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SYMMETRY FROM SECTIONAL INTEGRALS FOR CONVEX DOMAINS

RAMYA DUTTA AND SUMAN KUMAR SAHOO

Abstract. Let Ω be a bounded convex domain in R
n (n ≥ 2). In this work, we prove that if there exists

an integrable function f such that it’s Radon transform over (n − 1)-dimensional hyperplanes intersecting
the domain Ω is a strictly positive function of distance to the nearest parallel supporting hyperplane to Ω,
then Ω is a ball and the function f is a unique radial function about the center of Ω.

1. Introduction

Let Ω be a domain in R
n and f be an integrable function in Ω. We extend f to be identically 0 outside of

Ω. Let 〈, 〉 denotes the usual inner product in R
n. Throughout the article Hk

xG denotes the k-dimensional
Hausdorff measure restricted to G, a Borel measurable subset of Rn for 1 ≤ k ≤ n.

The ray transform integrates scalar functions over straight lines. The family of oriented lines can be
parametrized by the points on the manifold

TSn−1 = {(x, ξ) ∈ R
n × R

n : 〈x, ξ〉 = 0, |ξ| = 1} ⊂ R
n × R

n

which is the tangent bundle of the unit sphere. The ray transform I of an integrable function f is a function
defined on TSn−1 as

If(x, ξ) =

∫ +∞

−∞
f(x+ tξ) dt. (1.1)

The Radon transform integrates the functions over the hyperplanes. The Radon transform R of a
function f ∈ L1(Ω) is the function defined on S

n−1 × R by

Rf(w, p) =

∫

Σω,p

f(x) dHn−1
xΣω,p (1.2)

where Σw,p = {x ∈ R
n|〈x, ω〉 = p} denotes the hyperplane with p as the perpendicular distance from the

origin and ω is normal to the plane. If |Ω denotes the ray transform of f along all the lines intersecting the
domain Ω. Similar definition stands for the notation Rf |Ω. The operators (1.1) and (1.2) have been well
studied and has many applications in computer tomography. For more detailed study of the operators I

and R we refer [2, 4].
In dimension n = 2 both operators I and R coincide. The characterization of range of these operators

have been well studied in case of Schwartz class functions S(Rn). It is known that I and R are linear
isomorphisms between the Schwartz spaces S(Rn) to S(TSn−1) and S(Sn−1 × R) respectively. Both the
operators I and R are injective, i.e., if If = 0 imply f = 0 and Rf = 0 imply f = 0.

The question one is interested in is,

Question 1. Are non-zero constant functions in the range of ray transforms, i.e., does ∃ f ∈ L1(Ω) such
that If |Ω = c (6= 0)?

We came to know about this problem when second named author in this paper attended a conference
talk by Joonas Ilmavirta titled “Functions of constant X-ray transform” based on his joint work with
Gabriel Paternain in University of Jyväskylä, Finland on “Inverse problems: PDE and Geometry”, where
they gave a positive answer to the above question (see [3]). They showed that in Euclidean spaces of
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dimension n ≥ 2, strictly convex domains Ω admitting functions of constant X-ray transform are balls
and the function is unique and radial. They also considered the analogue of the problem on Riemannian

manifolds. The function f(x) =
χ{|x|<R}

π
√

R2 − |x|2
in the ball of radius R centered at origin of Rn has constant

X-ray transform in its support in R
n.

Similarly, one can ask the same question for the Radon transform in dimensions n ≥ 2.

Question 2. Are non-zero constant functions in the range of Radon transforms in dimension n ≥ 2, i.e.,
does ∃ f ∈ L1(Ω) such that Rf |Ω = c (6= 0)?

We address this question in section 2 and show that one cannot expect constants to be in the range of
Radon transform in dimensions n ≥ 3. Instead we prove the following analogue. If Ω is a bounded convex
domain in R

n (n ≥ 2) and if ∃ f ∈ L1(Ω) such that Rf |Ω is a strictly positive function of distance to
nearest parallel supporting hyperplane to Ω alone [see Theorem 2.1 for precise definition], then Ω is a ball
and f is a unique radial function about the center of Ω.

The proofs utilize the zeroth and the first order moments of the function which was originally used in
context of ray transform in the plane by Joonas Ilmavirta & Gabriel Paternain.

Subsequently, as a corollary to the main result in our paper, we obtain the result for the ray transform
If |Ω = c (6= 0) in Euclidean space under milder assumptions requiring Ω to be a bounded domain in R

2 or
a bounded convex domain in R

n for n ≥ 3. To our knowledge, the main result in Section 2 is completely
new.

