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Abstract

A finite word is closed if it contains a factor that occurs both as a prefix and as a suffix
but does not have internal occurrences, otherwise it is open. We are interested in the oc-
sequence of a word, which is the binary sequence whose n-th element is 0 if the prefix of
length n of the word is open, or 1 if it is closed. We exhibit results showing that this
sequence is deeply related to the combinatorial and periodic structure of a word. In the case
of Sturmian words, we show that these are uniquely determined (up to renaming letters) by
their oc-sequence. Moreover, we prove that the class of finite Sturmian words is a maximal
element with this property in the class of binary factorial languages. We then discuss several
aspects of Sturmian words that can be expressed through this sequence. Finally, we provide
a linear-time algorithm that computes the oc-sequence of a finite word, and a linear-time
algorithm that reconstructs a finite Sturmian word from its oc-sequence.
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1. Introduction

In a recent paper with M. Bucci [5], the first two authors dealt with trapezoidal words (a
generalization of finite Sturmian words), also with respect to the property of being closed or
open. Let Σ be a finite nonempty set (the alphabet). A (finite) word w = w[1]w[2] · · ·w[n]
with w[i] ∈ Σ is closed (also known as periodic-like [6]) if it contains a factor that occurs
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∗Corresponding author.
Email addresses: alessandro.deluca@unina.it (Alessandro De Luca), gabriele.fici@unipa.it

(Gabriele Fici), lupastis@gmail.com (Luca Q. Zamboni)

To appear in Advances in Applied Mathematics August 15, 2018

http://arxiv.org/abs/1701.01580v2


both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open.
For example, the words abca, ababa and aabaab are closed — any word of length 1 is closed,
the empty word being a factor that occurs both as a prefix and as a suffix but does not have
internal occurrences; the words ab, aab and aaba, instead, are open.

Given a finite or infinite word w = w[1]w[2] · · · , the sequence oc(w) of open/closed
prefixes of w, that we refer to as the oc-sequence of w, is the binary sequence c(1)c(2) · · ·
whose n-th element is 1 if the prefix of w of length n is closed, 0 if it is open. For example,
if w = abcab, then oc(w) = 10011.

A question that arises naturally is whether it is possible to reconstruct a word (up to
renaming letters) from its oc-sequence. This is not true in general, even when the alphabet
is binary. For example, the words aaba and aabb are not isomorphic (i.e., one cannot be
obtained from the other by renaming letters), yet they have the same oc-sequence 1100. As
a first result of this paper, we show that if a word is known to be Sturmian, then it can be
reconstructed (up to renaming letters) from its oc-sequence. That is, Sturmian words are
characterized by their oc-sequences. Moreover, we prove that the class of finite Sturmian
words is a maximal element with this property in the class of binary factorial languages.

In [5], the authors investigated the structure of the sequence oc(F ) of the Fibonacci
word F . They proved that the lengths of the runs (maximal subsequences of consecutive
equal elements) in oc(F ) form the doubled Fibonacci sequence. We prove in this paper that
this doubling property holds for every standard Sturmian word, and describe the sequence
oc(w) of a standard Sturmian word w in terms of the semicentral prefixes of w, which
are the prefixes of the form unxyun, where x, y are letters and unxy is an element of the
standard sequence of w. As a consequence, we show that the word ba−1w, obtained from a
standard Sturmian word w starting with letter a by replacing the first letter with a b, can
be written as the infinite product of the words (u−1

n un+1)
2, n ≥ 0. Since the words u−1

n un+1

are reversals of standard words, this induces an infinite factorization of ba−1w in squares of
reversed standard words.

We then show how the oc-sequence of a standard Sturmian word of slope α is related to
the continued fraction expansion of α, both in terms of the convergents and of the continuants
of α.

Finally, we provide a linear-time algorithm that computes the oc-sequence of a finite
word, and a linear-time algorithm that reconstructs a finite Sturmian word from its oc-
sequence.

2. Open and closed words

Let us begin with some notation and basic definitions; for those not included below, we
refer the reader to [5] and [16].

Let Σ be a finite alphabet. Let Σ∗ and Σ̂∗ stand respectively for the free monoid and the
free group generated by Σ. Their elements are called words over Σ. The length of a word w
is denoted by |w|. The empty word, denoted by ε, is the unique word of length zero and is

the neutral element of Σ∗ and Σ̂∗. If x ∈ Σ and w ∈ Σ∗, we let |w|x denote the number of
occurrences of x in w.
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A prefix (resp. a suffix ) of a word w is any word u such that w = uz (resp. w = zu) for
some word z. A factor of w is a prefix of a suffix (or, equivalently, a suffix of a prefix) of w.
A prefix/suffix/factor of a word is proper if it is nonempty and does not coincide with the
word itself. The set of prefixes, suffixes and factors of the word w are denoted by Pref(w),
Suff(w) and Fact(w), respectively. From the definitions, we have that ε is a prefix, a suffix
and a factor of any word. A border of a word w is any word in Pref(w) ∩ Suff(w) different
from w. An occurrence of a factor u in w is a factorization w = vuz. An occurrence of u is
internal if both v and z are nonempty.

A period of a nonempty word w is an integer of the form |w|− |u|, where u is a border of
w. We call the period of w the least of its periods, that is the difference between the length
of w and the length of its longest border. Conventionally, the period of ε is 1. The ratio
between the length and the period of a word w is called the exponent of w.

A factor v of a word w is left special in w (resp. right special in w) if there exist a, b ∈ Σ
such that av and bv are factors of w (resp. va and vb are factors of w). A bispecial factor of
w is a factor that is both left and right special.

