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6 PRODUCTS OF BOREL FIXED IDEALS OF MAXIMAL MINORS

WINFRIED BRUNS AND ALDO CONCA

ABSTRACT. We study a large family of products of Borel fixed ideals of maximal minors.
We compute their initial ideals and primary decompositions, and show that they have
linear free resolutions. The main tools are an extension of straightening law and a very
surprising primary decomposition formula. We study also the homological properties
of associated multi-Rees algebra which are shown to be Cohen-Macaulay, Koszul and
defined by a Gröbner basis of quadrics.

1. INTRODUCTION

Let K be a field andX = (xi j ) be them×n matrix whose entries are the indetermi-
nates of the polynomial ringR= K[xi j : 1 ≤ i ≤ m, 1 ≤ j ≤ n], and assume thatm≤ n.
The idealsIt(X), generated by thet-minors ofX, and their varieties are classical objects
of commutative algebra, representation theory and algebraic geometry. They are clearly
invariant under the natural action of GLm(K)×GLn(K) on R. Their arithmetical and ho-
mological properties are well-understood as well as their Gröbner bases and initial ideals
with respect to diagonal (or antidiagonal) monomial orders, i.e., monomial orders under
which the initial monomial of a minor is the product over its diagonal (or antidiagonal);
see our survey [7]. Bruns and Vetter [12] and Miller and Sturmfels [24] are comprehensive
treatments.

Among the ideals of minors the best-behaved is undoubtedly the ideal of maximal
minors, namely the idealIm(X). It has the following important features:

Theorem 1.1.
(1) The powers of Im(X) have a linear resolution.
(2) They are primary and integrally closed.
(3) Computing initial ideals commutes with taking powers for diagonal or anti-diagonal

monomial orders:in(Im(X)k) = in(Im(X))k for all k, and the natural generators
of Im(X)k form a Gr̈obner basis.

(4) The Rees algebra of Im(X) is Koszul, Cohen-Macaulay and normal.

In the theorem and throughout this article “resolution” stands for “minimal graded free
resolution”. The grading is always the standard grading on the polynomial ring.

Concerning the statements in (1), one knows thatIm(X) itself is resolved by the Eagon-
Northcott complex and the resolution for the powers is described by Akin, Buchsbaum
and Weyman in [2]. References for assertions (2), (3) and (4)can be found in [6], [7], [9],
[12], and Eisenbud and Huneke [16]. Note also that the maximal minors form a universal
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Gröbner basis (i.e., a Gröbner basis with respect to everymonomial order) as proved by
Bernstein, Sturmfels and Zelevinsky in [4], [26] and generalized by Conca, De Negri,
Gorla [14]. But form> 2 andk> 1 there are monomial orders< such that in<(Im(X)k)
is strictly larger than in(Im(X))k. In other words, the natural generators ofIm(X)k do not
form a universal Gröbner basis. This is related to the fact that the maximal minors do not
form a universal Sagbi basis for the coordinate ring of the Grassmannian, as observed, for
example, by Speyer and Sturmfels [25, 5.6].

For 1< t < m the idealIt(X) does not have a linear resolution and its powers are not
primary. The primary decomposition of the powers ofIt(X) has been computed by De
Concini, Eisenbud and Procesi [18] and in [12] . The Castelnuovo-Mumford regularity of
It(X) is computed by Bruns and Herzog [10]. Furthermore, the formation of initial ideals
does not commute with taking powers, butIt(X)k has a Gröbner basis in degreetk as the
results in [6] show.

In our joint work with Berget [3], Theorem 1.1 was extended toarbitrary products of
the idealsIt(Xt) whereXt is the submatrix of the firstt rows ofX. We proved the following
results:

Theorem 1.2.Let 1≤ t1, . . . , tw ≤ m and I= It1(Xt1) · · · Itw(Xtw).

(1) Then I has a linear resolution.
(2) I is integrally closed and it has a primary decomposition whose components are

powers of ideals It(Xt) for various values of t.
(3) in(I) = in(It1(Xt1)) · · · in(Itw(Xtw)) and the natural generators of I form a Gröbner

basis with respect to a diagonal or anti-diagonal monomial order.
(4) The multi-Rees algebra associated to I1(X1), . . . , Im(Xm) is Koszul, Cohen-Macaulay

and normal.

Note that the idealsIt(Xt) are fixed by the natural action of the subgroupBm(K)×
GLn(K) of GLm(K)×GLn(K), whereBm(K) denotes the subgroup of lower triangular
matrices. For use below we denote the subgroup of upper triangular matrices in GLn(K)
by B′

n(K) .
Ideals of minors that are invariant under the Borel groupBm(K)×B′

n(K) have been
introduced and studied by Fulton in [19]. They come up in the study of singularities of
various kinds of Schubert subvarieties of the Grassmannians and flag varieties. Those
that arise as Borel orbit closures of (partial) permutationmatrices are called Schubert
determinantal ideals by Knutson and Miller in the their beautiful paper [23] where they
describe the associated Gröbner bases, as well as Schubertand Grothendieck polynomials.

The goal of this paper is to extend the results of Theorems 1.1and 1.2 to a class of
ideals that are fixed by the Borel group. Depending on whetherone takes upper or lower
triangular matrices on the left or on the right, one ends up with different “orientations”, in
the sense that forBm(K)×B′

n(K) one gets ideals of minors that flock the northwest corner
of the matrix while forBm(K)×Bn(K) the ideals of minors flock the northeast corner, and
so on. Of course, there is no real difference between the fourcases, but because we prefer
to work with diagonal monomial orders, we will choose the northeast orientation. Clearly,
all the results we prove can be formulated in terms of the other three orientations as well.
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Let us define thenortheast ideals It(a) of maximal minors: It(a) is generated by the
t-minors of thet × (n−a+1) northeast submatrix

Xt(a) = (xi j : 1≤ i ≤ t, a≤ j ≤ n).

The main results can be summed up as follows:

Theorem 1.3.Let It1(a1), . . . , Itw(aw) be northeast ideals of maximal minors, and let I be
their product. Then

(1) I has a linear resolution.
(2) in(I) = in(It1(a1)) · · · in(Itw(aw)), and the natural generators of I form a Gröbner

basis with respect to a diagonal monomial order.
(3) I is integrally closed, and it has a primary decomposition whose components are

powers of ideals It(a) for various values of t and a.
(4) The multi-Rees algebra associated to the family of ideals It(a) with t,a> 0 and

t +a≤ n+1 is Koszul, Cohen-Macaulay and normal.