Remark 1.1. If Ω is bounded convex domain in R
n, any line ℓ intersecting Ω intersects ∂Ω at exactly

two points. Also if p ∈ ∂Ω then there exists at least one supporting (n − 1)-dimensional hyperplane of Ω
passing through p.

2. radon transform as a distance function

We begin by stating the main result.

Theorem 2.1. Let, Ω ⊂ R
n be a bounded convex domain (n ≥ 2) and G : [0,∞) → R be a strictly positive

locally integrable function. If, ∃ f : Ω → R an integrable function such that,
∫

Ω∩Σ
f(x) dHn−1

xΣ = G

(

min
j=1,2

dist (Σ,Πj)

)

(2.1)

for all (n − 1)-dimensional hyperplanes Σ satisfying Hn−1(Ω ∩ Σ) > 0 and Πj (for, j = 1, 2) are the pair
of supporting (n− 1)-dim hyperplanes to Ω that are parallel to Σ, then Ω is a ball and f is a unique radial
function.

Remark 2.2. Before going into the proof of Theorem 2.1 let us address Question 2. Suppose, ∃ f ∈ L1(Ω)
such that Rf |Ω = 1. In view of Theorem 2.1, letting G ≡ 1 we see that Ω has to be a ball, without loss
of generality assume Ω = B(0, R) ⊂ R

n for some R > 0. Let us consider the implication of this result on
the Fourier slices of the function f . Given ξ ∈ S

n−1, let us choose an orthogonal coordinate frame for the
space R

n s.t., x = (t, x′) ∈ Rξ×R
n−1
ξ⊥

and use the notation Σt
ξ to denote the (n−1)-dimensional hyperplane

having ξ ∈ S
n−1 as the normal and passing through the point (t, 0′) ∈ Rξ×R

n−1
ξ⊥

. Now, by Fubini’s theorem

we have,

F(f)(ξ) =

∫

Rn

e−i〈x,ξ〉f(x) dx =

∫

Rξ

e−i|ξ|t





∫

R
n−1

ξ⊥

f(t, x′) dHn−1
xΣt

ξ(x
′)



 dt =

∫ R

−R

e−i|ξ|t dt =
2 sin(R|ξ|)

|ξ|
.

where, in the third equality we used hypothesis (2.1) with G ≡ 1.
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It is known that for n ≥ 2,

F−1

(

eit|ξ|

|ξ|

)

(x) =



















1

2π
sgn(t)χ{|x|<|t|}(t

2 − |x|2)−
1

2 , when, n = 2

Cn lim
ǫ↓0

(

|x|2 − (t+ iǫ)2
)−n−1

2 , when, n ≥ 3

where, Cn =
Γ
(

n+1
2

)

(n− 1)π
n+1

2

and t ∈ R, which is integrable when n = 2 but certainly not in L1(Rn) for n ≥ 3.

Therefore, there does not exist integrable functions such that Rf |Ω = c(6= 0) in dimensions n ≥ 3.

Proof of Theorem 2.1. Let Ω be a bounded convex domain in R
n (n ≥ 2). Let us fix an orthogonal

coordinate system such that the origin is equidistant from each pair of parallel supporting (n − 1)-
dimensional hyperplanes to Ω sharing xj-axis as their common normal, for j = 1(1)n. Let us extend
the function f in Ωc by 0 and consider the restriction of first moment of f on the unit sphere in R

n,

g(ξ) :=

∫

Rn

〈x, ξ〉 f(x) dx, for ξ ∈ S
n−1 (2.2)

=

∫

R
n−1

ξ⊥

∫

Rξ

tf(t, x′) dt dHn−1
xΣt

ξ(x
′) (2.3)

where, we decomposed x = (t, x′) ∈ Rξ × R
n−1
ξ⊥

and in our notation Σt
ξ denotes the (n − 1)-dimensional

hyperplane having ξ ∈ S
n−1 as the normal and passing through the point (t, 0′) ∈ Rξ × Rn−1

ξ⊥
. Let

Πξ
j for j = 1, 2 be the pair of supporting (n − 1)-dim hyperplanes of Ω orthogonal to ξ, so that if

r1(ξ) := inf
{

t ∈ Rξ : H
n−1(Σt

ξ ∩ Ω) > 0
}

and r2(ξ) := sup
{

t ∈ Rξ : H
n−1(Σt

ξ ∩ Ω) > 0
}

then Πξ
j = Σ

rj(ξ)
ξ

for j = 1, 2. Now, by given condition (2.1) we have,

∫

R
n−1

ξ⊥

f(t, x′) dHn−1
xΣt

ξ(x
′) = G

(

min
j=1,2

dist
(

Σt
ξ,Π

ξ
j

)

)