The word w̃ obtained by reading w from right to left is called the reversal (or mirror
image) of w. A palindrome is a word w such that w̃ = w. In particular, the empty word is
a palindrome.

An infinite word w over Σ is a sequence w : N+ → Σ, written as w = w[1]w[2] · · ·w[n] · · · .
Prefixes and factors of infinite words are naturally defined, as is the product uw of a finite
word u and an infinite word w. Let Σω denote the set of infinite words over Σ. If u is a
finite nonempty word, uω denotes the periodic word uuu · · · ∈ Σω. An infinite word w is
said to be ultimately periodic if there exist two finite words v and u such that w = vuω;
an aperiodic word is an infinite word that is not ultimately periodic. An infinite word w is
recurrent if every factor of w occurs infinitely often; equivalently, w is recurrent if and only
if every prefix of w has a second occurrence in w.

We recall the definitions of open and closed words given in [11]:

Definition 1. A finite word w is closed if it is empty or has a factor v 6= w occurring exactly
twice in w, as a prefix and as a suffix of w (with no internal occurrences). A word that is
not closed is called open.

For any letter a ∈ Σ and for any n > 0, the word an is closed, an−1 being a factor
occurring only as a prefix and as a suffix in it (this includes the special case of single letters,
for which n = 1 and an−1 = ε). More generally, every word whose exponent is at least 2 is
closed [2, Proposition 4].

Remark 2. The notion of closed word is equivalent to that of periodic-like word [6]. A
word w is periodic-like if its longest repeated prefix is not right special.

The notion of closed word is also closely related to the concept of complete return to a
factor, as considered in [15]. A complete return to the factor u in a word w is any factor
of w having exactly two occurrences of u, one as a prefix and one as a suffix. Hence, w is
closed if and only if it is a complete return to one of its factors; such a factor is clearly both
the longest repeated prefix and the longest repeated suffix of w (i.e., the longest border of
w).
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Remark 3. Let w be a nonempty word over Σ. The following characterizations of closed
words follow easily from the definition:

1. the longest repeated prefix (resp. suffix) of w does not have internal occurrences in w,
i.e., occurs in w only as a prefix and as a suffix;

2. the longest repeated prefix (resp. suffix) of w is not a right (resp. left) special factor
of w;

3. w has a border that does not have internal occurrences in w;

4. the longest border of w does not have internal occurrences in w.

Obviously, the negations of the previous properties characterize open words. In the rest
of the paper we will use these characterizations freely and without explicit mention to this
remark.

We conclude this section with some results on right extensions.

Lemma 4. Let w be a nonempty word over Σ, and x ∈ Σ be such that wx is closed. Then
wx has the same period as w.

Proof. Let vx be the longest border of wx, and v′ be the longest border of w. By contradic-
tion, suppose |v′| > |v|. Then vx is a prefix of v′, and therefore has an internal occurrence
in wx, contradicting the hypothesis that wx is closed. Hence, v is the longest border of w,
so that w and wx have the same period |w| − |v|.

Lemma 5. For all nonempty w ∈ Σ∗, there exists at most one letter x ∈ Σ such that wx is
closed.

Proof. Straightforward after Lemma 4.

If w is closed, then exactly one such extension is closed. More precisely, we have the
following result (see also [6, Prop. 4]).

Lemma 6. Let w be a closed word. Then wx, x ∈ Σ, is closed if and only if wx has the
same period as w.

Proof. The case w = ε is trivially verified, so let w be a nonempty closed word and v be its
longest border. Let x be the letter such that wx is has the same period as w, i.e., such that
vx is a prefix of w. Then wx is closed, as its border vx cannot have internal occurrences.
The converse follows from Lemma 4.

For more details on open and closed words and related results the reader can see [1, 4–
6, 11].
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3. The oc-sequence of a word

We now define the oc-sequence of a word.

Definition 7. Let w = w[1]w[2] · · ·w[n] · · · be a finite or infinite word over Σ. We define
oc(w) = c(1)c(2) · · · c(n) · · · , called the oc-sequence of w, as the binary sequence whose n-th
element is 0 if the prefix of length n of w is open, or 1 if it is closed.

For example, if w = abaaab, then oc(w) = 101001.

Remark 8. By definition of closed word, for each integer n ≥ 1, the (n+1)-st occurrence of
1 in oc(w) is at the position corresponding to the end of the second occurrence of the prefix
of length n in w. Hence, if a finite word w admits a border of length ℓ, then |oc(w)|1 ≥ ℓ+1.

In particular, a closed word w is a complete return to its prefix of length |oc(w)|1 − 1;
equivalently, the period of a closed word w is equal to 1 + |oc(w)|0.

In the following two propositions we relate recurrence and periodicity of an infinite word
with analogous properties of its oc-sequence.

Proposition 9. Let w ∈ Σω. The following are equivalent:

1. oc(w) is recurrent;

2. w = xω for a letter x ∈ Σ;

3. oc(w) = 1ω.

Proof. Clearly, 2 ⇔ 3 ⇒ 1. To complete the proof, we show that 1 ⇒ 3. Let then oc(w)
be recurrent, and suppose by contradiction that 0 occurs in it. Thus, there exists a positive
integer t such that 10t1 occurs infinitely often in oc(w). Hence, for every n ≥ t, there exists
P such that P10t1 is a prefix of oc(w) and |P |1 =: m ≥ n. Let u be the prefix of length m
of w; by Remark 8, we obtain that the prefixes of w of length |P1| and |P10t| both have
u as a suffix. We have found two occurrences of u at distance t from each other, so that u
must have t as a period. Since n is arbitrary and |u| = m ≥ n, it follows that w has period
t, so that oc(w) ends in 1ω as a consequence of Lemma 6. This contradicts the hypothesis
that oc(w) is recurrent and contains 0.

