A Poset View of the Major Index

Richard Ehrenborg*and Margaret Readdy ${ }^{\dagger}$

Abstract

We introduce the Major MacMahon map from $\mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle$ to $\mathbb{Z}[q]$, and show how this map interacts with the pyramid and bipyramid operators. When the Major MacMahon map is applied to the ab-index of a simplicial poset, it yields the q-analogue of n ! times the h-polynomial of the poset. Applying the map to the Boolean algebra gives the distribution of the major index on the symmetric group, a seminal result due to MacMahon. Similarly, when applied to the cross-polytope we obtain the distribution of one of the major indexes on signed permutations due to Reiner.

2010 Mathematics Subject Classification. Primary 06A07; Secondary 05A05, 52B05.
Key words and phrases. The major index; permutations and signed permutations; the Boolean algebra and the face lattice of a cross-polytope; simplicial posets; and principal specialization.

1 Introduction

One hundred and one years ago in 1913 Major Percy Alexander MacMahon [9] (see also his collected works [11]) introduced the major index of a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ of the multiset $M=$ $\left\{1^{\alpha_{1}}, 2^{\alpha_{2}}, \ldots, k^{\alpha_{k}}\right\}$ of size n to be the sum of the elements of its descent set, that is,

$$
\operatorname{maj}(\pi)=\sum_{\pi_{i}>\pi_{i+1}} i .
$$

He showed that the distribution of this permutation statistic is given by the q-analogue of the multinomial Gaussian coefficient, that is, the following identity holds:

$$
\sum_{\pi} q^{\operatorname{maj}(\pi)}=\frac{[n]!}{\left[\alpha_{1}\right]!\cdot\left[\alpha_{2}\right]!\cdots\left[\alpha_{k}\right]!}=\left[\begin{array}{l}
n \tag{1.1}\\
\alpha
\end{array}\right],
$$

where π ranges over all permutations of the multiset M and α is the composition $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$. Here $[n]!=[n] \cdot[n-1] \cdots[1]$ denotes the q-analogue of $n!$, where $[n]=1+q+\cdots+q^{n-1}$.

Many properties of the descent set of a permutation π, that is, $\operatorname{Des}(\pi)=\left\{i: \pi_{i}>\pi_{i+1}\right\}$, have been studied by encoding the set by its ab-word; see for instance [6, 12]. For a multiset

[^0]permutation $\pi \in \mathfrak{S}_{M}$ the ab-word is given by $u(\pi)=u_{1} u_{2} \cdots u_{n-1}$, where $u_{i}=\mathbf{b}$ if $\pi_{i}>\pi_{i+1}$ and $u_{i}=\mathbf{a}$ otherwise.

Inspired by this definition, we introduce the Major MacMahon map Θ on the ring $\mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle$ of non-commutative polynomials in the variables \mathbf{a} and \mathbf{b} to the ring $\mathbb{Z}[q]$ of polynomials in the variable q, by

$$
\Theta(w)=\prod_{i: u_{i}=\mathbf{b}} q^{i},
$$

for a monomial $w=u_{1} u_{2} \cdots u_{n}$ and extend Θ to all of $\mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle$ by linearity. In short, the map Θ sends each variable a to 1 and the variables \mathbf{b} to q to the power of its position, read from left to right. A Swedish example is $\Theta(\mathbf{a b b a})=q^{5}$.

2 Chain enumeration and products of posets

Let P be a graded poset of rank $n+1$ with minimal element $\widehat{0}$, maximal element $\widehat{1}$ and rank function ρ. Let the rank difference be defined by $\rho(x, y)=\rho(y)-\rho(x)$. The flag f-vector entry f_{S}, for $S=\left\{s_{1}<s_{2}<\cdots<s_{k}\right\}$ a subset $\{1,2, \ldots, n\}$, is the number of chains $c=\left\{\widehat{0}=x_{0}<x_{1}<\right.$ $\left.x_{2}<\cdots<x_{k+1}=\widehat{1}\right\}$ such that the rank of the element x_{i} is s_{i}, that is, $\rho\left(x_{i}\right)=s_{i}$ for $1 \leq i \leq k$. The flag h-vector is defined by the invertible relation

$$
h_{S}=\sum_{T \subseteq S}(-1)^{|S-T|} \cdot f_{T}
$$

For a subset S of $\{1,2, \ldots, n\}$ define two ab-polynomials of degree n by $u_{S}=u_{1} u_{2} \cdots u_{n}$ and $v_{S}=v_{1} v_{2} \cdots v_{n}$ by

$$
u_{i}=\left\{\begin{array}{ll}
\mathbf{a} & \text { if } i \notin S, \\
\mathbf{b} & \text { if } i \in S,
\end{array} \quad \text { and } \quad v_{i}= \begin{cases}\mathbf{a}-\mathbf{b} & \text { if } i \notin S, \\
\mathbf{b} & \text { if } i \in S\end{cases}\right.
$$

The ab-index of the poset P is defined by the two equivalent expressions:

$$
\Psi(P)=\sum_{S} f_{S} \cdot v_{S}=\sum_{S} h_{S} \cdot u_{S}
$$

where the two sums range over all subsets S of $\{1,2, \ldots, n\}$. For more details on the ab-index, see [7] or the book [16, Section 3.17].

Recall that a graded poset P is Eulerian if every non-trivial interval has the same number of elements of even rank as odd rank. Equivalently, a poset is Eulerian if its Möbius function satisfies $\mu(x, y)=(-1)^{\rho(x, y)}$ for all $x \leq y$ in P. When the graded poset P is Eulerian then the ab-index $\Psi(P)$ can be written in terms of the non-commuting variables $\mathbf{c}=\mathbf{a}+\mathbf{b}$ and $\mathbf{d}=\mathbf{a b}+\mathbf{b a}$ and it is called the cd-index; see [2]. For an n-dimensional convex polytope V its face lattice $\mathscr{L}(V)$ is an Eulerian poset of rank $n+1$. In this case we write $\Psi(V)$ for the $\mathbf{a b}$-index (cd-index) instead of the cumbersome $\Psi(\mathscr{L}(V))$.

