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GENERALIZED PASCAL TRIANGLE FOR BINOMIAL

COEFFICIENTS OF WORDS

JULIEN LEROY, MICHEL RIGO, AND MANON STIPULANTI

Abstract. We introduce a generalization of Pascal triangle based on bino-
mial coefficients of finite words. These coefficients count the number of times
a word appears as a subsequence of another finite word. Similarly to the
Sierpiński gasket that can be built as the limit set, for the Hausdorff distance,
of a convergent sequence of normalized compact blocks extracted from Pascal
triangle modulo 2, we describe and study the first properties of the subset of
[0, 1]× [0, 1] associated with this extended Pascal triangle modulo a prime p.

1. Introduction

Pascal triangle and the corresponding Sierpiński gasket are well studied objects
(see, for instance, [15] for a survey). They exhibit self-similarity features and have
connections with dynamical systems, cellular automata, number theoretic questions
and automatic sequences [1, 2, 5, 10, 13]. In this paper, we will consider a variation
of these two objects by extending binomial coefficients to the free monoid A∗ where
A is a finite alphabet.

Let us start with basic combinatorial definitions. A finite word is simply a finite
sequence of letters belonging to a finite set called alphabet. In combinatorics on
words, one can introduce the binomial coefficient

(

u
v

)

of two finite words u and
v which is the number of times v occurs as a subsequence of u (meaning as a
“scattered” subword). As an example, we consider two particular words over {0, 1}
and

(

101001

101

)

= 6.

Indeed, if we index the letters of the first word u1u2 · · ·u6 = 101001, we have

u1u2u3 = u1u2u6 = u1u4u6 = u1u5u6 = u3u4u6 = u3u5u6 = 101.

Observe that this concept is a natural generalization of the binomial coefficients of
integers. For a single letter alphabet {a}, we have

(1)

(

am

an

)

=

(

m

n

)

, ∀m,n ∈ N

where am denotes the concatenation of m letters a. For more on these binomial
coefficients, see for instance [11, Chap. 6].

In this paper, we are interested in Pascal triangle obtained when considering
binomial coefficients of words. To define such a triangular array, we will consider
all the words over a finite alphabet and we order them by genealogical ordering
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(i.e., first by length, then by the classical lexicographic ordering for words of the
same length assuming 0 < 1). For the sake of simplicity, we will mostly discuss the
case of a 2-letter alphabet {0, 1} and to relate these words to base-2 expansions of
integers, we will assume without loss of generality that the non-empty words start
with 1. (If leading zeroes were allowed, then different words could represent the
same integer.)

Definition 1. We let rep2(n) denote the greedy base-2 expansion of n ∈ N>0

starting with 1 where the notation N>0 stands for the set of all positive integers.
We set rep2(0) to be the empty word denoted by ε. Let L = {ε} ∪ 1{0, 1}∗ be the
set of base-2 expansions of the integers. We let Ln denote the set of words of length
at most n belonging to L, i.e.,

Ln = ({ε} ∪ 1{0, 1}∗) ∩ {0, 1}≤n.

Note that #Ln = 2n for all n ≥ 0.

The first few values in the generalized Pascal triangle T that we will deal with are
given in Table 1. These values correspond to the words ε, 1, 10, 11, 100, 101, 110, 111.

ε 1 10 11 100 101 110 111
ε 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0

10 1 1 1 0 0 0 0 0
11 1 2 0 1 0 0 0 0
100 1 1 2 0 1 0 0 0
101 1 2 1 1 0 1 0 0
110 1 2 2 1 0 0 1 0
111 1 3 0 3 0 0 0 1

Table 1. The first few values in the generalized Pascal triangle.

Considering the intersection of the lattice N
2 with the region [0, 2j]× [0, 2j], the

first 2j rows and columns of the usual Pascal triangle (
(

m
n

)

mod 2)m,n<2j provide

a coloring of this lattice. If we normalize this region by a homothety of ratio 1/2j,
we get a sequence in [0, 1] × [0, 1] converging, for the Hausdorff distance, to the
Sierpiński gasket when j tends to infinity [10].

It is therefore natural to ask whether a similar phenomenon occurs in our ex-
tended framework. The generalized Pascal triangle limited to words in Ln has 2n

rows and columns. After coloring and normalization (see Figure 1 for a picture of
the cases when n = 3, 4 and Figure 10 in the appendix for n = 9), can we expect
the convergence to an analogue of the Sierpiński gasket and could we describe the
possible limit object? We answer positively and the limit object is described as
the topological closure of a union of segments that are described through a simple
combinatorial property (see Figure 9 in the appendix). For the sake of simplicity,
we will mostly describe the coloring modulo 2. At the end of the paper, we shortly
discuss colorings modulo a prime number p (see Figure 11 for coefficients congruent
to 2 modulo 3).

In our construction, we take at each step exactly 2n words and a scaling (or
normalization) factor of 1/2n. For instance, the authors in [3] discussed which
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sequences can be used as scaling factors for objects related to automatic sequences.
In particular, the classical Pascal triangle modulo pd is shown to be p-automatic
in [1], where p is prime and the scaling sequence has to be of the form (pkn+j)n≥0

with j = 0, . . . , p− 1.

