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Abstract
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A bowtie graph2 is formed by two triangles intersecting in a single vertex
(see Figure 1). We denote by B the class of all finite graphs not containing
a bowtie as a (not necessarily induced) subgraph. The class B seems to be a
rather special class. However, it appears that it plays a key role in the context
of both Ramsey theory and model theory in the area related to universality
and homogeneity. It is the interplay of these two fields which makes this
example interesting and important. We briefly explain both sides and their
interplay in this introduction and in Section 9.

1.1. Ramsey Theory

Ramsey theory (see [8, 16] for background information) is established
in the context of several mathematical areas. Structural Ramsey theory
is interested in generalisations of the Ramsey Theorem to as wide class of
structures as possible. The key notion in this area is the Ramsey class.
To make this paper self-contained, we introduce it in the following notation
(which is by now standard, see e.g. [16]).

Let C be a class of structures endowed with embeddings. The class is
usually understood from the context. Let A,B be objects of C. Then by(
B
A

)
we denote the set of all sub-objects Ã of B, Ã isomorphic to A. (By a

sub-object we mean that the inclusion is an embedding.) Using this notation
the definition of Ramsey class gets the following form: A class C is a Ramsey
class if for every two objects A,B ∈ C and for every positive integer k there
exists object C ∈ C such that for every partition of

(
C
A

)
in k classes there

exists B̃ ∈
(
C
B

)
such that

(
B̃
A

)
belongs to one class of the partition. It is usual

to shorten the last part of the definition as C −→ (B)A2 .
The Ramsey classes originated in 70’s (see [16]) as the top of the line of

Ramsey properties and examples found present the backbone of the structural
Ramsey theory, see [18, 15, 16].

In most instances, a class is not Ramsey for some easily formulated reason
and all one needs is to add some more information such as ordering or colour-
ing of distinguished parts. For example, all finite graphs form a Ramsey class
if we add an ordering of vertices, bipartite graphs need an ordering respect-
ing the bipartition and colouring distinguishing the parts, disjoint unions

2This poetic name seems to be first used in [22], see also [14], butterfly graph or hourglass
graph are other names used; it is “\bowtie” in TeX and sign for “natural join” in databases.
Interestingly, bowtie appears in [8]
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Figure 2: A counter-example for edge Ramsey property for bowtie-free graphs.

of complete graphs (or equivalences) needs an ordering respecting compo-
nents. This additional information is usually called an expansion, or in a
combinatorial setting a lift, of the original structure (see the next section).

Bowtie-free graphs do not form Ramsey class. We need not only linear
ordering of vertices but also more complicated lifts with seven types of ver-
tices and large amount of types of edges, see Sections 2 and 3. As a simple
example consider bowtie-free graph depicted in Figure 2. This graph con-
tains two types of edges: edges in precisely one triangle and edges in two. It
can be verified by hand that this graph can not be extended to a bowtie-free
graph where every edge is in multiple triangles. Consequently edges of every
copy of this graph within a bowtie-free graph can be coloured red if they
are in precisely one triangle and blue otherwise which contradicts the edge
Ramsey property.

1.2. Model theory

It is important to realise that for more complicated Ramsey questions
(even when related to graphs) one needs to deal with more general structures.

A language L is a set of relational symbols R ∈ L, each associated with
natural number a(R) called arity. A (relational) L-structure A is a pair
(A, (RA;R ∈ L)) where RA ⊆ Aa(R) (i.e. RA is a a(R)-ary relation on A).
The set A is called the vertex set or the domain of A and elements of A are
vertices. The language is usually fixed and understood from the context (and
it is in most cases denoted by L). However it is the essence of this paper
that the languages considered are complex and we consider an interplay of
several of them. This will be carefully described. If set A is finite we call A
finite structure. We consider only structures with finitely or countably many
vertices. The class of all (finite or countable) relational L-structures will be
denoted by Rel(L).
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We consider graphs as a special case of relational structure with one
binary relation. We use bold letters A, B, . . . to denote structures and
normal letters G, H, . . . for graphs. The following are standard graph
theoretic notions re-stated in the language of model theory. A homomor-
phism f : A → B = (B, (RB;R ∈ L)) is a mapping f : A → B sat-
isfying for every R ∈ L the implication (x1, x2, . . . , xa(R)) ∈ RA =⇒
(f(x1), f(x2), . . . , f(xa(R))) ∈ RB. (For a subset A′ ⊆ A we denote by f(A′)
the set {f(x);x ∈ A′} and by f(A) the homomorphic image of a structure.)
If f is injective, then f is called a monomorphism. A monomorphism is called
embedding if the above implication is equivalence, i.e. if for every R ∈ L we
have (x1, x2, . . . , xa(R)) ∈ RA ⇐⇒ (f(x1), f(x2), . . . , f(xa(R))) ∈ RB. If f is
an embedding which is an inclusion then A is a substructure (or subobject)
of B. Note that substructures correspond to induced subgraphs. For an em-
bedding f : A → B we say that A is isomorphic to f(A) and f(A) is also
called a copy of A in B. Thus

(
B
A

)
is defined as the set of all copies of A in

B. All copies considered in this paper are thus induced.
Using the language of model theory we can conveniently define the con-

cept of lift discussed informally in the previous section. Let L+ be a lan-
guage containing language L. By this we mean L ⊆ L+ and the ari-
ties of the relations both in L and L+ are the same. Then every struc-
ture X = (X, (RX;R ∈ L+)) ∈ Rel(L+) may be viewed as a structure
A = (X, (RX;R ∈ L)) ∈ Rel(L) together with some additional relations RX

for R ∈ L+ \L. We call X a lift. (In the model theory context lift is usually
called an expansion.) In this situation the structure A is called the shadow
(or alternatively the reduct) of X. The class Rel(L+) is the class of all lifts of
Rel(L). Conversely, Rel(L) is the class of all shadows of Rel(L+). In this pa-
per the languages L and L+ will always be finite, we speak about finite lifts.
Given class of relational L-structures K, we call class K+ of L+-structures
a lift of K if for every A ∈ K there is A+ ∈ K+ which is a lift of A and
moreover every shadow of a structure in K+ is in K.

Two notions are related to our main result: A (countable) structure A is
said to be universal for a class C of (finite or countably infinite) structures if
every structure B ∈ C embeds to A. A relational structure A is called ultra-
homogeneous if every isomorphism between two induced finite substructures
of A can be extended to an automorphism of A.

It is a classical result of model theory that ultrahomogeneous structures
may be alternatively described as Fräıssé limits of amalgamation classes of
finite structures (see e.g. [10]). Here amalgamation class C is a hereditary
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class of structures containing only countably many mutually non-isomorphic
structures which satisfy:

1. (Joint embedding property) For every A,B ∈ C there exists C ∈ C such
that C contains both A and B as substructures

2. (Amalgamation property) For A,B1,B2 ∈ C and α1 embedding of A
into B1, α2 embedding of A into B2, there is C ∈ C with embeddings
β1 : B1 → C and β2 : B2 → C such that β1 ◦ α1 = β2 ◦ α2. Every
such structure C is called an amalgamation of B1 and B2 over A with
respect to α1 and α2.

We say that an amalgamation is strong when β1(x1) = β2(x2) if and only
if x1 ∈ α1(A) and x2 ∈ α2(A). Less formally, a strong amalgamation glues
together B1 and B2 with an overlap no greater than the copy of A itself.
A strong amalgamation is free if there are no tuples in any relations of C
containing both vertices of β1(B1 \ α1(A)) and β2(B2 \ α2(A)).

For a structure A the age of A, denoted by Age(A), is the class of all finite
structures which have embedding to A. Thus every homogeneous structure
A is determined by Age(A) which forms an amalgamation class (see [10]).