There are also two products on graded posets that we will study. The first is the Cartesian product, defined by $P \times Q=\{(x, y): x \in P, y \in Q\}$ with the order relation $(x, y) \leq_{P \times Q}(z, w)$ if
$x \leq_{P} z$ and $y \leq_{Q} w$. Note that the rank of the Cartesian product of two graded posets of ranks m and n is $m+n$. As a special case we define $\operatorname{Pyr}(P)=P \times B_{1}$, where B_{1} is the Boolean algebra of rank 1. The geometric reason for the notation Pyr is that this operation corresponds to the geometric operation of taking the pyramid of a polytope, that is, $\mathscr{L}(\operatorname{Pyr}(V))=\operatorname{Pyr}(\mathscr{L}(V))$ for a polytope V.

The second product is the dual diamond product, defined by

$$
P \diamond^{*} Q=\left(P-\left\{\widehat{1}_{P}\right\}\right) \times\left(Q-\left\{\widehat{1}_{Q}\right\}\right) \cup\{\widehat{1}\} .
$$

The rank of the product $P \diamond^{*} Q$ is the sum of the ranks of P and Q minus one. This is the dual to the diamond product \diamond defined by removing the minimal elements of the posets, taking the Cartesian product and then adjoining a new minimal element. The product \diamond behaves well with the quasi-symmetric functions of type B. (See Sections 5 and 6) However, we will dualize our presentation and keep working with the product \diamond^{*}.

Yet again, we have an important special case. We define $\operatorname{Bipyr}(P)=P \diamond^{*} B_{2}$. The geometric motivation is the connection to the bipyramid of a polytope, that is, $\mathscr{L}(\operatorname{Bipyr}(V))=\operatorname{Bipyr}(\mathscr{L}(V))$ for a polytope V.

3 Pyramids and bipyramids

Define on the ring $\mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle$ of non-commutative polynomials in the variables a and \mathbf{b} the two derivations G and D by

$$
\begin{array}{ll}
G(1)=0, & G(\mathbf{a})=\mathbf{b a}, \quad G(\mathbf{b})=\mathbf{a b} \\
D(1)=0, & D(\mathbf{a})=D(\mathbf{b})=\mathbf{a b}+\mathbf{b a}
\end{array}
$$

Extend these two derivations to all of $\mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle$ by linearity. The pyramid and the bipyramid operators are given by

$$
\operatorname{Pyr}(w)=G(w)+w \cdot \mathbf{c} \quad \text { and } \quad \operatorname{Bipyr}(w)=D(w)+\mathbf{c} \cdot w
$$

These two operators are suitably named, since for a graded poset P we have

$$
\Psi(\operatorname{Pyr}(P))=\operatorname{Pyr}(\Psi(P)) \quad \text { and } \quad \Psi(\operatorname{Bipyr}(P))=\operatorname{Bipyr}(\Psi(P)) .
$$

For further details, see [7].
Theorem 3.1. The Major MacMahon map Θ interacts with right multiplication by \mathbf{c}, the derivation G, the pyramid and the bipyramid operators as follows:

$$
\begin{align*}
\Theta(w \cdot \mathbf{c}) & =\left(1+q^{n+1}\right) \cdot \Theta(w) \tag{3.1}\\
\Theta(G(w)) & =q \cdot[n] \cdot \Theta(w), \tag{3.2}\\
\Theta(\operatorname{Pyr}(w)) & =[n+2] \cdot \Theta(w), \tag{3.3}\\
\Theta(\operatorname{Bipyr}(w)) & =[2] \cdot[n+1] \cdot \Theta(w), \tag{3.4}
\end{align*}
$$

where w is a homogeneous $\mathbf{a b - p o l y n o m i a l ~ o f ~ d e g r e e ~} n$.

Proof. It is enough to prove the four identities for an ab-monomial w of degree n. Directly we have that $\Theta(w \cdot \mathbf{a})=\Theta(w)$ and $\Theta(w \cdot \mathbf{b})=q^{n+1} \cdot \Theta(w)$. Adding these two identities yields equation (3.1).

Assume that w consists of k b's. We label the n letters of w as follows: The k b's are labeled 1 through k reading from right to left, whereas the $n-k$ a's are labeled $k+1$ through n reading left to right. As an example, the word $w=$ aababba is written as $w_{4} w_{5} w_{3} w_{6} w_{2} w_{1} w_{7}$.

Identity (3.2) is a consequence of the following claim. Applying the derivation G only to the letter w_{i} and then applying the Major MacMahon map yields $q^{i} \cdot \Theta(w)$, that is,

$$
\begin{equation*}
\Theta\left(u \cdot G\left(w_{i}\right) \cdot v\right)=q^{i} \cdot \Theta\left(u \cdot w_{i} \cdot v\right), \tag{3.5}
\end{equation*}
$$

where w is factored as $u \cdot w_{i} \cdot v$. To see this, first consider when $1 \leq i \leq k$. There are $i \mathbf{b}$'s to the right of w_{i} including w_{i} itself. They each are shifted one step to the right when replacing $w_{i}=\mathbf{b}$ with $G(\mathbf{b})=\mathbf{a b}$ and hence we gain a factor of q^{i}. The second case is when $k+1 \leq i \leq n$. Then w_{i} is an a and is replaced by ba under the derivation G. Assume that there are $j \mathbf{b}$'s to the right of w_{i}. When these $j \mathbf{b}$'s are shifted one step to the right they contribute a factor of q^{j}. We also create a new b. It has $i-k-1$ a's to the left and $k-j \mathbf{b}$'s to the left. Hence the position of the new \mathbf{b} is $(i-k-1)+(k-j)+1=i-j$ and thus its contribution is q^{i-j}. Again the factor is given by $q^{j} \cdot q^{i-j}=q^{i}$, proving the claim. Now by summing over these n cases, identity (3.2) follows. Identity (3.3) is the sum of identities (3.1) and (3.2).

