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We propose an algebraic geometric approach for studying rational solu-
tions of first-order algebraic ordinary difference equations (AO∆Es). For an
autonomous first-order AO∆E, we give an upper bound for the degrees of
its rational solutions, and thus derive a complete algorithm for computing
corresponding rational solutions.
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1 Introduction

An algebraic ordinary difference equation (AO∆E) is a difference equation of the form

F (x, y(x), y(x + 1), · · · , y(x+m)) = 0,

where F is a nonzero polynomial in y(x), y(x+1), · · · , y(x+m) with coefficients in the field K(x)
of rational functions over an algebraically closed field K of characteristic zero, and m ∈ N. We
say that an AO∆E is autonomous if the independent variable x does not appear in it explicitly.
For computational purpose, we may choose K = Q̄, the field of algebraic numbers. AO∆Es
naturally appear from various problems, such as symbolic summation [30, 24], factorization
of linear difference operators [10], analysis of time or space complexity of computer programs
with recursive calls [35]. Thus, to determine (closed form) solutions of a given AO∆E is a
fundamental problem in difference algebra and is of general interest.
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Constructive approaches for finding symbolic solutions of linear difference equations and
their applications have been extensively investigated. There are well-known algorithms for
computing polynomial [4], rational [1, 2, 3, 36] and hypergeometric [5, 8, 17, 23, 28, 27, 26, 29,
37] solutions for linear difference equations. Besides, Karr [20, 21], Kauers and Schneider [22]
developed algorithms for determining closed form formulas for finite sums and indefinite nested
summation. The corresponding implementations are available in computer algebra systems
Maple and Mathematica. For more general types of solutions of linear difference equations,
we refer to [19, 42]. Last but not least, Bronstein [9] and Schneider [32] gave algorithms for
calculating solutions of parameterized linear difference equations within ΠΣ-fields.

Nevertheless, there are only a few steps in attacking the problem of computing symbolic solu-
tions of (nonlinear) AO∆E. Cohn [11] provided a general algebraic framework for investigating
structures of AO∆Es and their solutions. Elaydi [13] summarized some useful techniques for
transforming certain nonlinear AO∆E (such as difference equations of general Riccati type)
into linear ones. In [16], the authors gave a polynomial time algorithm for finding polynomial
solutions of first-order autonomous AO∆Es by utilizing parametrization theory of plane al-
gebraic curves. Using symmetric polynomial theory, Shkaravska and Eekelen [34, 35] gave a
degree bound for polynomial solutions of high-order non-autonomous AO∆Es under a sufficient
condition.

We are mainly interested in rational solutions of first-order AO∆Es. In [16], Feng, Gao and
Huang proposed an algorithm for computing a rational solution for a first-order autonomous
AO∆E provided that a bound for the degree of the rational solution is given. They also pointed
out that they could not bound the degrees of rational solutions through the parametrization
technique because the difference version of [15, Theorem 3.7] is not always true (see [16,
Example 4.1]). We overcome this missing part and present an algorithm for computing such a
degree bound. It is seen that if y(x) ∈ K(x) is a nonzero rational solution of an autonomous
first-order AO∆E, then y(x+c) ∈ K(x, c)\K(x), where c is a constant in a difference extension
of K, is again a solution of the given difference equation. In this paper, we consider a more
general problem:

Problem 1.1.
Let F ∈ K[x, y, z] be an irreducible polynomial. Determine a solution s ∈ K(x, c) \K(x), where
c is a transcendental constant, for the following difference equation

F (x, y(x), y(x + 1)) = 0. (1)

A solution in K(x, c)\K(x) is called a strong rational general solution (compare with [16, Def-
inition 2.2]). We prove (Theorem 2.2) that if the difference equation (1) admits a strong rational
general solution then its corresponding algebraic curve in A2(K(x)) defined by F (x, y, z) = 0 is
of genus zero. Thus, we can take use of parametric representations of rational curves to trans-
form the original difference equation into an associated difference equation which is of simpler
form (see Theorem 2.2 and Proposition 2.4). The latter difference equation has a special form
and it is called a separable difference equation (Remark 2.8). We prove (Theorem 2.5) that
there is a one-to-one corresponding between the strong rational general solutions of the given
difference equation and those of the associated separable difference equation. Therefore, the
problem of determining a strong rational general solution for a first-order AO∆E is reduced
to that of computing a strong rational general solution of the corresponding separable one.

For an autonomous first-order AO∆E, we give a bound for the degrees of rational solu-
tions of its associated separable difference equation. Thus, we derive a complete algorithm
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for computing rational solutions of autonomous first-order AO∆Es (see Algorithm 4.2). To
derive a degree bound, we first transform the problem of determining a rational solution of
an autonomous separable AO∆E to that of computing a pair of polynomial solutions of an
autonomous first-order system (Subsection 3.2). Secondly, we use tools from resultant the-
ory to eliminate one dependent variable from the system (Subsection 3.3), and then obtain
a nontrivial autonomous homogeneous second-order AO∆E for the other dependent variable.
By using the difference analog of the combiratorial approach in [39, 41], we finally present a
degree bound for polynomial solutions of an autonomous homogeneous second-order AO∆E
(Subsection 3.4), which is the last key for deriving the complete algorithm.

The rest of the paper is organized as follows. Section 2 is devoted to present an algebraic
geometric approach to first-order AO∆Es. We propose a constructive approach in Section 3
and a complete algorithm in Section 4 for computing rational solutions of autonomous first-
order AO∆Es.

2 An algebraic geometric approach to first-order AO∆Es

In this section, we study first-order AO∆Es from an algebraic geometric point of view. The idea
is inherited from [14, 15, 6, 40]. Assume that F ∈ K[x, y, z] is a nonzero trivariate polynomial.
We associate the difference equation F (x, y(x), y(x+1)) = 0 with the corresponding algebraic
curve in the two dimensional affine plane over the field K(x) of algebraic functions defined by
F (x, y, z) = 0. We prove that if the given difference equation admits a strong rational general
solution then the corresponding algebraic curve is of genus zero. Therefore we may apply
algebraic tools from the theory of rational curves. In particular, we use rational parametric
representations of the algebraic curve to transform the original difference equation to a simpler
one (see Remark 2.8). A one-to-one correspondence between strong rational general solutions
of the original difference equation and those of the new one is established.