Let A be an L-relational structure and S a finite subset of A. The
algebraic closure of S in A, denoted by AclA(S), is the set all vertices v ∈ A
for which there is a formula φ in the language L with |S|+ 1 variables such

that φ(~S, v) is true and there are only finitely many vertices v′ ∈ A such that

φ(~S, v′) is also true. (Here ~S is an arbitrary ordering of vertices of S.)
Algebraic closure is, of course, related to amalgamation: For example,

it is easy to see that if an ultrahomogeneous structure H has trivial clo-
sure (i.e. AclH(S) = S for every S ⊆ H) then its age is closed for strong
amalgamation [5].

The link between Ramsey classes and ultrahomogeneous structures was
established in [15]: Under a mild assumption any Ramsey class is an amal-
gamation class and thus it is an age of an ultrahomogeneous structure. This
was used in [15] to completely characterise hereditary Ramsey classes of undi-
rected graphs. (Essentially, all Ramsey classes of graphs were known earlier,
[20].) This connection of Ramsey classes proved to be fruitful and led to
the characterisation programme for Ramsey classes [17] and to an important
connection of Ramsey classes with topological dynamics and ergodic theory
[13].

As we indicated above a given class C is often not Ramsey but C may
have an easy lift C+ which is Ramsey and thus it leads to the age of an
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ultrahomogeneous structure U+. This in turn means that the shadow U of
U+ is universal for C. In this sense the universality is the first test for the
existence of a Ramsey lift.

We briefly comment on this connection at the end of this paper in Sec-
tion 9.

1.3. Statement of results

The rest of the paper is organised as follows: Section 2 contains a detailed
description of the structure of bowtie-free graphs. This leads to an explicit
homogenisation of these graphs by means of lifts L0, L1 and L2 which will
be introduced in Section 3. In Section 4 we give a simpler (reduced) variant
of our lift. In Section 5 we review the basic properties of Ramsey classes
used in our proof. The proof of Ramsey property splits into two parts: In
Section 6 we prove the Ramsey property for incomplete lifts, and finally in
Section 7 we combine this to obtain our main result:

Theorem 1.1. The class B of all finite bowtie-free graphs has a finite Ramsey
lift.

In a more detailed way this is formulated as Theorem 7.1 below. This
Ramsey lift includes special “admissible” orderings. As an explanation of
this and as an application of Theorem 1.1 we then prove the lift property for
the class of orderings in Section 8 (lift property is introduced there). The
final section contains some remarks and open problems and comments of the
relationship of Ramsey classes and universal structures.

2. Structure of bowtie-free graphs

In order to prove the Ramsey property one has to understand the lifted
class very well and the lift has to be explicit. We start to develop the structure
of bowtie-free graphs by means of the following concepts which will describe
the structure of triangles in bowtie-free graphs.

Definition 2.1 (Chimneys). For n ≥ 2, an n-chimney graph, Chn, is a free
amalgamation of n triangles over one common edge. A chimney graph is any
graph isomorphic to Chn for some n ≥ 2.

Chimneys together with K4 (a clique on 4 vertices) will form the only
components of bowtie-free graphs formed by triangles. The assumption n ≥ 2
for chimney is a technical assumption to avoid isolated triangles. Note also
that Ch2 is not an induced subgraph of K4.
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Definition 2.2 (Good bowtie-free graphs). A bowtie-free graph G = (V,E)
is good if every vertex is contained either in an induced copy of chimney graph
or a copy of the complete graph K4.

The structure of bowtie-free graphs is captured by means of the following
three lemmas:

Lemma 2.3. Every bowtie-free graph G is an induced subgraph of some good
bowtie-free graph G′.

Proof. Every bowtie-free graph G can be extended in the following way:

1. For every vertex v not contained in a triangle add a new induced copy
of Ch2 and identify vertex v with one of vertices of Ch2.

2. For every triangle v1, v2, v3 that is not part of a 2-chimney nor K4 add
a new vertex v4 and triangle v1, v2, v4 turning the original triangle into
Ch2.

It is easy to see that step 1. can not introduce new bowtie.
Assume, to the contrary, that step 2. introduced a new bowtie. Further

assume that v1 is the unique vertex of degree 4 of this new bowtie and
consequently there is another triangle on vertex v1 in G. Because G is bowtie-
free, this triangle must share a common edge with triangle v1, v2, v3 and
therefore triangle v1, v2, v3 is already part of K4 or a 2-chimney in the original
graph G. A contradiction.

For a bowtie-free graph G = (V,E) we split its edge set into two types:
E0 = E0(G) consisting of all edges in triangles and E1 = E1(G) consisting of
all remaining edges. We also speak about edges of type 0 and edges of type
1. Put also G0 = (V,E0).

Lemma 2.4. For every good bowtie-free graph G = (V,E) the graph G0 is a
disjoint union of induced copies of chimneys and K4.

Conversely let G = (V,E) be a graph with every vertex contained either in
an induced copy of chimney Chn, n ≥ 2, or a copy of the complete graph K4.
If graph G0 = (V,E0) is a disjoint union of induced copies of chimneys and
K4 and the remaining edges of G (i.e. edges in E1) do not form a triangle,
then G is a good bowtie-free graph.

Proof. First part of the statement follows directly from the fact that Chn,
n ≥ 1, and K4 are the only connected bowtie-free graphs with every vertex
and edge in a triangle.
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u1
` u1

r u2
` u2

r u3
` u3

r

u4
3 u4

4

u4
1 u4

2

v11

v12

v13

v21

v22

v31

v32

v33

Figure 3: An example of a good bowtie-free graph.

The second part of the statement follows from the fact that a bowtie in
G must be a bowtie in G0 and G0 is a bowtie-free by the assumption.

It follows that bowtie-free graphs can be extended to good bowtie-free
graphs that are made of chimneys and K4’s (forming the edge set E0) and a
triangle free graph (with the edge set E1). An example of a good bowtie-free
graph is depicted in Figure 3. Type 0 edges are depicted as solid lines, type
1 edges are dashed. We will use this graph as our reference graph through
the paper.

3. (Ultra)Homogenisation of B

Homogenisation is a technique which provides an ultrahomogeneous lift
for a non-ultrahomogeneous structure. The special structure of good bowtie-
free graphs indicates that we have vertices of various types and that the
Ramsey lift will have to be defined carefully (to distinguish all possible com-
bination of types). In this section we shall define three lifts (with languages
L0, L1 and L2) and use them to define an amalgamation class (see Corol-
lary 9.1). We start with the definition of centre.

Let G be a good bowtie-free graph. Then the centre of G, c(G), is a
subgraph induced by all vertices contained in two or more triangles. The
centre of a vertex v, denoted by c(v), is a subgraph ofG induced by all vertices

8



in two or more triangles which are in the same connectivity component of
(V,E0) as the vertex v. (We define centre for good bowtie-free graphs only,
so every vertex has a centre.) According to Lemma 2.4, the centre of a vertex
is either an edge (if v is contained in a chimney) or K4 (if v is contained in
a copy of K4). We also call a vertex central if it appears in centre. Other
vertices are non-central.

Remark. Note that in the language of model theory the centre of a vertex is
a definable set and thus bowtie-free graphs have a nontrivial algebraic closure
(and as explained above this was one of the motivations for a study of this
particular example, see e.g. [2]).

Example. Our reference graph depicted in Figure 3 has central vertices la-
belled u and non-central v. There are 4 centres of vertices: {u1` , u1r}, {u2` , u2r},
{u3` , u3r}, and {u41, u42, u43, u44}. The centre of vertex v11 is {u1` , u1r}. The centre
of u41 is {u41, u42, u43, u44}.