Remark 2. We can make some extra comments about our study. Note that, from (1)
the usual Pascal triangle is a “sub-array” of our extended triangle T by considering
only words of the form 1m and 1n. In Table 1, the elements of the usual triangle
are written in bold. We can also observe that the second column of this extended
triangle T is exactly (s2(n))n≥0 where s2 denotes the sum-of-digits function for
base-2 expansions of integers [6]. Thus, considering these values modulo 2, the
second column is exactly the well-known Thue–Morse word, see [4] for connections
between binomial coefficients of words and p-adic topology. Moreover, each column
of T is related to the language (i.e., the set of finite words)

L(v, r, p) :=

{

u ∈ A∗ |
(

u

v

)

≡ r mod p

}

, v ∈ A∗, r ∈ {0, . . . , p− 1}.

In formal language theory [7], a language is a p-group language if and only if it is
a Boolean combination of languages L(vi, rj , p). For an extension of a theorem of
Mahler in p-adic analysis to functions defined on the free monoid A∗, see [14].

This paper is organized as follows. In Section 2, we collect some results on
binomial coefficients. In Section 3, we define a subset Tn of [0, 2n]×[0, 2n] associated
with the parity of the first 2n binomial coefficients. We prove that the subset of
non-zero binomial coefficients for words in Ln contains exactly 3n elements. The set
Tn is then normalized by a factor 1/2n to give the sequence (Un)n≥0 of subsets in
[0, 1]× [0, 1]. In the second part of Section 3, we independently build a compact set
A0 from a countable union of segments and an important combinatorial condition
(⋆). This condition is at the heart of our discussions (and will be generalized in
Section 5 to take into account the situation modulo p). From A0 and using two
maps h and c, the first one being a homothety, we define a sequence of compact
sets naturally converging to a limit compact set L. In Section 4, similarly to the
construction of the Sierpiński gasket, we prove that (Un)n≥0 tends to L. For the
sake of simplicity, we have limited our presentation to the case of odd binomial
coefficients. In Section 5, we briefly sketch the main changes when considering
congruences modulo a prime p. In the last section, we present some pictures of
the studied sets. The limit set L convinces us that these extended Pascal triangles
contain many interesting combinatorial and dynamical questions to consider.

2. Basic results on binomial coefficients

In the first part of this section, we collect well-known facts on binomial coeffi-
cients of words or integers. For a proof of the first two lemmas, we refer the reader
to [11, Chap. 6].

Lemma 3. Let u, v be two words of L and let a, b be two letters in {0, 1}. Then
we have

(

ua

vb

)

=

(

u

vb

)

+ δa,b

(

u

v

)

where δa,b is equal to 1 if a = b, 0 otherwise.
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Lemma 4. Let s, t, w be three words of L. Then we have
(

sw

t

)

=
∑

u,v∈L
uv=t

(

s

u

)(

w

v

)

.

The main observation of the next lemma is that if
(

u
vb

)

≡ 1 mod 2 for some

b ∈ {0, 1}, then there exists a ∈ {0, 1} such that
(

ua
vb

)

≡ 1 mod 2.

Lemma 5. Let u, v be words of L. The following tables display the values modulo
2 of the binomial coefficient

(

ua
vb

)

for all a, b ∈ {0, 1} when the values modulo 2 of

the binomial coefficients
(

u
v

)

and
(

u
vb

)

with b ∈ {0, 1} are known.

v v0 v1
u 0 0 0
u0 0 0
u1 0 0

v v0 v1
u 0 0 1
u0 0 1
u1 0 1

v v0 v1
u 0 1 0
u0 1 0
u1 1 0

v v0 v1
u 0 1 1
u0 1 1
u1 1 1

v v0 v1
u 1 0 0
u0 1 0
u1 0 1

v v0 v1
u 1 0 1
u0 1 1
u1 0 0

v v0 v1
u 1 1 0
u0 0 0
u1 1 1

v v0 v1
u 1 1 1
u0 0 1
u1 1 0

Proof. It directly follows from Lemma 3. �

Let us also recall Lucas’ theorem relating classical binomial coefficients modulo
a prime p with base-p expansions. See [12, p. 230] or [9]. Note that in the following
statement, if the base-p expansions of m and n are not of the same length, then we
pad the shorter with leading zeroes.

Theorem 6. Let m and n be two non-negative integers and let p be a prime. If

m = mkp
k +mk−1p

k−1 + · · ·+m1p+m0

and

n = nkp
k + nk−1p

k−1 + · · ·+ n1p+ n0

with mi, ni ∈ {0, . . . , p− 1} for all i, then the following congruence relation holds

(

m

n

)

≡
k
∏

i=0

(

mi

ni

)

mod p,

using the following convention:
(

m
n

)

= 0 if m < n.