We start this section with a formal definition of strong rational general solution.

Definition 2.1. (See [40, Definition 3.3])
Let F ∈ K[x, y, z] be a nonzero trivariate polynomial. A solution s of the algebraic difference
equation F (x, y(x), y(x + 1)) = 0 is called a strong rational general solution if s = s(x, c) ∈
K(x, c) \K(x) for some constant c which is transcendental over K(x).

The following theorem gives a necessary condition for a first-order algebraic difference equa-
tion having a strong rational general solution.

Theorem 2.2.
Let F be an irreducible polynomial in K[x, y, z] \ K[x, y] and consider the difference equation
F (x, y(x), y(x + 1)) = 0. If the difference equation admits a strong rational general solution,
then

(i) F is irreducible as a polynomial in K(x)[y, z], and

(ii) the algebraic curve in A2
(

K(x)
)

defined by F (x, y, z) = 0 is of genus zero.

Proof. (i) Let s(x, c) be a strong rational solution of the difference equation F = 0. Consider
the ring homomorphism:

φ : K(x)[y, z] −→ K(x)(c)
G(x, y, z) 7−→ G(x, s(x, c), s(x + 1, c))
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Let I be the kernel of φ. By assumption, we know that F ∈ I. Thus, I is nonzero. To prove
that F is irreducible over K(x), we show that I is a principal prime ideal, and that F generates
I.

Since the zero set of I contains a parametric class of points (s(x, c), s(x+1, c)), the ideal I is
neither a maximal ideal nor the whole ring. On the other hand, the homomorphism φ induces
an isomorphism between K(x)[y, z]/I and a subring of K(x)(c), which is an integral domain.
Therefore, the ideal I is a prime ideal. Since the Krull dimension of K(x)[y, z] is 2, it follows
that I is of height 1. By [18, prop.1.12A, p.7], we conclude that I is principal.

Next, using the technique of Gröbner basis, we construct a generator of I with coefficients
in K(x). In order to do that, we rewrite I as the following form:

I =
{

H ∈ K(x)[y, z] |H(x, s(x, c), s(x + 1, c)) = 0
}

.

Let s(x, c) = P (x,c)
Q(x,c) and s(x + 1, c) = R(x,c)

S(x,c) where P,Q,R, S ∈ K[x, c] such that gcd(P,Q) =

gcd(R,S) = 1. By the technique of implicitization [12, Thm.2, p.138], we know that

I = 〈yQ− P, zS −R, 1−QSt〉 ∩K(x)[y, z],

where the first component J in the right hand side is an ideal in K(x)[c, t, y, z] generated by
polynomials yQ − P, zS − R and 1 − QSt. Let ≻ be the lexicographic order for monomials
of K(x)[c, t, y, z] such that c ≻ t ≻ y ≻ z. Using Buchberger’s algorithm, one can determine
a reduced Gröbner basis G for J with respect to ≻. Then G only contains polynomials in
c, t, y, z with coefficients in K(x). After discarding all polynomials involving c, t from G, we
obtain a reduced Gröbner basis G̃ for I which contains only polynomials in K(x)[y, z]. Since
I is principal and prime, the basis G̃ contains only one element, say G ∈ K(x)[y, z], and G is
irreducible over K(x).

Recall that F is irreducible over K(x) and F ∈ I = 〈G〉. This implies that F differs from G
by a multiplication of a nonzero element in K(x). Hence, F is also irreducible over K(x).

(ii) As a consequence, the algebraic equation F (x, y, z) = 0 defines an irreducible algebraic
curve in the affine plane A2(K(x)). Moreover, this curve can be parametrized by the pair of
rational functions (s(x, c), s(x+1, c)). Hence, by [33, Theorem 4.7, p.93], the curve is rational.
We conclude from [33, Theorem 4.11, p.95] that its genus is zero.

The above theorem motivates the following concept.

Definition 2.3.
Let F be a nonzero polynomial in K[x, y, z]. The algebraic curve CF ⊂ A2(K(x)) defined by
F (x, y, z) = 0 is called the corresponding algebraic curve of the first-order algebraic difference
equation F (x, y(x), y(x + 1)) = 0.

Due to Theorem 2.2, if a first-order AO∆E admits a strong rational general solution, then
its corresponding algebraic curve must be of genus zero. Therefore, we may apply algebraic
tools from parametrization theory of rational curves.

Given a field L of characteristics zero and a non-constant polynomial G ∈ L[y, z], the
algebraic equation G(y, z) = 0 implicitly defines an algebraic curve, say CG, in the affine plane
A2(L) over the algebraic closure L of L. It is well-known that CG is of genus zero if and only
if there exists a birational transformation

P : A1(L) → CG ⊂ A2(L)
t 7→ (p1(t), p2(t))
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for some rational functions p1, p2 ∈ L(t). To construct such a birational transformation is
one of the most important problems in parametrization theory of algebraic curves. For details
about parametrization theory of algebraic curves, we refer to [33]. In particular, there is an
algorithm for determining a birational transformation from the affine line to a genus zero
algebraic curve over the field L = K(x) (see [38, 40]).

The following proposition is a direct consequence of [40, Proposition 4.3].

Proposition 2.4.
Let F ∈ K(x)[y, z] be a non-constant polynomial such that the corresponding algebraic curve
CF ⊂ A2(K(x)) defined by F (x, y, z) = 0 is of genus zero. Then there exists a birational
transformation P : A1(K(x)) → CF defined by P(x, t) = (p1(x, t), p2(x, t)) for some rational
functions p1(x, t), p2(x, t) ∈ K(x, t).

Proof. Choose the birational transformation P to be an optimal parametrization of CF (see
[40, Section 4]).