We start with the following (easy and optimistic) statement:

Lemma 3.1 (Central amalgamation). Let G and G′ be good bowtie-free
graphs and f an isomorphism from c(G) to c(G′). Then the free amalgama-
tion of G and G′ over central vertices (with respect to f) is a good bowtie-free
graph.

Proof. Without loss of generality we can assume that f is an identity and
vertex sets of G = (V,E) and G′ = (V ′, E ′) intersect only on vertices of c(G).
The free amalgamation is a graph G′′ = (V ∪ V ′, E ∪ E ′).

All triangles of G′′ are clearly either triangles in G or G′ (or both). G′′

is good because all copies of K4 are also part of centres and thus identified.
For vertices contained in chimneys, some vertices of chimney Chn of G gets
identified with some vertices of chimney Chm of G′ if an only if centres of
the chimneys are the same. This produces a chimney Chn+m in G′′. G′′ is
bowtie-free by Lemma 2.4.

An example of the central amalgamation is depicted in Figure 4.

Definition 3.2 (Lift L0). Given a good bowtie-free graph G = (V,E), an
ordered good bowtie-free graph is a structure G = (V,RE0

G , RE1
G ,≤G) where

RE0
G = E0(G), RE1

G = E1(G) and ≤G is a linear order of V such that
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u1
` u1

r u2
` u2

r

v11

v12

v21

v22

u1
` u1

r u2
` u2

r

v′11

v′12

v′21

v′22

A

B

u1
` u1

r u2
` u2

r

v11

v12

v21

v22

v′11

v′12

v′21

v′22

Figure 4: Structures A and B and their amalgamation over the common centre.

1. vertices of every centre of every vertex v ∈ G form an interval of ≤G,

2. all centres of chimneys are before vertices in copies of K4,

3. all central vertices are before non-central vertices, and

4. non-central vertices belonging to a given chimney form an interval. The
relative order of these intervals corresponding to given centres follows
the order of the relative order of the centres.

Such ordering is called an admissible ordering. We denote by L0 the
language of ordered good bowtie-free graphs and by B0 the class of all ordered
good bowtie-free graphs. By an abuse of notation, for a good bowtie-free
graph G we also denote G = L0(G) the corresponding ordered good bowtie-
free graph (i.e. G is an L0-lift of G).

Example. One of admissible orderings of our reference graph in Figure 3
is: u1` , u

1
r, u

2
` , u

2
r, u

3
` , u

3
r, u

4
1, u

4
2, u

4
3, u

4
4, v

1
1, v12, v13, v21, v22, v31, v32, v33. There

are four centres of a vertex in the graph: {u1` , u1r}, {u2` , u2r}, {u3` , u3r}, and
{u41, u42, u43, u44, } each of them forms an interval (to satisfy 1). {u41, u42, u43, u44, }
is after all centres of vertices in a chimney (to satisfy 2). The non-central
vertices associated with each chimney forms an interval: {v11, v12, v13}, {v21, v22},
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and {v31, v32, v33} and their relative order corresponds to the order of their
centres, as required by 4.

We introduce two more lifts of good bowtie-free graphs. The lift L1 is
introducing unary relations and the lift L2 in addition binary relations. It
is L0 ⊂ L1 ⊂ L2. The hereditary class defined by the lift L2 will form our
Ramsey class.

Definition 3.3 (Lift L1). Let G be an ordered good bowtie-free graph.
A = L1(G) is a lift of G adding new unary relations R`

A, Rr
A, R1

A, R2
A, R3

A

and R4
A such that:

1. for every pair u, v forming the centre of a chimney of G, u <G v, we
put (u) ∈ R`

A and (v) ∈ Rr
A;

2. for every a <G b <G c <G d that are vertices of a copy of K4 in G we
put (a) ∈ R1

A, (b) ∈ R2
A, (c) ∈ R3

A, (d) ∈ R4
A.

We denote by L1 the language of this lift. For a given G ∈ B0 we denote by
L1(G) the corresponding lift of G. By B1 we denote the class of all structures
L1(G), G ∈ B0.

Example. The unary relations of the L1-lifts of our reference graph in Fig-
ure 3 are indicated by labels of the u vertices.

Advancing the definition of the lift L2 we first note that we shall some-
times consider rooted structures (with either one or two roots). Isomorphisms
(and embeddings) are, of course, defined as root preserving isomorphisms
(and embeddings). If, for example, the structures G and G′ are considered
with roots u and v and u′ and v′ then these structures are called isomorphic
if there is an isomorphism f from G to G′ such that f(u) = u′ and f(v) = v′.

Given ordered good bowtie-free graph G and two vertices u, v, u 6= v, we
denote by t(u, v) the isomorphism type of the structure induced by L1(G) on
the set {u, v}∪c(u)∪c(v) rooted in (u, v). We fix an enumeration t1, t2, . . . , tN
of all the possible such types. Clearly there are only finitely many possibilities
for types (as t(u, v) is an isomorphism type of a graph with at most 8 vertices).
In this situation we define binary relations Rt1 , Rt2 , . . . , RtN as follows:

Definition 3.4 (Homogenising lift L2). Let G ∈ B0 be an ordered good
bowtie-free graph. A = L2(G) is the lift consisting from L1-structure L1(G)
and in addition from new binary relations Rt1

A, R
t2
A, . . . , R

tN
A . For u <G v we

11



` r ` r

u v

t(v11 , v
2
2)

` r ` r

u v

t(v13 , v
2
2)

` r ` r

u

v

t(v11 , u
2
`)

` r

u

v

t(u1
` , v

1
1)

u v
1 2

3 4

t(u4
1, v

4
2)

Figure 5: Examples of types of pairs appearing in our reference graph depicted in Figure 3.
(With the notation for vertices preserved.)

put (u, v) ∈ Rt(u,v)
A . We denote by L2 the language of this lift and by B2 the

class of all structures L2(G), G ∈ B0.
If (u, v) ∈ Rt(u,v)

A then t(u, v) is called the type of pair (u, v).

Denote by B2 the class of all L2-lifts L2(G), G ∈ B0. Observe that
structures in B2 have the property that every two distinct vertices are in a
tuple of some relation (called irreducible below).

Example. Some types of pairs in our reference graph depicted in Figure 3
are depicted in Figure 5.

Remark. The relations Rti
A of the lift L2(G) form a natural homogenisation

of ordered good bowtie-free graphs as the new binary relations introduced
describe necessary orbits of the automorphism group of a universal graph
for class B1. On the other hand not all relations in lift L1(G) (i.e. unary
relations) are necessary from the point of view of ω-categoricity. The uni-
versal graph in [5] has automorphisms exchanging vertices within centres of
vertices. We however consider ordered graphs and the order on every centre
prevents any non-trivial automorphism within it. It is also interesting to ob-
serve that [5] leads to homogenisation of the existentially complete universal
graph which needs relations of unbounded arity. Our ordered lift has only
unary and binary relations. This is in agreement with [9] where we show
that the relational complexity of ω-categorical and existentially complete
bowtie-free graph is infinite, while the relational complexity of the ordered
ω-categorical and existentially complete bowtie-free graph is 2.
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Definition 3.5. Denote by B the class of all substructures of B2. (Thus
B is the hereditary closure of B2.) For structure A ∈ B an ordered good
bowtie-free graph G ∈ B0 is called a witness of A if A is induced on A by
L2(G).

It follows directly that A ∈ B if and only if there exists a witness G of
A.

The lift L2(G) encodes enough information so that for every substructure
A of L2(G) it is possible to uniquely reconstruct the type of its centre (a
precise procedure for this appears in proof of Theorem 3.7). Lemma 3.1
extends to the amalgamation property of B:

Lemma 3.6 (Amalgamation of lifts). B is an amalgamation class.

Proof. Fix A, B1 and B2 from B such that identity is an embedding from A
to B1 and B2. We will construct an amalgamation of B1 and B2 over A.