To prove identity (3.4), we use a different labeling of the monomial w. This time label the $k \mathbf{b}$'s with the subscripts 0 through $k-1$, rather than 1 through k. That is, in our example $w=$ aababba is now labeled as $w_{4} w_{5} w_{2} w_{6} w_{1} w_{0} w_{7}$. We claim that for $w=u \cdot w_{i} \cdot v$ we have that

$$
\Theta\left(u \cdot D\left(w_{i}\right) \cdot v\right)=q^{i} \cdot[2] \cdot \Theta(w) .
$$

The first case is $0 \leq i \leq k-1$. Then $w_{i}=\mathbf{b}$ has $i \mathbf{b}$'s to its right. Thus when replacing \mathbf{b} with $\mathbf{b a}$ there are $i \mathbf{b}$'s that are shifted one step, giving the factor q^{i}. Similarly, when replacing w_{i} with $\mathbf{a b}$, there are $i+1 \mathbf{b}$'s that are shifted one step, giving the factor q^{i+1}. The sum of the two factors is $q^{i} \cdot[2]$. The second case is $k+1 \leq i \leq n$. It is as the second case above when replacing w_{i} with ba, yielding the factor q^{i}. When replacing w_{i} with ab there is one more shift, giving q^{i+1}. Adding these two subcases completes the proof of the claim.

It is straightforward to observe that

$$
\Theta(\mathbf{c} \cdot w)=q^{k} \cdot[2] \cdot \Theta(w)
$$

Calling this the case $i=k$, the identity (3.4) follows by summing the $n+1$ cases $0 \leq i \leq n$.
Iterating equations (3.3) and (3.4) we obtain that the Major MacMahon map of the ab-index of the n-dimensional simplex Δ_{n} and the n-dimensional cross-polytope C_{n}^{*}.

Corollary 3.2. The n-dimensional simplex Δ_{n} and the n-dimensional cross-polytope C_{n}^{*} satisfy

$$
\begin{aligned}
\Theta\left(\Psi\left(\Delta_{n}\right)\right) & =[n+1]!, \\
\Theta\left(\Psi\left(C_{n}^{*}\right)\right) & =[2]^{n} \cdot[n]!.
\end{aligned}
$$

4 Simplicial posets

A graded poset P is simplicial if all of its lower order intervals are Boolean, that is, for all elements $x<\widehat{1}$ the interval $[\widehat{0}, x]$ is isomorphic to the Boolean algebra $B_{\rho(x)}$. It is well-known that all the flag information of a simplicial poset of rank $n+1$ is contained in the f-vector $\left(f_{0}, f_{1}, \ldots, f_{n}\right)$, where $f_{0}=1$ and $f_{i}=f_{\{i\}}$ for $1 \leq i \leq n$. The h-vector, equivalently, the h-polynomial $h(P)=$ $h_{0}+h_{1} \cdot q+\cdots+h_{n} \cdot q^{n}$ of a simplicial poset P, is defined by the polynomial relation

$$
h(q)=\sum_{i=0}^{n} f_{i} \cdot q^{i} \cdot(1-q)^{n-i} .
$$

See for instance [19, Section 8.3]. The h-polynomial and the bipyramid operation interact as follows:

$$
h(\operatorname{Bipyr}(P))=(1+q) \cdot h(P) .
$$

We can now evaluate the Major MacMahon map on the ab-index of a simplicial poset.
Theorem 4.1. For a simplicial poset P of rank $n+1$ the following identity holds:

$$
\begin{equation*}
\Theta(\Psi(P))=[n]!\cdot h(P) \tag{4.1}
\end{equation*}
$$

Proof. Let $B_{n} \cup\{\hat{1}\}$ denote the Boolean algebra B_{n} with a new maximal element added. Note that $B_{n} \cup\{\widehat{1}\}$ is indeed a simplicial poset and its h-polynomial is 1 . Furthermore, equation (4.1) holds for $B_{n} \cup\{\widehat{1}\}$ since

$$
\Theta\left(\Psi\left(B_{n} \cup\{\widehat{1}\}\right)\right)=\Theta\left(\Psi\left(B_{n}\right) \cdot \mathbf{a}\right)=\Theta\left(\Psi\left(B_{n}\right)\right)=[n]!=[n]!\cdot h\left(B_{n} \cup\{\hat{1}\}\right) .
$$

Also, if (4.1) holds for a poset P then it also holds for $\operatorname{Bipyr}(P)$, since we have

$$
\Theta(\Psi(\operatorname{Bipyr}(P)))=[2] \cdot[n+1] \cdot \Theta(\Psi(P))=[2] \cdot[n+1] \cdot[n]!\cdot h(P)=[n+1]!\cdot h(\operatorname{Bipyr}(P)) .
$$

Observe that both sides of (4.1) are linear in the h-polynomial. Hence to prove it for any simplicial poset P it is enough to prove it for a basis of the span of all simplicial posets of rank $n+1$. Such a basis is given by the posets

$$
\mathcal{B}_{n}=\left\{\operatorname{Bipyr}^{i}\left(B_{n-i} \cup\{\widehat{1}\}\right)\right\}_{0 \leq i \leq n} .
$$

This is a basis since the polynomials $h\left(\operatorname{Bipyr}^{i}\left(B_{n-i} \cup\{\hat{1}\}\right)\right)=(1+q)^{i}$, for $0 \leq i \leq n$, are a basis for polynomials in the variable q of degree at most n.