Statements (1), (3) and (4) hold analogously for the initialideals, in particular the
primary components of in(I) can be taken to be powers of ideals of variables.

One could consider a more general definition of northeast ideals of maximal minors,
allowing also more rows than columns. Unfortunately the results of Theorem 1.3 do not
hold in this generality. LetI ′t (a) denote the ideal of thet-minors in the submatrix formed
by the lastt columns and firsta rows (witha> t). For example, one can check in a 3×3
matrix that the product of (Borel-fixed ideals of maximal minors) I1(2)I2(1)I ′1(2)I

′
2(3)

does not have a linear resolution.
The proofs of the results of [3] are based on the straightening law since the ideals

considered in [3] haveK-bases of standard bitableaux. This is no longer true for the
idealsIt(a) in general, let alone for products of such ideals. Thereforewe had to develop
a more general notion of “normal form” that we callnortheast canonical. Using this
type of normal form we will prove the crucial description of the initial ideal in(I) as an
intersection of powers of the ideals in(It(a)).

The northeast canonical form allows us to prove that the multi-Rees algebra defined
by all idealsIt(a) is a normal domain and is defined by a Gröbner basis of quadrics. A
theorem of Blum [5] then implies that all our ideals have linear fee resolutions. The same
statements have counterparts for the initial ideals and their multi-Rees algebra as well.

We conclude the paper with a discussion of the Gorenstein property of certain multi-
graded Rees rings and the factoriality of certain fiber ringsthat come up in connection
with the northeast ideals. In particular, we prove that the multigraded Rees algebra asso-
ciated to a strictly ascending chain of idealsJ1 ⊂ J2 · · · ⊂ Jv is Gorenstein, provided each
Ji belongs to the family of theIt(a) and has heighti.

The results of this paper originated from extensive computations with the systems Co-
CoA [1], Macaulay 2 [21], Normaliz [11] and Singular [17].

2. MINORS, DIAGONALS AND THE STRAIGHTENING LAW

Let K be a field andX = (xi j ) anm×n matrix of indeterminates. The ideals we want
to investigate live in

R= K[xi j : 1≤ i ≤ m, 1≤ j ≤ n].
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Let Xt(a) be the submatrix ofX that consists of the entriesxi j with 1≤ i ≤ t anda≤ j ≤ n.
We call it anortheast submatrixsince it sits in the right upper corner ofX. The ideal

It(a) = It(Xt(a))

is called anortheast ideal of maximal minors, or anortheast idealfor short. In the fol-
lowing “northeast” will be abbreviated by “NE”. SinceIt(a) = 0 if t +a> n+1, we will
always assume thatt +a≤ n+1.

We fix a monomial order onR that fits the NE ideals very well: the lexicographic order
>lex (or simply>) in which x11 is the largest indeterminate, followed by the elements
in the first row ofX, then the elements in the second row from left to right, etc. More
formally:

xi j >lex xuv if i < u or i = u and j < v.

The minor
δ = det(xib j : i, j = 1, . . . , t), b1 < · · ·< bt ,

is denoted by[b1 . . .bt ]. Theshape|δ | is the numbert of rows. The initial monomial ofδ
is the diagonal

〈b1 . . .bt〉= x1b1 · · ·xtbt .

Therefore< is adiagonalmonomial order. All our theorems remain valid for an arbitrary
diagonal monomial order≺ since we will see that for our idealsI the initial ideals in<lex(I)
are generated by initial monomials of products of minors. Therefore in<lex(I) ⊂ in≺(I),
and the inclusion implies equality. In view of this observation we will suppress the refer-
ence to the monomial order in denoting initialideals, always assuming that the monomial
order is diagonal. However, when we compare singlemonomials, the lexicographic order
introduced above will be used.

In the straightening law, Theorem 2.2, we need a partial order for the minors and also
for their initial monomials:

[b1 . . .bt ]≤str [c1 . . .cu] ⇐⇒ 〈b1 . . .bt〉 ≤str 〈c1 . . .cu〉

⇐⇒ t ≥ u andbi ≤ ci , i = 1, . . . ,u.

It is easy to see that the minors as well as their initial monomials form a lattice with the
meet and join operations defined as follows: ift ≥ u,

[b1 . . .bt ]∨ [c1 . . .cu] = [c1 . . .cu]∨ [b1 . . .bt ] = [max(b1,c1), . . . ,max(bu,cu)],

[b1 . . .bt ]∧ [c1 . . .cu] = [c1 . . .cu]∧ [b1 . . .bt ] = [min(b1,c1), . . . ,min(bu,cu),bt+1, . . . ,bt].

The meet and join of two diagonals are defined in the same way: just replace[· · · ] by
〈· · · 〉.

A product
∆ = δ1 · · ·δp, δi = [bi1 . . .bit i ], i = 1, . . . , p,

of minors is called atableau. Theshapeof ∆ is the p-tuple |∆| = (t1, . . . , tp), provided
t1 ≥ ·· · ≥ tp, a condition that does not restrict us in any way.

If
δ1 ≤str · · · ≤str δp

then we say that∆ is astandard tableau. In the context of determinantal ideals one usually
has to deal with bitableaux, but in this paper the row indicesare always fixed so that we
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only need to take care of the column indices. Since the product does not determine the
order of its factors, one should distinguish the sequence ofminors from the product if one
wants to be formally correct; as usually, we tacitly assume that such products come with
an order of their factors.

Proposition 2.1. Let ∆ be a tableau. Then there exists a unique standard tableauΣ such
that in(∆) = in(Σ). Furthermore∆ andΣ have the same shape.

This is easy to see: if∆ = δ1 · · ·δp is not standard, then there existi and j such that
δi andδ j are not comparable. Since in(δiδ j) = in((δi ∧δ j)(δi ∨δ j)) we can replaceδiδ j
by an ordered pair of factors, and after finitely many such operations we reach a standard
tableau. It is evidently unique.

That the row indices are not only fixed, but always given by 1, . . . , t for a t-minor
simplifies thestraightening law.

Theorem 2.2.
(1) Let δ = [b1 . . .bt ] andσ = [c1 . . .cu] be minors. Then there exist uniquely deter-

mined minorsηi ,ζi and coefficientsλi ∈ K, i = 1, . . . ,q, q≥ 0, such that

δσ = (δ ∧σ)(δ ∨σ)+λ1η1ζ1+ · · ·+λqηqζq,

ηi ≤str δ ∧σ , δi ∨σ ≤str ζi , i = 1, . . . ,q,

in(δσ) = in((δ ∧σ)(δ ∨σ))> in(η1ζ1)> · · ·> in(ηqζq).