Note that there exists an algorithm [40, Algorithm 1] for determining a birational trans-
formation (or more precisely, an optimal parametrization) for CF in the above proposition.
Assume that r ∈ K[x]. The degree of r is defined to be the maximum of the degree of its nu-
merator and that of its denominator with respect to x, and we denote it by degx(r) or simply
deg(r).

Theorem 2.5.
Let F (x, y(x), y(x + 1)) = 0 be an AO∆E such that its corresponding curve CF is of genus
zero. Assume that P(x, t) = (p1(x, t), p2(x, t)) ∈ K(x, t)2 is a birational transformation from
the affine line A1(K(x)) to CF . Consider the following difference equation

p1(x+ 1, ω(x + 1)) = p2(x, ω(x)). (2)

1. If s(x, c) ∈ K(x, c) \ K(x) is a strong rational general solution of the given difference
equation F (x, y(x), y(x + 1)) = 0, then there exists a strong rational general solution
ω(x, c) ∈ K(x, c) \K(x) of (2) such that s(x, c) = p1(x, ω(x, c)).

2. Conversely, if ω(x, c) ∈ K(x, c) \K(x) is a strong rational general solution of (2), then

s(x, c) = p1(x, ω(x, c)) ∈ K(x, c) \K(x)

is a strong rational general solution of F (x, y(x), y(x + 1)) = 0.

Proof. 1. Assume that s(x, c) ∈ K(x, c) \ K(x) is a strong rational general solution of the
given difference equation, i.e.,

F (x, s(x, c), s(x + 1, c)) = 0.

Then Q(x, t) = (s(x, t), s(x+1, t)) is a parametric representation for CF . By [33, Lemma
4.17, p. 97], if follows that there exists a function ω(x, t) ∈ K(x)(t) such that Q(x, t) =
P(x, ω(x, t)). In particular, we have

s(x, t) = p1(x, ω(x, t)), and s(x+ 1, t) = p2(x, ω(x, t)).
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Therefore, we have p1(x+ 1, ω(x+ 1, t)) = p2(x, ω(x, t)). Thus, it follows that ω(x, c) is
a solution of the difference equation (2), and s(x, c) = p1(x, ω(x, c)). Due to the proof
of [33, Lemma 4.17, p.19], we can choose ω(x, t) = P−1 ◦ Q(x, t). Hence, we conclude
that ω(x, c) ∈ K(x, c). Since degc(s) > 0 and s(x, c) = p1(x, ω(x, c)), it follows that
ω(x, c) ∈ K(x, c) \K(x).

2. Assume that ω(x, c) ∈ K(x, c) \K(x) is a solution of the difference equation (2), i.e.,

p1(x+ 1, ω(x+ 1, c)) = p2(x, ω(x, c)).

Since P is a birational transformation of CF , we have F (x, p1(x, t), p2(x, t)) = 0. Substi-
tuting t by ω(x, c), we obtain

0 = F (x, p1(x, ω(x, c)), p2(x, ω(x, c)))

= F (x, p1(x, ω(x, c)), p1(x+ 1, ω(x+ 1, c))).

Set s(x, c) = p1(x, ω(x, c)). It follows from the above equalities that s(x, c) is a rational
solution of F (x, y(x), y(x + 1)) = 0. Since degt(p1) > 0 and degc(ω) > 0, it follows
from [7, Propostion 1.2, item 11] that degc(s) > 0. In other word, we have s(x, c) ∈
K(x, c) \K(x).

The above theorem motivates the following definition.

Definition 2.6.
Using notations in Theorem 2.5, we call equation (2) the associated difference equation of
F (x, y(x), y(x + 1)) = 0.

From experiments, we find that the associated difference equation is usually simpler (see
Example 2.9) than the original one. In next sections, we will present a degree bound for
rational solutions of the associated difference equation of an autonomous first-order AO∆E,
and thus derive a complete algorithm for determining rational solutions of the original one.
The existence of an upper bound for rational solutions of non-autonomous first-order AO∆E
is still open.

The following proposition is a generalization of [16, Lemma 4.2], which refines the shapes of
both the AO∆E with strong rational general solutions and the associated one.

Proposition 2.7.
Let F ∈ K[x, y, z] \ K[x, y] be an irreducible polynomial. If the algebraic difference equation
F (x, y(x), y(x+ 1)) = 0 admits a strong rational general solution, then we have that degy F =
degz F . Furthermore, in this case, the associated difference equation exists and it must be of
the form

p1(x, ω(x+ 1)) = p2(x, ω(x)),

for some rational functions p1, p2 ∈ K(x, y) such that

degy p1 = degy p2 = degz F = degy F.
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Proof. By item (ii) of Theorem 2.2, the corresponding algebraic curve CF is of genus zero. By
Proposition 2.4, there exists a birational transformation P from A1(K(x)) to CF defined by
P(x, t) = (p1(x, t), p2(x, t)) for some p1(x, t), p2(x, t) ∈ K(x, t)2. Due to [33, Theorem 4.21,
p.98], we have

degt p1 = degz F, and degt p2 = degy F. (3)

By Theorem 2.5, we know that the associated difference equation also admits a strong rational
general solution, say ω(x, c) ∈ K(x, c) \K(x), i.e.,

p1(x+ 1, ω(x+ 1, c)) = p2(x, ω(x, c)).

By [7, Proposition 1.2, item 11], it follows that the degrees of the rational functions in both
sides of the above equation with respect to c is equal to

degt p1 · degc ω(x+ 1, c) = degt p2 · degc ω(x, c).

Since degc ω(x + 1, c) = degc ω(x, c) ≥ 1, we have degt p1 = degt p2. Therefore, we conclude
from (3) that degt p1 = degt p2 = degz F = degy F .

Remark 2.8.
As a consequence of Theorem 2.5 and Proposition 2.7, in order to solve Problem 1.1, we only
need to consider the class of difference equations of the form

P (x, y(x+ 1)) = Q(x, y(x)). (4)

for some rational functions P,Q ∈ K(x, z) such that degz P = degz Q, and determine their
strong rational general solutions. We call (4) a (rational) separable difference equation. If
furthermore P and Q are in K(z), then we call (4) the autonomous separable difference equa-
tion.

