is odd, so that bn
2
c + 1 + bn

2
c = n. For ease of notation, let

t = bn
2
c+ 1. Then:

Ltt−1 =
1

Dt−1

(
Htt−1 −

t−2∑
k=1

LtkLt−1kDk

)
.
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However, Lt−1k = 0 for 2 ≤ k ≤ t− 2 < bn
2
c since t− 1 = bn

2
c. Using that Dt−1 = − 2

N

(
n−2
t−3

)
,

we have:
(17)

Ltt−1 = − 1
2
N

(
n−2
t−3

)( 2

N2

(
n− 1

t− 1

)(
n− 1

t− 2

)
− 2

N

(
n− 2

t− 1

)
−
(
n− 1

t− 1

)(
n− 1

t− 2

)
2

N2

)
=

(
n−2
t−1

)(
n−2
t−3

)
Therefore:

Dt =Htt −
t−1∑
k=1

L2
tkDk

=
2

N2

(
n− 1

t− 1

)2

− 2

N

(
n− 2

t− 2

)
+ ε−

(
n− 1

t− 1

)2
2

N2
− L2

tt−1Dt−1

=− 2

N

(
n− 2

t− 2

)
+ ε−

((n−2
t−1

)(
n−2
t−3

))2(
− 2

N

(
n− 2

t− 3

))
=

2

N

(
n− 2

bn
2
c

)(
2

bn
2
c − 1

)
+ ε > 0.(18)

where (18) uses the symmetry of the binomial.
Now assume n is even, so that bn

2
c = n

2
. This time, let t = n

2
. Then the entries of L we

need to be concerned with are Lt+1,t−1 and Lt+1,t. In both cases, as in Eqn. (17), the sum
has all terms zero, except for the first one. We note that ε potentially appears in Lt+1k, but
Ltk or Lt−1k are still zero and hence the full sum is zero. Therefore:

Lt+1,t =
ε

Dt

= − εN

2
(
n−2
t−2

) , and Lt+1,t−1 =

(
n−2
t

)(
n−2
t−3

) .
We are now ready to compute Dt+1.

Dt+1 =At+1,t+1 −
t∑

k=1

L2
t+1kDk

=− 2

N

(
n− 2

t− 1

)
− L2

t+1t−1Dt−1 − Lt+1tDt

=− 2

N

(
n− 2

t− 1

)
−
((n−2

t

)(
n−2
t−3

))2(
− 2

N

(
n− 2

t− 3

))
−
(
− εN

2
(
n−2
t−2

))2(
− 2

N

(
n− 2

t− 2

))
=

2

N

(
n− 2

t− 1

)(
n− 1

n
2
(n
2
− 2)

)
+

ε2N

2
(
n−2
t−2

) > 0.