3. Graphical representation

We let wi denote the ith word of the language L in the genealogical order. Note
that wi = rep2(i) for i ≥ 0. Considering the intersection of the lattice N

2 with
the region [0, 2n]× [0, 2n], the first 2n rows and columns of the generalized Pascal
triangle

((

wi

wj

)

mod 2

)

0≤i,j<2n

provide a coloring of this lattice leading to the definition of a sequence (Tn)n≥0 of
subsets of R2. If we normalize these Tn by a homothety of ratio 1/2n, we will define
a sequence (Un)n≥0 in [0, 1]× [0, 1].
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3.1. Definition of the sequences (Tn)n∈N and (Un)n∈N.

Definition 7. Let Q := [0, 1]× [0, 1]. Consider the sequence (Tn)n≥0 of sets in R
2

defined for all n ≥ 0 by

Tn :=
⋃

{

(val2(v), val2(u)) +Q | u, v ∈ Ln,

(

u

v

)

≡ 1 mod 2

}

⊂ [0, 2n]× [0, 2n].

Each Tn is a finite union of unit squares and is thus compact.

Remark 8. In Table 2, we count the number of unit squares in Tn for the first
few values of n and we compare this quantity to the number of positive binomial
coefficients of pairs of words in Ln. Observe that, as shown in the next lemma, the

1 2 3 4 5 6 7 8 9 10
# unit squares 3 8 22 62 166 458 1258 3510 9838 27598

# positive coefficients 3 9 27 81 243 729 2187 6561 19683 59049

Table 2. Number of unit squares in Tn, n = 1, . . . , 10.

number of positive binomial coefficients of pairs of words in Ln is equal to 3n.

Lemma 9. For all n ∈ N, the number of pairs of words in Ln having a positive
binomial coefficient is equal to 3n.

Proof. For any positive integer n, let Vn denote the set of pairs of integers (x, y)

such that 2n−1 ≤ y < 2n, 0 ≤ x ≤ y and
(rep2(y)
rep2(x)

)

> 0. Thus, #Vn corresponds

to the number of pairs of words in (Ln \ Ln−1) × Ln having a positive binomial
coefficient. We prove that #Vn = 2 · 3n−1 by induction on n ≥ 1. This proves the
result since the number of positive binomial coefficients of pairs of words in L0 is
1 = 30.

The result is clear for n = 1. Let us suppose it is true up to n and let us prove
it for n+ 1. For all integers n ≥ 1 and m ≥ 0, consider the set

Xm,n :=











∅, if m > n;

Vn ∩ ({0} × N), if m = 0;

Vn ∩ ([2m−1, 2m)× N), otherwise.

We thus have the following partition

Vn =

n
⋃

m=0

Xm,n,

with, for m ≥ 1,

Xm,n =

{

(val2(v), val2(u)) | u ∈ Ln \ Ln−1, v ∈ Lm \ Lm−1,

(

u

v

)

> 0

}

.

Let us define the functions f1, f2, f3 and f4 by

f1(x, y) = (2x, 2y),

f2(x, y) = (2x+ 1, 2y + 1),

f3(x, y) = (x, 2y),

f4(x, y) = (x, 2y + 1).
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It follows from Lemma 3 that for all n ≥ 1 and m ≥ 0,

Xm+1,n+1 = f1(Xm,n) ∪ f2(Xm,n) ∪ f3(Xm+1,n) ∪ f4(Xm+1,n).

We thus get

Vn+1 =
n+1
⋃

m=0

Xm,n+1

=
(

{0} × ([2n, 2n+1) ∩ N)
)

∪
(

n
⋃

m=0

f1(Xm,n) ∪ f2(Xm,n) ∪ f3(Xm+1,n) ∪ f4(Xm+1,n)

)

= f1(Vn) ∪ f2(Vn) ∪ f3(Vn) ∪ f4(Vn).

Observe that f1(Vn)∩f2(Vn) = ∅ and f3(Vn)∩f4(Vn) = ∅. Furthermore, if (x, y) ∈
Vn, then exactly one of the two elements f3(x, y) and f4(x, y) belongs to f1(Vn) ∪
f2(Vn). Indeed, if (x, y) belongs to Vn, then so does (⌊x/2⌋, y) and exactly one of
the following two equalities is satisfied (depending on the parity of x):

f3(x, y) = f1(⌊x/2⌋, y) or f4(x, y) = f2(⌊x/2⌋, y).
We thus get #Vn+1 = 3#Vn = 2 · 3n, which concludes the proof. �

Definition 10. We will be interested in the sequence (Un)n≥0 of compact sets
defined for all n ≥ 0 by

Un :=
Tn

2n
⊂ [0, 1]× [0, 1].

In Figure 1, we have depicted the sets U3 and U4. The set U9 is depicted in
Figure 10 given in the appendix.

Figure 1. The sets U3 and U4.

If u = u1 · · ·un is a finite word over {0, 1}, we make use of the following conven-
tion: 0.u has to be understood as the rational number

∑n
i=1 ui/2

i.