Example 2.9.
Consider the following non-autonomous first-order AO∆E:

F (x, y(x), y(x + 1)) = (y(x) + x2 + 2x+ 1)y(x+ 1)2−
(y(x) + 2x2 + 2x)y(x)y(x+ 1) + x2y(x)2 = 0.

The corresponding algebraic curve in the affine plane A2(K(x)) is defined by

F (x, y, z) = (y + x2 + 2x+ 1)z2 − (y + 2x2 + 2x)yz + x2y = 0.

This curve is of genus zero and it admits the following optimal parametrization:

P(x, t) = (p1(x, t), p2(x, t)) =

(

(xt− 1)2

t
,
(xt− 1)2

t(t+ 1)

)

.

The associated separable difference equation is

((x+ 1)ω(x+ 1)− 1)2

ω(x+ 1)
=

(xω(x)− 1)2

ω(x)(ω(x) + 1)
.

By a detailed greatest common divisors argument, we can show that ω = 1
x+c

is a strong
rational general solution of the above equation, where c is an arbitrary constant. Therefore, it
follows from Theorem 2.5 that y(x) = p1(x, ω(x)) =

c2

x+c
is a strong rational general solution

of F (x, y(x), y(x + 1)) = 0.
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3 Rational solutions of autonomous first-order AO∆Es

In this section, we restrict our consideration to the class of autonomous first-order AO∆Es and
provide a constructive approach for solving the following problem.

Problem 3.1.
Let F ∈ K[y, z] \K[y] be an irreducible polynomial. Find all rational solutions of the difference
equation F (y(x), y(x+ 1)) = 0 if there is any.

We first apply the results from the previous section to reduce an autonomous first-order
AO∆E to an autonomous separable difference equation. Next, we prove (Proposition 3.5
and Theorem 3.7) that the problem of finding rational solutions of an autonomous separable
difference equation can be transformed to that of determining polynomial solutions of a differ-
ence system of order one in two dependent variables. Using resultant theory, one can always
eliminate one dependent variable from that difference system, and thus obtain a nontrivial
(Theorem 3.15 and Corollary 3.17) autonomous homogeneous second-order AO∆E with re-
spect to the other dependent variable. Finally, we give a degree bound (Proposition 3.20) for
polynomial solutions of that second-order difference equation.

3.1 Reduce to an autonomous separable difference equation

Let us consider the following autonomous first-order AO∆E:

F (y(x), y(x + 1)) = 0, (5)

where F ∈ K[y, z] \ K[y] is an irreducible polynomial. Assume that y(x) ∈ K(x) is a rational
solution. First, we observe that every constant function solutions of (5) are solutions of the
algebraic equation F (x, x) = 0. Therefore, to avoid triviality, we can assume that the degree
of y(x) is at least one. In this case, the function y(x+ c) is a strong rational general solution,
where c is a transcendental element over K(x). Thus, we can conclude that the problem of
finding non-constant rational solutions of an autonomous first-order AO∆E is equivalent to
that of finding its strong rational general solutions.

Now let us assume that y(x) is a non-constant rational solution of the given difference equa-
tion. Then the difference equation admits a strong rational general solution. By Theorem 2.2,
the corresponding algebraic curve CF ⊂ A2(K(x)) defined by F (y, z) = 0 is of genus zero.
Since the coefficients of F do not involve x, there exists a birational transformation defined by
P(t) = (P (t), Q(t)) ∈ K(t)×K(t) from the affine line A1(K) to CF . This birational transforma-
tion can be chosen to be an optimal parametrization of the algebraic curve in A2(K) defined
by F (y, z) = 0 (see [33]). Furthermore, by Proposition 2.7, we have degP = degQ = degy F .
By Theorem 2.5, we conclude that finding rational solutions of the associated autonomous
separable difference equation P (y(x+ 1)) = Q(y(x)) of (5) is enough for solving Problem 3.1.

3.2 Reduce to the problem of finding polynomial solutions of an

autonomous first-order difference system

Based on arguments of the previous subsection, we now restrict our consideration further to
the class of autonomous separable difference equations.
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Problem 3.2.
Let P1, P2, Q1, Q2 be polynomials in K[z] \ {0} such that gcd(P1, Q1) = gcd(P2, Q2) = 1 and
deg P1

Q1
= deg P2

Q2
= n ≥ 1. Find all rational solutions of the difference equation

P1(y(x+ 1))

Q1(y(x+ 1))
=

P2(y(x))

Q2(y(x))
. (6)

If n = 1, then the difference equation (6) is of general Riccati type (see [13, Section 2.6]). A
difference equation of general Riccati type can be solved by transforming it into a second-order
linear difference equation with polynomial coefficients and then solving the latter one. Details
about the transformation can be found in [13, Section 2.6]. Unfortunately, this method can
not be generalized immediately to the arbitrary degree case.

We give a new method that works for the general case. The first step of this approach is
to reduce Problem 3.2 to that of determining polynomial solutions of a system of autonomous
first-order AO∆Es (see Problem 3.10). For doing that, we first need some technical lemmas.

Lemma 3.3.
Let P,Q,R, S ∈ K[x] be nonzero polynomials such that gcd(P,Q) = gcd(R,S) = 1 and P

Q
= R

S
.

Then there exists a constant c in K such that P = cR and Q = cS.

Proof. Straightforward.

Lemma 3.4.
Let R,S ∈ K[z, w] be homogeneous polynomials such that gcd(R,S) = 1, and A,B be polyno-
mials in K[x] such that gcd(A,B) = 1. Then

gcd (R(A(x), B(x)), S(A(x), B(x))) = 1.

Proof. To avoid triviality, we may assume that R and S are of degrees at least 1. We first
prove the lemma for the case degR = degS = 1. In this case, without loss of generality, we
can assume that R = z + aw and S = bz + cw for some a, b, c ∈ K such that (b, c) 6= (0, 0).
Since gcd(R,S) = 1, we have c− ab 6= 0. Then we have

gcd(R(A,B), S(A,B)) = gcd(R(A,B), S(A,B) − bR(A,B))

= gcd(A+ aB, (c− ab)B)

= gcd(A+ aB,B) = gcd(A,B) = 1.