Proposition 10. Let w ∈ Σω. The sequence oc(w) is ultimately periodic if and only if w is
either periodic or not recurrent. In the first case, oc(w) ends in 1ω, while in the latter case
it ends in 0ω.

Proof. The “if” part is immediate. Let us then prove the “only if” part; let oc(w) = UV ω.
Suppose first that 1 does not occur in V . Then oc(w) ends in 0ω, so that w has prefixes
that have no other occurrences in w; hence, w is not recurrent. If 0 does not occur in V ,
then oc(w) ends in 1ω so that w is periodic as a consequence of Lemma 6. Finally, suppose
that both 1 and 0 occur in V . Then there exists a positive integer t such that 10t1 occurs
infinitely often in oc(w); as we have seen in the proof of Proposition 9, this leads to a
contradiction.
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The following lemma shows that in the sequence oc(w) any run of 0s is at least as long
as the previous run of 1s. It will be useful in what follows.

Lemma 11. Given positive integers s and t, if 1t0s1 is a factor of oc(w) then t ≤ s.

Proof. Let w = w[1]w[2]w[3] · · · with w[i] ∈ Σ, and let c = oc(w) = c(1)c(2) · · · with
c(i) ∈ {0, 1} for all integers i ≥ 1. Let a ∈ Σ be the letter such that w[1] = a. The result
is clear in the case when 1t0s1 is a prefix of oc(w), for this implies that w begins in atb,
where b is a letter in Σ different from a. Since the longest border of atb is the empty word,
it follows that the next occurrence of at must occur within the suffix w[t+ 2]w[t+ 3] · · · of
w, so that c(t+ 1) · · · c(2t) = 0t whence t ≤ s.

We may now assume that 1t0s1 occurs in c at some later position. Fix a positive integer
r such that 1t0s1 is a suffix of c(1) · · · c(r+s+1). Let n = |c(1) · · · c(r)|1 and u be the prefix
of w of length n− 1. We note that since 1t0s1 occurs in c and not just as a prefix, we have
t < n and n ≥ 2 (hence u is nonempty). It follows that there exist distinct letters x, y ∈ Σ
such that w begins in ux and w[1] · · ·w[r+1] terminates in uy. Hence, the second occurrence
of u in w terminates in position r, while the second occurrence of ux in w terminates in
position r+s+1. If the second occurrence of ux in w does not overlap the second occurrence
of u in w, then s ≥ |u| = n− 1 ≥ t. If the second occurrence of ux in w overlaps the second
occurrence of u in w by an amount s′ ≥ 1, then we have that s+ s′ = |u| = n− 1 and u has
a border of length s′. Let v denote the longest border of u. Thus |v| ≥ s′. First suppose
that either c(|u|) = 0 or c(|u|) = 1 but c(|u|) and c(r) do not belong to the same run. Then,
since |c(1) · · · c(|u|)|1 = |(u)|1 ≥ s′ + 1 by Remark 8, we deduce that

t ≤ |c(|u|+ 1) · · · c(r)|1 ≤ n− (s′ + 1) = s,

as required.
Finally, suppose c(|u|) = 1 with c(|u|) and c(r) belonging to the same run. In this case,

u and ux are both closed, so that vx is a prefix of u. Therefore |v| > s′, since w[1] · · ·w[s′]y
is a prefix of u as well, and hence v has a border of length s′. Now, let px be the prefix of w
(and of vx) that terminates with the first occurrence of w[1] · · ·w[s′]x; then px is necessarily
open, and |oc(p)|1 ≥ s′ + 1 by Remark 8. It follows that if 1i is a suffix of c(1) · · · c(|u|),
hence i ≤ |v| − s′. Thus, t ≤ |v| − s′ + |u| − |v| = |u| − s′ = s.

3.1. Sturmian words

We let Σ = {a, b} be a fixed binary alphabet from now on, unless otherwise specified.
An element of Σω is a Sturmian word if it contains exactly n + 1 distinct factors of length
n, for every n ≥ 0. A famous example of Sturmian word is the Fibonacci word

F = abaababaabaababaababa · · ·

that is the limit, as n → ∞, of the sequence of words (fn), called the sequence of finite
Fibonacci words, defined by f−1 = b, f0 = a and, for every n ≥ 1, fn = fn−1fn−2.

It is well known that if w is a Sturmian word then at least one of aw and bw is also
a Sturmian word. A Sturmian word w is called standard (or characteristic) if aw and bw
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are both Sturmian words. The Fibonacci word is an example of standard Sturmian word.
In the next section, we will deal specifically with standard Sturmian words. Here, we focus
on finite factors of Sturmian words, called finite Sturmian words. Actually, finite Sturmian
words are precisely the elements of Σ∗ verifying the following balance property: for any
u, v ∈ Fact(w) such that |u| = |v| one has ||u|a−|v|a| ≤ 1 (or, equivalently, ||u|b−|v|b| ≤ 1).

We let St denote the set of finite Sturmian words. The language St is factorial (i.e.,
if w = uv ∈ St , then u, v ∈ St) and extendible (i.e., for every w ∈ St there exist letters
x, y ∈ Σ such that xwy ∈ St).

We recall the following definitions given in [10].

Definition 12. A word w ∈ Σ∗ is a left special (resp. right special) Sturmian word if
aw, bw ∈ St (resp. if wa,wb ∈ St). A bispecial Sturmian word is a Sturmian word that is
both left special and right special. Moreover, a bispecial Sturmian word is strictly bispecial
if awa, awb, bwa, and bwb are all Sturmian words; otherwise it is non-strictly bispecial.

