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PRODUCTS OF BOREL FIXED IDEALS OF MAXIMAL MINORS

WINFRIED BRUNS AND ALDO CONCA

ABSTRACT. We study a large family of products of Borel fixed ideals ofinzal minors.
We compute their initial ideals and primary decompositjcarsd show that they have
linear free resolutions. The main tools are an extensionraightening law and a very
surprising primary decomposition formula. We study alse tomological properties
of associated multi-Rees algebra which are shown to be Cbtamaulay, Koszul and
defined by a Grobner basis of quadrics.

1. INTRODUCTION

Let K be a field andX = (x;j) be them x n matrix whose entries are the indetermi-
nates of the polynomial rin® = K[xj; : 1 <i<m, 1< j <nj, and assume than < n.
The ideald;(X), generated by theminors ofX, and their varieties are classical objects
of commutative algebra, representation theory and algegeometry. They are clearly
invariant under the natural action of G(K) x GL(K) onR. Their arithmetical and ho-
mological properties are well-understood as well as theil@er bases and initial ideals
with respect to diagonal (or antidiagonal) monomial ordees, monomial orders under
which the initial monomial of a minor is the product over iiagbnal (or antidiagonal);
see our survey[7]. Bruns and Vetter [12] and Miller and Stigten[24] are comprehensive
treatments.

Among the ideals of minors the best-behaved is undoubtddlyideal of maximal
minors, namely the idedl,(X). It has the following important features:

Theorem 1.1.

(1) The powers ofh(X) have a linear resolution.

(2) They are primary and integrally closed.

(3) Computing initial ideals commutes with taking powers fagdinal or anti-diagonal
monomial ordersin(Im(X)¥) = in(Im(X))¥ for all k, and the natural generators
of Im(X)¥ form a Gidbner basis.

(4) The Rees algebra of,(X) is Koszul, Cohen-Macaulay and normal.

In the theorem and throughout this article “resolution’hstaifor “minimal graded free
resolution”. The grading is always the standard gradinghemblynomial ring.

Concerning the statements in (1), one knows ERéX) itself is resolved by the Eagon-
Northcott complex and the resolution for the powers is dbsdrby Akin, Buchsbaum
and Weyman in[2]. References for assertions (2), (3) andgd e found in [6],17],[[9],
[12], and Eisenbud and Huneke [16]. Note also that the maximrzors form a universal
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Grobner basis (i.e., a Grobner basis with respect to avenyomial order) as proved by
Bernstein, Sturmfels and Zelevinsky in [4], [26] and gefizeal by Conca, De Negri,
Gorla [14]. But form> 2 andk > 1 there are monomial orde¥s such that in (Im(X)¥)

is strictly larger than ifiy(X)). In other words, the natural generatord gfX )k do not
form a universal Grobner basis. This is related to the ta&t the maximal minors do not
form a universal Sagbi basis for the coordinate ring of thesSmannian, as observed, for
example, by Speyer and Sturmfels|[25, 5.6].

For 1<t < mthe ideall;(X) does not have a linear resolution and its powers are not
primary. The primary decomposition of the powersligK) has been computed by De
Concini, Eisenbud and Procesi [18] andlin|[12] . The CastinouMumford regularity of
l;(X) is computed by Bruns and Herzag [10]. Furthermore, the ftionaf initial ideals
does not commute with taking powers, i)k has a Grobner basis in degrideas the
results in[[6] show.

In our joint work with Berget([3], Theoreimn 1.1 was extendedhtbitrary products of
the ideald;(X;) whereX; is the submatrix of the firdtrows ofX. We proved the following
results:

Theorem 1.2.Letl <ty,...,tw <mand I= I, (X,) - - - I, (%, )-

(1) Then | has a linear resolution.

(2) 1 is integrally closed and it has a primary decomposition s@omponents are
powers of ideals;[X;) for various values of t.

(3) in(l) =in(ly; (X)) - - -in(l,, (X, )) and the natural generators of | form a Gloner
basis with respect to a diagonal or anti-diagonal monomialen.

(4) The multi-Rees algebra associatedt04; ), . . ., Im(Xm) is Koszul, Cohen-Macaulay
and normal.

Note that the ideal$(X;) are fixed by the natural action of the subgrdBp(K) x
GLn(K) of GLn(K) x GLn(K), whereBy(K) denotes the subgroup of lower triangular
matrices. For use below we denote the subgroup of uppegtrianmatrices in Gh(K)
by B, (K) .

Ideals of minors that are invariant under the Borel gr@4iK) x B;,(K) have been
introduced and studied by Fulton in [19]. They come up in tiuelg of singularities of
various kinds of Schubert subvarieties of the Grassmasraad flag varieties. Those
that arise as Borel orbit closures of (partial) permutatioatrices are called Schubert
determinantal ideals by Knutson and Miller in the their kéalpaper [23] where they
describe the associated Grobner bases, as well as Schoté€tothendieck polynomials.

The goal of this paper is to extend the results of TheolemieAd{I.2 to a class of
ideals that are fixed by the Borel group. Depending on whethertakes upper or lower
triangular matrices on the left or on the right, one ends uh different “orientations”, in
the sense that f@,(K) x By,(K) one gets ideals of minors that flock the northwest corner
of the matrix while forB,(K) x By (K) the ideals of minors flock the northeast corner, and
so on. Of course, there is no real difference between thecfmses, but because we prefer
to work with diagonal monomial orders, we will choose thetheast orientation. Clearly,
all the results we prove can be formulated in terms of therdtiree orientations as well.
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Let us define thenortheast idealst(a) of maximal minorsl(a) is generated by the
t-minors of thet x (n—a+ 1) northeast submatrix

X(a)=(xj:1<i<t,a<j<n).
The main results can be summed up as follows:

Theorem 1.3.Let k,(a1),...,lt,(aw) be northeast ideals of maximal minors, and let | be
their product. Then

(1) I has a linear resolution.