Remark 11. Each pair (u, v) of words of length at most n with an odd binomial
coefficient gives rise to a square region in Un. More precisely, we have the following
situation. Let n ≥ 0 and u, v ∈ Ln such that

(

u
v

)

≡ 1 mod 2. We have

(0.0n−|v|v, 0.0n−|u|u) +Q/2n ⊂ Un
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as depicted in Figure 2.

u

v
0

1

10.0n−|v|v

0.0n−|u|u

Figure 2. Visualization of a square region in Un.

We will consider the space (H(R2), dh) of the non-empty compact subsets of R2

equipped with the Hausdorff metric dh induced by the Euclidean distance d on R
2.

It is well known that (H(R2), dh) is complete [8]. We let B(x, ǫ) denote the open
ball of radius ǫ centered at x ∈ R

2 and we denote the ǫ-fattening of a subset S ⊂ R
2

by

[S]ǫ :=
⋃

x∈S

B(x, ǫ).

Our aim is to prove that the sequence (Un)n≥0 of compact subsets of [0, 1]× [0, 1]
is converging and we provide an elementary description of the limit set L.
3.2. The (⋆) condition. Some pairs of words (u, v) ∈ L × L have the property
that not only

(

u
v

)

≡ 1 mod 2 but also
(

uw
vw

)

≡ 1 mod 2 for all words w. Such a
property creates a particular pattern occurring in Un for all n ≥ |u|.
Definition 12. Let (u, v) ∈ L × L. We say that (u, v) satisfies the (⋆) condition,
if (u, v) 6= (ε, ε),

(

u

v

)

≡ 1 mod 2,

(

u

v0

)

= 0 and

(

u

v1

)

= 0.

In particular, this condition implies that |v| ≤ |u|.
Note that if (u, v) satisfies (⋆), then we clearly have

(2)

(

u

vw

)

= 0

for all non-empty words w.

Example 13. Some pairs (u, v) satisfying (⋆):

u 1 101 1001 1101 1110
v 1 11 11 111 10

.
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Lemma 14. If (u, v) ∈ L × L satisfies (⋆), then both (u0, v0) and (u1, v1) satisfy
the (⋆) condition.

Proof. The fact that
(

u0
v0

)

≡ 1 mod 2 directly follows from Lemma 3. If
(

u0
v00

)

>

0 or
(

u0
v01

)

> 0 then, v0 must appears as a subsequence of u contradicting the
assumption. �

Remark 15. Let (u, v) satisfying (⋆) such that |v| ≤ |u| = ℓ. From Remark 11,
we know that (0.0ℓ−|v|v, 0.u) +Q/2ℓ ⊂ Uℓ. As a consequence of Lemma 14, (u, v),
(u0, v0) and (u1, v1) have an odd binomial coefficient and thus correspond to square
regions in Uℓ+1, i.e.,

{(0.0ℓ+1−|v|v, 0.0u), (0.0ℓ−|v|v0, 0.u0), (0.0ℓ−|v|v1, 0.u1)}+Q/2ℓ+1 ⊂ Uℓ+1.

Iterating this argument yields, for all n ≥ 0,
n
⋃

|w|=0

(0.0ℓ+n−|w|−|v|vw, 0.0n−|w|uw) +Q/2ℓ+n ⊂ Uℓ+n.

As an example, consider the pair (101, 11) and the corresponding squares in U3, U4

and U5 as depicted in Figure 3.

Figure 3. The pair (101, 11) satisfying (⋆) in U3, U4, U5.

3.3. Definition of an initial set A0. Observe that, for (u, v) satisfying (⋆), the
sequence

(

((0.0|u|−|v|v, 0.u) +Q/2|u|) ∩ Un

)

n≥0

converges to the diagonal of the square (0.0|u|−|v|v, 0.u) +Q/2|u|. See for instance,
in Figure 3, the square region of size 1/8 and upper-left corner (3/8, 5/8): in U3 we
have one black square, which is divided into two black squares of size 1/16 in U4

and then, four black squares of size 1/32 in U5. This observation leads us to the
definition of the set A0.

Definition 16. Let (u, v) in L × L such that |u| ≥ |v| ≥ 1. We define a closed

segment Su,v of slope 1 and length
√
2 · 2−|u| in [0, 1]× [1/2, 1]. The endpoints of

Su,v are given by

Au,v := (0.0|u|−|v|v, 0.u) and Bu,v := (0.0|u|−|v|v + 2−|u|, 0.u+ 2−|u|).
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Note that if we allow infinite binary expansions ending with ones, we have

Bu,v := (0.0|u|−|v|v111 · · · , 0.u111 · · · ).
Observe that Su,v is included in [1/2|u|−|v|+1, 1/2|u|−|v|]× [1/2, 1].

First, let us discuss relative positions of two segments of the form Su,v and in
particular, we explain when Ss,t ⊂ Su,v.

Lemma 17. Let (u, v) and (s, t) in L×L such that |u| ≥ |v| ≥ 1 and |s| ≥ |t| ≥ 1.
The point As,t belongs to Au,v + [0, 2−|u|) × [0, 2−|u|) if and only if there exist two
words w, z of the same length such that s = uw and t = vz.