(2) For every tableau∆ there exist standard tableauxΣ0 . . . ,Σq of the same shape as
∆ and uniquely determined coefficientsλ1, . . . ,λq, q≥ 0, such that

∆ = ∆0+λ1Σ1+ · · ·+λpΣp, in(∆) = in(Σ0)> in(Σ1)> · · ·> in(Σq).

Note that theK-algebra generated by thet-minors of the firstt-rows fort = 1, . . . ,m is
the coordinate of the flag variety. Hence Theorem 2.2 can be deduced from [24, 14.11],
and can also be derived from [12, (11.3) and (11.4)], taking into account Proposition 2.1.

3. INITIAL IDEALS AND PRIMARY DECOMPOSITION

The main objects of this paper are products of idealsIt(a). We will access them via the
initial ideals

Jt(a) = in(It(a)).

Our first goal is to determine the primary decompositions of such products along with
their initial ideals. For the powers of a single idealIt(a) the answer is well-known:

Theorem 3.1.
(1) The powers of the prime ideal It(a) are primary. In other words, the ordinary and

the symbolic powers of It(a) coincide.
(2) Jt(a) is generated by the initial monomialsin(δ ) of the t-minors of It(a).
(3) in(It(a)k) = Jt(a)k for all k ≥ 1.

See [12, (9.18)] for the first statement and [13] for the remaining statements. The
results just quoted are formulated fora = 1, but they immediately extend to generala
since polynomial extensions of the ground ring are harmless.
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The primary decompositions of the powers ofJt(a) have been determined in [8, Prop.
7.2]. We specify the technical details only as far as they areneeded in this article:

Theorem 3.2.The ideal Jt(a) is radical. It is the intersection Jt(a) =
⋂

i Pi of prime ideals
Pi that are generated by(n−a− t +2) indeterminates, and Jt(a)k =

⋂

i P
k
i for all k. In

particular, Jt(a)k has no embedded primes and it is integrally closed.

For the precise description of the set of prime idealsPi appearing in Theorem 3.2 we
refer the reader to [8].

Now we introduce the main players formally:

Definition 3.3. A NE-patternis a finite sequence
(

(t1,a1), . . . ,(tw,aw)
)

of pairs of positive
natural numbers withti +ai ≤ n+1 for i = 1, . . . ,w and which is ordered according to the
following rule: if 1≤ i < j ≤ w, then

ai ≤ a j and ti ≥ t j if ai = a j .

Let S=
(

(t1,a1), . . . ,(tw,aw)
)

be a NE-pattern. Apure NE-tableau of pattern Sis a
product of minors

∆ = δ1 · · ·δw, such thatδi is ati-minor ofXti(ai), i = 1, . . . ,w.

An NE-tableauis a productM∆ of a monomialM in the indeterminatesxi j and a pure
NE-tableau∆.

The NE-idealof patternS is the ideal generated by all (pure) NE-tableaux of patternS.
In other words, it is the ideal

IS= It1(a1) · · · Itw(aw).

Furthermore we set

JS= in(IS).

So IS is simply a product of ideals of typeIt(a) where, by convention, the factors have
been ordered according to the rule specified in 3.3.

ForS=
(

(t1,a1), . . . ,(tw,aw)
)

and a pair(u,b) we set

eub(S) = |{i : b≤ ai andu≤ ti}|.

Note thatb≤ ai andu≤ ti is indeed equivalent toIti(ai)⊂ Iu(b).

Theorem 3.4.Let S=
(

(t1,a1), . . . ,(tw,aw)
)

be a NE-pattern. Then the following hold:

JS= Jt1(a1) · · ·Jtw(aw); (3.1)

JS=
⋂

u,b

Ju(b)
eub(S); (3.2)

IS=
⋂

u,b

Iu(b)
eub(S). (3.3)

Equation(3.3) gives a primary decomposition of IS. The ideals IS and JS are integrally
closed.
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As soon as the equation (3.3) will have been proved, it indeedyields a primary decom-
position of IS since all the idealsIu(b)e are primary, being powers of ideals of maximal
minors. The intersection in (3.3) is almost always redundant. An irredundant decompo-
sition will be described in Proposition 3.9. Together with Theorem 3.2, equation (3.2)
gives a primary decomposition ofJS. The idealsIS andJS are integrally closed because
the ideals appearing in their primary decomposition are symbolic powers of prime ideals
and therefore integrally closed.

The special case of Theorem 3.4 in which allai are equal has been proved in [3, Corol-
lary 2.3] and [3, Theorem 3.3]. It will be used in the proof of the theorem. (Note however
that in [3] our idealIS is denoted byJS.)

Proof of Theorem 3.4.By the definition ofeub(S) we have

IS⊂
⋂

u,b

Iu(b)
eub(S).

This implies the chain of inclusions
w

∏
i=1

Jti(ai)⊂ JS⊂ in

(

⋂

u,b

Iu(b)
eub(S)

)

⊂
⋂

u,b

in
(

Iu(b)
eub(S)

)

=
⋂

u,b

Ju(b)
eub(S)

where we have used Theorem 3.1 for the equality of the two rightmost terms. If

⋂

u,b

Ju(b)
eub(S) ⊂

w

∏
i=1

Jti(ai)) (3.4)

as well, then we have equality throughout, implying (3.1) and (3.2). Then (3.3) follows
since two ideals with the same initial ideal must coincide ifone is contained in the other.
Therefore (3.4) is the crucial inclusion.

We prove it by induction onw. Let M be a monomial in
⋂

u,bJu(b)eub(S). ThenM is
contained inJtw(aw). This ideal is generated by all diagonals〈 f1 . . . ftw〉 with f1 ≥ aw by
Theorem 3.1(2). Among all these diagonals we choose thelexicographically smallestand
call it F.

SetT =
(

(t1,a1), . . . ,(tw−1,aw−1)
)

. It is enough to show thatM/F ∈
⋂

u,bJu(b)eub(T),

and for this containment we must showM/F ∈ Ju(b)eub(T) for all u andb. Evidently

eub(T) =











eub(S), b≤ aw, u> tw,

eub(S)−1, b≤ aw, u≤ tw,

0, else.