Next, we assume that R and S have positive degrees. Let degR = m, degS = n. Since K is
algebraically closed, the homogeneous polynomials R and S can be factored into the products
of linear homogeneous polynomials, say

R = Rr1
1 · . . . · Rrm

m , and S = Ss1
1 · . . . · Ssn

n ,

where Ri, Sj are linear homogeneous polynomials in K[z, w] and ri, sj are positive integers.
Since R and S are coprime, Ri and Sj are also coprime for every i, j. Using the above
argument, we have that gcd(Ri(A,B), Sj(A,B)) = 1 for every i, j. Hence, we conclude that
gcd(R(A,B), S(A,B)) = 1.
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Proposition 3.5.
Using notations in Problem 3.2, we set

P̃i(z, w) = wnPi

( z

w

)

, and Q̃i(z, w) = wnQi

( z

w

)

,

which are homogeneous polynomials of degree n in K[z, w], i = 1, 2. Assume that the function
A(x)
B(x) is a solution of equation (6), where A,B ∈ K[x] and gcd(A,B) = 1. Then there exists a
constant c ∈ K such that

{

P̃1(A(x+ 1), B(x+ 1)) = c · P̃2(A(x), B(x)),

Q̃1(A(x+ 1), B(x+ 1)) = c · Q̃2(A(x), B(x)).
(7)

Proof. Substituting A(x)
B(x) into (6) and clearing numerators and denominators of the both sides,

we obtain
P̃1(A(x+ 1), B(x+ 1))

Q̃1(A(x+ 1), B(x + 1))
=

P̃2(A(x), B(x))

Q̃2(A(x), B(x))
. (8)

Next, we prove that the numerators and the denominators of the right hand side for the
above equation are coprime. By Lemma 3.4, it suffices to prove that P̃2 and Q̃2 are coprime
polynomials in K[z, w]. Since deg P2

Q2
= n, without loss of generality, we can assume that

degP2(z) = m, degQ2(z) = n and m ≤ n. In this case, we have

P̃2(z, w) = wn−m ·
[

wmP2

( z

w

)]

, and Q̃2(z, w) = wnQ2

( z

w

)

. (9)

Note that wmP2

(

z
w

)

and wnQ2

(

z
w

)

are homogenizations of P2(z) andQ2(z), respectively. Since

P2(z) and Q2(z) are coprime, we have wmP2

(

z
w

)

and Q̃2(z, w) are coprime. Furthermore, on

account of degQ2(z) = n, we see that Q̃2(z, w) = azn + wQ(z, w) for some a ∈ K \ {0} and
Q(z, w) ∈ K[z, w].This implies that wn−m and Q̃2(z, w) are coprime, too. Hence, we conclude
from (9) that P̃2(z, w) and Q̃2(z, w) are coprime.

Similarly, we can also show that the numerator and the denominator of the left hand side
of (8) are coprime. Therefore, it follows from Lemma 3.3 that the claim of this proposition
holds.

It is straightforward to see that any pair of solutions (A(x), B(x)) of (7) gives rise to a
rational solution of (6). Therefore, it suffices to consider polynomial solutions of (7). However,
there is a new unknown constant appeared in (7). In order to determine the exact values for
the constant c in the above proposition, we introduce the following definition.

Definition 3.6.
Using notations in Problem 3.2, we rewrite P1, Q1, P2, Q2 ∈ K[z] as follows:

P1(z) = r1,high · zk1,high + · · ·+ r1,low · zk1,low ,
Q1(z) = s1,high · zℓ1,high + · · · + s1,low · zℓ1,low ,
P2(z) = r2,high · zk2,high + · · ·+ r2,low · zk2,low ,
Q2(z) = s2,high · zℓ2,high + · · · + s2,low · zℓ2,low ,

where ki,high > ki,low, and ℓi,high > ℓi,low, i = 1, 2. Define a set C ⊆ K associated to (6)
recursively as follows:
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(1) Set C = {c ∈ K | ∃α ∈ K : P1(α) = cP2(α) and Q1(α) = cQ2(α)} .

(2) If k1,high = k2,high then add
r1,high
r2,high

and 0 to C,

(3) If l1,high = l2,high then add
s1,high
s2,high

and 0 to C,

(4) If k1,low = k2,low then add
r1,low
r2,low

and 0 to C,

(5) If l1,low = l2,low then add
s1,low
s2,low

and 0 to C.

We call C the set of constant candidates of (6).

Theorem 3.7.
The constant c in Proposition 3.5 is exactly one element in the set of constant candidates
of (6).

Proof. We keep the notations of Proposition 3.5 and Definition 3.6. Let A(x)
B(x) be a solution

of (6), where A(x) and B(x) are the same as that in Proposition 3.5. Without loss of generality,
we may further assume that the leading coefficient of A(x) is α ∈ K \ {0} and that of B(x) is
1. Let P1, P2, Q1, Q2 be polynomials in Definition 3.6. And C is the set of constant candidates
of (6). Consider the following three cases.

Case 1. degA = degB. By comparing the leading coefficients of polynomials in sys-
tem (7), we obtain

{

P̃1(α, 1) = c · P̃2(α, 1),

Q̃1(α, 1) = c · Q̃2(α, 1).

In other words, we have
{

P1(α) = c · P2(α),

Q1(α) = c ·Q2(α).

Hence, it follows from Definition 3.6 that c ∈ C .

Case 2. degA > degB. The following table shows degrees and leading coefficients of
polynomials appearing in system (7).

polynomial degree leading coefficient

P̃1(A(x+ 1), B(x + 1)) k1,high degA+ (n− k1,high) degB r1,highα
k1,high

Q̃1(A(x+ 1), B(x+ 1)) ℓ1,high degA+ (n− ℓ1,high) degB s1,highα
ℓ1,high

P̃2(A(x), B(x)) k2,high degA+ (n− k2,high) degB r2,highα
k2,high

Q̃2(A(x), B(x)) ℓ2,high degA+ (n− ℓ2,high) degB s2,highα
ℓ2,high

Consider the following three subcases.