Proof. It follows from base-2 expansions of integers. Observe that, if |w| 6= |z|,
then 0.0|u|−|v|+|w|−|z|vz does not belong to the interval [0.0|u|−|v|v, 0.0|u|−|v|v +
2−|u|). �

Corollary 18. Let (u, v) and (s, t) satisfying (⋆). If the point As,t belongs to

Au,v + [0, 2−|u|)× [0, 2−|u|), then Ss,t ⊂ Su,v.

Proof. We know that there exist two words w, z of the same length such that s = uw
and t = vz. From Lemma 4, we get

(

s

t

)

=

(

uw

vz

)

=
∑

f,g∈L
vz=fg

(

u

f

)(

w

g

)

.

If |f | > |v|, then v is a strict prefix of f and thus
(

u
f

)

= 0 applying (2). If |f | < |v|,
then z is a strict suffix of g. In particular, in this case |w| < |g| and thus

(

w
g

)

= 0.

We conclude that
(

s

t

)

=

(

u

v

)(

w

z

)

.

Since (s, t) satisfies (⋆), we have w = z and the conclusion follows. �

Corollary 19. Let (u, v) and (s, t) satisfying (⋆). Considering the two segments
Su,v and Ss,t, either one is included into the other or, Su,v∩Ss,t is empty or reduced
to a common endpoint.

Definition 20. Let us define the following compact set which is the closure of a
countable union of segments

A0 :=
⋃

(u,v)
satisfying(⋆)

Su,v.

Notice that Definition 16 implies that A0 ⊂ [0, 1]× [1/2, 1].

Example 21. In Figure 4, each pair (u, v) satisfying (⋆) with |u| ≤ 6 corresponds
to a point. We have represented all the corresponding segments Su,v. Corollary 19
shows that the set of segments has a partial ordering for inclusion, the maximal
segments are the diagonals of the dotted squares. For instance, consider the gray
square whose upper-left corner corresponds to (1101, 111) satisfying (⋆). Its diago-

nal is the segment S1101,111 with origin (7/16, 13/16) which has length
√
2/16 and

contains the four segments S1101w,111w of length
√
2/64 for |w| = 2.
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Figure 4. An approximation of A0 computed with words of
length ≤ 6.

Remark 22. In the definition of A0, we take the closure of a union to ensure the
compactness of the set. Here is an example of a limit point that does not belong to
the union of segments but to the closure A0. For all n ≥ 0 and all r ∈ {0, 1, . . . , 7},
the pair (108n+4+r1, 108n+r1) satisfies (⋆) if and only if 0 ≤ r ≤ 3. Indeed, observe
that

(

108n+4+r1

108n+r1

)

=

(

8n+ 4 + r

8n+ r

)

.

Now, we use Theorem 6 and first assume that 0 ≤ r ≤ 3. Let rep2(n) = nk · · ·n0

and val2(r1r0) = r with r0, r1 ∈ {0, 1}, then
(

8n+ 4+ r

8n+ r

)

=

(

nk

nk

)

· · ·
(

n0

n0

)(

1

0

)(

r1
r1

)(

r0
r0

)

≡ 1 mod 2.

It is easy to see that (108n+4+r1, 108n+r1) satisfies the other two conditions of (⋆).
If 7 ≥ r ≥ 4, when applying Theorem 6, the corresponding product contains a factor
(

0
1

)

and the result is thus even. Consequently, we have a sequence of segments in
A0 with one endpoint being of the form (1/32 + 1/2m, 1/2 + 1/2m, ) with m ≥ 6
and the point (1/32, 1/2) is an accumulation point of A0. In Figure 5, we have
represented the segments corresponding to n = 0, 1 and r = 0, . . . , 3.

3.4. Definition of the sequence (An)n∈N. In the following definition, we intro-
duce another sequence of compact sets obtained by transformingA0 under iterations
of two maps. This new sequence, which is shown to be a Cauchy sequence, will
allow us to define properly the limit set L.
Definition 23. We let c denote the homothety of center (0, 0) and ratio 1/2 and
consider the map h : (x, y) 7→ (x, 2y). Now define a sequence of compact sets

An :=
⋃

0≤i≤n
0≤j≤i

hj(ci(A0)).
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Figure 5. A zoom on A0 in [17/29, 1/24]× [27/29, 17/25] and in
the smaller area [4097/217, 257/213]× [65537/217, 4097/213].

Let m,n with m ≤ n. Using Figure 6, observe that

(3) Am ∩ ([1/2m+1, 1]× [0, 1]) = An ∩ ([1/2m+1, 1]× [0, 1]).

Example 24. In Figure 7, we have depicted two original segments in A0 (in black),
then one application of c possibly followed by h (in red), then a second applica-
tion of c followed by at most 2 applications of h (in blue). For instance, the
segment S1,1 with endpoints (1/2, 1/2) and (1, 1) belongs to A0. Thus, the seg-
ment hp(cp+j(S1,1)) with endpoints (1/2p+j+1, 1/2j+1) and (1/2p+j, 1/2j) belongs
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A0

c(A0)

h(c(A0))

c2(A0)

h
(c

2
(A

0
))

h
2
(c

2
(A

0
))

h

c

c

0 1

1

Figure 6. Two applications of c and h from A0.