Let GB1 and GB2 be witnesses of B1 and B2 respectively. Further denote
by A1 the structure induced by GB1 on the union of A and all centres of
vertices of A in GB1 . Similarly denote by A2 the structure induced by GB2

on the union of A and all centres of vertices of A in GB2 .
By the construction of the lift, A1 is isomorphic to A2 and moreover there

is an isomorphism that is an identity on A. It is now possible to extend GB1

to G′B1
and GB2 to G′B2

(by possibly adding centres) in a way that centres
c(G′B1

) and c(G′B2
) are isomorphic with fixing vertices of A.

By the same argument as in proof of Lemma 3.1 we get ordered good
bowtie-free graph GD that is an amalgamation of G′B1

and G′B2
over A1 = A2

(here we may unify non-central vertices in A, too). It is easy to verify that
L2(GD) is as well an amalgamation of B1 and B2 over A, since the type
of every pair of vertices in B1 or B2 is preserved and thus B1 and B2 are
induced substructures of L2(GD).

Thus we may apply Fräıssé-theory (see Section 9). To obtain Ramsey
property we apply strong Ramsey properties proved in [20]. Towards this
end we need the following alternative description of B by means of forbidden
substructures.

Recall that a structure A is called irreducible if every pair of distinct
vertices belong to a relation of A. In the context of Ramsey theory it is
often convenient to consider the lift adding linear order alone. Let K be
a language and K≤ lifted language adding single binary relation ≤. K≤-
structure A is pure-irreducible if its K-shadow is irreducible.
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We will apply notion of pure-irreducibility to structures in A ∈ B. While
the linear order is present in Sh(A) implicitly this will allow us to describe
class B by means of forbidden pure-irreducible substructures.

Given family of finite L-structures F we denote by Forb(F) the class of
finite L-structures not containing any structure F ∈ F as a substructure. We
sometimes write ForbL(F) to denote explicitly the language L of structures
we are considering.

Theorem 3.7. Let T be the class of all pure-irreducible L2-structures F with
at most 3 vertices such that F /∈ B. Then

1. every pure-irreducible structure in ForbL2(T ) is lift of a bowtie-free
graph, and,

2. the class B is precisely the class of all finite pure-irreducible structures
A in ForbL2(T ) such that ≤A is an admissible ordering.

Proof. Consider structure A ∈ B. It easily follows from Definition 3.5 that
every pair of vertices (u, v), u ≤A v, is in some binary relation R

tj
A and thus

B is a class of pure-irreducible structures.
Because B is closed on substructures it remains to show that every pure-

irreducible structure A /∈ B contains substructure A′ /∈ B that consists of at
most 3 vertices.

We give an effective procedure that attempts to construct, for a given
ordered structure A, an ordered good bowtie-free graph (a witness) G such
that A is an induced substructure of L2(G). The existence of the witness G
proves that A ∈ B. Then we analyse cases where such procedure fails and
show that these failures all correspond to structures F on at most 3 vertices.
All those structures will have property that F /∈ B.

Denote by A0 the L1-shadow of A. Enumerate all pairs of vertices u, v,
u <A v in A as (u1, v1), (u2, v2), . . . , (un, vn). For every pair (ui, vi), 1 ≤ i ≤
n, we construct Ai inductively from Ai−1 based on the type of (ui, vi) in A.
This involves the following elementary steps:

1. addition of new vertices to represent centres of u and v if they are not
already present in Ai−1,

2. addition of the new vertices into the corresponding unary relations R`
Ai ,

Rr
Ai , R1

Ai , R2
Ai , R3

Ai , and, R4
Ai as required by the type,

3. addition of new edges of type 0 or 1 from u and v to the newly added
vertices,
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4. addition of edges of type 0 or 1 between the newly added vertices,

5. extension of the linear order ≤Ai−1 in a way consistent with the defini-
tion of ordered good bowtie-free graphs (Definition 3.2) and the type
of the pair (u, v).

Because vertices of centres of a given vertex v are uniquely determined by
the unary relations in L1, there is (up to isomorphism) unique way of doing
so (if it exist at all).

This procedure may fail if the extension is impossible. Assume that (ui, vi)
is the first pair such that Ai can not be constructed. We consider individ-
ual cases that may happen and show that such failure scenarios all imply
existence of forbidden substructures in A with at most 3 vertices:

1. Some or all vertices of the centre of ui already exists in Ai−1 and they
are in conflict with the centre required by the type of pair (ui, vi).

For example there is a vertex u′ connected by edge of type 0 to ui that
is in R`

A while the centre of ui required is a copy of K4 and thus the
vertex should be in R1

A, R2
A, R3

A or R4
A instead.

In this case let u′ be such vertex. If u′ is in A then the structure induced
on ui, vi, u

′ must be forbidden: pair (ui, vi) require ui to have its centre
of one type, while pair (ui, u

′) require its centre of a different type (or
if ui = u′ then unary the relation on ui must be already in conflict).
This is not possible in a structure in B.

If u′ is not in A then it was introduced when defining the centre of
vertex u′′ and then ui, vi, u

′′ induce the forbidden substructure for the
same reason.

2. The centre of vi is already present in the structure and differs from one
required by the type.

This case follows in complete analogy to 1.

3. Vertices ui and vi are connected or ordered differently than required by
the type. In this case the structure induced on ui, vi is forbidden.

4. Edges or orders in between already defined parts of centres ui and vi
are different then required by the type.

Denote by u′ and v′ the conflicting vertices of the centre of ui and vi
respectively. Now put u′′ = u′ if u′ ∈ A or put u′′ to be a vertex
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of A whose centre contains u′. Similarly put v′′ = vi if v′ ∈ A or
v′′ to a vertex of A whose centre contains v′. Now structure induced
on ui, vi, u

′′, v′′ is forbidden and moreover at least one of ui, vi, u
′′ or

u′′, vi, v
′′ must be forbidden.

We have shown that the procedure of adding centres can always be completed
for all pairs (ui, vi), i = 1, 2, . . . , n if all substructures of A on at most 3
vertices are in B. It also follows that if Ai ∈ Forb(T ) then also Ai+1 ∈
Forb(T ) for every 1 ≤ i < n. Denote by Gn the resulting ordered graph (i.e.
L0 shadow of An).

In the final step we construct G by extending every triangle in Gn that
is not contained in a chimney nor K4 and every edge of type 0 not contained
in a triangle to a copy of chimney Ch2. There is unique way of doing so that
is consistent with lift An:

1. Every isolated triangle in An must contain precisely one vertex v` in
relation R`

A, one vertex vr in relation Rr
A and one vertex vt in no unary

relations. (Any other triangle is either forbidden by T or contains
vertices in relations R1

A, R2
A, R3

A or R4
A and those was extended to

copies of K4 during the construction of Gn.) The extension of such
triangle can thus only be done by adding a new vertex v adjacent to
both v` and vr. The order of G can be extended by putting v just after
vt to satisfy Definition 3.2 condition 4. (this is the only step of the
construction that is not unique and it would be also possible to put v
before vt).

2. Every edge of type 0 has precisely one vertex v` in relation R`
A and

one vertex vr in relation Rr
A (again any other edge of type 0 must have

been extended to a copy of K4). There is only one way to extend the
order which is consistent with Definition 3.2 condition 4.

We shall verify that G is an ordered good bowtie-free graph. While
constructing An we made sure that every vertex is contained in at least one
edge of type 0. While constructing G we made sure that every such edge is
contained either in a chimney or K4. Because An ∈ Forb(T ) and only edges
contained in triangles were added to G we know that all edges contained
in a triangle are of type 0 and the subgraph formed by edges of type 0 is a
disjoint union of chimneys and K4’s.