(2) in(l) =in(l,(a1)) - - -in(ly, (aw)), and the natural generators of | form a Gloner
basis with respect to a diagonal monomial order.

(3) I is integrally closed, and it has a primary decompositiorosé components are
powers of ideals;(a) for various values of t and a.

(4) The multi-Rees algebra associated to the family of ideéds With t,a > 0 and
t+a<n+1is Koszul, Cohen-Macaulay and normal.

Statements (1), (3) and (4) hold analogously for the initigals, in particular the
primary components of {th) can be taken to be powers of ideals of variables.

One could consider a more general definition of northeastisdef maximal minors,
allowing also more rows than columns. Unfortunately theiitsof Theoreni 113 do not
hold in this generality. Lel/ (a) denote the ideal of theminors in the submatrix formed
by the last columns and firsa rows (witha > t). For example, one can check in x3
matrix that the product of (Borel-fixed ideals of maximal wis) [1(2)12(1)17(2)15(3)
does not have a linear resolution.

The proofs of the results of [3] are based on the straightelaw since the ideals
considered in[[3] hav&-bases of standard bitableaux. This is no longer true for the
idealsli(a) in general, let alone for products of such ideals. Therefardad to develop
a more general notion of “normal form” that we calbrtheast canonical Using this
type of normal form we will prove the crucial description bktinitial ideal ir(l) as an
intersection of powers of the idealsif(a)).

The northeast canonical form allows us to prove that the irRdes algebra defined
by all idealsl;(a) is a normal domain and is defined by a Grobner basis of quadAc
theorem of Bluml[[5] then implies that all our ideals have éinfee resolutions. The same
statements have counterparts for the initial ideals anid tdti-Rees algebra as well.

We conclude the paper with a discussion of the Gorensteipepty of certain multi-
graded Rees rings and the factoriality of certain fiber rithgd come up in connection
with the northeast ideals. In particular, we prove that thetigraded Rees algebra asso-
ciated to a strictly ascending chain of idedsc J,--- C Jy is Gorenstein, provided each
Ji belongs to the family of thg(a) and has height

The results of this paper originated from extensive contprna with the systems Co-
CoA [1], Macaulay 2[[211], Normaliz [11] and Singular [17].

2. MINORS, DIAGONALS AND THE STRAIGHTENING LAW

LetK be a field andX = (xj;) anm x n matrix of indeterminates. The ideals we want
to investigate live in
R=K[xj:1<i<m, 1<j<n].
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Let X (a) be the submatrix aX that consists of the entrieg with 1 <i <tanda< j <n.
We call it anortheast submatrigince it sits in the right upper corner ¥t The ideal

li(a) = Ik (X (a))
is called anortheast ideal of maximal mingrsr anortheast ideafor short. In the fol-
lowing “northeast” will be abbreviated by “NE”. Sindga) =0 ift+a > n+1, we will
always assume that-a < n+1.

We fix a monomial order oR that fits the NE ideals very well: the lexicographic order
>lex (Or simply >) in which xq; is the largest indeterminate, followed by the elements
in the first row ofX, then the elements in the second row from left to right, etorévi
formally:

Xij >lexXov If I<u or i=uandj<v.

The minor

o =detxp, :i,j=1,...,1), by <. <hy,
is denoted byb; ...bt]. Theshapgd| is the numbet of rows. The initial monomial 0d
is the diagonal

(b]_b[) = X1y ** Rthy -

Therefore< is adiagonalmonomial order. All our theorems remain valid for an arbitra
diagonal monomial ordex since we will see that for our idedlshe initial ideals i, (1)
are generated by initial monomials of products of minorser€fore in., (1) C in<(l),
and the inclusion implies equality. In view of this obserwatwe will suppress the refer-
ence to the monomial order in denoting initidéals always assuming that the monomial
order is diagonal. However, when we compare simgtgnomialsthe lexicographic order
introduced above will be used.

In the straightening law, Theordm 2.2, we need a partialrdatehe minors and also
for their initial monomials:

[blb[] Sstr[C]_...Cu] < <b1b[> Sstr <C:|_Cu>
<= t>uandb <c,i=1,...,u

It is easy to see that the minors as well as their initial moiatsyiorm a lattice with the
meet and join operations defined as followd: 3f u,

[b1...b¢]V]cr...cy) =[c1...cy) V[b1...b] = [max(by,cy),...,maxby,Cy)l,
[b1...b)AfCt...cu] =[C1...Cu)A[b1...bx] = [min(by,c1),...,min(by,cy), bri1,. .., bx].
The meet and join of two diagonals are defined in the same wast:r¢place- - -] by
( A>product

A=&---0p, G=Ibi1...by], 1 =1,....p,
of minors is called @ableau Theshapeof A is the p-tuple |A| = (ty,...,tp), provided

t; > --- > tp, a condition that does not restrict us in any way.
If

01 <str--- <str Op
then we say thak is astandard tableauln the context of determinantal ideals one usually
has to deal with bitableaux, but in this paper the row indexesalways fixed so that we
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only need to take care of the column indices. Since the ptadines not determine the
order of its factors, one should distinguish the sequenceimdrs from the product if one
wants to be formally correct; as usually, we tacitly assunat such products come with
an order of their factors.

Proposition 2.1. LetA be a tableau. Then there exists a unique standard takiesuch
thatin(A) = in(X). FurthermoreA andX have the same shape.

This is easy to see: A = &;--- Jp is not standard, then there exisand j such that
& anddj are not comparable. Since(#d;) = in((& A 9j)(& V d;)) we can replace J;
by an ordered pair of factors, and after finitely many suchrajpens we reach a standard
tableau. It is evidently unique.