Figure 7. A subset of A2.

to Ap+j for all p ≥ 0 and all j ≥ 0. Since Ap ⊂ · · · ⊂ A2p, considering the
union of segments of the latter form for j = 0, . . . , p, the segment with endpoints
(1/22p+1, 1/2p+1) and (1/2p, 1) belongs to A2p.

Lemma 25. The sequence (An)n≥0 is a Cauchy sequence.

Proof. Let ǫ > 0. Take N such that 1/2N/2 < ǫ. Let n > m > N . From (3), [Am]ǫ
contains An∩ ([1/2m+1, 1]× [0, 1]). Assume first that m is even. Since Am contains
the segment with endpoints (1/2m+1, 1/2(m/2)+1) and (1/2m/2, 1) (details are given
in the previous example), then [Am]ǫ contains [0, 1/2m+1) × [0, 1]. If m is odd,
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Am−1 and also Am contain the segment with endpoints (1/2m, 1/2((m−1)/2)+1) and
(1/2(m−1)/2, 1) and the same conclusion follows. Thus [Am]ǫ contains An. Since
Am ⊂ An, we directly have that [An]ǫ contains Am. �

Definition 26. Since we have a Cauchy sequence in the complete metric space
(H(R2), dh), the limit of (An)n≥0 is a well defined compact set denoted by L. An
approximation of this set is given in Figure 9 in the appendix.

4. Convergence of (Un)n≥0 to L
Now we will show that the sequence (Un)n≥0 of compact subsets of [0, 1]× [0, 1]

converges to L. The first part is to show that, when ǫ is a positive real number,
then Un ⊂ [L]ǫ for all sufficiently large n.

Lemma 27. Let ǫ > 0. For all n ∈ N such that 2−n+1 < ǫ, we have

Un ⊂ [L]ǫ.
Proof. Let ǫ > 0. Choose n such that 2−n+1 < ǫ.

Let (x, y) ∈ Un. From Remark 11, there exists (u, v) ∈ L × L such that
(

u
v

)

≡
1 mod 2, |u| ≤ n and

(x, y) ∈ (0.0n−|v|v, 0.0n−|u|u) +Q/2n.

Assume first that (u, v) satisfies (⋆). The segment Su,v of length
√
2 · 2−|u|

having Au,v = (0.0|u|−|v|v, 0.u) as endpoint belongs to A0. Now apply n − |u|
times the homothety c to this segment. So the segment cn−|u|(Su,v) of length√
2 · 2−n of endpoint (0.0n−|v|v, 0.0n−|u|u) belongs to An−|u| and thus to L. Hence

d((x, y),L) < ǫ.
Now assume that (u, v) does not satisfy (⋆). By assumption, we have an odd

number r of occurrences of v in u. For each occurrence of v in u, we count the total
number of zeroes after it. We thus define a sequence of non-negative integer indices

|u| ≥ i1 ≥ i2 ≥ · · · ≥ ir ≥ 0

corresponding to the number of zeroes following the first, the second, ..., the rth
occurrence of v in u. Now let k be a non-negative integer such that k > ⌈log2 |u|⌉.
We get

(

u02
k

1

v02k1

)

=

r
∑

ℓ=1

(

2k + iℓ
2k

)

.

Indeed, for each ℓ ∈ {1, . . . , r}, consider the ℓth occurrence of v in u: we have the
factorization u = pw where the last letter of p is the last letter of the ℓth occurrence
of v and |w|0 = iℓ. With this particular occurrence of v, we obtain occurrences of

v02
k

1 in u02
k

1 by choosing 2k zeroes among the 2k + iℓ zeroes available in w02
k

1.
Moreover, with the long block of 2k zeroes, it is not possible to have any other

occurrence of v02
k

1 than those obtained from occurrences of v in u.
For each ℓ ∈ {1, . . . , r}, we have

(

2k + iℓ
2k

)

≡ 1 mod 2

from Theorem 6. Since r is odd, we get
(

u02
k

1

v02k1

)

≡ 1 mod 2.
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Now, for all k ∈ N such that k > ⌈log2 |u|⌉, it is easy to check that (u02
k

1, v02
k

1)
satisfies (⋆). For the sake of clarity, if k is a non-negative integer such that k >
⌈log2 |u|⌉, we define

uk := u02
k

1 and vk := v02
k

1.

As in the first part of the proof, the segment Suk,vk of length
√
2 · 2−|u|−2k−1

having Auk,vk = (0.0|u|−|v|v02
k

1, 0.u02
k

1) as endpoint belongs to A0. Now apply

n − |u| times the homothety c to this segment. So the segment cn−|u|(Suk,vk) of

length
√
2 · 2−n−2k−1 of endpoint (0.0n−|v|v02

k

1, 0.0n−|u|u02
k

1) belongs to An−|u|

and thus to L. Hence d((x, y),L) < ǫ. �

Let ǫ > 0. It remains to show that, for all sufficiently large n ∈ N, L ⊂ [Un]ǫ.