Finally, since every element in the basis is built up by iterating bipyramids of the posets $B_{n} \cup\{\widehat{1}\}$, the theorem holds for all simplicial posets.

Observe that the poset $\operatorname{Bipyr}^{i}\left(B_{n-i} \cup\{\hat{1}\}\right)$ is the face lattice of the simplicial complex consisting of the 2^{i} facets of the n-dimensional cross-polytope in the cone $x_{1}, \ldots, x_{n-i} \geq 0$.

For an Eulerian simplicial poset P, the h-vector is symmetric, that is, $h_{i}=h_{n-i}$. In other words, the h-polynomial is palindromic. Stanley [15] introduced the simplicial shelling components, that
is, the cd-polynomials $\check{\Phi}_{n, i}$ such that the cd-index of an Eulerian simplicial poset P of rank $n+1$ is given by

$$
\begin{equation*}
\Psi(P)=\sum_{i=0}^{n} h_{i} \cdot \check{\Phi}_{n, i} . \tag{4.2}
\end{equation*}
$$

These cd-polynomials satisfy the recursion $\check{\Phi}_{n, 0}=\Psi\left(B_{n}\right) \cdot \mathbf{c}$ and $\check{\Phi}_{n, i}=G\left(\check{\Phi}_{n-1, i-1}\right)$; see [7, Section 8]. The Major MacMahon map of these polynomials is described by the next result.

Corollary 4.2. The Major MacMahon map of the simplicial shelling components is given by

$$
\Theta\left(\check{\Phi}_{n, i}\right)=q^{i} \cdot[2(n-i)] \cdot[n-1]!.
$$

Proof. When $i=0$ we have $\Theta\left(\check{\Phi}_{n, 0}\right)=\Theta\left(\Psi\left(B_{n}\right) \cdot \mathbf{c}\right)=\left(1+q^{n}\right) \cdot[n]!=[2 n] \cdot[n-1]$!. Also when $i \geq 1$ we obtain $\Theta\left(\check{\Phi}_{n, i}\right)=\Theta\left(G\left(\check{\Phi}_{n-1, i-1}\right)\right)=q \cdot[n-1] \cdot \Theta\left(\check{\Phi}_{n-1, i-1}\right)=q^{i} \cdot[2(n-i)] \cdot[n-1]!$.

We end with the following observation.
Theorem 4.3. For an Eulerian poset P of rank $n+1$, the polynomial $[2]^{[n / 2\rceil}$ divides $\Theta(\Psi(P))$.
Proof. It is enough to show this result for a cd-monomial w of degree n. A \mathbf{c} in an odd position i of w yields a factor of $1+q^{i}$. A \mathbf{d} that covers an odd position i of w yields either $q^{i-1}+q^{i}$ or $q^{i}+q^{i+1}$. Each of these polynomials contributes a factor of $1+q$. The result follows since there are $\lceil n / 2\rceil$ odd positions.

5 The Cartesian product of posets

We now study how the Major MacMahon map behaves under the Cartesian product. Recall that for a graded poset P the ab-index $\Psi(P)$ encodes the flag f-vector information of the poset P. There is another encoding of this information as a quasi-symmetric function. For further information about quasi-symmetric functions, see [17, Section 7.19].

A composition α of n is a list of positive integers $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ such that $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}=n$. Let $\operatorname{Comp}(n)$ denote the set of compositions of n. There are three natural bijections between abmonomials u of degree n, subsets S of the set $\{1,2, \ldots, n\}$ and compositions of $n+1$. Given a composition $\alpha \in \mathrm{Comp}_{n+1}$ we have the subset S_{α}, the ab-monomial u_{α} and the ab-polynomial v_{α} defined by

$$
\begin{aligned}
& S_{\alpha}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \ldots, \alpha_{1}+\cdots+\alpha_{k-1}\right\} \\
& u_{\alpha}=\mathbf{a}^{\alpha_{1}-1} \cdot \mathbf{b} \cdot \mathbf{a}^{\alpha_{2}-1} \cdot \mathbf{b} \cdots \mathbf{b} \cdot \mathbf{a}^{\alpha_{k}-1} \\
& v_{\alpha}=(\mathbf{a}-\mathbf{b})^{\alpha_{1}-1} \cdot \mathbf{b} \cdot(\mathbf{a}-\mathbf{b})^{\alpha_{2}-1} \cdot \mathbf{b} \cdots \mathbf{b} \cdot(\mathbf{a}-\mathbf{b})^{\alpha_{k}-1}
\end{aligned}
$$

For S a subset of $\{1,2, \ldots, n\}$ let $\operatorname{co}(S)$ denote associated composition.
The monomial quasi-symmetric function M_{α} is defined as the sum

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} t_{i_{1}}^{\alpha_{1}} \cdot t_{i_{2}}^{\alpha_{2}} \cdots t_{i_{k}}^{\alpha_{k}}
$$

A second basis is given by the fundamental quasi-symmetric function L_{α} defined as

$$
L_{\alpha}=\sum_{S_{\alpha} \subseteq T \subseteq\{1,2, \ldots, n\}} M_{\mathrm{co}(T)} .
$$

Following [8] define an injective linear map $\gamma: \mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle \longrightarrow$ QSym by

$$
\gamma\left(v_{\alpha}\right)=M_{\alpha},
$$

for a composition α of $n \geq 1$. The image of γ is all quasi-symmetric functions without constant term. Moreover, the image of the ab-monomial u_{α} under γ is the fundamental quasi-symmetric function L_{α}, that is,

$$
\gamma\left(u_{\alpha}\right)=L_{\alpha} .
$$

Another way to encode the flag vectors of a poset P is by the quasi-symmetric function of the poset. It is quickly defined as $F(P)=\gamma(\Psi(P))$. A more poset-oriented definition is the following limit of sums over multichains:

$$
F(P)=\lim _{k \longrightarrow \infty} \sum_{\widehat{0}=x_{0} \leq x_{1} \leq \cdots \leq x_{k}=\widehat{1}} t_{1}^{\rho\left(x_{0}, x_{1}\right)} \cdot t_{2}^{\rho\left(x_{1}, x_{2}\right)} \cdots t_{k}^{\rho\left(x_{k-1}, x_{k}\right)} .
$$