That the row indices are not only fixed, but always given by. 1t for a t-minor
simplifies thestraightening law

Theorem 2.2.
(1) Letd = [b1...bx] and o = [c; ... cy] be minors. Then there exist uniquely deter-
mined minorgy;, ; and coefficientd; e K,i=1,...,q, 9> 0, such that
00 =(0N0)(0VO)+Anili+ -+ AqNgdys
Ni<srtON0, dVO<sw(,i=1,...,q,
in(do) =in((dA0)(dVa)) >in(nidy) > --- >in(Nqly)-
(2) For every tableaw\ there exist standard tablea . .., % of the same shape as
A and uniquely determined coefficieits . .., Aq, g > 0, such that
A=DNog+A1Z1+---+ApZp,  IN(A) =in(Zp) > in(Z1) > --- >in(Xg).
Note that theK-algebra generated by theminors of the first-rows fort = 1,...,mis

the coordinate of the flag variety. Hence Theofen 2.2 can deatal from([24, 14.11],
and can also be derived from [12, (11.3) and (11.4)], takitig account Propositidn 2.1.

3. INITIAL IDEALS AND PRIMARY DECOMPOSITION

The main objects of this paper are products of id&éés. We will access them via the

initial ideals

J(a) = in(l(a)).
Our first goal is to determine the primary decompositionsumhsproducts along with
their initial ideals. For the powers of a single id&&h) the answer is well-known:

Theorem 3.1.

(1) The powers of the prime ideal&) are primary. In other words, the ordinary and
the symbolic powers of(l) coincide.

(2) X (a) is generated by the initial monomials(d) of the t-minors ofi(a).

(3) in(ly(a)*) = J(a) for all k > 1.

See [12, (9.18)] for the first statement and/[13] for the remmg statements. The
results just quoted are formulated far= 1, but they immediately extend to geneeal
since polynomial extensions of the ground ring are harmless
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The primary decompositions of the powersJgia) have been determined inl[8, Prop.
7.2]. We specify the technical details only as far as theyhaezled in this article:

Theorem 3.2.The ideal d(a) is radical. Itis the intersection.Ja) = ; B of prime ideals
P that are generated byn —a—t +2) indeterminates, and:(®)% = " P¥ for all k. In
particular, J(a)k has no embedded primes and it is integrally closed.

For the precise description of the set of prime iddlappearing in Theorein 3.2 we
refer the reader to [8].
Now we introduce the main players formally:

Definition 3.3. A NE-patternis a finite sequencé(tl, a),- ., (tw, aW)) of pairs of positive
natural numbers with4+a <n+1fori =1,...,wand which is ordered according to the
following rule: if 1 <i < j <w, then

g <aj and t>tif a =a;.
Let S= ((tg,a1), ..., (tw,aw)) be a NE-pattern. Apure NE-tableau of pattern B a
product of minors
A=0;---dy, suchtha®)isat-minorofX; (&), i=1,...,w

An NE-tableaus a producMA of a monomiaM in the indeterminates; and a pure
NE-tablealA.

The NEideal of patternSis the ideal generated by all (pure) NE-tableaux of patgrn
In other words, it is the ideal

Is= Ity (@) o, (aw).
Furthermore we set
Js= in(|5).

Solgis simply a product of ideals of tyde(a) where, by convention, the factors have
been ordered according to the rule specified ih 3.3.
ForS= ((t,a1),..., (tw,aw)) and a pairu, b) we set

ewn(S) = [{i:b<ag andu <t}|.
Note thatb < g andu <t; is indeed equivalent th (a;) C ly(b).
Theorem 3.4.Let S= ((t1,a1), ..., (tw,aw)) be a NE-pattern. Then the following hold:

Js=Jy(a1) - J(aw); (3.1)

Js=(")du(b)®(; (3.2)
u,b

ls=(lu(b)®(. (3.3)
u,b

Equation(3.3) gives a primary decomposition of. | The ideals 4 and % are integrally
closed.
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As soon as the equation (8.3) will have been proved, it ingeslds a primary decom-
position oflg since all the ideal$,(b)€ are primary, being powers of ideals of maximal
minors. The intersection in (3.3) is almost always redutdAn irredundant decompo-
sition will be described in Propositidn_3.9. Together withebren{ 3.2, equation (3.2)
gives a primary decomposition d§. The idealds andJs are integrally closed because
the ideals appearing in their primary decomposition arelmjlio powers of prime ideals
and therefore integrally closed.

The special case of Theorém13.4 in whichaalare equal has been proved|in [3, Corol-
lary 2.3] and[[3, Theorem 3.3]. It will be used in the proofloétheorem. (Note however
that in [3] our idealsis denoted byls.)

Proof of Theorerh 314By the definition ofeyp(S) we have
N RMORSE
u,b

This implies the chain of inclusions

.lﬂl‘]ti(ai) CJsC in<m|u<b)eub(5)) C min<|u<b)eub(s)) _ mJu<b)eub(S)
1= u,b u,b

u,b
where we have used Theoréml3.1 for the equality of the twdmight terms. If

Ju(B)S C [T (& 3.4
Db (b) Cﬂl(&)) (3.4)

as well, then we have equality throughout, implyihg (3.19 §.2). Then[(3.3) follows
since two ideals with the same initial ideal must coinciderié is contained in the other.
Therefore[(3.4) is the crucial inclusion.

We prove it by induction omv. Let M be a monomial i, ,Ju(b)®S. ThenM is
contained inJ, (aw). This ideal is generated by all diagonafs. .. ft,) with f; > ay by
Theoreni 3.1(2). Among all these diagonals we chooskettieographically smallesand
callitF.

SetT = ((ty,a1), ..., (tw—1,8w-1)). It is enough to show thal /F € N, Ju(b)%s(T),
and for this containment we must shaty'F € J,(b)®0(T) for all u andb. Evidently

eun(S), b<aw, u>ty,
eun(T) = q ew(S) -1, b<ay, uty,
0, else.