By Lemma 2.4 we get that G is a bowtie-free graph. By the construction
G is a witness of An and thus also of A.
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It follows that we can characterise lifts A such that there exists G (de-
scribed above) that is an ordered good bowtie-free graph. Because A is a
substructure of L2(G) (and thus A ∈ B) the statement follows.

4. Reduced structures

To simplify our future analysis, we now invoke another modification of
L2-structures. It is easy to see that the L2-lift was created in such a way that
all edges in between two centres of a vertex, C1 and C2, are in fact encoded by
type of any pair of vertices v1 ∈ C1 and v2 ∈ C2 which is explicitly represented
in L2-lifts. We can thus safely omit all but one vertex from every centre of a
vertex without losing any information about a good bowtie-free L2-structure:

Definition 4.1 (Reduced structures). A• is a reduction of L2-structure A if
it is created from A by removing all vertices v ∈ Rr

A, R
2
A, R

3
A, R

4
A.

We modify the language L2 correspondingly into L• (actually we may take
L• = L2 but relations Rr, R2, R3, R4 are always empty for reduced structures
and thus we remove them from the language) and denote by B• the class of
all reduced structures A• where A ∈ B2 and by B• for all reduced structures
A• where A ∈ B. Accordingly we modify the other definitions (such as the
definition of pure-irreducible structures).

By comparing the corresponding definitions we have that reduced struc-
tures are still described by a set of forbidden substructures with at most 3
vertices (in a sense of Theorem 3.7):

Theorem 4.2. B• is the class of all finite admissibly ordered pure-irreducible
structures in ForbL•(T •) where T • is a finite set of pure-irreducible structures
with at most 3 vertices.

Proof. T • is the subset of T defined in Theorem 3.7 containing L• shadows of
all structures A ∈ T such that all relations Rr

A, R2
A, R3

A, R4
A are empty.

5. Ramsey structures

The following strong Ramsey theorem is a variant of the main result of
[20], see also [16]. It will be used repeatedly (for example in Sections 6 and
7).
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Theorem 5.1 ([20]). Let K be a finite relational language involving binary
relation ≤ and F be a set of pure-irreducible K-structures. Then the class of
all structures in Forb(F) where ≤ is a linear ordering of vertices is a Ramsey
class.

Note that traditionally Theorem 5.1 is formulated in the language of
linearly ordered hypergraphs. Because of reducibility of linearly ordered
hypergraph is concerned about hyperedges only, it corresponds to our notion
of pure-irreducibility. We will use the following refinement of Theorem 5.1.

Theorem 5.2 ([20]). Let K be a finite relational language involving binary
relation ≤ and unary relations U1, U2, . . . , UN . Let F be a set of pure-
irreducible K-structures. Let C be the class of all K-structures A in Forb(F)
where every vertex is in exactly one of unary relations RUi

A and ≤A is linear
ordering of vertices which satisfies

x < y whenever (x) ∈ RUi
A and (y) ∈ RUj

A and 1 ≤ i < j ≤ N.

We call such ordering an admissible ordering. Then the class C together with
admissible orderings is a Ramsey class.

Proof. In fact, this is an N -partite version of the main result of [20]. It follows
directly by a product argument. For completeness, this can be outlined as
follows: Given admissibly ordered A,B ∈ C, by [20] there exists C ∈ Forb(F)
with C −→ (B)A2 . C is ordered but this ordering ≤C may not have to be
admissible. Then it is possible to re-order vertices of C lexicographically first
by unary relations they belong to and second by the original order of C. It
is easy to see that this new order is admissible and preserves all copies of
(admissibly ordered) structure B.

We apply Theorem 5.2 to the set T • of pure-irreducible L•-structures de-
fined in Theorem 4.2. We consider the structures in ForbL•(T ) with admis-
sible orderings defined above. Theorem 5.2 then specialises to the following:

Theorem 5.3. The class ForbL•(T •) is a Ramsey class.
Explicitly: For every pair of L•-structures A,B in ForbL•(T •) there exists

an L•-structure C ∈ ForbL•(T •) such that

C −→ (B)A2 .

18



Proof. Indeed this is just a specialisation of Theorem 5.2 (where admissible
orderings are interpreted by orderings of chimneys and K4’s and language is
extended by additional unary relation containing precisely those vertices not
in any of unary relations of L•)).

However note that even when A and B are pure-irreducible structures in
ForbL•(T •) the structure C in ForbL•(T •) is not necessarily pure-irreducible
and thus it may not correspond to the reduction of L2-lift of a good bowtie-
free graph. (As there are forbidden configurations we cannot complete C to
a pure-irreducible structure “freely”.)

6. Star Equivalences are Ramsey

The key feature of bowtie-free graphs is the partition to chimneys with
each class of the partition “rooted” in the centre (the root being its algebraic
closure). In this section we prove Theorem 6.6 which extends Theorem 5.3
to structures with such “rooted equivalences”. This brings us closer to the
main result (which is proved in the next section).

Definition 6.1 (Chimney equivalence). For a L•-structure A ∈ B• (i.e.
which is the reduction of the L2-lift of a good bowtie-free graph) denote by
∼A the equivalence expressing that two vertices belong to the same chimney
(contracted central vertices are included in this). ∼A is called the chimney
equivalence of A.

Note that each equivalence class of ∼A contains a distinguished vertex x
which is the (reduced) centre of the corresponding chimney or a copy of K4.
Moreover all other vertices of this equivalence class are related to x by edges
belonging to RE0

A that corresponds to a (spanning) star and there are no other
vertices joined to x by RE0

A edges. Thus the equivalence ∼A is described by
a star forest formed by RE0

A edges. (Star is a complete bipartite graph K1,k,
k ≥ 0. Thus a single vertex is also a star. If K = 1 the star is an edge and
the unique vertex in R`

A or R1
A considered as root. Star forest is any graph

created as a disjoint union of stars.) This leads us to the following definition
which makes sense for structures in ForbL•(T •) which are not necessarily
irreducible:

Definition 6.2 (Star equivalence). For an L•-structure A ∈ ForbL•(T •)
assume that the edges RE0

A form a star forest. Denote by ≈A (called star
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equivalence) the equivalence expressing the component structure of this star
forest.

The equivalence≈A for structures that are not necessarily pure-irreducible
will play the role of the chimney equivalence for pure-irreducible structure.

Definition 6.3. Denote by Forb≈L•(T •) the class of all (not necessarily pure-
irreducible) structures A ∈ ForbL•(T •) where ≈A is a star equivalence (that
is edges RE0

A forms a star forest) and such that all vertices that appear in
centres of stars (possibly degenerated to 1 vertex) are either in R`

A or R1
A.

In this section we aim to prove Theorem 6.6 which gives Ramsey property
for structures with star equivalences. Advancing this we modify the key part
of proof of Theorem 5.2.

We shall stress the fact that Forb≈L•(T •) can not be expressed as a class
ForbL•(T ′) where T ′ is a set of pure-irreducible structures. There is no
way to express the fact that no vertex can be connected to centres of two
different stars. Consequently we can not apply Theorem 5.2 (or 5.3) directly.
The proof below uses a variant of the Partite Construction [19]. We modify
its core part—Partite Lemma—in order to satisfy the additional equivalence
condition.

The following is the main definition of this section.

Definition 6.4 (A-partite structure). Let A be a L•-structure. Assume
A = {1, 2, . . . , a} with the natural ordering. An A-partite L•-structure is a
tuple (A,XB, B) where B is an L•-structure and XB = {X1

B, X
2
B, . . . , X

a
B}

partitions vertex set of B into a classes (X i
B are called parts of B) such that

1. the ordering of B is lexicographic induced by the ordering of A and of
parts X i

B (particularly it satisfies X1
B < X2

B < . . . < Xa
B);

2. mapping π which maps every x ∈ X i
B to i (i = 1, 2, . . . , a) is a homo-

morphism B→ A in L• (π is called the projection);

3. every tuple in every relation of B meets every class X i
B in at most one

element.