If etwb(T) = 0, there is nothing to show. Ifb≤ aw, u> tw, we haveetwb(S)≥ eub(S)+1
becauseItw(aw) contributes toetwb(S), but not toeub(S). This observation is important for
the application of Lemma 3.5 that covers this case. The caseb ≤ aw, u ≤ tw is Lemma
3.6. �

Lemma 3.5. Let k∈ N. Let b≤ a and u> t. Let M∈ Ju(b)k ∩ Jt(b)k+1∩ Jt(a) be a
monomial and let F be the lexicographic smallest diagonal oflength t that divides M.
Then M/F ∈ Ju(b)k.
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Proof. We can apply [3, Theorem 3.3] toJu(b)k∩ Jt(b)k+1: M is divided by a product
D1 · · ·DkE whereD1, . . . ,Dk are diagonals of lengthu starting in columnb or further
right, andE is such a diagonal of lengtht. Even more:Ju(b)k∩ Jt(b)k+1 is generated
by the initial monomials of the standard tableaux inIu(b)∩ It(b)k+1 (Proposition 2.1).
Therefore we can assume thatD1 ≤str · · · ≤str Dk ≤str E.

The greatest common divisor ofF and D1 · · ·DkE must divideE—if not we could
replaceF by F ∨E and obtain a lexicographically smaller diagonal of lengtht. Therefore
D1 · · ·Dk dividesM/F. �

Lemma 3.6. Let k∈ N. Let b≤ a and u≤ t. Let M∈ Ju(b)k ∩ Jt(a) be a monomial
and let F be the lexicographic smallest diagonal of length t that divides M. Then M/F ∈
Ju(b)k−1.

Proof. By Theorem 3.1 here exist diagonalsD1, . . . ,Dk such of lengthusuch thatD1 · · ·Dk
dividesM andD1 ≤str · · · ≤str Dk. Division by F can “destroy” more than one of these
diagonals but, as we will see, the fragments can be joined to formk−1 diagonals of length
u as desired.

We explain the argument first by an example:M = x11x12x23x24x34 ∈ J2(1)2∩ J3(2).
The lexicographically smallest diagonal of length 3 is〈234〉. It intersects both 2-diagonals
〈13〉 and〈24〉, but we can produce the new 2-diagonal〈14〉 from the two fragments, and
are done in this case:M ∈ J2(1)J3(2).

Let r1≤ ·· · ≤ rp be the rows in whichF intersects one of theDi, and choosegi maximal
such thatF intersectsDgi in row r i . In view of the order of theDi and by the choice of
F as the lexicographically smallestt-diagonal dividingM, we must havegi+1 ≤ gi for
i = 1, . . . , p−1.

Every time thatF “jumps” to another diagonal, i.e., ifgi > gi+1, we concatenate the
entries in rows 1, . . . , r i of Dgi+1 with the entries in rowsr i+1, . . . ,u of Dgi , thus producing
a new diagonal. (Note thatF cannot return toDgi+1 in rows≤ r i and has not touchedDgi

in the other rows.) Only oneu-diagonal is lost this way. �

Our next goal is to identify the irredundant components in the primary decomposition
of IS described in Theorem 3.4. To this end we prove the following facts.

Lemma 3.7. Let S be a NE-pattern and let D be a subsequence of S. Set T= S\D. Then
IS : ID = IT .

Proof. By induction on the cardinality ofD, we may assume right awayD is a singleton.
Using Theorem 3.4 the desired equality boils down to the proof that for everyk > 0 one
hasIu(b)k : It(a) = Iu(b)k−1 if (b,u) ≤ (t,a), andIu(b)k : It(a) = Iu(b)k otherwise. Both
equalities follow from the fact thatIu(b) has primary powers. �

Lemma 3.8. Let (t,a),(u,b) ∈ N
2
+ such that t≤ u, a≤ b and u+ b ≤ n+ 1. Then

It(a)Iu(b)⊂ It(b)Iu(a). Actually, It(a) is an associated prime to R/It(b)Iu(a).

Proof. For the inclusionIt(a)Iu(b) ⊂ It(b)Iu(a), in view of Theorem 3.4 it is enough to
show thatevc(S)≥ evc(T) for every(v,c)whereS= {(t,a),(u,b)}andT = {(t,b),(u,a)},
and this is easy.

The inclusion just proved shows one inclusion of the equality
(

It(b)Iu(a)
)

: Iu(b) =
It(a). The other follows from the fact thatIt(a) is prime and containsIt(b)Iu(a). �
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Now we are ready to prove:

Proposition 3.9. Given S, let Y be the set of the elements(t,a)∈ N
2
+, (t,a) /∈ S, such that

there exists(u,b) ∈ N
2
+ for which (t,b),(u,a) ∈ S and t< u, a< b. Then we have the

following primary decomposition:

IS=
⋂

(v,c)∈S∪Y

Iv(c)
evc(S)

which is irredundant provided all the points(u,b) above can be taken so that u+b≤ n+1.
In particular, for fixed S, the given primary decomposition above is irredundant if n is
sufficiently large, and in this case all powers Ik

S have the same associated prime ideals as
IS.

Proof. The equality holds because of Theorem 3.4 and because if(v,c) 6∈S∪Y thenevc(S)
is either equal toev+1,c(S) or ev,c+1(S).

It remains to show that the decomposition is irredundant under the extra assumption.
We can equivalently prove that every primeIt(a) with (t,a) ∈ S∪Y is associated toR/IS.
For (t,a)∈ Sthis follows from a general fact: for prime idealsP1, . . . ,Pr 6= 0 in a noether-
ian domainA eachPi is associated toA/I , I =P1 · · ·Pr . This follows easily by localization;
one only needs thatIAPi 6= 0 for all i.

Now let (t,a)∈Y and(t,b),(u,a)∈ Sand such thatt < u anda< b andu+b≤ n+1.
SetD = S\ {(t,b),(u,a)}. Then by 3.7 we haveIS : ID = It(b)Iu(a), and by 3.8It(a) is
associated toR/It(b)Iu(a). It follows thatIt(a) is associated toR/IS as well.

For the last statement we note that the setY does not change if we pass fromIS to
I k
S. �

Let us illustrate Theorem 3.4 and Proposition 3.9 by two examples.

Example 3.10.Let n≥ 5 andS= {(3,1),(3,3),(2,3),(1,4)} so that

IS= I3(1)I3(3)I2(3)I1(4).

The ideal and the valueseub(S) are given by the following tables:

•
•

• •

4© 3 3© 1 0 0
3© 2 2 0 0 0
2 1 1 0 0 0

The boxed and circled values are the essential ones and give rise to the irredundant com-
ponents. The boxed correspond to elements inSand the circled to elements inY. Hence
a irredundant primary decomposition ofIS is:

IS= I1(4)∩ I1(3)
3∩ I2(3)

2∩ I3(3)∩ I1(1)
4∩ I2(1)

3∩ I3(1)
2.