If &,b(T) =0, there is nothing to show. i < ay, u > ty, we havea, ,(S) > eup(S) +1
becausd, (ay) contributes ta, p(S), but not tog,,(S). This observation is important for
the application of Lemm@a_3.5 that covers this case. The basay, u < t, is Lemma
B.6. O

Lemma 3.5. Let ke N. Let b<a and u>t. Let Me Jy(b)¥nk(b)kt1nJ(a) be a
monomial and let F be the lexicographic smallest diagondkafyth t that divides M.
Then M/F € Jy(b).
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Proof. We can apply([3, Theorem 3.3] tiy(b)n J(b)kt1: M is divided by a product
D1---DgE whereDy,...,Dy are diagonals of length starting in columnb or further
right, andE is such a diagonal of length Even more:Jy(b)X N J(b)**! is generated
by the initial monomials of the standard tableaux,itb) N l¢(b)<* (Propositio Z1).
Therefore we can assume that <t - - - <str Di <str E.

The greatest common divisor & and D1 - --D¢E must divideE—if not we could
replaceF by F vV E and obtain a lexicographically smaller diagonal of lertgthherefore
D;---Dg dividesM /F. O

Lemma 3.6. Let ke N. Let b< a and u<t. Let M Jy(b)¥n J(a) be a monomial
and let F be the lexicographic smallest diagonal of lengthett divides M. Then WF €
Ju(b)k 1,

Proof. By Theoreni 3.11 here existdiagonals, . .., Dy such of lengthu such thaD; - - - Dy
dividesM andD; <g --- <str Dx. Division by F can “destroy” more than one of these
diagonals but, as we will see, the fragments can be joineattoK — 1 diagonals of length
u as desired.

We explain the argument first by an examphd:= X;1X1oX23%24X34 € Jo(1)%2 N Ja(2).
The lexicographically smallest diagonal of length 3284). It intersects both 2-diagonals
(13) and(24), but we can produce the new 2-diagofitd) from the two fragments, and
are done in this casé € J»(1)J3(2).

Letry <--- <rpbethe rows in whiclF intersects one of the;, and choosg; maximal
such thatF intersectDg in row ri. In view of the order of thd®; and by the choice of
F as the lexicographically smallesdiagonal dividingM, we must havey;. 1 < g; for
i=1....,p—1.

Every time that~ “jumps” to another diagonal, i.e., di > gi+1, we concatenate the
entriesinrows 1..,rj of Dy, with the entries in rows; +1,...,uof Dy, thus producing
a new diagonal. (Note th& cannot return t@®g_, in rows < rj and has not touched,
in the other rows.) Only one-diagonal is lost this way. 0J

Our next goal is to identify the irredundant components esghmary decomposition
of Is described in Theorem 3.4. To this end we prove the followatd.

Lemma 3.7. Let S be a NE-pattern and let D be a subsequence of S. S&\D. Then
|SI Ip =I7.

Proof. By induction on the cardinality dD, we may assume right awdyis a singleton.
Using Theoreni 314 the desired equality boils down to the fotfeatt for everyk > 0 one
hasly(b)*: I(a) = lIy(b)* L if (b,u) < (t,a), andly(b)¥: It(a) = Iy(b)k otherwise. Both
equalities follow from the fact thdg,(b) has primary powers. OJ

Lemma 3.8. Let (t,a),(u,b) € N2 such thatt< u, a< b and u+b <n-+1. Then
lt(a)lu(b) C lt(b)ly(a). Actually, t(a) is an associated prime to/R(b)ly(a).

Proof. For the inclusionit(a)ly(b) C It(b)ly(a), in view of Theorem_3J4 it is enough to
show that,¢(S) > ec(T) for every(v,c) whereS= {(t,a), (u,b)} andT = {(t,b), (u,a)},
and this is easy.

The inclusion just proved shows one inclusion of the equdlit(b)ly(a)) : lu(b)

lt(a). The other follows from the fact th&t(a) is prime and containk(b)l,(a) O
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Now we are ready to prove:

Proposition 3.9. Given S, let Y be the set of the eleméhta) € N2, (t,a) ¢ S, such that
there existgu,b) € N2 for which (t,b), (u,a) € S and t< u, a< b. Then we have the
following primary decomposition:

ls= m |V(C)&/c(s)
(v,c)eSUY

which is irredundant provided all the points, b) above can be taken so thati < n+1.
In particular, for fixed S, the given primary decompositidioge is irredundant if n is
sufficiently large, and in this case all powegshave the same associated prime ideals as

ls.

Proof. The equality holds because of Theofleni 3.4 and becagge)fZ SUY thene,(S)
is either equal t@,1¢(S) or eyc1(S).

It remains to show that the decomposition is irredundantutige extra assumption.
We can equivalently prove that every primaéa) with (t,a) € SUY is associated t&/Is.
For (t,a) € Sthis follows from a general fact: for prime ided?s, ..., P # 0 in a noether-
ian domairA eachR, is associated t8/1, | =Py - - - B.. This follows easily by localization;
one only needs thaAp # O for all i.

Now let(t,a) € Y and(t,b), (u,a) € Sand such that< uanda < bandu+b <n-+1.
SetD = S\ {(t,b),(u,a)}. Then by[3.¥ we havks: Ip = li(b)lu(a), and by 3.8 (a) is
associated t&®/l¢(b)Iy(a). It follows thatl;(a) is associated t&/Is as well.

) For the last statement we note that the etoes not change if we pass fro@to
IS O

Let us illustrate Theorein 3.4 and Proposifion 3.9 by two exlas

Example 3.10.Letn > 5 andS= {(3,1),(3,3),(2,3),(1,4)} so that
ls=13(1)I3(3)12(3)11(4).

The ideal and the values,(S) are given by the following tables:

. @|3|®][1][o]o0
. @|2|[2]] o |o]o0
. . [2]]1][1]] o o]0

The boxed and circled values are the essential ones andiggvioithe irredundant com-
ponents. The boxed correspond to elementand the circled to elements Yh Hence
a irredundant primary decompositionlgfis:

Is=11(4) N11(3)3N12(3)2N13(3) Nl1(1)*N1x(1)3N13(1)2

Example 3.11.If the criterion in Proposition 319 does not applky(a) may nevertheless
be associated tBB/Is. We chooser = 4.