The isomorphisms and embeddings of A-partite structures, say of B into B′

are defined as the isomorphisms and embeddings of L•-structures together
with the condition that all parts are preserved (i.e. the part X i

B is mapped
to X i

B′ for every i = 1, 2, . . . , a).
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In the following we will consider L•-structure A to be also an A-partite
structure, where each class of the partitionsX1

A, X
2
A, . . . , X

a
A consists of single

vertex. For brevity, given a class of L• structures K and an L•-partite struc-
ture B = (A,XB, B′), we will also write B ∈ K with the meaning B′ ∈ K.
We start by proving the following modification of the Partite Lemma [19].
The main difference is that we consider structures with equivalences.

Lemma 6.5 (Partite Lemma). Let A ∈ B• be an L•-structure with star
equivalence ≈A induced by RE0

A edges. Assume without loss of generality A =
{1, 2, . . . , a} with the natural ordering. Let B ∈ Forb≈L•(T •) be an A-partite
L•-structure with parts XB = {X1

B, X
2
B, . . . , X

a
B} and star equivalence ≈B

induced by RE0
B edges. Further assume that every vertex of B is contained in

a copy of A. Then there exists an A-partite L•-structure C with parts XC =
{X1

C, X
2
C, . . . , X

a
C} where RE0

C form a star forest defining star equivalence ≈C

such that
C −→ (B)A2 .

Explicitly: For every 2-colouring of all A-partite substructures of C which
are isomorphic to A there exists a substructure B̃ of C, B̃ isomorphic to
B, such that all the substructures of B̃ which are isomorphic to A are all
monochromatic. Particularly, the isomorphism of B̃ and B (which is an
embedding of B into C) and thus maps RE0

B to RE0
C and therefore also maps

the equivalence ≈B to ≈C.

Proof. Let Ã1, Ã2, . . . , Ãt be the enumeration of all substructures of B which
are isomorphic to A.

We take N sufficiently large (that will be defined later) and construct an
A-partite L•-structure C with parts XC = {X1

C, X
2
C, . . . , X

a
C} as follows:

1. For every 1 ≤ i ≤ a set X i
C is the set of all functions

f : {1, 2, . . . , N} → X i
B.

2. The ordering ≤C of C is defined lexicographically as an extension of
all orderings of A and {1, 2, . . . , N}.

3. For every relational symbol R ∈ L•, (f1, f2, . . . , fr) ∈ RC if and only if
one of the following occurs:

(a) There exists function u : {1, 2, . . . , N} → {1, 2, . . . , t} such that
for every 1 ≤ l ≤ N the tuple (f1(l), f2(l), . . . , fr(l)) is in R

Ãu(l)
.
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(b) There exists ω ⊆ {1, 2, . . . , N} and function u : {1, 2, . . . , N}\ω →
{1, 2, . . . , t} such that functions f1, f2, . . . , fr are all constant on
ω and:

i. f1(l), f2(l), . . . , fr(l) are all vertices of Ãu(l) in B, for every
l ∈ {1, 2, . . . , N} \ ω,

ii. (f1(l), f2(l), . . . , fr(l)) ∈ Rj
B and there is no copy of A in B

containing all vertices f1(l), f2(l), . . . , fr(l), for l ∈ ω.

If vertex v of B is contained in the star S, denote by sB(v) the centre of
S and put sB(v) = v otherwise. Define the equivalence ≡ on C as follows:
f ≡ g if and only if sB(f(l)) = sB(g(l)) for every 1 ≤ l ≤ N .

Observe that C ∈ ForbL•(T •) as A ∈ ForbL•(T •) and the projection π :
C→ A is a homomorphism. Moreover every pure-irreducible structure D of
C contains at most one vertex from every partition X i

C (by the construction)
and thus π restricted to D is injective.

We shall check that indeed C is an A-partite L•-structure (and thus
again C ∈ ForbL•(T •)) with parts XC = {X1

C, X
2
C, . . . , X

a
C} and finally we

prove that the edges RE0
C form a star forest and that the star equivalence ≈C

coincides with ≡. Most of this follows immediately from the definition. We
pay extra attention to checking that ≡ give the star equivalence. This is the
main difference from [19].

It is easy to see that ≡ is indeed an equivalence. We show that the ≡ is
the star equivalence of ≈C induced by edges RE0

C . First observe that u ≈B v
if and only if sB(u) = sB(v). Moreover, because A corresponds to a reduced
good bowtie-free structure and because every vertex of B is contained in a
copy of A we know that every edge of type 0 in B is an edge of a copy of A.
It follows that vertices f, g of C are connected by edge of type 0 if and only
if for each 1 ≤ l ≤ N we have an edge of type 0 in between f(l) and g(l), and
consequently we have sB(f(l)) = sB(g(l)). Thus ≈C and ≡ coincide. This
proves that C ∈ Forb≈L•(T •)

For completeness we check that C −→ (B)A2 . Let N be the Hales-
Jewett number guaranteeing a monochromatic line in any 2-colouring of N -
dimensional cube over alphabet {1, 2, . . . , t}.

Now assume that we have a 2-colouring of all copies of A in C. Using
the definition of C we see that among these copies of A are copies induced
by an N -tuple (Ãu(1), Ãu(2), . . . , Ãu(N)) of copies of A for every function u :
{1, 2, . . . , N} → {1, 2, . . . , t}. However such copies are coded by the elements
of the cube {1, 2, . . . , t}N and thus there is a monochromatic combinatorial
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line. This line in turn will lead to a copy B̃ of B in C with all edges of the
form (a), (b) described above.

We can now invoke the Partite Construction [19, 16] in its standard form.
We prove:

Theorem 6.6. Let A,B ∈ B• be L•-structures with star equivalences ≈A

and ≈B (induced by RE0
A and RE0

B ). (Thus also A,B ∈ Forb≈L•(T •) for T •
defined in Theorem 3.7 and Theorem 4.2). Then there exists L•-structure
C ∈ Forb≈L•(T •) with the star equivalence ≈C induced by star forest RE0

C

such that
C −→ (B)A2

with respect to embeddings preserving the equivalences.

Proof. Fix structures A,B. Using Theorem 5.3 obtain C0 ∈ ForbL•(T •) (i.e.
without the star forest condition) that satisfies C0 −→ (B)A2 . Assume with-
out loss of generality that C0 = {1, 2, . . . , c}. Enumerate all copies of A in

C0 as {Ã1, Ã2, . . . , Ãb}. We shall define C0-partite structures P0,P1, . . . ,Pb

which, as we shall show, will all belong to Forb≈L•(T •) with the star equiva-
lence which induces ≈Pi

. Putting C = Pb we shall have the desired Ramsey
property C −→ (B)A2 .

We denote the parts of C0-partite structures Pi as XPi
= {X i

1, X
i
2, . . . , X

i
c}.

As usual the structures Pi are called pictures. Pictures will be constructed
by induction on i.

The picture P0 is constructed as a disjoint union of copies of B: for every
copy B̃ of B in C0 we consider a new isomorphic and disjoint copy B̃′ in P0

which intersects part X0
l if and only if the image of the projection B̃ contains

vertex l (so the projection restricted to B̃′ is B̃). Clearly P0 ∈ Forb≈L•(T •).
The star forest of P0 is induced by the star forest of all copies B̃′.