For example, the word w = ab is a bispecial Sturmian word, since aw, bw, wa and wb
are all Sturmian. This example also shows that a bispecial Sturmian word is not necessarily
a bispecial factor of some Sturmian word (which must be a palindrome); in fact, bispecial
factors of Sturmian words coincide with strictly bispecial Sturmian words (see [12] for more
details on bispecial Sturmian words).

Remark 13. It is known that if w is a left special Sturmian word, then w is a prefix of some
standard Sturmian word, and the left special factors of w are prefixes of w. Symmetrically,
if w is a right special Sturmian word, then the right special factors of w are suffixes of w.

Regarding open and closed prefixes of Sturmian words, we prove the following result.

Theorem 14. Every (finite or infinite) Sturmian word w is uniquely determined, up to
isomorphisms of the alphabet Σ, by its oc-sequence oc(w).

We need some intermediate lemmas.

Lemma 15. Let w be a right special Sturmian word and let u be its longest repeated prefix.
Then u is a suffix of w.

Proof. If w is closed, the claim follows from the definition of closed word. If w is open, then
u is right special in w, and by Remark 13 u is a suffix of w.

Lemma 16. Let w be a right special Sturmian word. Then wa or wb is closed.

Proof. Let u be the longest repeated prefix of w and x be the letter following the occurrence
of u as a prefix of w. By Lemma 15, u is a suffix of w. Clearly, the longest repeated prefix of
wx is ux, which is also a suffix of wx and cannot have internal occurrences in wx, otherwise
the longest repeated prefix of w would not be u. Therefore, wx is closed.
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So, by Lemmas 5 and 16, if w is a right special Sturmian word, then one of wa and wb
is closed and the other is open. This implies that the oc-sequence of a (finite or infinite)
Sturmian word characterizes it up to exchange of letters. The proof of Theorem 14 is
therefore complete.

We now prove that St is maximal in the class of factorial languages over Σ verifying the
condition of Theorem 14, i.e., such that their members are determined by their oc sequences.
Let us write u ∼ v when two words u, v ∈ Σ∗ are isomorphic, and let

C = {A ⊆ Σ∗ | ∀u ∈ A,Fact(u) ⊆ A ∧ ∀u, v ∈ A : oc(u) = oc(v) ⇒ u ∼ v}.

We note that C is nonempty (e.g., A = {ε, 0} ∈ C), partially ordered with respect to
inclusion, and such that every increasing chain

A1 ⊆ A2 ⊆ A3 ⊆ · · ·

with all Ai ∈ C has an upper bound in C given by
⋃

i≥1
Ai. Thus, by Zorn’s lemma, C admits

at least one maximal element.

Theorem 17. St is a maximal element of C.

Again we need to recall two lemmas. The first is a well-known result about balanced
words (cf. [16, Proposition 2.1.3]):

Lemma 18. A word s ∈ Σ∗ is not balanced if and only if there exists a palindrome v such
that ava, bvb ∈ Fact(s).

Next is an immediate consequence of known properties of Christoffel words (cf. [12]).

Lemma 19. A word u ∈ Σ∗ is a non-strictly bispecial Sturmian word if and only if there
exists a strictly bispecial Sturmian word w and an integer n > 1 such that

either aub = (awb)n ∈ St or bua = (bwa)n ∈ St .

Proof of Theorem 17. It follows from Theorem 14 that St ∈ C. To see that St is a maximal
element of C we show that no element of C properly contains St. Suppose to the contrary
that there exists an element A ∈ C such that St ( A. Let s be an element of minimal length
of A not belonging to St. By Lemma 18, there exists a word v such that ava, bvb ∈ Fact(s).
Since all proper factors of s are balanced, without loss of generality we can assume that ava
is a prefix of s and bvb is a suffix. Hence we can write s = aub for some u ∈ Σ+.

Let r be a border of s. Since r is balanced, we have |r| < |ava| = |bvb|. Writing
ava = rα and bvb = βr, it follows that |α| = |β| and |α|a − |β|a = 2, whence r = ε by our
minimality assumption on s. Therefore s is open, so that oc(s) terminates in 0. We will
show that aua ∈ St and oc(aua) terminates in 0. It follows then that aua, s ∈ A and that
oc(aua) = oc(s), a contradiction since aua 6∼ s.

By definition of C it follows that au, ub ∈ A. By minimality of the length of s we have
au, ub ∈ St. Thus aua and bub ∈ St, so that ua, ub, au, bu ∈ St; in other words, u is a
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bispecial Sturmian word. On the other hand, as s = aub /∈ St, we have that u is non-strictly
bispecial. Thus, by Lemma 19, there exists a word w such that bua = (bwa)n for some n > 1.
Hence aua = awa(bwa)n−1. Clearly, awa occurs only once in aua, as all other factors of
the same length have one less occurrence of the letter a. Thus, if z is a border of aua, then
|z| < |awa|. It follows that z is a proper suffix of bwa and so it has an internal occurrence
in aua (as a proper suffix of awa). Therefore aua is open, so that oc(aua) terminates in 0,
as required.

3.2. Standard Sturmian words

In this section, we deal with the oc-sequence of standard Sturmian words. In [5] a
characterization of the oc-sequence of the Fibonacci word F was given.

Let us begin by recalling some definitions and basic results about standard Sturmian
words. For more details, the reader can see [3] or [16].