For more on the quasi-symmetric function of a poset, see [5].
The stable principal specialization of a quasi-symmetric function is the substitution $\mathrm{ps}(f)=$ $f\left(1, q, q^{2}, \ldots\right)$. Note that this is a homeomorphism, that is, $\mathrm{ps}(f \cdot g)=\mathrm{ps}(f) \cdot \operatorname{ps}(g)$.

For a composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ let α^{*} denote the reverse composition, that is, $\alpha^{*}=$ $\left(\alpha_{k}, \ldots, \alpha_{2}, \alpha_{1}\right)$. This involution extends to an anti-automorphism on QSym by $M_{\alpha}^{*} \longmapsto M_{\alpha^{*}}$. Define ps^{*} by the relation $\mathrm{ps}^{*}(f)=\mathrm{ps}\left(f^{*}\right)$. Informally speaking, this corresponds to the substitution $\operatorname{ps}^{*}(f)=f\left(\ldots, q^{2}, q, 1\right)$.

Theorem 5.1. For a homogeneous ab-polynomial w of degree $n-1$ the Major MacMahon map is given by

$$
\begin{equation*}
\Theta(w)=(1-q)^{n} \cdot[n]!\cdot \mathrm{ps}^{*}(\gamma(w)) . \tag{5.1}
\end{equation*}
$$

For a poset P of rank n this identity is

$$
\begin{equation*}
\Theta(\Psi(P))=(1-q)^{n} \cdot[n]!\cdot \operatorname{ps}^{*}(F(P)) . \tag{5.2}
\end{equation*}
$$

Proof. It is enough to prove identity (5.1) for an ab-monomial w of degree $n-1$. Let α be the composition of n corresponding to the reverse monomial w^{*}. Furthermore, let $e(\alpha)$ be the sum $\sum_{i \in S_{\alpha}}(n-i)$. Note that $e(\alpha)$ is in fact the sum $\sum_{i \in S} i$, where S is the subset associated with the ab-monomial w. That is, we have $q^{e(\alpha)}=\Theta(w)$. Equation (5.1) follows from Lemma 7.19.10 in [17]. By applying the first identity to $\Psi(P)$, we obtain identity (5.2).

Since the quasi-symmetric function is multiplicative under the Cartesian product, we have the next result.

Theorem 5.2. For two posets P and Q of ranks m, respectively n, the following identity holds:

$$
\Theta(\Psi(P \times Q))=\left[\begin{array}{c}
m+n \tag{5.3}\\
n
\end{array}\right] \cdot \Theta(\Psi(P)) \cdot \Theta(\Psi(Q)) .
$$

Proof. The proof is a direct verification as follows:

$$
\begin{aligned}
\Theta(\Psi(P \times Q)) & =(1-q)^{m+n} \cdot[m+n]!\cdot \operatorname{ps}\left(F\left(P^{*} \times Q^{*}\right)\right) \\
& =\left[\begin{array}{c}
m+n \\
m
\end{array}\right] \cdot(1-q)^{m+n} \cdot[m]!\cdot[n]!\cdot \operatorname{ps}\left(F\left(P^{*}\right)\right) \cdot \operatorname{ps}\left(F\left(Q^{*}\right)\right) \\
& =\left[\begin{array}{c}
m+n \\
m
\end{array}\right] \cdot \Theta(\Psi(P)) \cdot \Theta(\Psi(Q)) .
\end{aligned}
$$

6 The dual diamond product

Define the quasi-symmetric function of type B^{*} of a graded poset P to be the expression

$$
\left.F_{B^{*}}(P)=\sum_{\widehat{0} \leq x<\widehat{1}} F(\widehat{0}, x]\right) \cdot s^{\rho(x, \widehat{1})-1} .
$$

This is an element of the algebra $\operatorname{QSym} \otimes \mathbb{Z}[s]$ which we view as the quasi-symmetric functions of type B^{*}. We view $\operatorname{QSym}_{B^{*}}$ as a subalgebra of $\mathbb{Z}\left[t_{1}, t_{2}, \ldots ; s\right]$, which is quasi-symmetric in the variables t_{1}, t_{2}, \ldots. For instance, a basis for $\operatorname{QSym}_{B^{*}}$ is given by $M_{\alpha} \cdot s^{i}$ where α ranges over all compositions and i over all non-negative integers. Similar to the map $\gamma: \mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle \longrightarrow$ QSym, we define $\gamma_{B^{*}}: \mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle \longrightarrow \operatorname{QSym}_{B^{*}}$ by

$$
\gamma_{B^{*}}\left((\mathbf{a}-\mathbf{b})^{\alpha_{1}-1} \cdot \mathbf{b} \cdot(\mathbf{a}-\mathbf{b})^{\alpha_{2}-1} \cdot \mathbf{b} \cdots \mathbf{b} \cdot(\mathbf{a}-\mathbf{b})^{\alpha_{k}-1} \cdot \mathbf{b} \cdot(\mathbf{a}-\mathbf{b})^{p}\right)=M_{\alpha} \cdot s^{p},
$$

where α is the composition $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$. Similar to the relation $\gamma(\Psi(P))=F(P)$, we have

$$
\gamma_{B^{*}}(\Psi(P))=F_{B^{*}}(P)
$$

Furthermore, the type B^{*} quasi-symmetric function $F_{B^{*}}$ is multiplicative respect to the product \diamond^{*}, that is, $F_{B^{*}}\left(P \diamond^{*} Q\right)=F_{B^{*}}(P) \cdot F_{B^{*}}(Q)$; see [8, Theorem 13.3].