First, letS={(3,1),(2,2),(1,3)}. Then(1,1) € Y and the correspondingu,b)” is
(3,3) which does not satisfy+ b < n-+ 1. Unexpectediy;(1) is associated tbs.

Second, leS= {(3,1),(1,3)}. Again(1,1) €Y, and it has the same corresponding
(u,b). But in this case1(1) is not associated tig.
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4. THE NORTHEAST STRAIGHTENING LAW

It is now crucial to have a “normal form” for elementslgf For this purpose we select
a K-basis that involves the natural system of generators, tedldleauxA of patternS.
It has already become apparent in the proof of Lernmia 3.6 teatamnot simply require
thatA is a standard tableau, and the following exampleSer ((1,2), (3,3))shows this
explicitly:

14234 = [134[24] - [124]34).

The difficulty is that the transformations occurring in th@wlard straightening procedure
do not respect the bounds of the NE-ideals in general. Howiaey do so in an important
special case to which we will come back.

Let MA be a NE-tableau. A monomiét;,...,c) is called adiagonal of type (t,a) in
MAif c; > aand(cy,...,c) | in(MA) = Min(A).

Definition 4.1. Let S= ((t1,a1),...,(tw,aw)) be a NE-pattern. A NE-tableaMA of
patternS, A = &, - - - &w, is S-canonicalf in (9j) is the lexicographically smallest diagonal
of type(t;j,a;j) in the NE-tableaM d; - - - §; of pattern((ty, ay, ..., (tj,a;)) for j=1,...,w.

As an example we consider the mononibd= X11X12X13X23X24X05X35, graphically sym-
bolized by the following table:

[ ]
It depends on the patteBwhich S-canonical tableau had as its initial monomial.
(1) ForS=((2,1),(3,2),(2,2)) the canonical tableau with initial monomisll is

[13][245]35].

(2) Fors=((2,1),(2,2),(3,3)) itis
[13][25][345.

(3) ForsS=((2,1),(2,2),(2,3)) itis
X35(13|[24][39).

Note that different canonical NE-tableaux of the same patieeK-linearly indepen-
dent since they have different initial monomials: if thetpat S is fixed, then anS
canonical tableau is uniquely determined by its initial mmmal. In fact, the diagonals
that are split off successively are uniquely determined, @ach diagonal belongs to a
unique minor.

We can now formulate thRE-straightening law

Theorem 4.2. Let S= ((t1,a1),..., (tw,aw)) be a NE-pattern and  Is. then there exist
uniquely determined S-canonical NE-tableauXMi = 0,..., p, and coefficientd; € K
such that
X = AoMol o +A1M1l 1+ -+ ApMplp
and
in(x) =in(Molp) >in(M1l1) > --- > in(Mplp).
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Proof. Let Ag be the initial coefficient ok. It is enough to show the existenceMpl o
since iNx— AoMol o) < in(x), and we can apply induction.

Clearly in(x) € in(ls). The factorization of the monomial(r) constructed recursively
in the proof of Theorern 314 is exactly the factorization tiges it the structur&lpin(lo)
for an S-canonical NE-tableau of pattef it starts by extracting the lexicographically
smallest diagondD,, of lengtht,, from in(x), and applies the same procedure tx)fiDy,
recursively. As pointed out above, this factorization bg® to a uniques-canonical
tableau. O

We call Theoreri 4]2 a straightening law, since it generslilze “ordinary” straighten-
ing law to some extent:

Theorem 4.3. Suppose the NE-patternﬁ((tl,al),...,(tW, aw)) satisfies the conditioncH
t >t fori=1,...,w—1, and letA be pure NE-tableau of pattern S. Then the repre-
sentation

A=DNo+A1Z1+4---+ApZp
of Theorenmh 2]2(2) is the S-canonical representation.

Proof. The only question that could arise is whether the represents S-canonical. It
is successively obtained frofnby applying the straightening law to airs of minors:

60 == (5/\ a)(é\/o-) +Alr’lZ1+ e +)\q’7qua nl Sstr 5/\0, a Vo Sstr Zi, I - 17 .. '7q7
asin Theorern 212(1). Therefore itis enough to consideraseve= 2, S= ((t, a), (u,b)),
a<bt>ud=Id;...dt], 0 =[s...5). The smallest column index is mih,s;) > a.
So all minors¢; belong toli(a). The minorsn; satisfy the inequalitieg); >s & and
Ni >si- 0. Therefore they belong tg(b). O

For later use we single out two special cases of Theérem 4.2.
(1) Ford € li(a), |d] =t, o € ly(b), |o| = u, there is an equation
with A1,...,Ap € K and canonical NE-tableauxoy, . . . 5p0p, of pattern((t.a), (u,b))
and indo) =in(&yop) > iN(&101) +...IN(8p0p).
(2) With the same notation fay, for every indeterminatm,, there is an equation
XuvO = Xugvp 00 + A1 Xupv, 01+ - + Xupvp dp (4.2)
With Ag,...,Ap € K, Xygv 00, - - -, Xupv, Op Canonical of patter(t,a) and inx,d) =
in(XUoVoéfJ) > in(XUlVlél) > in(XUpr5p>-
Equation [(4.2) is nothing but a linear syzygy tefminors (unless it is a tautology).
These syzygies have sneaked in through the use of the thebagnmet-minors form a
Grobner basis of(a).

We complement the discussion of canonical decompositigrshbwing that a non-
canonical tableau can be recognized by comparing the taptorwise.

Lemma 4.4. Let S be a NE-pattern andM A = 4 - - - &y, be a NE-tableau of pattern S.
If MA is not S-canonical, then at least one of the following twaeesasccurs:
(1) there exist a visorix of M and an index k such thaf;¥ is not NE-canonical of
pattern(ty, ax);
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(2) there exist indices g and k,<gk, such thadyd is not((tq, aq), (t, &) )-canonical.