Let α be an irrational number such that 0 < α < 1, and let [0; d0 + 1, d1, . . .] be the
continued fraction expansion of α. The sequence of words defined by s−1 = b, s0 = a and
sn+1 = sdnn sn−1 for n ≥ 0, converges to the infinite word wα, called the standard Sturmian
word of slope α. The sequence of words sn is called the standard sequence of wα.

Note that wα starts with letter b if and only if α > 1/2, i.e., if and only if d0 = 0. In
this case, [0; d1 + 1, d2, . . .] is the continued fraction expansion of 1 − α, and w1−α is the
word obtained from wα by exchanging a’s and b’s. Hence, without loss of generality, we will
suppose in the rest of the paper that w starts with letter a, i.e., that d0 > 0.

For every n ≥ −1, one has
sn = unxy, (1)

for x, y letters such that xy = ab if n is odd or ba if n is even. Indeed, the sequence (un)n≥−1

can be defined by: u−1 = a−1, u0 = b−1, and, for every n ≥ 1,

un+1 = (unxy)
dnun−1 , (2)

where x, y are as in (1).

Example 20. The Fibonacci word F is the standard Sturmian word of slope 1/ϕ2 = (3 −√
5)/2, whose continued fraction expansion is [0; 2, 1, 1, 1, . . .], so that dn = 1 for every n ≥ 0.

Therefore, the standard sequence of the Fibonacci word F is the sequence (fn) defined by:
f−1 = b, f0 = a, fn+1 = fnfn−1 for n ≥ 0. This sequence is the sequence of finite Fibonacci
words.

Definition 21. A standard word is a finite word belonging to some standard sequence. A
central word is a word u ∈ Σ∗ such that uxy is a standard word, for letters x, y ∈ Σ.

It is known that every central word is a palindrome. Actually, central words play a central
role in the combinatorics of Sturmian words and have several combinatorial characterizations
(see [3] for a survey). We summarize some of these properties in the following proposition.

Proposition 22. Let v be a word over Σ. The following are equivalent:

9



1. v is a central word;

2. v is a palindromic bispecial Sturmian word;

3. v is a power of a single letter or it can be written as

v = pxyq = qyxp

for some words p and q and distinct letters x, y.

Moreover, in this latter case, p and q are central words themselves, and v is a complete
return to the longest between p and q. In particular, central words are closed.

In fact, all Sturmian palindromes (and more generally, all rich palindromes [15]) are
closed; however, in general there do exist open palindromes, such as aabbabaaababbaa (cf. [5,
Remark 4.13]).

Remark 23. Let (sn)n≥−1 be a standard sequence. It follows by the definition that for every
k ≥ 0 and n ≥ −1, the word skn+1sn is a standard word. In particular, for every n ≥ −1, the
word sn+1sn = un+1yxunxy is a standard word. Therefore, for every n ≥ −1, we have that

unxyun+1 = un+1yxun (3)

is a central word.

The following lemma is a well-known result (cf. [14]).

Lemma 24. Let w be a standard Sturmian word and let (sn)n≥−1 be its standard sequence.
Then:

1. A standard word v is a prefix of w if and only if v = sknsn−1, for some n ≥ 0 and
k ≤ dn.

2. A central word u is a prefix of w if and only if u = (unxy)
kun−1, for some n ≥ 0,

0 < k ≤ dn, and distinct letters x, y ∈ Σ such that xy = ab if n is odd or ba if n is
even.

Note that (unxy)
dn+1un−1 is a central prefix of w, but this does not contradict the

previous lemma since, by (2), (unxy)
dn+1un−1 = un+1yxun.

Recall that a semicentral word (see [5]) is a word in which the longest repeated prefix,
the longest repeated suffix, the longest left special factor and the longest right special factor
all coincide. The following proposition summarizes some properties of semicentral words
proved in [5].

Proposition 25. A word v is semicentral if and only if v = uxyu for a central word u and
distinct letters x, y ∈ Σ. Moreover, u has exactly one internal occurrence in v = uxyu, and
this occurrence is preceded by x and followed by y. In particular, semicentral words are open
(whereas central words are closed).

Proposition 26. The semicentral prefixes of w are precisely the words of the form unxyun,
n ≥ 1, where x, y and un are as in (1).

10



Proof. Since un is a central word, the word unxyun is a semicentral word by definition, and
it is a prefix of unxyun+1 = un+1yxun, which in turn is a prefix of w by Lemma 24.

Conversely, assume that w has a prefix of the form uξηu for a central word u and distinct
letters ξ, η ∈ Σ. From Lemma 24 and (1), we have that

uξηu = (unxy)
kun−1 · ξη · (unxy)

kun−1,

for some n ≥ 1, k ≤ dn, and distinct letters x, y ∈ Σ such that xy = ab if n is odd or ba if n
is even. In particular, this implies that ξη = yx.

If k = dn, then u = un+1yxun+1, and we are done. So, suppose by contradiction that
k < dn. Now, on the one hand we have that (unxy)

k+1un−1yx is a prefix of w by Lemma 24,
and so (unxy)

k+1un−1 is followed by yx as a prefix of w; on the other hand we have

uξηu = (unxy)
kun−1 · yx · (unxy)

kun−1

= (unxy)
k · un−1yxunxy · (unxy)

k−1un−1

= (unxy)
k · unxyun−1xy · (unxy)

k−1un−1

= (unxy)
k+1 · un−1xy · (unxy)

k−1un−1,

so that (unxy)
k+1un−1 is followed by xy as a prefix of w, a contradiction.

The next theorem shows the behavior of the runs in oc(w) by determining the structure
of the last elements of the runs.