Let f be a homogeneous quasi-symmetric function such that $f \cdot s^{j}$ is a quasi-symmetric function of type B^{*}. Define the stable principal specialization of the quasi-symmetric function $f \cdot s^{j}$ of type B^{*} to be $\operatorname{ps}_{B^{*}}\left(f \cdot s^{j}\right)=q^{\operatorname{deg}(f)} \cdot \mathrm{ps}^{*}(f)$, where $\mathrm{ps}^{*}(f)=\mathrm{ps}\left(f^{*}\right)$. This is the substitution $s=1, t_{k}=q$, $t_{k-1}=q^{2}, \ldots$ as k tends to infinity, since $f\left(\ldots, q^{3}, q^{2}, q\right)=q^{\operatorname{deg}(f)} \cdot f\left(\ldots, q^{2}, q, 1\right)$. Especially, for a graded poset P we have

$$
\begin{equation*}
\left.\mathrm{ps}_{B^{*}}\left(F_{B^{*}}(P)\right)=\sum_{\widehat{0} \leq x<\widehat{1}} q^{\rho(x)} \cdot \mathrm{ps}^{*}(F(\widehat{0}, x])\right) . \tag{6.1}
\end{equation*}
$$

Theorem 6.1. For a graded poset P of rank $n+1$ the relationship between the Major MacMahon map and the stable principal specialization of type B^{*} is given by

$$
\begin{equation*}
\Theta(\Psi(P))=(1-q)^{n} \cdot[n]!\cdot \operatorname{ps}_{B^{*}}\left(F_{B^{*}}\left(P^{*}\right)\right) \tag{6.2}
\end{equation*}
$$

Especially, for a homogeneous ab-polynomial w of degree n the Major MacMahon map is given by

$$
\begin{equation*}
\Theta(w)=(1-q)^{n} \cdot[n]!\cdot \operatorname{ps}_{B^{*}}\left(\gamma_{B^{*}}\left(w^{*}\right)\right) \tag{6.3}
\end{equation*}
$$

Proof. For the poset P we have

$$
\begin{aligned}
\operatorname{ps}^{*}(F(P)) & =\lim _{k \rightarrow \infty} \sum_{\widehat{0}=x_{0} \leq x_{1} \leq \cdots \leq x_{k}=\widehat{1}}\left(q^{k-1}\right)^{\rho\left(x_{0}, x_{1}\right)} \cdots\left(q^{2}\right)^{\rho\left(x_{k-3}, x_{k-2}\right)} \cdot q^{\rho\left(x_{k-2}, x_{k-1}\right)} \cdot 1^{\rho\left(x_{k-1}, x_{k}\right)} \\
& =\lim _{k \rightarrow \infty} \sum_{\widehat{0}=x_{0} \leq x_{1} \leq \cdots \leq x_{k}=\widehat{1}} q^{\rho\left(x_{k-1}\right)} \cdot\left(q^{k-2}\right)^{\rho\left(x_{0}, x_{1}\right)} \cdots q^{\rho\left(x_{k-3}, x_{k-2}\right)} \cdot 1^{\rho\left(x_{k-2}, x_{k-1}\right)} \\
& =\sum_{\widehat{0} \leq x \leq \hat{1}} q^{\rho(x)} \cdot \operatorname{ps}^{*}(F([\widehat{0}, x])) \\
& =\sum_{\widehat{0} \leq x<\widehat{1}} q^{\rho(x)} \cdot \operatorname{ps}^{*}(F([\widehat{0}, x]))+q^{n+1} \cdot \operatorname{ps}^{*}(F(P)) .
\end{aligned}
$$

Rearranging terms yields

$$
\begin{aligned}
\sum_{\widehat{0} \leq x<\widehat{1}} q^{\rho(x)} \cdot \operatorname{ps}^{*}(F([\widehat{0}, x])) & =\left(1-q^{n+1}\right) \cdot \operatorname{ps}^{*}(F(P)) \\
& =\left(1-q^{n+1}\right) \cdot \operatorname{ps}\left(F\left(P^{*}\right)\right) \\
& =\left(1-q^{n+1}\right) \cdot \frac{\Theta(\Psi(P))}{(1-q)^{n+1} \cdot[n+1]!} \\
& =\frac{\Theta(\Psi(P))}{(1-q)^{n} \cdot[n]!}
\end{aligned}
$$

Combining the last identity with (6.1) yields the desired result.
Theorem 6.2. For two graded posets P and Q of ranks $m+1$, respectively $n+1$, the identity holds:

$$
\Theta\left(\Psi\left(P \diamond^{*} Q\right)\right)=\left[\begin{array}{c}
m+n \tag{6.4}\\
n
\end{array}\right] \cdot \Theta(\Psi(P)) \cdot \Theta(\Psi(Q))
$$

Proof. The proof is a direct verification as follows:

$$
\begin{aligned}
\Theta\left(\Psi\left(P \diamond^{*} Q\right)\right) & =(1-q)^{m+n} \cdot[m+n]!\cdot \operatorname{ps}_{B^{*}}\left(F_{B^{*}}\left(P^{*} \diamond^{*} Q^{*}\right)\right) \\
& =\left[\begin{array}{c}
m+n \\
m
\end{array}\right] \cdot(1-q)^{m+n} \cdot[m]!\cdot[n]!\cdot \operatorname{ps}_{B^{*}}\left(F_{B^{*}}\left(P^{*}\right)\right) \cdot \operatorname{ps}_{B^{*}}\left(F_{B^{*}}\left(Q^{*}\right)\right) \\
& =\left[\begin{array}{c}
m+n \\
m
\end{array}\right] \cdot \Theta(\Psi(P)) \cdot \Theta(\Psi(Q))
\end{aligned}
$$