Example 3.11. If the criterion in Proposition 3.9 does not apply,It(a) may nevertheless
be associated toR/IS. We choosen= 4.

First, letS= {(3,1),(2,2),(1,3)}. Then(1,1) ∈ Y and the corresponding “(u,b)” is
(3,3) which does not satisfyu+b≤ n+1. Unexpectedly,I1(1) is associated toIS.

Second, letS= {(3,1),(1,3)}. Again (1,1) ∈ Y, and it has the same corresponding
(u,b). But in this caseI1(1) is not associated toIS.
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4. THE NORTHEAST STRAIGHTENING LAW

It is now crucial to have a “normal form” for elements ofIS. For this purpose we select
a K-basis that involves the natural system of generators, the NE-tableaux∆ of patternS.
It has already become apparent in the proof of Lemma 3.6 that we cannot simply require
that∆ is a standard tableau, and the following example forS=

(

(1,2),(3,3)
)

shows this
explicitly:

[14][234] = [134][24]− [124][34].

The difficulty is that the transformations occurring in the standard straightening procedure
do not respect the bounds of the NE-ideals in general. However, they do so in an important
special case to which we will come back.

Let M∆ be a NE-tableau. A monomial〈c1, . . . ,ct〉 is called adiagonal of type (t,a) in
M∆ if c1 ≥ a and〈c1, . . . ,ct〉 | in(M∆) = M in(∆).

Definition 4.1. Let S=
(

(t1,a1), . . . ,(tw,aw)
)

be a NE-pattern. A NE-tableauM∆ of
patternS, ∆ = δ1 · · ·δw, is S-canonicalif in(δ j) is the lexicographically smallest diagonal
of type(t j ,a j) in the NE-tableauMδ1 · · ·δ j of pattern

(

(t1,a1, . . . ,(t j ,a j)
)

for j = 1, . . . ,w.

As an example we consider the monomialM = x11x12x13x23x24x25x35, graphically sym-
bolized by the following table:

• • •
• • •

•

It depends on the patternSwhichS-canonical tableau hasM as its initial monomial.

(1) ForS=
(

(2,1),(3,2),(2,2)
)

the canonical tableau with initial monomialM is

[13][245][35].

(2) ForS=
(

(2,1),(2,2),(3,3)
)

it is

[13][25][345].

(3) ForS=
(

(2,1),(2,2),(2,3)
)

it is

x35[13][24][35].

Note that different canonical NE-tableaux of the same pattern areK-linearly indepen-
dent since they have different initial monomials: if the pattern S is fixed, then anS-
canonical tableau is uniquely determined by its initial monomial. In fact, the diagonals
that are split off successively are uniquely determined, and each diagonal belongs to a
unique minor.

We can now formulate theNE-straightening law:

Theorem 4.2.Let S=
(

(t1,a1), . . . ,(tw,aw)
)

be a NE-pattern and x∈ IS. then there exist
uniquely determined S-canonical NE-tableaux MiΓi , i = 0, . . . , p, and coefficientsλi ∈ K
such that

x= λ0M0Γ0+λ1M1Γ1+ · · ·+λpMpΓp

and
in(x) = in(M0Γ0)> in(M1Γ1)> · · ·> in(MpΓp).
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Proof. Let λ0 be the initial coefficient ofx. It is enough to show the existence ofM0Γ0
since in(x−λ0M0Γ0)< in(x), and we can apply induction.

Clearly in(x) ∈ in(IS). The factorization of the monomial in(x) constructed recursively
in the proof of Theorem 3.4 is exactly the factorization thatgives it the structureM0 in(Γ0)
for an S-canonical NE-tableau of patternS: it starts by extracting the lexicographically
smallest diagonalDw of lengthtw from in(x), and applies the same procedure to in(x)/Dw
recursively. As pointed out above, this factorization belongs to a uniqueS-canonical
tableau. �

We call Theorem 4.2 a straightening law, since it generalizes the “ordinary” straighten-
ing law to some extent:

Theorem 4.3. Suppose the NE-pattern S=
(

(t1,a1), . . . ,(tw,aw)
)

satisfies the conditionCH

ti ≥ ti+1 for i = 1, . . . ,w−1, and let∆ be pure NE-tableau of pattern S. Then the repre-
sentation

∆ = ∆0+λ1Σ1+ · · ·+λpΣp

of Theorem 2.2(2) is the S-canonical representation.

Proof. The only question that could arise is whether the representation is S-canonical. It
is successively obtained from∆ by applying the straightening law to airs of minors:

δσ = (δ ∧σ)(δ∨σ)+λ1η1ζ1+ · · ·+λqηqζq, ηi ≤str δ∧σ , δi ∨σ ≤str ζi , i = 1, . . . ,q,

as in Theorem 2.2(1). Therefore it is enough to consider the casew= 2,S= ((t,a),(u,b)),
a≤ b, t ≥ u, δ = [d1 . . .dt ], σ = [s1 . . .su]. The smallest column index is min(d1,s1)≥ a.
So all minorsζi belong toIt(a). The minorsηi satisfy the inequalitiesηi ≥str δ and
ηi ≥str σ . Therefore they belong toIu(b). �

For later use we single out two special cases of Theorem 4.2.
(1) Forδ ∈ It(a), |δ |= t, σ ∈ Iu(b), |σ |= u, there is an equation

δσ = δ0σ0+λ1δ1σ1+ . . .λpδpσp (4.1)

with λ1, . . . ,λp∈K and canonical NE-tableauxδ0σ0, . . .δpσp of pattern((t.a),(u,b))
and in(δσ) = in(δ0σ0)> in(δ1σ1)+ . . . in(δpσp).

(2) With the same notation forδ , for every indeterminatexuv there is an equation

xuvδ = xu0v0δ0+λ1xu1v1δ1+ · · ·+xupvpδp (4.2)

with λ1, . . . ,λp ∈ K, xu0v0δ0, . . . ,xupvpδp canonical of pattern(t,a) and in(xuvδ ) =
in(xu0v0δ0)> in(xu1v1δ1)> in(xupvpδp).

Equation (4.2) is nothing but a linear syzygy oft-minors (unless it is a tautology).
These syzygies have sneaked in through the use of the theoremthat thet-minors form a
Gröbner basis ofIt(a).

We complement the discussion of canonical decompositions by showing that a non-
canonical tableau can be recognized by comparing the factors pairwise.