Proof. We choosek maximal with the property that {id) is not the lexicographically
smallestty, ay)-diagonal dividing ifMd; ... &). Sett =ty, d = [d;...d;] and let(e; ... &)
be the lexicographically smallest such diagonal. Then sepomaximal with the property
thatd, < e. Sincexy, dividesinMé; - -- &), at least one of the following two cases must
hold:

(1) Xre, | M;

(2) Xre, | in(&q) for someq < k.
In the first casexe, & is not (ty, a)-canonical, and in the second ca®@ fits case (2)
of the lemma:(d;...d_16dr11...&) is lexicographically smaller thafd; ...d;) and
divides inXre, &) or in(dyd), respectively. O

Lemmal4.4 and the equatioris (4.1) ahdl(4.2) indicate thaGt@nonical represen-
tation of an elemenk € Is can be obtained by the successive application of quadratic
relations. This is indeed true and will be formalized in tletrsection.

5. THE MULTI-REES ALGEBRA

The natural object for the simultaneous study of the idgalsthe multi-Rees algebra
Z=Rh(aTa:1<t,a<n t+a<n+1]
where theli, are new indeterminates It is a subalgebra of the polynonmgl r
RMa:1<t,a<n, t+a<n+1],
and the products of the idedlga) appear as the coefficient ideals of the monomials in

the indeterminateSia. These monomials are parametrized by the patt&mi®r S=
((t,a1),.. ., (tw, aw)) We set

Then
% = PIsT®.
S

The monomial order oRis extended tiR[Tia: 1 <a<n, 1<t+a<n+1]inan arbitrary
way. The extension will be denoted kyey as well.

Alongside with# we consider the multi-Rees algeb#a, defined by the initial ideals
J(a):

@ Zin=RX(@)Ta:1<a<n l<t+a<n+1].
As always in this context, there is a second “ initial” objt#wt comes into play, namely
the initial subalgebra of7:

in(%) = P IsT>.
s

(Recall thatJs = in(ls) by definition.) From Theorern 3.4 one can easily derive a first
structural result o%? and %,.
Theorem 5.1.

(1) With respect to any extension of the monomial orderon RlgRL<a<n, 1<
t+a<n-+1] one hasn(Z) = Zin.
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(2) # andZj, are normal Cohen-Macaulay domains.

Proof. The equation i6t%Z) = %y is just equation[(3]1) read simultaneously for all NE-
patternsS.

The normality of# and %;, follows from the fact that all the idealls; and Js are
integrally closed by Theorem 3.4. We observe tiat is a normal monoid domain, and
therefore Cohen-Macaulay by Hochster's theorem. Finakyuse the transfer of the
Cohen-Macaulay property from (%) = Zi, to %, see[15]. O

In order to gain insight into the minimal free resolutionstioé idealsls over R we
must understang? as the residue class ring of a polynomial ring oierTo this end we
introduce a variable,s for every bounda and everyt-minord € l;(a). Let

" =Rzgs |0 =t, t+a<n+1, d€li(a).
Viewed as &K-algebra,.” needs also the indeterminates 1 <i<m, 1< j<n. We
want to study the surjectiie-algebra homomorphism

¢S =X, D(zy5) = 0Ty, PIR=Iid.
We introduce an auxiliary monomial order ofi by first ordering the indeterminates. The
Xij are ordered as iR. Next we set

Xij > Zas
foralli,j,a o, and
Zy5 > Zpg = a<b ora=bandind) >exin(o).

This order of the indeterminates is extended tortheerselexicographic ordeK eyex it
induces on the monomials iff.

Now we define the main monomial order ofi as follows. For monomialg; andZ,
in Xj andz,s we set

Z1<7Z, <= In(®(Z1)) <jexin(P(Zy)) or
in(P(Zy)) = in(P(Z2)) andZy <reviex Z2-
In other words, we pull the monomial order ghback to.” and then use our auxiliary
order to separate monomials with the same image uirder

Theorem 5.2.

(1) With respect to the monomial order the ideal.# = Ker® has a Gbbner basis
of quadrics, given by the equatio@1)and (4.2) (interpreted as elements ix).

(2) In particular Z is a Koszul algebra.

(3) All the ideals § have linear minimal free resolutions over R.

Proof. Equation[(4.11) defines the polynomial

Za5Zb0 — (ZagyZooy + MZas, Zooy + -+ + AnZas, Zoy,)
in .#. By the definition of< we first observe that onlg,5zns Or Z,5,Z0g, Can be the initial
monomial. But then the auxiliary reverse lexicographicrom@kesz,sz,, the leading

monomial. Similarly one sees thaf,z,s is the leading monomial of the polynomial in
& defined by[(4.R2).
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Let ¢ be the ideal generated by all monomidls- Mz, s, - - - Z,,5,» M € R, for which
M; - - - & is not canonical of patter®= ((|d1,a1), ..., (|41],a1)). It follows from Lemma
4.4 thatMMz, 5, - - - z,,5, then contains a factczaiazjéj ora factorxu\,zajc\;j that is not
mapped to a canonical tableau of the associated pattermnimection wit the argument
above, this observation implies that C in-(.7).

On the other hand the set of monomials that do not belongZtéorm a K-basis of
S| I =% by TheoreniL4.2. This is only possible j¥ = in(.%).

Since.# has a Grobner basis of quadratic polynomiadss- .7 /.7 is a Koszul algebra.
By (the multigraded version of) a theorem of Blum [5] the hni¢y of the resolutions
follows from the Koszul property of the multi-Rees algebra. O

In addition to®, we have a surjectivB-algebra homomorphism
Y. 9 = Zin, LIJ(Za75> = in(6)Ta‘5|, CD|R: id.

Theorem 5.3.