(2.4)

for t ∈ Rξ such that the plane Σt
ξ satisfies Hn−1(Σt

ξ ∩ Ω) > 0. Using equation (2.4) in equation (2.3) and

writing rj = rj(ξ) (j = 1, 2) for brevity we have,

g(ξ) =

∫

Rξ

t





∫

R
n−1

ξ⊥

f(t, x′) dHn−1
xΣt

ξ(x
′)



 dt

=

∫ r2

r1

t





∫

R
n−1

ξ⊥

f(t, x′) dHn−1
xΣt

ξ(x
′)



 dt

=

∫ r2

r2+r1
2

tG(r2 − t) dt+

∫
r2+r1

2

r1

tG(t− r1) dt

=

∫
r2−r1

2

0
(r2 − t)G(t) dt +

∫
r2−r1

2

0
(t+ r1)G(t) dt

= (r2(ξ) + r1(ξ))

∫
r2−r1

2
(ξ)

0
G(t) dt. (2.5)
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Similarly we have,

K =

∫

Ω
f(x) dx =

∫

R
n−1

ξ⊥

∫

Rξ

f(t, x′) dt dHn−1
xΣt

ξ(x
′)

=

∫ r2(ξ)

r1(ξ)





∫

R
n−1

ξ⊥

f(t, x′) dHn−1
xΣt

ξ(x
′)



 dt

= 2

∫
r2−r1

2
(ξ)

0
G(t) dt, ∀ ξ ∈ S

n−1. (2.6)

Therefore, g(ξ) =
K

2
(r2(ξ)+ r1(ξ)). We note that by our choice of origin we have r2(±ej)+ r1(±ej) = 0

and hence g(±ej) = 0 for each j = 1(1)n where, ej is the unit vector along xj-axis. By definition g is
restriction of a linear function on S

n−1 and g(±ej) = 0 for j = 1(1)n. Therefore, g ≡ 0 in S
n−1 and hence,

r2(ξ) = −r1(ξ), ∀ ξ ∈ S
n−1.

Now, the function u(r) =

∫ r

0
G(t) dt is injective (since, G > 0 by hypothesis). From equation (2.6) we

have, u

(

r2(ξ)− r1(ξ)

2

)

=
K

2
, for all ξ ∈ S

n−1, therefore we conclude r2(ξ)−r1(ξ) = 2R (for some positive

constant R). That is the domain Ω has constant width in the sense that the distance between any pair of
parallel (n− 1)-dim supporting hyperplanes of Ω, with common normal ξ ∈ S

n−1, is a constant and equals
2R.

Combining these two facts we see that |r2(ξ)| = |r1(ξ)| = R for all ξ ∈ S
n−1, i.e., the distance of any

(n− 1)-dim supporting hyperplane of Ω from origin is constant and equals R.
Now, by convexity of Ω it must lie in the intersection of all closed half-spaces Hξ containing origin

whose boundaries ∂Hξ are (n − 1)-dimensional supporting hyperplanes of Ω (with ξ ∈ S
n−1 as outward

normal to ∂Hξ). Since, dist(0, ∂Hξ) = R, we conclude Ω ⊆
⋂

ξ∈Sn−1

Hξ = B(0, R). On the other hand

suppose p ∈ ∂Ω and Πp is a supporting (n − 1)-dimensional hyperplane of Ω passing through p, then
dist(0, p) ≥ dist(0,Πp) = R. Hence, dist(0, p) = R for all p ∈ ∂Ω. Consequently, Ω is the ball B(0, R) in
R
n.
Now, f is radial follows from uniqueness of Radon transform and the fact that Ω is a ball. We observe

that the function f ◦ A, where A is any orthogonal matrix, also satisfies hypothesis (2.1) and hence from
uniqueness of Radon transform we conclude f = f ◦ A, for all orthogonal matrices A. Therefore f is a
radial function. This completes the proof. �

Any integrable positive radial function in a ball in R
n satisfies the hypothesis (2.1). However, the

following example is particularly interesting.

Example 2.1. The functions f(x) =
(

R2 − |x|2
)γ

for γ > −1 satisfies the hypothesis in (2.1) with,
∫

Ω∩Σd

f dHn−1
xΣd = cn(γ)(R

2 − d2)
n−1

2
+γ

where, Σd is a (n−1)-dimensional hyperplane at a distance d from the origin, therefore at a distance (R−d)

from the nearest parallel supporting hyperplane of Ω = B(0, R) and G(R − d) = cn(γ)(R
2 − d2)

n−1

2
+γ for,

0 ≤ d < R. The constant cn(γ) =
1

2
(n − 1)αn−1

∫ 1

0
r

n−3

2 (1 − r)γ dr =
1

2
(n − 1)αn−1β

(

n− 1

2
, γ + 1

)

,

(where, αn−1 is the volume of (n − 1)-dim unit ball and β(x, y) denotes the Beta function) depends only
on the dimension n and γ.