7 Permutations

One connection between permutations and posets is via the concept of R-labelings. For more details, see [16, Section 3.14]. Let $\mathcal{E}(P)$ be the set of all cover relations of P, that is, $\mathcal{E}(P)=$ $\left\{(x, y) \in P^{2}: x \prec y\right\}$. A graded poset P has an R-labeling if there is a map $\lambda: \mathcal{E}(P) \longrightarrow \Lambda$, where Λ is a linearly ordered set, such that in every interval $[x, y]$ in P there is a unique maximal chain $c=\left\{x=x_{0} \prec x_{1} \prec \cdots \prec x_{k}=y\right\}$ such that $\lambda\left(x_{0}, x_{1}\right) \leq \lambda\left(x_{1}, x_{2}\right) \leq \cdots \cdots \leq \lambda\left(x_{k-1}, x_{k}\right)$.

For a maximal chain c in the poset P of rank n, let $\lambda(c)$ denote the list $\left(\lambda\left(x_{0}, x_{1}\right), \lambda\left(x_{1}, x_{2}\right)\right.$, $\left.\ldots, \lambda\left(x_{k-1}, x_{k}\right)\right)$. The Jordan-Hölder set of P, denoted by $J H(P)$, is the set of all the lists $\lambda(c)$ where c ranges over all maximal chains of P. The descent set of a list of labels $\lambda(c)$ is the set of positions where there are descents in the list. Similarly, we define the descent word of $\lambda(c)$ to be $u_{\lambda(c)}=u_{1} u_{2} \cdots u_{n-1}$ where $u_{i}=\mathbf{b}$ if $\lambda\left(x_{i-1}, x_{i}\right)>\lambda\left(x_{i}, x_{i+1}\right)$ and $u_{i}=\mathbf{a}$ otherwise.

The bridge between posets and permutations is given by the next result.
Theorem 7.1. For an R-labeling λ of a graded poset P we have that

$$
\Psi(P)=\sum_{c} u_{\lambda(c)},
$$

where the sum is over the Jordan-Hölder set $J H(P)$.

This is a reformulation of a result of Björner and Stanley [3, Theorem 2.7]. The reformulation can be found in [6, Lemma 3.1].

As a corollary we obtain MacMahon's classical result on the major index on a multiset; see 9$]$. For a composition α of n let \mathfrak{S}_{α} denote all the permutations of the multiset $\left\{1^{\alpha_{1}}, 2^{\alpha_{2}}, \ldots, k^{\alpha_{k}}\right\}$.

Corollary 7.2 (MacMahon). For a composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ of n the following identity holds:

$$
\sum_{\pi \in \mathfrak{S}_{\alpha}} q^{\operatorname{maj}(\pi)}=\frac{[n]!}{\left[\alpha_{1}\right]!\cdot\left[\alpha_{2}\right]!\cdots\left[\alpha_{k}\right]!}
$$

Proof. Let P_{i} denote the chain of $\operatorname{rank} \alpha_{i}$ for $i=1, \ldots, k$. Furthermore, label all the cover relations in P_{i} with i. Let L denote the distributive lattice $P_{1} \times P_{2} \times \cdots \times P_{k}$. Furthermore, let L inherit an R-labeling from its factors, that is, if $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \prec\left(y_{1}, y_{2}, \ldots, y_{k}\right)=y$ let the label $\lambda(x, y)$ be the unique coordinate i such that $x_{i} \prec y_{i}$. Observe that the Jordan-Hölder set of L is \mathfrak{S}_{α}. Direct computation yields $\Psi\left(P_{i}\right)=\mathbf{a}^{\alpha_{i}-1}$, so the Major MacMahon map is $\Theta\left(\Psi\left(P_{i}\right)\right)=1$. Iterating Theorem 5.2 evaluates the Major MacMahon map on L :

$$
\sum_{\pi \in \mathfrak{S}_{\alpha}} q^{\operatorname{maj}(\pi)}=\Theta\left(\sum_{\pi \in \mathfrak{S}_{\alpha}} u(\pi)\right)=\Theta(\Psi(L))=\left[\begin{array}{l}
n \\
\alpha
\end{array}\right] .
$$

For a vector $\mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ of positive integers let an \mathbf{r}-signed permutation be a list $\sigma=$ $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n+1}\right)=\left(\left(j_{1}, \pi_{1}\right),\left(j_{2}, \pi_{2}\right), \ldots,\left(j_{n}, \pi_{n}\right), 0\right)$ such that $\pi_{1} \pi_{2} \cdots \pi_{n}$ is a permutation in the symmetric group \mathfrak{S}_{n} and the sign j_{i} is from the set $S_{\pi_{i}}=\{-1\} \cup\left\{2, \ldots, r_{\pi_{i}}\right\}$. On the set of labels

Figure 1: The poset P_{i} with its R-labeling used in the proof of Corollary 7.3,
$\Lambda=\left\{(j, i): 1 \leq i \leq n, j \in S_{i}\right\} \cup\{0\}$ we use the lexicographic order with the extra condition that $0<(j, i)$ if and only if $0<j$. Denote the set of \mathbf{r}-signed permutations by $\mathfrak{S}_{n}^{\mathbf{r}}$. The descent set of an \mathbf{r}-signed permutation σ is the set $\operatorname{Des}(\sigma)=\left\{i: \sigma_{i}>\sigma_{i+1}\right\}$ and the major index is defined as $\operatorname{maj}(\sigma)=\sum_{i \in \operatorname{Des}(\sigma)} i$. Similar to Corollary [7.2, we have the following result.
Corollary 7.3. The distribution of the major index for \mathbf{r}-signed permutations is given by

$$
\sum_{\sigma \in \mathfrak{S}_{n}^{r}} q^{\operatorname{maj}(\sigma)}=[n]!\cdot \prod_{i=1}^{n}\left(1+\left(r_{i}-1\right) \cdot q\right) .
$$