Theorem 27. Let vx, x ∈ Σ, be a prefix of w. Then:

1. v is open and vx is closed if and only if there exists n ≥ 1 such that v = unxyun;

2. v is closed and vx is open if and only if there exists n ≥ 0 such that v = unxyun+1 =
un+1yxun.

Proof. 1. If v = unxyun, then v is semicentral and therefore open. The word vx is closed
since its longest repeated prefix unx occurs only as a prefix and as a suffix in it.

Conversely, let vx be a closed prefix of w such that v is open, and let ux be the longest
repeated suffix of vx. Since vx is closed, ux does not have internal occurrences in vx. Since u
is the longest repeated prefix of v (suppose the longest repeated prefix of v is a z longer than
u, then vx, which is a prefix of z, would be repeated in v and hence in vx, contradiction) and
v is open, u must have an internal occurrence in v followed by a letter y 6= x. Symmetrically,
if ξ is the letter preceding the occurrence of u as a suffix of v, since u is the longest repeated
suffix of v one has that u has an internal occurrence in v preceded by a letter η 6= ξ. Thus u
is left and right special in w. Moreover, u is the longest special factor in v. Indeed, if u′ is
a left special factor of v, then u must be a prefix of u′. But ux cannot appear in v since vx
is closed, and if uy was a left special factor of v, it would be a prefix of v. Symmetrically,
u is the longest right special factor in v. Thus v is semicentral, and the claim follows from
Proposition 26.

2. If v = unxyun+1 = un+1yxun, then v is a central word and therefore it is closed. Its
longest repeated prefix is un+1. The longest repeated prefix of vx is either ad0−1 (if n = 0)

11



or unx (if n > 0); in both cases, it has an internal occurrence as a prefix of the suffix un+1x.
Therefore, vx is open.

Conversely, suppose that vx is any open prefix of w such that v is closed. If vx = ad0b,
then v = u0xyu1 = u1yxu0 and we are done. Otherwise, by 1), there exists n ≥ 1 such that
|unξyun| < |v| < |un+1yξun+1|, where {ξ, y} = {a, b}. We know that unξyun+1 is closed and
unξyun+1ξ is open; it follows v = unξyun+1 = unxyun+1, as otherwise there should be in w
a semicentral prefix strictly between unxyun and un+1yxun+1.

Note that, for every n ≥ 1, one has:

un+1yxun+1 = un+1yxun(u
−1

n un+1)

= unxyun+1(u
−1

n un+1)

= unxyun(u
−1

n un+1)
2.

Therefore, starting from an (open) semi-central prefix unxyun, one has a run of closed
prefixes, up to the prefix unxyun+1 = un+1yxun = unxyun(u

−1
n un+1), followed by a run

of the same length of open prefixes, up to the prefix un+1yxun+1 = un+1yxun(u
−1
n un+1) =

unxyun(u
−1
n un+1)

2. See Table 1 for an illustration.

prefix of w open/closed example
unxyun open aaba
unxyunx closed aabaa
unxyunxy closed aabaab
. . . . . . . . .
unxyun+1 = un+1yxun closed aabaabaa
un+1yxuny open aabaabaaa
un+1yxunyx open aabaabaaab
. . . . . . . . .
un+1yxun+1 open aabaabaaabaa
un+1yxun+1y closed aabaabaaabaab

Table 1: The structure of the prefixes of the standard Sturmian word w = aabaabaaabaabaa · · · with respect
to the un prefixes. Here d0 = d1 = 2 and d2 = 1.

In Table 2, we show the first few elements of the sequence oc(w) for the standard Sturmian
word w = aabaabaaabaabaa · · · of slope α = (9+

√
5)/38 = [0; 3, 2, 1̄], i.e., with d0 = d1 = 2

and di = 1 for every i > 1. One can notice that the runs of closed prefixes are followed by
runs of the same length of open prefixes.

The words u−1
n un+1 are reversals of standard words, for every n ≥ 1. Indeed, let rn = s̃n

for every n ≥ −1, so that r−1 = b, r0 = a, and rn+1 = rn−1r
dn
n for n ≥ 0. Since by (1)

sn = unxy and sn+1 = un+1yx, one has rn = yxun and rn+1 = xyun+1, and therefore, by (3),

unrn+1 = un+1rn. (4)

12



n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

w a a b a a b a a a b a a b a a

oc(w) 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1

Table 2: The oc-sequence of the word w = aabaabaaabaabaa · · ·

Multiplying (4) on the left by u−1
n and on the right by r−1

n , one obtains

rn+1r
−1

n = u−1

n un+1. (5)

Since rn+1 = rn−1r
dn
n , one has that rn+1r

−1
n = rn−1r

dn−1
n , and therefore rn+1r

−1
n is the reversal

of a standard word. By (5), u−1
n un+1 is the reversal of a standard word.

Now, note that for n = 0, one has u0xyu1 = u1yxu0 = ad0 and (u−1

0 u1) = bad0−1. Thus,
we have the following:

Theorem 28. Let w be the standard Sturmian word of slope α, with 0 < α < 1/2, and let
[0; d0 + 1, d1, . . .], with d0 > 0, be the continued fraction expansion of α. The word ba−1w,
obtained from w by replacing the first letter a with the letter b, can be written as an infinite
product of squares of reversed standard words in the following way:

ba−1w =
∏

n≥0

(u−1

n un+1)
2,

where (un)n≥−1 is the sequence defined in (1).
In other words, one can write

w = ad0bad0−1
∏

n≥1

(u−1

n un+1)
2.