Lemma 4.4. Let S be a NE-pattern and M∆, ∆ = δ1 · · ·δw, be a NE-tableau of pattern S.
If M∆ is not S-canonical, then at least one of the following two cases occurs:

(1) there exist a visor xi j of M and an index k such that xi j δk is not NE-canonical of
pattern(tk,ak);
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(2) there exist indices q and k, q< k, such thatδqδk is not((tq,aq),(tk,ak))-canonical.

Proof. We choosek maximal with the property that in(δk) is not the lexicographically
smallest(tk,ak)-diagonal dividing in(Mδ1 . . .δk). Sett = tk, δ = [d1 . . .dt ] and let〈e1 . . .et〉
be the lexicographically smallest such diagonal. Then chooser maximal with the property
thatdr < er . Sincexrer divides in(Mδ1 · · ·δk), at least one of the following two cases must
hold:

(1) xrer | M;
(2) xrer | in(δq) for someq< k.

In the first casexrer δk is not (tk,ak)-canonical, and in the second caseδqδk fits case (2)
of the lemma: 〈d1 . . .dr−1erdr+1 . . .et〉 is lexicographically smaller than〈d1 . . .dt〉 and
divides in(xrer δk) or in(δqδk), respectively. �

Lemma 4.4 and the equations (4.1) and (4.2) indicate that theS-canonical represen-
tation of an elementx ∈ IS can be obtained by the successive application of quadratic
relations. This is indeed true and will be formalized in the next section.

5. THE MULTI -REES ALGEBRA

The natural object for the simultaneous study of the idealsIS is the multi-Rees algebra

R = R[It(a)Tta : 1≤ t,a≤ n, t +a≤ n+1]

where theTta are new indeterminates It is a subalgebra of the polynomial ring

R[Tta : 1≤ t,a≤ n, t +a≤ n+1],

and the products of the idealsIt(a) appear as the coefficient ideals of the monomials in
the indeterminatesTta. These monomials are parametrized by the patternsS: for S=
((t1,a1), . . . ,(tw,aw)) we set

TS= Tt1a1 · · ·Ttwaw.

Then
R =

⊕

S

ISTS.

The monomial order onR is extended toR[Tta : 1≤ a≤ n, 1≤ t+a≤ n+1] in an arbitrary
way. The extension will be denoted by<lex as well.

Alongside withR we consider the multi-Rees algebraR in defined by the initial ideals
Jt(a):

R in = R[Jt(a)Tta : 1≤ a≤ n, 1≤ t +a≤ n+1].
As always in this context, there is a second “ initial” objectthat comes into play, namely
the initial subalgebra ofR:

in(R) =
⊕

S

JSTS.

(Recall thatJS = in(IS) by definition.) From Theorem 3.4 one can easily derive a first
structural result onR andR in.

Theorem 5.1.
(1) With respect to any extension of the monomial order on R to R[Tta : 1≤ a≤ n, 1≤

t +a≤ n+1] one hasin(R) = R in.
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(2) R andR in are normal Cohen-Macaulay domains.

Proof. The equation in(R) = R in is just equation (3.1) read simultaneously for all NE-
patternsS.

The normality ofR andR in follows from the fact that all the idealsIS and JS are
integrally closed by Theorem 3.4. We observe thatR in is a normal monoid domain, and
therefore Cohen-Macaulay by Hochster’s theorem. Finally we use the transfer of the
Cohen-Macaulay property from in(R) = R in to R, see [15]. �

In order to gain insight into the minimal free resolutions ofthe idealsIS over R we
must understandR as the residue class ring of a polynomial ring overK. To this end we
introduce a variablezaδ for every bounda and everyt-minorδ ∈ It(a). Let

S = R[zaδ : |δ |= t, t+a≤ n+1, δ ∈ It(a)].

Viewed as aK-algebra,S needs also the indeterminatesxi j , 1≤ i ≤ m, 1≤ j ≤ n. We
want to study the surjectiveR-algebra homomorphism

Φ : S → R, Φ(zaδ ) = δTa|δ |, Φ|R= id .

We introduce an auxiliary monomial order onS by first ordering the indeterminates. The
xi j are ordered as inR. Next we set

xi j > zaδ

for all i, j,a,δ , and

zaδ > zbσ ⇐⇒ a< b or a= b and in(δ )>lex in(σ).

This order of the indeterminates is extended to thereverselexicographic order≤revlex it
induces on the monomials inS .

Now we define the main monomial order onS as follows. For monomialsZ1 andZ2
in xi j andzaδ we set

Z1 ≺ Z2 ⇐⇒ in(Φ(Z1))<lex in(Φ(Z2)) or

in(Φ(Z1)) = in(Φ(Z2)) andZ1 <revlex Z2.

In other words, we pull the monomial order onR back toS and then use our auxiliary
order to separate monomials with the same image underΦ.

Theorem 5.2.
(1) With respect to the monomial order≺ the idealI = KerΦ has a Gr̈obner basis

of quadrics, given by the equations(4.1)and(4.2)(interpreted as elements inI ).
(2) In particular R is a Koszul algebra.
(3) All the ideals IS have linear minimal free resolutions over R.

Proof. Equation (4.1) defines the polynomial

zaδ zbσ −
(

zaδ0
zbσ0 +λ1zaδ1

zbσ1 + · · ·+λwzaδw
zbσw

)

in I . By the definition of≺ we first observe that onlyzaδ zbσ or zaδ0
zbσ0 can be the initial

monomial. But then the auxiliary reverse lexicographic oder makeszaδ zbσ the leading
monomial. Similarly one sees thatxuvzaδ is the leading monomial of the polynomial in
I defined by (4.2).
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Let J be the ideal generated by all monomialsZ = Mza1δ1
· · ·zawδw

, M ∈ R, for which
Mδ1 · · ·δw is not canonical of patternS=((|δ1|,a1), . . . ,(|δ1|,a1)). It follows from Lemma
4.4 thatMMza1δ1

· · ·zawδw
then contains a factorzaiδi

zjδ j
or a factorxuvza jδ j

that is not
mapped to a canonical tableau of the associated pattern. In connection wit the argument
above, this observation implies thatJ ⊂ in≺(I ).

On the other hand the set of monomials that do not belong toJ form a K-basis of
S /I = R by Theorem 4.2. This is only possible ifJ = in(I ).

SinceI has a Gröbner basis of quadratic polynomials,R =S /I is a Koszul algebra.
By (the multigraded version of) a theorem of Blum [5] the linearity of the resolutions
follows from the Koszul property of the multi-Rees algebra. �

In addition toΦ, we have a surjectiveR-algebra homomorphism

Ψ : S → R in, Ψ(za,δ ) = in(δ )Ta|δ |, Φ|R= id .