Lemma 28. Let ǫ > 0. For all (x, y) ∈ L, there exists N such that for all n ≥ N ,
d((x, y), Un) < ǫ.

Proof. Let ǫ > 0 and let (x, y) ∈ L. Since (An)n≥0 converges to L, there exists N1

and (x′, y′) ∈ AN1 such that,

d((x, y), (x′, y′)) < ǫ/4.

By definition of AN1 , there exist i, j such that 0 ≤ j ≤ i ≤ N1 and (x′
0, y

′
0) ∈ A0

such that

hj(ci((x′
0, y

′
0))) = (x′, y′).

By definition of A0, there exists a pair (u, v) ∈ L× L satisfying (⋆) and (x′′
0 , y

′′
0 ) ∈

Su,v such that

d((x′
0, y

′
0), (x

′′
0 , y

′′
0 )) < ǫ/4.

Notice that, since j ≤ i,

d((x′, y′), hj(ci((x′′
0 , y

′′
0 )))) = d(hj(ci((x′

0, y
′
0))), h

j(ci((x′′
0 , y

′′
0 ))))

≤ d((x′
0, y

′
0), (x

′′
0 , y

′′
0 )) < ǫ/4.

Consequently, we get that

d((x, y), hj(ci((x′′
0 , y

′′
0 )))) < ǫ/2.

In the second part of the proof, we will show that d(hj(ci((x′′
0 , y

′′
0 ))), Un) < ǫ/2

for all sufficiently large n. We will make use of the constants i, j and words u, v
given above.

Let n ≥ 0. Since (u, v) ∈ L × L satisfies (⋆), the pairs (uw, vw) satisfy (⋆) for
all words w of length n, . . . , n + i. In particular, if w is a word of length n, since
(

uw
vw

)

≡ 1 mod 2, applying Lemma 5, at least one of the two binomial coefficients
(

uw0
vw

)

,
(

uw1
vw

)

is odd. Iterating this argument j times, we conclude that at least one

of the 2j binomial coefficients of the form
(

uwz
vw

)

with |z| = j is odd. Otherwise
stated, at least one of the square regions

(0.0i+|u|−|v|vw, 0.0i−juwz) +Q/2n+i+|u|, with |z| = j,

is a subset of Un+i+|u|. We observe that each of these square regions is inter-

sected by hj(ci(Su,v)). Indeed, the latter segment has (0.0i+|u|−|v|v, 0.0i−ju) and

(0.0i+|u|−|v|v111 · · · , 0.0i−ju111 · · · ) as endpoints and slope 2j. This can be visual-
ized in Figure 8 where each rectangular gray region contains at least one square re-
gion from Un+i+|u|. Consequently, every point1 of hj(ci(Su,v)) is at distance at most
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u0n
v0n

u0n+1

v0n+1

u0n+2

v0n+2

u1n+2

v1n+2

u1n+1

v1n+1

u1n

v1n

Su,v

0
1

1

2−(n+i+|u|)

c(Su,v)

h(c(Su,v))

c2(Su,v)

h(c2(Su,v))

h2(c2(Su,v))

Figure 8. Situation occurring in the proof of Lemma 28.

2j/2n+i+|u| from a point in Un+i+|u|. In particular, this holds for hj(ci((x′′
0 , y

′′
0 ))).

We choose N2 such that 2j/2N2+i+|u| < ǫ/2. Hence, for all n ≥ N2 + i+ |u|,
d(hj(ci((x′′

0 , y
′′
0 ))), Un) < ǫ/2.

To conclude the proof, for all n ≥ N2 + i+ |u|, we have

d((x, y), Un) < ǫ.

�

Theorem 29. The sequence (Un)n≥0 converges to L.

1For every point of hj(ci(Su,v)), this observation will permit us to build a sequence
((fn, gn))n≥0 converging to it and such that (fn, gn) ∈ Un, for all n, and the distance between

two consecutive elements of the sequence tends to zero when n tends to infinity.
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Proof. Let ǫ > 0. From Lemma 27, it suffices to show that L ⊂ [Un]ǫ for all
sufficiently large n ∈ N. For all (x, y) ∈ L, from the proof of Lemma 28, there
exists a sequence ((fi(x, y), gi(x, y))i≥0 such that (fi(x, y), gi(x, y)) ∈ Ui, for all i,
and there exists N(x,y) such that, for all i, j ≥ N(x,y),

(4) d((fi(x, y), gi(x, y)), (fj(x, y), gj(x, y))) < ǫ/2

and

d((fi(x, y), gi(x, y)), (x, y)) < ǫ/2.

We trivially have

L ⊂
⋃

(x,y)∈L

B((fN(x,y)
(x, y), gN(x,y)

(x, y)), ǫ/2).

Since L is compact, we can extract a finite covering: there exist (x1, y1), . . . , (xk, yk)
in L such that

L ⊂
k
⋃

j=1

B((fN(xj,yj)
(xj , yj), gN(xj,yj)

(xj , yj)), ǫ/2).