Subcase 2.1. deg P̃1(A(x+ 1), B(x+ 1)) ≤ deg P̃2(A(x), B(x)).

This implies that

k1,high degA+ (n − k1,high) degB ≤ k2,high degA+ (n− k2,high) degB.
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Or equivalently, we have k1,high ≤ k2,high. By comparing the coefficients of terms
with degree deg P̃2(A(x), B(x)) in the first equation of system (7), we obtain

c · r2,highαk2,high =

{

r1,highα
k1,high if k1,high = k2,high,

0 if k1,high < k2,high.

Hence, we have

c =







r1,high
r2,high

if k1,high = k2,high,

0 if k1,high < k2,high,

which belongs to C.
Subcase 2.2 deg Q̃1(A(x+ 1), B(x+ 1)) ≤ deg Q̃2(A(x), B(x)).
This inequality is equivalent to l1,high ≤ l2,high. Using the similar argument as
that in the above subcase, we obtain

c =







s1,high
s2,high

if l1,high = l2,high,

0 if l1,high < l2,high,

which belongs to C.
Subcase 2.3. None of the above two subcases happen.
In this case, we have k1,high > k2,high and s1,high > s2,high. Thus, we have

n = deg
P1

Q1
= max{k1,high, s1,high}

> max{k2,high, s2,high} = deg
P2

Q2
= n.

This is impossible. Hence, this subcase can not happen.

Case 3. degA < degB. The following table shows degrees and leading coefficients of
polynomials appearing in system (7).

polynomial degree leading coefficient

P̃1(A(x+ 1), B(x + 1)) k1,low degA+ (n− k1,low) degB r1,lowα
k1,low

Q̃1(A(x+ 1), B(x+ 1)) ℓ1,low degA+ (n− ℓ1,low) degB s1,lowα
ℓ1,low

P̃2(A(x), B(x)) k2,low degA+ (n− k2,low) degB r2,lowα
k2,low

Q̃2(A(x), B(x)) ℓ2,low degA+ (n− ℓ2,low) degB s2,lowα
ℓ2,low

Consider the following three subcases.

Subcase 3.1. deg P̃1(A(x+ 1), B(x+ 1)) ≤ deg P̃2(A(x), B(x)).

This means that

k1,low degA+ (n− k1,low) degB ≤ k2,low degA+ (n− k2,low) degB.

Or equivalently, k1,low ≥ k2,low. Using a similar argument as that in Subcase 2.1,
we obtain

c =







r1,low
r2,low

if k1,low = k2,low,

0 if k1,low > k2,low,

which belongs to C.
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Subcase 3.2. deg Q̃1(A(x+ 1), B(x+ 1)) ≤ deg Q̃2(A(x), B(x)).

This inequality is equivalent to l1,low ≥ l2,low. Using a similar argument as that in
Subcase 2.1, we have

c =







s1,low
s2,low

if s1,low = s2,low,

0 if s1,low > s2,low,

which also belongs to C.
Subcase 3.3. None of the subcases 3.1 and 3.2 occur.
In this case, we have k1,low < k2,low and l1,low < l2,low. Thus, we have k2,low ≥ 1
and l2,low ≥ 1. In other words, both polynomials P2(z) and Q2(z) are divisible by
z. This contradicts to the assumption that gcd(P2, Q2) = 1. Hence, this subcase
cannot happen.

Above all, we conclude that in each case we always have c ∈ C.

It might happen that the set of constant candidates C of (6) is an infinite set. In this case,
there are infinitely many choices for the constant c appearing in the difference system (7). We
will see in Proposition 3.8 and 3.9 below that the given difference equation (6) in this case is
rather simple and it only has constant solutions.

Proposition 3.8.
Let Pi(z), Qi(z) ∈ K[z] be polynomials in (6), i = 1, 2. Then the set of constant candidates

of (6) is an infinite set if and only if P1(z)
Q1(z)

= P2(z)
Q2(z)

.

Proof. Assume that C is the set of constant candidates of (6). From Definition 3.6, it is clear
that C is an infinite set if and only if the set

C̄ = {c ∈ K | ∃α ∈ K : P1(α) = cP2(α) and Q1(α) = cQ2(α)}

is an infinite set.
Note that if P1(α) = cP2(α) and Q1(α) = cQ2(α) for some α ∈ K, then we always have

det

(

P1(α) P2(α)
Q1(α) Q2(α)

)

= 0. (10)

For each α ∈ K satisfying (10), since gcd(P2, Q2) = 1, there exists a unique c ∈ K such that
P1(α) = cP2(α) and Q1(α) = cQ2(α). Therefore, C̄ is an infinite set if and only if the algebraic
equation

det

(

P1(z) P2(z)
Q1(z) Q2(z)

)

= 0

has infinitely many solutions. The latter happens if and only if the left hand side is actually
the zero polynomial. In other words, we have P1(z)

Q1(z)
= P2(z)

Q2(z)
.

In (6), if P1(z)
Q1(z)

6= P2(z)
Q2(z)

, then we can construct C̄ of the above proof in an algorithmic way.

There, we can compute the set of constant candidates of (6) in this case.

The following proposition provides an answer for Problem 3.2 if P1(z)
Q1(z)

= P2(z)
Q2(z)

.
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Proposition 3.9.
Let f(z) ∈ K(z) be a non-constant rational function. Then rational solutions of the difference
equation f(y(x+ 1)) = f(y(x)) are only constants in K.

Proof. Assume that s(x) is a rational solution of the given difference equation. Then we
have f(s(x + 1)) = f(s(x)) for every x ∈ K except finitely many points in K. Let us fix
a constant x0 ∈ K such that f(s(x0)) is defined, and define the new rational function g by
g(x) = f(s(x))− f(s(x0)). It is clear that g(n + x0) = 0 for every n ∈ Z except finitely many
points in Z. This only happens when g is the zero function. Therefore, there exists a constant
c ∈ K such that f(s(x)) − c is the zero function. This means that the function s(x) is a zero
of the nonzero rational function f(z)− c ∈ K(z). Thus, the rational function s(x) is algebraic
over K. Since K is algebraically closed, we conclude that s(x) ∈ K.