Theorem 5.3.
(1) With respect to the monomial order≺ the idealB =KerΨ has a Gr̈obner basis of

quadrics, given by the binomials resulting from the equations in(δσ) = in(δ0σ0)
in (4.1)and in(xuvδ) = in(xu0v0δ0)in(4.2) (interpreted as elements inI ).

(2) In particular R in is a Koszul algebra.
(3) All the ideals JS have linear minimal free resolutions over R.

Proof. The first statement is proved completely analogous the first statement in Theorem
5.2, and the second and third follow from it in the same way as for Theorem 5.2. �

6. SOME GORENSTEIN REES RINGS AND SOME FACTORIAL FIBER RINGS

In this section we will consider multi-Rees algebras definedby some of the idealsIt(a).
More generally, ifI1, . . . , Ip are ideals inR, we let

R(I1, . . . , Ip) = R[IiTi : i = 1, . . . , p]⊂ R[T1, . . . ,Tp]

denote the multi-Rees algebra defined byI1, . . . , It. Note that we could as well have de-
fined it by taking ordinary Rees algebras successively, since

R(I1, . . . , Ip) = B
(

IpB
)

where B= R(I1, . . . , Ip−1).

Some of the Rees rings defined by NE-ideals of minors are Gorenstein. This is not
true in general for the “total” multi-Rees rings of the last section: the first potential non-
Gorenstein example is a 2×3-matrix, and the corresponding total multi-Rees ring is in-
deed not Gorenstein. Nevertheless, the multi-Rees rings defined by certain selections of
the idealsIt(a) are Gorenstein, as we will see in the following.

The idealsIt(a) form a poset under inclusion. The minimal elements are the principal
idealsIt(n− t+1) and the maximal element isI1(1), the ideal generated by the indetermi-
nates in the first row of our matrixX. The next theorem states the Gorenstein property of
the multi-Rees algebras defined by an unrefinable ascending chain in our poset that starts
from a minimal element or a cover of a minimal element.

Theorem 6.1. Let It1(a1) ⊂ It2(a2) ⊂ ·· · ⊂ Itp(ap) such thatheightIt1(a1) = 1 or 2 and
heightIti(ai) = 1+heightIti−1(ai−1) for i = 2, . . . , p. Equivalently,
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(1) a1 = n− t1 or a1 = n− t +1;
(2) ti = ti−1 and ai = ai−1−1 or ti = ti−1−1 and ai = ai−1 for i = 2, . . . , p.

Then the multi-Rees algebra R
(

It1(a1), . . . , Itp(ap)
)

is Gorenstein and normal with divisor
class groupZp−1 or Zp, depending on whether a1 = n− t1 or a1 = n− t+1.

Proof. Note that the smallest ideal is a principal ideal ifa1 = n− t1+ 1. In this case
R
(

It1(a1), . . . , Itp(atp)
)

is just (isomorphic to) a polynomial ring overR
(

It2(a2), . . . , Itp(ap)
)

,
anda2 = n− t2. Since polynomial extensions do not affect the Gorenstein property, we
can assume thata1 = n− t1.

Let R = R
(

It1(a1), . . . , Itp(ap)
)

, R ′ = R
(

It1(a1), . . . , Itp−1(ap−1)
)

, andQ = Itp(ap)R
′.

ThenR is just the ordinary Rees algebra of the idealQ of R ′, and by induction onp it is
enough to understand the extension ofR′ to R.

By the next lemma,Q is a prime ideal of height 2 such thatQR ′
Q is generated by 2

elements. Moreover,R ′ andR are normal domains since they are retracts of the total
multi-Rees algebra of the last section (or by Theorem 3.4). Under these conditions a
theorem of Herzog and Vasconcelos [22, Theorem(c), p. 183] shows that the canonical
module ofR has the same divisor class as the canonical module ofR ′ (extended toR):

cl(ωR) = cl(ωR′)+(htQ−2)cl(QR) = cl(ωR′) ∈ Cl(R) = Cl(R′)⊕Z.

By inductionR ′ is Gorenstein, cl(ωR′) = 0 . ThereforeR is Gorenstein as well, and we
are done. The assertion on the divisor class group follows aswell. �

Lemma 6.2. With the notation of the preceding proof, Q is a prime ideal ofheight2 in
R ′ such that QR′

Q is generated by2 elements.

Proof. The most difficult claim is the primeness ofQ. We show primeness of a larger
class of ideals, namely all idealsIu(b)R

′ such thatIu(b)⊃ Itp−1(ap−1). SetP= Iu(b).
As an auxiliary ring we consider the multi-Rees algebraS = R(P, . . . ,P) with p−1

“factors” P. ForR ′ as above one hasS ⊃R ′ sinceP contains all the ideals definingR ′.
It follows from Equation (3.3) that

PR ′ = PS ∩R ′ .

In fact, both algebras use the variablesT1, . . . ,Tp−1. The coefficient ideal ofTe1
1 · · ·T

ep−1
p−1

in PS is P1+e1+···+ep−1 and its coefficient ideal inR ′ is

It1(a1)
e1 · · · Itp−1(ap−1)

ep−1

whereas the coefficient ideal inPR ′ is PIt1(a1)
e1 · · · Itp−1(ap−1)

ep−1. Equation (3.3) im-
plies

PIt1(a1)
e1 · · · Itp−1(ap−1)

ep−1 = P1+e1+···+ep−1 ∩ It1(a1)
e1 · · · Itp−1(ap−1)

ep−1,

and this is the desired equality.
The primeness ofPR′ follows if PS is a prime ideal. The algebraS is the Segre

product of the polynomial ring inp−1 variables overK and the ordinary Rees algebra
S= R[PT]. ConsequentlyR ′/PR ′ is the Segre product of the same polynomial ring and
the associated graded ringS/PSof P. But the latter is an integral domain [12, (9.17)].
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The smallest choice forP is Itp−1(ap−1). This nonzero prime ideal is properly contained
in Q. Therefore htQ ≥ 2. In order to finish the proof it remains to show thatQR ′

Q is
generated by 2 elements. The indeterminatex1n in the right upper corner ofX is not
contained inQ if tp > 1. We can invert it and, roughly speaking, reduce all minor sizes
andn by 1. This is a standard localization argument; see [12, (2.4)] (where it is given for
x11). Therefore we can assume thattp = 1.

If even p= 1, thena1 = n−1, andP is evidently generated by 2 elements. So suppose
that p> 1. There are two cases left, namelytp−1 = 1, ap−1 = ap−1 or tp−1 = 2, ap−1 =
ap.