Let N = maxj=1,...,k N(xj,yj). From (4), we deduce that, for all j ∈ {1, . . . , k} and
all n ≥ N ,

B((fN(xj,yj)
(xj , yj), gN(xj,yj )

(xj , yj)), ǫ/2) ⊂ B((fn(xj , yj), gn(xj , yj), ǫ)

and therefore

L ⊂
k
⋃

j=1

B((fn(xj , yj), gn(xj , yj)), ǫ) ⊂ [Un]ǫ.

�

5. Extension modulo p

In this paper, for the sake of simplicity, we have only considered odd binomial
coefficients. It is straightforward to adapt our reasonings, constructions and results
to a more general setting. Let p be a fixed prime and r ∈ {1, . . . , p − 1}. We can
extend Definition 7 to

Tn,r :=
⋃

{

(val2(v), val2(u)) +Q | u, v ∈ Ln,

(

u

v

)

≡ r mod p

}

⊂ [0, 2n]× [0, 2n]

and introduce corresponding sets Un,r as in Definition 10. Since we make use of
Lucas’ theorem, we limit ourselves to congruences modulo a prime. We just sketch
the main differences with the case p = 2. See, for instance, Figure 11 for the case
p = 3 and r = 2.

In this setting, analogously to Lemma 5, one can observe that if
(

u
vb

)

≡ r mod p

for some b ∈ {0, 1} then there exists a ∈ {0, 1} such that
(

ua
vb

)

≡ r mod p. This
observation is useful to adapt the proof of Lemma 28.

The (⋆) condition becomes (⋆)r
(

u

v

)

≡ r mod p,

(

u

v0

)

= 0 and

(

u

v1

)

= 0

and Lemma 14 still holds. Note that the pairs (u, v) satisfying this condition depend
on the choice of p and r. The sets An are defined as before.
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Remark 30. The pair (1, 1) satisfies (⋆)r if and only if r = 1. Thus, the segment
with endpoints (1/22m+1, 1/2m+1) and (1/2m, 1) belongs to A2m only if r = 1. This
observation made in Example 24 was used in the proof of Lemma 25.

We present an alternative proof of Lemma 25 in this general setting.

Proof of Lemma 25 (generalization). Let ǫ > 0. Choose N such that 2−N < ǫ.
Let m,n such that n > m > N . From (3), [Am]ǫ contains An ∩ ([1/2m+1, 1] ×
[0, 1]). It remains to show that [Am]ǫ contains An ∩ [0, 1/2m+1]× [0, 1]. The pairs
(u0|u|1r0, u0|u|10) satisfy (⋆)r for all words u ∈ 1{0, 1}∗. In this case, the segment
of endpoints (0.0r−1u0|u|10, 0.u0|u|1r0) and (0.0r−1u0|u|10+22|u|+r+1, 0.u0|u|1r0+

22|u|+r+1) has length
√
2 2−(2|u|+r+1) and belongs to A0. If we apply m times c

and j ∈ {0, . . . ,m} times h to the latter segment, we obtain a segment S(u, j) with
endpoint

A(u, j) := (0.0m+r−1u0|u|10, 0.0m−ju0|u|1r0)

and of length less than
√
2 2−(2|u|+r+1) that belongs to Am. Note that this segment

S(u, j) lies into R(j) := [1/2m+r, 1/2m+r−1]× [1/2m−j+1, 1/2m−j]. Observe that

⋃

u∈1{0,1}∗

A(u, j)

is the diagonal of the region R(j). Consequently, for all j ≤ m, we have

⋃

u∈1{0,1}∗

[S(u, j)]ǫ ⊃ [0, 1/2m+1]× [1/2m−j+1, 1/2m−j]

since 2−(m+r−1) ≤ 2−N < ǫ. Letting j range from 0 to m, we deduce that [Am]ǫ
contains [0, 1/2m+1]×[0, 1] and therefore An∩([0, 1/2m+1]×[0, 1]). Since Am ⊂ An,
we directly have that [An]ǫ contains Am.

�

The proof of Lemma 27 follows the same lines. Simply replace the word u02
k

1

(resp. v02
k

1) with u0p
k

1 (resp. v0p
k

1). We may apply Lucas’ theorem with base-p
expansions.

6. Appendix

Example 31. We have represented in Figure 9 the 1370 segments of A0 for words
of length at most 8 (we are missing segments of length ≤

√
2/29) and we have

applied the maps hj(ci(·)) to this set of segments for 0 ≤ j ≤ i ≤ 4. Thus we

have an approximation of A4. Excepting the segments of length ≤
√
2/29 and their

images, we have an exact image of L inside [1/32, 1]× [0, 1].

Example 32. We have represented the set U9 in Figure 10.

Example 33. We have represented in Figure 11 the set U7,2 when considering
binomial coefficients congruent to 2 modulo 3 and an approximation of the limit
set L proceeding as in Example 31.
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Figure 9. An approximation of the limit set L.
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Figure 10. The set U9.
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Figure 11. The set U7,2 and an approximation of the correspond-
ing set L.
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