Using the above proposition, we obtain a simple answer for Problem 3.2 if P1
Q1

= P2
Q2

. In fact,
in this case, every rational solution of the given autonomous separable difference equation is a
constant function.

Now we can assume that P1
Q1

6= P2
Q2

. By Theorem 3.7, the set of constant candidates C of (6)
is always a finite set. As we have seen in Proposition 3.5, in order to find a rational solution
A(x)
B(x) of the given separable difference equation (6), we need to determine a pair of polynomials

(A(x), B(x)) satisfying the difference system (7) for each c in the finite set C. Therefore, we
reduce Problem 3.2 to that of finding polynomial solutions of finitely many difference systems
of the form (7). The latter one is addressed in next subsection.

3.3 Reduce to the problem of finding polynomial solutions of an

autonomous second-order AO∆E

In this subsection, we consider the problem of finding polynomial solutions of a difference
system of the form (7). Let P̃2, Q̃2 ∈ K[z] be polynomials and c be the constant in (7).
By Theorem 3.7, we can compute all possible values of c by calculating the set of constant
candidates of (6). Assume that c is given in (7). Note that if c = 0, then it follows from
the fact that K is algebraically closed that system (7) only has constant solutions in this case.
Therefore, we may further assume that c 6= 0. Then we can replace cP̃2 by P̄2 and cQ̃2 by Q̄2.
Thus, without loss of generality, we can also assume that c = 1. To be more specific, we focus
on the following question.

Problem 3.10.
Let P1, P2, Q1, Q2 ∈ K[z] \ {0} be polynomials such that gcd(P1, Q1) = gcd(P2, Q2) = 1 and
deg P1

Q1
= deg P2

Q2
= n ≥ 1. Set

P̃i(z, w) = wnPi

( z

w

)

, and Q̃i(z, w) = wnQi

( z

w

)

,

which are homogeneous polynomials of degree n in K[z, w], i = 1, 2. Determine all polynomials
A(x), B(x) ∈ K[x] with gcd(A,B) = 1 such that

{

P̃1(A(x+ 1), B(x+ 1)) = P̃2(A(x), B(x)),

Q̃1(A(x+ 1), B(x+ 1)) = Q̃2(A(x), B(x)).
(11)

14



Next, we will present an algorithm for deriving nonzero second-order AO∆Es for A(x) and
B(x) from system (11), respectively. The technique we use is similar to the prolongation-
relaxation approach used in differential algebra (see [31, Section 87-88]).

Algorithm 3.11.
Given difference system (11), compute nonzero second-order AO∆Es for A(x) and B(x), re-
spectively.

(1) Let I ⊆ K[w0, w1, w2, z0, z1, z2] be the ideal generated by the following polynomials

P̃1(z1, w1)− P̃2(z0, w0), Q̃1(z1, w1)− Q̃2(z0, w0),

P̃1(z2, w2)− P̃2(z1, w1), Q̃1(z2, w2)− Q̃2(z1, w1).

Using Gröbner bases or resultants, compute nonzero elements FA ∈ I ∩K[z0, z1, z2] and
FB ∈ I ∩K[w0, w1, w2].

(2) Return FA(A(x), A(x + 1), A(x + 1)) = 0 and FB(B(x), B(x+ 1), B(x+ 2)) = 0.

The termination of the above algorithm is clear. The aim of this subsection is to prove the
correctness of the above algorithm. To be more specific, we will prove that one can always
derive nonzero second-order AO∆Es for A(x) and B(x) from system (11), respectively.

In our arguments, we use polynomial resultants to derive those nonzero second-order AO∆Es
for A(x) and B(x), respectively. For polynomials P (z) and Q(z) in K[z], we denote by
Resz(P (z), Q(z)) the resultant of P and Q with respect to z. The resultant is a polyno-
mial over Z in the coefficients of P and Q. For details about resultant theory, we refer to [12,
Chapter 3, §6].
Proposition 3.12.
Let f(z, w) and g(z, w) be nonzero polynomials in K[z, w]. Let R(z) = Resw(f, g) ∈ K[z] be
the resultant of f and g with respect to w. Then for any c ∈ K we have

R(c) = Resw(f(c, w), g(c, w)).

In other words, the resultant computation always commutes with the substitution of polynomi-
als.

Proof. It is clear from the definition of resultants (see [12, Definition 2, p.162]).

Lemma 3.13.
Let P1, P2, Q1, Q2 be nonzero polynomials in K[z] with gcd(P1, Q1) = gcd(P2, Q2) = 1. Set

R = Resz2 (P1(z1)− wP2(z2), Q1(z1)− wQ2(z2)) .

Then R is a nonzero polynomial in K[w, z1].

Proof. Suppose that R = 0. Due to [12, Proposition 3, p. 163], there exists z2,0 ∈ K(w, z1)
such that

P1(z1) = wP2(z2,0), and Q1(z1) = wQ2(z2,0). (12)

Since gcd(P2, Q2) = 1, either P2(z2,0) or Q2(z2,0) is nonzero. Without loss of generality, we

can assume that Q2(z2,0) 6= 0. From (12), we obtain
P2(z2,0)
Q2(z2,0)

= P1(z1)
Q1(z1)

. This implies that

z2,0 is a zero of the nonzero rational function P2(z2)
Q2(z2)

− P1(z1)
Q1(z1)

in K(z1, z2). Therefore, we have

z2,0 ∈ K(z1). It follows that Q2(z2,0) ∈ K(z1). However, since w is transcendental over K(z1),
the only possibility for Q1(z1) = wQ2(z2,0) to be true is that Q2(z2,0) = 0, a contradiction.
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Lemma 3.14.
Let Pi, Qi be nonzero polynomials in K[z] with gcd(Pi, Qi) = 1, i = 1, 2. Set J to be the ideal
of K[w0, w1, w2, z0, z1, z2] generated by the following polynomials:

w1P1(z1)− w0P2(z0), w1Q1(z1)− w0Q2(z0),

w2P1(z2)− w1P2(z1), w2Q1(z2)− w1Q2(z1).