In the first case we use the equations

x1i(x1nTp−1) = x1n(x1iTp−1), i ≥ ap−1 = ap+1.

The elementx1nTp−1 does not belong toQ, and becomes a unit inR ′
Q. ThusQR ′

Q is
generatedx1ap andx1n.

In the other case one uses the linear syzygies of the 2-minorsin I2(ap−1) with coef-
ficients from the first row ofX in order to show thatQR′

Q is generated byx1n−1 and
x1n. �

Remark 6.3. (a) An alternative proof of Theorem 6.1 can be given by toric methods.
Using Theorem 3.2 one can describe the cone of the exponent vectors of in(R) (R as
in Theorem 6.1) by inequalities. These inequalities have coefficients in{0,±1}, and 1
occurs exactly one more time than−1. Therefore the exponent vector with all entries
1 generates the interior of the cone of exponent vectors, which is the set of exponent
vectors of the canonical module of in(R) by theorem of Danilov and Stanley [10, 6.3.5].
It follows that in(R) is Gorenstein and thereforeR is also Gorenstein.

The opposite implication also works for the Gorenstein property since in(R) is known
to be Cohen-Macaulay. For Cohen-Macaulay domains the Gorenstein property only de-
pends on the Hilbert series by a theorem of Stanley [10, 4.4.6].

(b) In general, extensions of the prime idealsIt(a) to Rees algebras defined by collec-
tions of the idealsIu(b) are not prime. However, by extending the intersection argument
in the proof of Lemma 6.2 one can show that they are radical ideals.

A Cohen-Macaulay factorial domain is Gorenstein. So one my wonder whether the
Rees rings discussed above can be factorial. But, apart fromtrivial exceptions, Rees rings
cannot be factorial. On the other hand, the fiber rings have more chances to be factorial.
The fiber ringF(I1, . . . , Ip) of associated to the multi-Rees ring of idealsIi, i = 1, . . . , p is
defined as

F(I1, . . . , Ip) = R(I1, . . . , Ip)/mR(I1, . . . , Ip)

wherem is the irrelevant maximal ideal ofR. If each of the idealsIi is generated by
elements of the same degree, saydi, the multi-fiber ring is a retract of the Rees ring,
namely

F(I1, . . . , Ip) = K[(Ii)di Ti : i = 1, . . . , p]

where(Ii)di is the homogeneous component of degreedi . It can of course be replaced by
a system of degreedi generators ofIi .
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Let us consider a sequence(t1,a1), . . . ,(tp,ap) such thatt1 < · · ·< tp andIi = Iti(ai). In
this case the multi-fiber ring can even be identified with the subalgebra

K[(Ii)ti : i = 1, . . . , p] (6.1)

of R (it is only essential that the degreesti are pairwise different). Thus the multi-fiber
ring is a subalgebra of the homogeneous coordinate ring of the flag variety ofKn. The
latter is the subalgebra ofK[X] (whereX is ann×n-matrix) generated by thet-minors of
the firstt rows,t = 1, . . . ,n. The coordinate ring of the flag variety is factorial. See [20,
p. 138] for an invariant-theoretic argument; an alternative proof is given below.

Theorem 6.4. Let t1 < · · · < tp and a1 ≥ ·· · ≥ ap and Ii = Iti(ai) for i = 1, . . . , p. Then
the multi-fiber ring F(I1, . . . , Ip) is factorial and therefore Gorenstein.

Proof. SetF = F(I1, . . . , Ip). In the first step we reduce the claim to the special case in
which p= n andti = i for i = 1, . . . ,n. Starting from the given data, we augmentX to have
at leastn rows. Changing the indeterminates for the embedding ofF into a polynomial
ring overR, we can assume thatF = K[(Iti(ai))ti Tti ]. Then we letG be the multi-fiber ring
defined by(1,b1), . . . ,(n,bn) wherebi = a1 if i < t1, bi = a j if t j ≤ i < t j+1, b j = at for
j > tp. Consider theR-endomorphismΦ of R[T1, . . . ,Tn] that maps all indeterminatesTti
to themselves and the otherTj to 0. ThenΦ is the identity onF and mapsG ontoF. Thus
F is a retract ofG. Since retracts of factorial rings are factorial, it is enough to consider
G, and we have reduced the general claim to the special case in which p= n andti = i for
i = 1, . . . ,n. Moreover, we can use the embedding (6.1) to simplify notation.

Using the NE straightening law for pure (!) NE-tableaux one sees thatx1n is a prime
element inF. By the theorem of Gauß-Nagata, the passage toF [x−1

1n ] does not affect
factoriality.

We repeat the localization argument of the proof of Theorem 6.1. Note that the linear
syzygies of thet-minors in It(at) with coefficientsx1i are polynomial equations of the
algebra generators ofF sincea1 ≥ a j for j = 1, . . . ,n. It follows thatF[x−1

1n ] is a multi-
fiber ring defined by minors of sizes 1, . . . ,n− 1 over a Laurent polynomial ring. This
does not harm us since we can replaceK by a factorial ring of coefficients right from the
start. This concludes the proof thatF is factorial. As we will remark in 6.5,F is a Cohen-
Macaulay domain, so we may conclude it is Gorenstein by virtue of Murthy’s theorem
[10, 3.3.19]. �

Note that the theorem covers the flag variety coordinate ringfor which all the bounds
ai are equal to 1.

Remark 6.5. (a) In general the multi-fiber ringF(It1(a1), . . . , Itp(ap)) is not factorial.
For example, fort +2 ≤ n factoriality fails forF(It(1), It(2)) because of the Segre-type
relations( f T1)(gT2) = (gT1)( f T2) for distinctt-minors f ,g in It(2).

(b) The multi-fiber ringF(It1(a1), . . . , Itp(ap)) is a Cohen-Macaulay normal domain for
every(t1,a1), . . . ,(tp,ap), as can be seen via deformation to the initial algebras.

(c) In generalF(It1(a1), . . . , Itp(ap)) is not Gorenstein, for exampleF(I1(1), I1(2)) is
not Gorenstein whenn ≥ 4. On the other hand, there is strong experimental evidence
that the multi-fiber rings defined by sequences(t1,a1), . . . ,(tp,ap) as in Theorem 6.1 are
Gorenstein. In the case in which theti are all equal, say equal tot, this is clearly true



18 WINFRIED BRUNS AND ALDO CONCA

because the initial algebra ofF(It(1), It(2), . . . , It(n+ 1− t)) coincides with the initial
algebra of the coordinate ring of the GrassmannianG(t+1,n+1).
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