Proof. The proof is the same as Corollary 7.2 except we replace the chains with the posets P_{i} in Figure 1. Note that $\Psi\left(P_{i}\right)=\mathbf{a}+\left(r_{i}-1\right) \cdot \mathbf{b}$. Let L be the lattice $L=P_{1} \diamond^{*} P_{2} \diamond^{*} \cdots \diamond^{*} P_{n}$. Let L inherit the labels of the cover relations from its factors with the extra condition that the cover relations attached to the maximal element receive the label 0 . This is an R-labeling and the labels of the maximal chains are exactly the \mathbf{r}-signed permutations.

For signed permutations, that is, $\mathbf{r}=(2,2, \ldots, 2)$, the above result follows from an identity due to Reiner [13, Equation (5)].

8 Concluding remarks

We suggest the following q, t-extension of the Major MacMahon map Θ. Define $\Theta^{q, t}: \mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle \longrightarrow$ $\mathbb{Z}[q, t]$ by

$$
\begin{equation*}
\Theta^{q, t}(w)=\Theta(w) \cdot w_{\mathbf{a}=1, \mathbf{b}=t}=\prod_{i: u_{i}=\mathbf{b}} q^{i} \cdot t, \tag{8.1}
\end{equation*}
$$

for an ab-monomial $w=u_{1} u_{2} \cdots u_{n}$. Applying this map to the ab-index of the Boolean algebra yields one of the four types of q-Eulerian polynomials:

$$
\Theta^{q, t}\left(\Psi\left(B_{n}\right)\right)=A_{n}^{\operatorname{maj}, \operatorname{des}}(q, t)=\sum_{\pi \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\pi)} t^{\mathrm{des}(\pi)}
$$

The following identity has been attributed to Carlitz [4], but goes back to MacMahon [10, Volume 2, Chapter IV, §462],

$$
\begin{equation*}
\sum_{k \geq 0}[k+1]^{n} \cdot t^{k}=\frac{A_{n}^{\mathrm{maj}, \mathrm{des}}(q, t)}{\prod_{j=0}^{n}\left(1-t \cdot q^{j}\right)} \tag{8.2}
\end{equation*}
$$

For recent work on the q-Eulerian polynomials, see Shareshian and Wachs [14]. It is natural to ask if there is a poset approach to identity (8.2).

In the second half of Section 7, before Corollary 7.3, we offer one way to define a major index for signed permutations. However, there are several different ways to extend the major index to signed permutations. Two of our favorites are [1, 18].

Acknowledgements

The authors thank the referee for his careful comments. The first author was partially supported by National Security Agency grant H98230-13-1-0280. This work was partially supported by a grant from the Simons Foundation (\#206001 to Margaret Readdy).

References

[1] R. Adin and Y. Roichman, The flag major index and group actions on polynomial rings, European J. Combin. 22 (2001), 431-446.
[2] M. Bayer and A. Klapper, A new index for polytopes, Discrete Comput. Geom. 6 (1991), 33-47.
[3] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Am. Math. Soc. 260 (1980), 159-183.
[4] L. Carlitz, A combinatorial property of q-Eulerian numbers, Amer. Math. Monthly $8 \mathbf{8}$ (1975), 51-54.
[5] R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119 (1996), 1-25.
[6] R. Ehrenborg and M. Readdy, The r-cubical lattice and a generalization of the cd-index, European J. Combin. 17 (1996), 709-725.
[7] R. Ehrenborg and M. Readdy, Coproducts and the cd-index, J. Algebraic Combin. 8 (1998), 273-299.
[8] R. Ehrenborg and M. Readdy, The Tchebyshev transforms of the first and second kind, Ann. Comb. 14 (2010), 211-244.
[9] P. A. MacMahon, The Indices of Permutations and the Derivation Therefrom of Functions of a Single Variable Associated with the Permutations of any Assemblage of Objects, Amer. J. Math. 35 (1913), 281-322.
[10] P. A. MacMahon, Combinatory Analysis, Chelsea Publishing Co., New York, 1960.
[11] P. A. MacMahon, Collected papers. Vol. I. Combinatorics. Mathematicians of Our Time. Edited and with a preface by George E. Andrews. With an introduction by Gian-Carlo Rota., MIT Press, Cambridge, Mass.-London, 1978.
[12] M. Readdy, Extremal problems for the Möbius function in the face lattice of the n octahedron, Discrete Math., Special issue on Algebraic Combinatorics 139 (1995), 361-380.
[13] V. Reiner, Signed permutation statistics, European J. Combin. 14 (1993), 553-567.
[14] J. Shareshian and M. Wachs, q-Eulerian polynomials: excedance number and major index, Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 33-45.
[15] R. P. Stanley, Flag f-vectors and the $c d$-index, Math. Z. 216 (1994), 483-499.
[16] R. P. Stanley, Enumerative Combinatorics, Vol 1, second edition, Cambridge University Press, Cambridge, 2012.
[17] R. P. Stanley, Enumerative Combinatorics, Vol 2, Cambridge University Press, Cambridge, 1999.
[18] E. Steingrímsson, Permutation statistics of indexed permutations, European J. Combin. 15 (1994), 187-205.
[19] G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, Berlin, 1994.

[^0]: *Corresponding author: Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA, jrge@ms.uky.edu, phone +1 (859) 257-4090, fax +1 (859) 257-4078.
 ${ }^{\dagger}$ Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA, readdy@ms.uky.edu.