Let the picture Pi ∈ Forb≈L•(T •) be already constructed. Let Ãi =

{x1, x2, . . . , xa} be the vertices of Ãi (in the order of C0). Let Bi be the
substructure of Pi induced by Pi on the union of vertices of those copies of
A which projects to Ãi. (Note that Bi need not contain all vertices of Pi

in parts X i
x1
, X i

x2
, . . . , X i

xa
.) In this situation we use Partite Lemma 6.5 to

obtain an A-partite structures Ci+1 with parts X i+1
x1
, X i+1

x2
, . . . , X i+1

xa
. Now

consider all substructures of Ci+1 which are isomorphic to Bi and extend
each of these structures to a copy of Pi (thus some new vertices may be
added even in parts X i

xj
). These copies are disjoint outside Ci+1, however
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in this extension we preserve the parts of all the copies. The result of this
multiple amalgamation of copies of Pi is Pi+1. The star forest of Pi+1 is
defined as an amalgamation of star forest of copies of Pi. Of course we have
to check below that this indeed results in a star forest.

Put C = Pb. It follows easily (by now by a standard argument cf. [19, 16])
that C −→ (B)A2 : by a backward induction one proves that in any 2-colouring
of
(
C
A

)
there exists a copy P of P0 such that the colour of a copy of A in P

depends only on its projection. As this in turn induces colouring of copies of
A in C0, we obtain a monochromatic copy of B.

We have to check that the edges of RE0
C form a star forest and that

C belongs to Forb≈L•(T •). To do so we proceed by an induction on i =
0, 1, 2, . . . , b. The statement is clear for picture P0. In the induction step
(i =⇒ i + 1) we have to inspect the amalgamation of copies of Pi along
the copies of structures Bi in Ci+1. It is clear that Pi+1 belongs again to
ForbL•(T •) (as the forbidden substructures in T • are all pure-irreducible).
It remains to show that ≈Pi+1

is a star equivalence of Pi+1. Because A is
assumed to be a good bowtie-free structure and because Bi has every vertex
in a copy of A, we know that every star with leaf in Bi also contains its
centre in Bi. By Lemma 6.5 we a get a star equivalence on Ci+1. The star
equivalence is preserved by the free amalgamations of Pi over Ci+1 because
every time we unify leaves of a star we also unify the centre. Consequently
the edges of RE0

Pi+1
form a star forest inducing in Pi+1 a star equivalence

≈Pi+1
.

7. Putting it together: Bowtie-free graphs have a Ramsey lift

In this section we prove the main Theorem 1.1 in the following form (B
is defined in Definition 3.5):

Theorem 7.1. The class B is a Ramsey class.

Proof. Let A,B ∈ B be fixed. We prove the existence of Ramsey object
C ∈ B in several steps.

Without loss of generality we can assume that B ∈ B2. For A ∈ B there
exists, up to isomorphism, a unique minimal L2-structure Â ∈ B2 which
corresponds to a good bowtie-free graph such that A is a substructure of
Â. This just means that we complete each centre c(A) to a “full” centre
by possibly adding to every vertex left-, or right-vertex or completing some
vertices to K4. This correspondence A → Â is functorial in the sense that
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(for any L2-structure B ∈ B2) the correspondence of
(
B
A

)
and

(
B
Â

)
is one to

one. (This is another consequence of the algebraic closure.) Thus we may
assume that both A and B are L2-structures (in the sense of Definition 3.5).

Let A•,B• ∈ B• be reduced structures of Â and B with star forests induc-
ing equivalences ≈A and ≈B. By Theorem 6.6 there exists D• ∈ Forb≈L•(T •)
satisfying

D• −→ (B•)A
•

2 .

with RE0
D• forming a star forest and defining star equivalence ≈D. Without

loss of generality we assume that all vertices and tuples in relations of D•

are contained in a copy of B•.
We use D• to reconstruct C ∈ B2 ⊆ B which is a “completion” of D•: C

will contain D• as a non-induced substructure in a way that every copy of
B• in D• can be extended to induced copy of B in C.

D• is a reduced structure. First we reverse the reduction process. Denote
by D a structure created from D• by adding, for every vertex (u) ∈ R`

D, a
new vertex v, adding (v) to Rr

D, and connecting every vertex u′, u′ ≈D u, to
v by an edge in RE0

D . The result of this operation is a chimney. Similarly, for
every (u) ∈ R1

D introduce the additional 3 vertices to form the clique. Finally
add the edges RE1

D connecting the newly introduced vertices to vertices of D•

as described by the existing tuples in Rti
D• . Because we assume that every

vertex and every tuple of every relation of D• is in a copy of B• and every
vertex in D• is a part of a star equivalence where all copies share the centre,
there is unique way of doing so: consider a1 ≈D a2 ∈ D• and b1 ≈D b2 such
that (a1, b1) ∈ Rti

D• and (a2, b2) ∈ R
tj
D• . We have a copy B̃•1 containing {a1, b1}

and a copy B̃•2 containing {a2, b2}. By lemma 3.6 we know the amalgamation
is possible. It follows that types ti and tj must agree on the newly introduced
edges. By iterating this we obtain structure D where we also extend every
isolated triangle into a chimney in the only way which is consistent with the
lift.

Next we check that the L1-shadow Sh(D) is a good ordered bowtie-free
graph. Sh(D•) is triangle-free and thus every triangle in D contains at least
one new central vertex. Every new triangle is a part of a copy of Sh(B)
(which was created by expansion of a copy of B•) and thus it consists of
edges of type 0 only. Consequently we only need to verify that edges in RE0

D

do not form a bowtie. It is easy to verify that those edges however forms
cliques C4 (which were introduced by expanding vertex in R1

D•) and chimneys
spanning vertices of each star equivalence class of B• which centre is in R`

D• .
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The ordering of D• is not necessarily admissible. The use of contracted
structures along with the notion of admissible ordering in the sense of Theo-
rem 5.2 makes the order of D• satisfy conditions 1, 2, and 3 of Definition 3.2.
The order of non-central vertices is however free. It is not difficult to see that
the non-central vertices can be reordered according their centres preserving
relative order of vertices with the same centre. This order is admissible and
does preserve all embeddings of admissibly ordered structures we need. The
order of D can then be defined from the admissible order of D• in a natural
way.

We have constructed good ordered L1-structure Sh(D) where every copy
of shadow Sh(B•) was extended to a copy of Sh(B). Finally we put C =
L2(Sh(D)) ∈ B. Because the lift L2 is constructed in an unique way which
preserves substructures, we have

C −→ (B)A2 .

8. The lift property

We say that a lifted class K+ has the lift property (expansion property
in [21]) relative to K (where K is shadow of K+) if and only if for every
A ∈ K there is B ∈ K such that for every A+,B+ ∈ K+ such that the
shadow of A+ is A and the shadow of B+ is B there is an embedding from
A+ to B+.

The lift property is a generalisation of the ordering property [18]. Struc-
tures that have both Ramsey and ordering property play important role in
[13] where they are used to obtain universal minimal flows. [21] defines ex-
pansion property (which for the consistency we call here the lift property)
and gives results analogous to [13] in the setting of Ramsey classes with the
lift property. To apply these results to the class B we now have to show that
lifts constructed in this paper have the lift property.

Theorem 8.1. B has the lift property relative to B.

Proof. This result follows in an analogy to [18] (where it is shown that the
ordered edge Ramsey property implies ordering property). Essentially we
only need to deal with additional unary and binary relations present in our
lifts.
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Fix a bowtie-free graph A. We will give explicit construction of B needed
for the lift property. Consider all possible extensions of A into a good bowtie-
free graphs that are minimal in the sense that removing any non-empty
set of vertices from the extension makes the graph either not good or not
containing A. (Clearly this is a finite set.) Now consider all admissible
orderings (Definition 3.2) of these extensions. Denote these ordered good
bowtie-free graphs by A1,A2, . . . ,AN .