(1) With respect to the monomial orderthe idealZ = KerW has a Gbbner basis of
quadrics, given by the binomials resulting from the equagia(do) = in(d0p)

in (4.1)andin(xud) = iN(Xy,,)in(4.2) (interpreted as elements iw).
(2) In particular Zj, is a Koszul algebra.
(3) All the ideals ¢ have linear minimal free resolutions over R.

Proof. The first statement is proved completely analogous the fagment in Theorem
[5.2, and the second and third follow from it in the same wayaJ heoreni 5.2. O

6. SOME GORENSTEINREES RINGS AND SOME FACTORIAL FIBER RINGS

In this section we will consider multi-Rees algebras defimgedome of the ideals(a).

More generally, ifi1,...,1p are ideals irR, we let
R(ly,...,Ip) =R[iTizi=1,...,p]| CR[Ty,..., Ty
denote the multi-Rees algebra definedlfy..,l;. Note that we could as well have de-

fined it by taking ordinary Rees algebras successivelygsinc
R(l1,...,1p) =B(1;B) where B=R(ly,...,Ip_1).

Some of the Rees rings defined by NE-ideals of minors are Gtaien This is not
true in general for the “total” multi-Rees rings of the lastson: the first potential non-
Gorenstein example is ax23-matrix, and the corresponding total multi-Rees ring is in
deed not Gorenstein. Nevertheless, the multi-Rees rinfysedieby certain selections of
the ideald;(a) are Gorenstein, as we will see in the following.

The ideald;(a) form a poset under inclusion. The minimal elements are theipal
idealsl;(n—t+1) and the maximal elementig(1), the ideal generated by the indetermi-
nates in the first row of our matriX. The next theorem states the Gorenstein property of
the multi-Rees algebras defined by an unrefinable ascendaig i our poset that starts
from a minimal element or a cover of a minimal element.

Theorem 6.1.Let k, (a1) C l,(a2) C -+ C I (ap) such thatheightl, (a1) = 1 or 2 and
heightl, (a;) = 1+ heightly_,(aj_1) fori =2,..., p. Equivalently,
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()ag=n—-tjorai=n—t+1;

2 ti=t_janda=a_1—lorti=ti_1—landa=a_1fori=2,...,p.
Then the multi-Rees algebrg R (ay),. .., It,(ap)) is Gorenstein and normal with divisor
class grougZP~1 or ZP, depending on whethera=n—t; ora; = n—t+1.

Proof. Note that the smallest ideal is a principal ideabhif=n—t; + 1. In this case
R(ly,(a1), .-, It,(a,)) is just (isomorphic to) a polynomial ring ovB( I, (az), . .., It (ap)).
anda, = n—t,. Since polynomial extensions do not affect the Gorensteopgrty, we
can assume thal = n—tj.

Let Z = R(ly (a1), -, ,(@p)), Z' = R(ly(a1), ..., I, 1 (ap-1)), andQ = Iy, (ap) Z'.
ThenZ is just the ordinary Rees algebra of the id@abf %', and by induction om it is
enough to understand the extensiow&ifto #.

By the next lemmagqQ is a prime ideal of height 2 such th@t@b is generated by 2
elements. MoreoverZ’ and % are normal domains since they are retracts of the total
multi-Rees algebra of the last section (or by Theofem 3.4)iddd these conditions a
theorem of Herzog and Vasconcelos|[22, Theorem(c), p. 188)s that the canonical
module ofZ has the same divisor class as the canonical modul& ¢éxtended ta%7):

cl(wy) = cl(wy) + (htQ—2)cl(QZ) = cl(w,) € CI(Z) = CI(Z') ® Z.

By induction%’ is Gorenstein, ¢k, ) = 0 . ThereforeZ is Gorenstein as well, and we
are done. The assertion on the divisor class group followgedls O

Lemma 6.2. With the notation of the preceding proof, Q is a prime ideaheight2 in
Z' such that 7 is generated b elements.

Proof. The most difficult claim is the primeness @& We show primeness of a larger
class of ideals, namely all idealg(b) %’ such thaty(b) O I, ,(ap-1). SetP = Iy(b).

As an auxiliary ring we consider the multi-Rees algebfa= R(P,...,P) with p—1
“factors” P. For#' as above one hag > %’ sinceP contains all the ideals defining’.
It follows from Equation[(3.B) that

PZ =PSNA' .
In fact, both algebras use the variables..., Tp_1. The coefficient ideal of* -- ~T§E’11
in P.7 is Pret+&-1 and its coefficient ideal i’ is
ly (81)® -+ Iy, (@p-1)%F~*

whereas the coefficient ideal %’ is Pk, (a1)® - Itpfl(ap,l)epfl. Equation[(3.B) im-
plies

Ply (1) -+ Iy, ; (8p-1) %t = PH O F10y (ag) %y (Bp-1)% 2,

and this is the desired equality.

The primeness oP.%’' follows if P.# is a prime ideal. The algebt# is the Segre
product of the polynomial ring ip — 1 variables oveK and the ordinary Rees algebra
S=R[PT]. Consequently?’ /P%' is the Segre product of the same polynomial ring and
the associated graded riggPSof P. But the latter is an integral domain [12, (9.17)].
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The smallest choice fd? is Itpfl(ap_l). This nonzero prime ideal is properly contained
in Q. Therefore hQ > 2. In order to finish the proof it remains to show th is
generated by 2 elements. The indeterminatein the right upper corner oX is not
contained inQ if t, > 1. We can invert it and, roughly speaking, reduce all minpesi
andn by 1. This is a standard localization argument; seé [12)[Rwhere it is given for
X11). Therefore we can assume tigt= 1.

If evenp =1, thena; = n—1, andP is evidently generated by 2 elements. So suppose
thatp > 1. There are two cases left, namgly; = 1,a, 1 =ap—1ortp_1 =2,a, 1 =
ap.
IOln the first case we use the equations

X1i (X1nTp—1) = X1n(X12i Tp—1), i>ap 1 =ap+1

The element;nTp—1 does not belong tQ, and becomes a unit iﬁb. ThusQ%b is
generated,, andx;n.