Example 29. Take the Fibonacci word. Then, u1 = ε, u2 = a, u3 = aba, u4 = abaaba,
u5 = abaababaaba, etc. So, u−1

1 u2 = a, u−1

2 u3 = ba, u−1

3 u4 = aba, u−1

4 u5 = baaba, etc.
Indeed, u−1

n un+1 is the reversal of the Fibonacci finite word fn−1. By Theorem 28, we have:

F = ab
∏

n≥1

(u−1

n un+1)
2

= ab
∏

n≥0

(f̃n)
2

= ab · (a · a)(ba · ba)(aba · aba)(baaba · baaba) · · ·

i.e., F can be obtained by concatenating ab and the squares of the reversals of the finite
Fibonacci words fn starting from n = 0.
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Note that F can also be obtained by concatenating the reversals of the finite Fibonacci
words fn starting from n = 0:

F =
∏

n≥0

f̃n

= a · ba · aba · baaba · ababaaba · · ·

and also by concatenating ab and the finite Fibonacci words fn starting from n = 0:

F = ab
∏

n≥0

fn

= ab · a · ab · aba · abaab · abaababa · · ·

For a survey on various factorizations of the Fibonacci infinite word that make use of finite
Fibonacci words the reader can see [13].

One can also characterize the oc-sequence of a standard Sturmian word w in terms of
the directive sequence of w.

Recall that the continuants of an integer sequence (an)n≥0 are defined as K [ ] = 1,
K [a0] = a0, and, for every n ≥ 1,

K [a0, . . . , an] = anK [a0, . . . , an−1] +K [a0, . . . , an−2] .

Continuants are related to continued fractions, as the n-th convergent of [a0; a1, a2, . . .] is
equal to K [a0, . . . , an] /K [a1, . . . , an].

Let w be a standard Sturmian word and (sn)n≥−1 its standard sequence. Since |s−1| =
|s0| = 1 and, for every n ≥ 1, |sn+1| = dn|sn| + |sn−1|, then one has, by definition, that for
every n ≥ 0

|sn| = K [1, d0, . . . , dn−1] .

For more details on the relationships between continuants and Sturmian words the reader
can see [7].

By Theorems 27 and 28, all prefixes up to ad0 are closed; then all prefixes from ad0b till
ad0bad0−1 are open, then closed up to ad0bad0−1 ·u−1

1 u2, open again up to ad0bad0−1 · (u−1

1 u2)
2,

and so on. Thus, the lengths of the successive runs of closed and open prefixes are: d0, d0,
|u2| − |u1|, |u2| − |u1|, |u3| − |u2|, |u3| − |u2|, etc. Since d0 = K [1, d0 − 1] and, for every
n ≥ 1,

|un+1| − |un| = |sn+1| − |sn| = (dn − 1)|sn|+ |sn−1| = K [1, d0, . . . , dn−1, dn − 1] ,

we have the following:

Corollary 30. Let w be a standard Sturmian word of slope α = [0; d0 + 1, d1, . . .] and let
kn = K [1, d0, . . . , dn−1, dn − 1] for every n ≥ 0. Then

oc(w) =
∏

n≥0

1kn0kn.
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We now give a characterization of the prefixes of a standard Sturmian words in terms of
the oc-sequence.

Theorem 31. Let oc(w) = 1k00k
′

01k10k
′

1 · · · 1kn0k′n1. Then w is a prefix of a standard Stur-
mian word if and only if kj = k′

j for every 0 ≤ j ≤ n.

We need the following lemma.

Lemma 32. Let q be a central word and {x, y} = Σ. The word (qxy)ω has infinitely many
prefixes ending in xq, and each of them is a central word of the form (qxy)np = p(yxq)n for
some n > 0 and a central word p.

Proof. Let us consider the semicentral word v = qxyq. By Proposition 25, xq has exactly
one (internal) occurrence in v. Therefore, the prefix u of v ending in xq is a complete return
to q and hence it is closed, whereas the next prefix uy of v is open since qy is not a prefix
of uy. By Theorem 27, it follows that u is central, so that by Proposition 22 there exists a
central word p (shorter than q) such that v = qxyp = pyxq.

Thus, since every occurrence of xq within (qxy)ω is contained in a factor qxyq, it follows
that any prefix of (qxy)ω ending in xq can be written as

(qxy)np = (qxy)n−1pyxq = · · · = p(yxq)n .

for some integer n > 0.

Proof of Theorem 31. The “only if” part follows from Corollary 30. Let us prove the “if”
part by induction on n.

For n = 0, the statement is easily verified. Let oc(w) = 1k00k01k10k1 · · · 1kn−10kn−11kn0kn1
with n > 0. By induction, we can suppose that the word w′ such that oc(w′) =
1k00k0 · · · 1kn−10kn−11 is a prefix of a standard Sturmian word. By Theorem 27, we can
write w′ = qxyqx, for a central word q and distinct letters x, y.

By Remark 8, any word ŵ such that oc(ŵ) = oc(w) is a complete return to its prefix u
of length

∑n

i=0
ki. Since |ŵ| = |w| = 2

∑n

i=0
ki + 1, it follows that ŵ = uξu for some letter

ξ. As |qxyqx| = |w′| = 2
∑n−1

i=0
ki + 1, we have |q| =

∑n−1

i=0
ki − 1, so that q is a prefix of

u. Now, oc(uξq) = 1k00k0 · · · 1kn−10kn−11kn, so that by Lemma 6 the word uξq has the same
period as w′ and hence is uniquely determined. This shows that ŵ = uξu = w.

Since qx is a prefix of u, uξqx is a prefix of uξu. As oc(uξqx) = 1k00k0 · · · 1kn−10kn−11kn0,
by Lemma 6 the period of uξqx is different from the one of uξq, i.e., |qxy|. This implies that
ξ = x, since otherwise yqx would be a suffix of uξqx, so that uξqx would still have period
|qxy|.