Now we extend graphs A1,A2, . . . ,AN to graphs A′1,A
′
2, . . . ,A

′
N by sim-

ple gadgets that will allow us to use the Ramsey property to ensure the order.
For that we consider all vertices v of Ai (1 ≤ i ≤ N) with the following prop-
erties:

1. MI = {v; (v) ∈ R`
L2(Ai)

},
2. MII = {v; (v) ∈ R1

L2(Ai)
},

3. MIII = {v; (v) is in no unary relations of L2(Ai)}.

Sets MI , MII and MIII are chosen in a way that the orders of sets MI , MII

and MIII together with admissibility of order (Definition 3.2) determine total
ordering of all vertices.

Consider pair of vertices u 6= v of Ai where both u and v belong to one
of the sets MI , MII or where both u and v belong to set MIII and have the
same centre. For each such pair extend ordered good bowtie-free graph Ai

in a way so there is a vertex w(u, v) that belongs to same class in the lift as
u and v, it is not connected by an edge to u nor v, and it is in between u
and v in the order of ≤A+

i
. Such a vertex can always be added in a way that

the result is an ordered good bowtie-free graph (by possibly introducing new
chimney or a copy of K4). We denote by A′i an ordered good bowtie-free
graph having vertex w(u, v) for every possible choice of u and v in Ai.

Denote by A′ the disjoint union of graphs A′1,A
′
2, . . . ,A

′
N . Now for ev-

ery pair of u <A w for which we introduced w(u, v) consider substructures
induced on {u,w(u, v)} and {w(u, v), v} by L2(A

′).
These structures are always isomorphic. (Recall thatR`, Rr, R1, R2, R3, R4

are the only unary relations in L1.) Denote isomorphism types of those struc-
tures by EI , EII and EIII . Now we use Theorem 6.6 to get:

CI −→ (L2(A
′))EI

2 ,

CII −→ (CI)
EII
2 ,

CIII −→ (CII)
EIII
2 ,
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where all CI ,CII ,CIII belong to B . Let B ∈ B0 be the shadow of CIII . We
claim that B is a good bowtie-free graph with the lift property for A.

Let B+ ∈ B be a L2-lift of any admissibly ordered structure B. We now
assign colours to copies of EI ,EII , and EIII in CIII by comparing order
of vertices in B+ and CIII . (If the order agrees the colour is red and blue
otherwise.) By Ramsey property we obtain a copy of A′ such all copies of EI ,
EII , EIII are monochromatic. This means that within the copies of Ai the
relative order of vertices within sets MI , MII and set MIII vertices assigned
to a given centre is either the same as in B+ or opposite (independently in
each class). It is easy to see that any admissible orderings of A can be turned
to another admissible ordering of A by reversing orders within each of the
classes (and possibly adjusting order in between intervals assigned to each
centre). It is thus possible to find Ai within B+ that is ordered the same
way.

In the language of [13, 21] we thus obtain the following corollary.

Corollary 8.2. The automorphism group of the Fräıssé limit of B is ex-
tremely amenable and this expansion gives universal minimal flow of the au-
tomorphism group of the Fräıssé limit of B.

Remark. Theorem 8.1 is the only place in the paper that actually needs
conditions given on admissible ordering by Definition 3.2. There are many
possible choices of orderings of good bowtie-free graphs; completely free or-
dering, ordering by unary relations, ordering by corresponding centre, etc.
Good graphs ordered freely (as well as other cases) can also be shown to have
Ramsey lift constructed the same way as our lift. It is easy to see that such
class however fails to have the lift property: Consider a good bowtie-free
graph A consisting of two chimneys where order of non-central vertices does
not follow the order of centres. For any choice of B it is possible to give an
admissible ordering in the sense of Definition 3.2 giving a lift of B that does
not include the given lift of A (because the order of A is not admissible).

Theorem 8.1 can thus be understood as an argument why among possible
Ramsey lifts of B the one given here is the optimal one.

9. Concluding remarks

The existence of universal objects is a difficult question in its own and
this is also where the class of all bowtie-free graphs played a vital role. Here
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is a brief history: It starts with a (somewhat surprising) result of Komjáth
[14] that the class of bowtie-free graphs B contains a universal graph, i.e.
there exists a (countably infinite) bowtie-free graph U such that every finite
or countably infinite bowtie free graph G has an embedding into U (in other
words, G is isomorphic to an induced subgraph of U). In a sense this obscurely
looking example was (and is) a key case for further development (see e.g.
[1, 5, 7, 2, 4, 6, 3]).

Note that the problem of characterising universal graphs seem to be far
from being solved even in the following special case: Given a finite set of finite
graphs F , denote by ForbM(F) the class of all finite or countable infinite
graphs which do not contain any F ∈ F as a (not necessarily induced)
subgraph. For which F does the class ForbM(F) have a universal graph?
(Non-induced subgraphs correspond to monomorphism and M in ForbM(F)
stands for monomorphism.) The answer is positive for the bowtie graph
while, for example, the answer is negative for the rectangle C4. It is not even
known whether this question, for a general finite F , is decidable [2].

The problem was recast in the model theory setting by Cherlin et al. [5].
They narrowed the search for universal graphs to more structured ultraho-
mogeneous and ω-categorical graphs (and structures) and in [5] they pro-
vided a structural characterisation of such universal structures: There is an
ω-categorical universal graph in ForbM(F) if and only if the class of exis-
tentially complete graphs in ForbM(F) has a locally finite algebraic closure.
Bowtie-free graphs fall in this category.

Let us formulate in this setting a consequence of our construction of B
in Section 3. Observe that in the amalgamations involved in the proof of
Lemma 3.1 the non-central vertices of B1 and B2 are identified if and only
if they belong to A (so amalgamation is “strong on non-central vertices”).
Consequently by the standard Fräıssé argument we get:

Corollary 9.1. The class of all finite structures in B is the age of an ultra-
homogeneous structure and its shadow is a universal graph for class B.

Remark. This, of course, follows also from Proposition 1 in [5] where the
existence of ω-categorical universal object is established. However, here we
provided an explicit construction by means of finite lifts. In fact this is the
first such explicit lift (compare [5]) and this is of independent interest [11, 12].

It is conjectured in [2] that for classes defined by forbidden monomor-
phisms from one forbidden graph the algebraic closure operator is either
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unary or there is no universal ω-categorical graph at all. We believe that all
such classes with unary closure operator can be proved to be Ramsey by a
generalisation of a proof presented here. On the other hand a simple example
is given in [2] showing that the closure does not need to be unary for classes
defined by forbidden homomorphism from more than one connected graph.
Our techniques does not seem to directly generalise for this case.

Other important case is the situation where the amalgamation is not
free over closed sets. Several such classes with strong amalgamation have
been proved to be Ramsey by means of Partite Construction (among those
the classes mentioned in the introduction: partial orders, metric spaces and
classes ForbH(F)).

We hope that it is possible to combine both techniques to obtain Ramsey
results on even more restricted classes of graphs.

Acknowledgement. We thank to a referee for remarks which improved quality
of the presentation.
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[21] Lionel Nguyen Van Thé. More on the Kechris–Pestov–Todorcevic
correspondence: Precompact expansions. Fundamenta Mathematicae,
222:19–47, 2013.

[22] Richard D. Ringeisen. Survey of results on the maximum genus of a
graph. Journal of Graph Theory, 3(1):1–13, 1979.

32


	1 Introduction
	1.1 Ramsey Theory
	1.2 Model theory
	1.3 Statement of results

	2 Structure of bowtie-free graphs
	3 (Ultra)Homogenisation of B
	4 Reduced structures
	5 Ramsey structures
	6 Star Equivalences are Ramsey
	7 Putting it together: Bowtie-free graphs have a Ramsey lift
	8 The lift property
	9 Concluding remarks