In the other case one uses the linear syzygies of the 2-mindg$a,_1) with coef-
ficients from the first row ofX in order to show thaQ%’(2 is generated by, 1 and
X1n- ]

Remark 6.3. (a) An alternative proof of Theorem 6.1 can be given by toritmods.
Using Theoreni_3]2 one can describe the cone of the exponetdrsef in%Z) (# as
in Theoren{ 6.1) by inequalities. These inequalities hawffients in{0,+1}, and 1
occurs exactly one more time tharll. Therefore the exponent vector with all entries
1 generates the interior of the cone of exponent vectorsgtwisi the set of exponent
vectors of the canonical module of(#?) by theorem of Danilov and Stanley [10, 6.3.5].
It follows that in(%) is Gorenstein and therefo is also Gorenstein.

The opposite implication also works for the Gorenstein propsince i) is known
to be Cohen-Macaulay. For Cohen-Macaulay domains the Gtaenproperty only de-
pends on the Hilbert series by a theorem of Stariley [10, 4.4.6

(b) In general, extensions of the prime idek() to Rees algebras defined by collec-
tions of the ideals,(b) are not prime. However, by extending the intersection agyum
in the proof of Lemm& 612 one can show that they are radicalsde

A Cohen-Macaulay factorial domain is Gorenstein. So one ropder whether the
Rees rings discussed above can be factorial. But, aparttfraial exceptions, Rees rings
cannot be factorial. On the other hand, the fiber rings have rdoances to be factorial.
The fiber ringF (14, ...,1p) of associated to the multi-Rees ring of ideljs = 1,...,pis
defined as

F(l1,...,0p) =R(l1,...,1p) /mR(l,...,1p)

wherem is the irrelevant maximal ideal d®. If each of the ideald; is generated by
elements of the same degree, sihythe multi-fiber ring is a retract of the Rees ring,
namely

F(ly,...1p) =K[(IDgTizi=1,...,p]

where(l;)q is the homogeneous component of degledt can of course be replaced by
a system of degred generators of;.
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Let us consider a sequen(g a;), . . ., (tp, ap) such that; < --- <tpandli =1l (&). In
this case the multi-fiber ring can even be identified with thigasgebra

Ki():i=1,...,p| (6.1)

of R (it is only essential that the degregsre pairwise different). Thus the multi-fiber
ring is a subalgebra of the homogeneous coordinate ringeofidlg variety ofK". The
latter is the subalgebra &f[X] (whereX is ann x n-matrix) generated by theminors of
the firstt rows,t = 1,...,n. The coordinate ring of the flag variety is factorial. Seg, [20
p. 138] for an invariant-theoretic argument; an alterrefivoof is given below.

Theorem 6.4.Letty < --- <tpand g >--->apand | =Iy(a) fori =1,...,p. Then
the multi-fiber ring Kl1,...,1p) is factorial and therefore Gorenstein.

Proof. SetF = F(ly,...,lp). In the first step we reduce the claim to the special case in
whichp=nandt; =ifori=1,...,n. Starting from the given data, we augm&nto have

at leastn rows. Changing the indeterminates for the embedding ofto a polynomial
ring overR, we can assume thit= K[(l,(&)) T, ]. Then we letG be the multi-fiber ring
defined by(1,b1),...,(n,bn) whereb; = ay if i <tq, bj =aj if tj <i <tj;q, bj =& for

j > tp. Consider theR-endomorphisni of R[Ty, ..., T, that maps all indeterminatdg

to themselves and the othigrto 0. Then® is the identity orF and mapss ontoF. Thus

F is a retract ofG. Since retracts of factorial rings are factorial, it is egbuo consider

G, and we have reduced the general claim to the special cad@éh w= n andt; =i for

i =1,...,n. Moreover, we can use the embeddingl(6.1) to simplify notati

Using the NE straightening law for pure (!) NE-tableaux oressthak;, is a prime
element inF. By the theorem of Gaul3-Nagata, the passaglé[tqnl] does not affect
factoriality.

We repeat the localization argument of the proof of Thedreln Bote that the linear
syzygies of theé-minors inl(a) with coefficientsx;; are polynomial equations of the
algebra generators &f sincea; > a; for j =1,...,n. It follows thatF[xInl] is a multi-
fiber ring defined by minors of sizes.1.,n— 1 over a Laurent polynomial ring. This
does not harm us since we can replicky a factorial ring of coefficients right from the
start. This concludes the proof tHais factorial. As we will remark ib 6]5; is a Cohen-
Macaulay domain, so we may conclude it is Gorenstein by @igtiMurthy’s theorem
[10, 3.3.19]. O

Note that the theorem covers the flag variety coordinatefongvhich all the bounds
g are equal to 1.

Remark 6.5. (a) In general the multi-fiber ring (I, (a1), - - -,lt,(ap)) is not factorial.
For example, fot + 2 < n factoriality fails forF(lt(1),1:(2)) because of the Segre-type
relations(fT1)(gT,) = (9T1)(fTy) for distinctt-minorsf,gin I;(2).

(b) The multi-fiber ring~ (I, (a1), - - -, I, (ap)) is @ Cohen-Macaulay normal domain for
every(ty,a1),.. ., (tp,ap), as can be seen via deformation to the initial algebras.

(c) In generalF (I, (a1), - .-, lt,(ap)) is not Gorenstein, for exampke(l1(1),11(2)) is
not Gorenstein when > 4. On the other hand, there is strong experimental evidence
that the multi-fiber rings defined by sequen¢gsa), . . ., (tp,ap) as in Theorem 611 are
Gorenstein. In the case in which theare all equal, say equal tg this is clearly true
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because the initial algebra &%(1:(1),1t(2),...,lt(n+1—1t)) coincides with the initial
algebra of the coordinate ring of the Grassman@én 1,n+ 1).
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