Now, we obtain the results for ray transform as corollaries to Theorem 2.1.
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Corollary 2.3. Let, Ω be a bounded domain in R
2 or a bounded convex domain in R

n (n ≥ 3). If, ∃ an
integrable function f : Ω → R such that,

∫

Ω∩ ℓ

f(x) dH1
xℓ = 1 (2.7)

for all (1-dim) lines ℓ with H1(Ω ∩ ℓ) > 0, then Ω is a ball and f is a unique radial function about the
center of Ω.

Proof. Case-I: We start by analyzing the simplest case when Ω is a bounded convex domain in the R
2.

Then, as a consequence of Theorem 2.1 with G ≡ 1 we conclude that Ω is a disk in R
2.

The function f(x) =
χ{|x|<R}

π
√

R2 − |x|2
satisfies the hypothesis (2.7) in the domain Ω = B(0, R) ⊂ R

2 and is

the required radial function. Uniqueness of f follows from injectivity of ray transform.
Now, for a general bounded domain Ω ⊂ R

2, we note that requiring a line ℓ to intersect Ω i.e.,
H1(Ω∩ℓ) > 0 is equivalent to H1(Conv(Ω)∩ℓ) > 0, where Conv(Ω) denotes the convex hull of Ω. Suppose,
∃ f ∈ L1(Ω) satisfying hypothesis (2.7) and Conv(Ω) \ Ω 6= φ. Then, from the previous consideration,
Conv(Ω) is a ball and f is as before, which would contradict that fact that f ≡ 0 on Conv(Ω) \ Ω.
Therefore, Conv(Ω) = Ω.

Case-II: Now, we address the case of bounded convex domains Ω in R
n when, n ≥ 3.

If, f is a function satisfying (2.7) in a convex set Ω ⊂ Rn, then every 2-dimensional section of Ω i.e.,
Ω ∩ Π is convex (where, Π is a 2-dimensional plane intersecting Ω s.t., H2(Ω ∩ Π) > 0) and admits the
function f . From the previous case (n = 2) we conclude that the 2-dimensional section Ω ∩ Π must be
equivalent to a disk in R

2. Therefore by Lemma 2.4 the domain Ω admitting f is a ball B(pc, R) (say) and

f(x) =
χ{|x−pc|<R}

π
√

R2 − |x− pc|2
satisfying the hypothesis (2.7) is the unique radial function. �

Lemma 2.4. Let, n ≥ 3 and Ω be a bounded convex domain in R
n such that Ω ∩Π is equivalent to a disk

in R
2 for all 2-dimensional planes Π with H2(Ω ∩Π) > 0, then Ω is a ball in R

n.

Proof. Let, ℓm be a maximal diametric line in Ω i.e., H1(Ω ∩ ℓm) = sup
ℓ

H1(Ω ∩ ℓ) = 2R (say) and let us

denote the midpoint of ℓm ∩ ∂Ω with pc. Let p be any point on ∂Ω \ {ℓm ∩ ∂Ω} and Πp be a 2-dimensional
plane passing through p and containing the line ℓm. Then, Πp must intersect the domain Ω in a set
equivalent to a 2-dimensional disk of radius R by the maximality of H1(Ω∩ ℓm). Therefore, dist(pc, p) = R

for all p ∈ ∂Ω, i.e., Ω is the ball B(pc, R) in R
n. This completes the proof of the lemma. �

In case n ≥ 3 and Ω is a strictly convex domain, we note that information on lines close enough to the
boundary of Ω is sufficient to conclude that Ω is a ball.

Corollary 2.5. Let, n ≥ 3 and Ω be a strictly convex domain. Suppose, for every p ∈ ∂Ω there is a
neighbourhood Up (⊂ R

n) of p s.t., hypothesis (2.7) holds for all lines ℓ with Ω∩ ℓ ⊂ Up and H1(Ω∩ ℓ) > 0.
Then, Ω is a ball.

Proof. Arguing as before (n = 2 case) we have Ω ∩ Σ is equivalent to an open disk in R
2 for every 2-

dimensional plane Σ s.t., Ω ∩ Σ ⊂ Up and H2(Ω ∩ Σ) > 0. Therefore, the Dupin’s Indicatrix (see [1, pp.
363-365]) of p along any 2-dimensional plane spanned by a pair of principal directions is a circle, meaning
p must be umbilical. Therefore, boundary of Ω being all umbilical must be a sphere. �
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