By Lemma 32, uxq is a central word that can be written as uxq = (qxy)jp = p(yxq)j for
some j > 0 and a central word p. Hence we obtain u = p(yxq)j−1y, so that

w = uxu = p(yxq)j−1yxp(yxq)j−1y .

Thus, p(yxq)j−1 = (qxy)j−1p is a central word r, and w = ryxry is a prefix of the infinite
word (ryx)ω. Therefore, by Lemma 32, w is a prefix of a central word and hence a prefix of
a standard Sturmian word. The proof is therefore complete.
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4. Algorithms for the oc-sequence

In this section, we show a simple linear-time algorithm that, given a word w over a
finite alphabet Σ, computes its sequence oc(w), and a linear-time algorithm that, given the
sequence oc(w) of a Sturmian word w, reconstructs w.

Recall that the border array B(w) of the word w is the sequence whose i-th entry is the
length of the longest border of the prefix of length i of w. For example, if w = abcaacab,
then B(w) = 00011012. We also define the array B′(w) by B′(w)[i] = maxj≤iB(w)[j].

Proposition 33. Let w be a nonempty word. Then oc(w)[1] = 1 and for every i > 0,
oc(w)[i] = B′(w)[i]−B′(w)[i− 1].

Proof. By definition of a closed word, oc(w)[i] = 1 if and only if the longest border of the
prefix of w of length i is longer than the border of any shorter prefix.

As an example, for the word w = abcaacab over the alphabet {a, b, c}, we have B′(w) =
00011112, and indeed oc(w) = 10010001.

Since the border array of a word w can be computed in linear time with respect to the
length of w [17], Proposition 33 gives a linear-time algorithm to compute oc(w).

Suppose now that w is a finite Sturmian word. By Theorem 14, it is possible to recon-
struct w from oc(w), up to isomorphisms of the alphabet Σ = {a, b}. In the following, we
describe a linear-time algorithm (see Algorithm 1 on the following page) to do this.

Without loss of generality, assume w[1] = a. In order to obtain the whole of w, it is
then sufficient to calculate the border array B, as B[i] < i and w[i] = w[B[i]] hold for
i = 2, . . . , |w|, provided that we extend w to the left by setting w[0] = b (see lines 6 and 21
in the algorithm). Now let 2 ≤ i ≤ |w|.

• If oc[i] = 1, by Proposition 33 it follows that B[i] = B[i− 1] + 1, i.e., the i-th letter is
the one that keeps the minimal period fixed (lines 11–12).

• If oc[i] = 0 and oc[i−1] = 1, let x = w[B[i−1]+1] and Σ = {x, y}. We must have w[i] =
y since otherwise w[1 . . . i] would be a complete return to vx, with v = w[1 . . .B[i−1]].
We can then recover B[i] by the standard procedure [17]; this amounts to searching
for the longest border u of v that is followed by y and then taking B[i] = |uy|, or
choosing B[i] = |ε| = 0 if no such u exists (lines 14–20).

• For the next 0s in a run, that is, when oc[i− 1] = 0, we know that v is a right special
factor of w[1 . . . i− 1], and no other factor of length |v| is right special. Therefore, up
to the next occurrence of v, there is a unique letter ξ that extends w[1 . . . i − 1] to a
Sturmian word. It is well known that extending a Sturmian word by keeping the same
period results in a Sturmian word (see for instance [8, Theorem 10]); hence, if v is not
a suffix of w[1 . . . i − 1], i.e., when B[i − 1] < |v|, the letter ξ is obtained by letting
B[i] = B[i− 1] + 1 (lines 11–12 again). When B[i− 1] = |v| and oc[i] = 0, the letter
ξ is necessarily y, so that the longest border of w[1 . . . i] is again uy or ε (line 20).
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Algorithm 1: Function ReconstructSturmianWord.

1 function ReconstructSturmianWord(oc)
2 {Input: array oc = oc[1 . . . n] of some Sturmian word

3 Output: the corresponding Sturmian word w = w[1 . . . n] starting with a}
4 begin

5 B[0] := −1 ;
6 w[0] := b ;
7 B[1] := 0 ;
8 w[1] := a ;
9 ones := 0 ;

10 for i := 2 to n do

11 if oc[i] = 1 or B[i− 1] < ones then
12 B[i] := B[i− 1] + 1 ;
13 else

14 if oc[i− 1] = 1 then

15 ones := B[i− 1] ;
16 x := w[ones + 1] ;
17 j := B[ones] ;
18 while j ≥ 0 and w[j + 1] = x do

19 j := B[j] ;
20 B[i] := j + 1 ;
21 w[i] := w[B[i]] ;
22 return w := w[1 . . . n] ;
23 end

5. Conclusion and open problems

In this paper we focused on the oc-sequence of a word and exhibited results showing
connections between this sequence and the combinatorics of the word. We mostly focused
on Sturmian words, since these are characterized by their oc-sequence. Nevertheless, we
believe that it may be interesting to also look at other classes of words. For example, in the
case of the Tribonacci word T = abacabaabacababacabaabac · · · , the sequence of the lengths
of the runs of 1 in oc(T ) is exactly the Tribonacci sequence. We observed several regularities
also in the oc-sequence of the Thue-Morse word, as well as in that of the regular paperfolding
word.

Another interesting problem is to understand, given a binary array A, whether there
exists a word w such that oc(w) = A. Some of the results in this paper provide necessary
conditions, but the problem in general remains open.
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