Then J ∩K[w0, w1, w2] 6= {0}.

Proof. Set pi = wiP1(zi)−wi−1P2(zi−1), qi = wiQ1(zi)−wi−1Q2(zi−1), i = 1, 2. By assumption,
the ideal J is generated by p1, q1, p2, q2. Next, we construct a nonzero polynomial R in J ∩
K[w0, w1, w2] as follows:

(1) Set R0 = Resz0

(

p1
w1

, q1
w1

)

and R2 = Resz2

(

p2
w1

, q2
w1

)

;

(2) Set R1 = Resz1 (R0, R2).

By the above construction, we have R0 ∈ K[w0
w1

, z1], R2 ∈ K[w2
w1

, z1], and R1 ∈ K[w0
w1

, w2
w1

]. By [12,
Proposition 5, p. 164], we see that R1 is a K[w0

w1
, w2
w1

, z0, z1]-linear combination of polynomials
p1
w1

, q1
w1

, p2
w1

and q2
w1

,i.e.,

R1 = h1 ·
p1
w1

+ h2 ·
q1
w1

+ h3 ·
p2
w1

+ h4 ·
q2
w1

for some hi ∈ K[w0
w1

, w2
w1

, z0, z1], i = 1, 2, 3, 4. Then there exists a large enough natural number

N such that Hi = wN−1
1 · hi ∈ K[w0, w1, w2, z0, z1, z2] for i = 1, 2, 3, 4. Set R = wN

1 ·R1. Then
we have

R = H1 · p1 +H2 · q1 +H3 · p2 +H4 · q2
for some Hi ∈ K[w0, w1, w2, z0, z1, z2], i = 1, 2, 3, 4. Therefore, we have R ∈ J . On the other
hand, since R1 ∈ K[w0

w1
, w2
w1

] and R = wN
1 · R1, we conclude that R ∈ K[w0, w1, w2]. Next, we

prove that R 6= 0.
Suppose that R = 0. Then we have R1 = 0. By [12, Proposition 3, p.163], there exists y1,0 ∈

K(w0, w1, w2) such that R0(w0, w1, y1,0) = R2(w0, w2, y1,0) = 0. It follows from Lemma 3.13

that R0 ∈ K[w0
w1

, y1]\{0} and R2 ∈ K[w2
w1

, y1]\{0}. Therefore, we see that y1,0 ∈ K(w0
w1

)∩K(w2
w1

).

Moreover, since w0
w1

and w2
w0

are algebraically independent over K, we have K(w0
w1

)∩K(w2
w1

) = K.
Thus, we conclude that y1,0 ∈ K.

By Proposition 3.12, we have

Resy0

(

p1(w0, w1, y0, y1,0)

w1
,
q1(w0, w1, y0, y1,0)

w1

)

= R0(w0, w1, y1,0) = 0.

This shows that there exists y0,0 ∈ K(w0, w1) such that

p1(w0, w1, y0,0, y1,0)

w1
=

q1(w0, w1, y0,0, y1,0)

w1
= 0,

or equivalently,

P1(y1,0) =
w0

w1
P2(y0,0), and Q1(y1,0) =

w0

w1
Q2(y0,0). (13)
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Since gcd(P2, Q2) = 1, the polynomials P2(y0,0) and Q2(y0,0) cannot be both zero functions.

Without loss of generality, we can assume that Q2(y0,0) 6= 0. From (13), we see that
P1(y1,0)
Q1(y1,0)

=
P2(y0,0)
Q2(y0,0)

. Therefore, the function y0,0 is a zero of the rational function
P1(y1,0)
Q1(y1,0)

− P2(z0)
Q2(z0)

∈ K(z0).

Since K is algebraically closed, we conclude that y0,0 ∈ K. However, since w0
w1

is transcendental
over K, the only possibility for Q1(y1,0) = w0

w1
Q2(y0,0) to be true is that Q2(y0,0) = 0, a

contradiction.

Theorem 3.15.
Let Pi, Qi be polynomials in K[z] \ {0} such that gcd(Pi, Qi) = 1 and deg Pi

Qi
= n ≥ 1, where

i = 1, 2. Set I to be the ideal of K[w0, w1, w2, z0, z1, z2] generated by the following polynomials:

wn
1P1

(

z1
w1

)

− wn
0P2

(

z0
w0

)

, wn
1Q1

(

z1
w1

)

− wn
0Q2

(

z0
w0

)

,

wn
2P1

(

z2
w2

)

− wn
1P2

(

z1
w1

)

, wn
2Q1

(

z2
w2

)

− wn
1Q2

(

z1
w1

)

.

Then I ∩K[w0, w1, w2] 6= {0}.

Proof. Set

fi = wn
i P1

(

zi
wi

)

− wn
i−1P2

(

zi−1

wi−1

)

, gi = wn
i Q1

(

zi
wi

)

− wn
i−1Q2

(

zi−1

wi−1

)

,

where i = 1, 2. Then I is generated by f1, g1, f2, g2. Furthermore, set

pi = wiP1(zi)− wi−1P2(zi−1), qi = wiQ1(zi)− wi−1Q2(zi−1),

where i = 1, 2.
Set E = K(w0, w1, w2). Consider the following two algebraic systems over the ground field

E,
f1 = g1 = f2 = g2 = 0, (14)

and
p1 = q1 = p2 = q2 = 0, (15)

where z0, z1, z2 are indeterminates.
First, we prove that the above two algebraic systems have the same consistent property,

i.e., (14) has solutions in E3 if and only if (15) has solutions in E3. Assume that (y0, y1, y2) ∈ E3

is a solution of system (14), then it is clear to see that

(

y0( n
√
w0, n

√
w1, n

√
w2)

n
√
w0

,
y1( n

√
w0, n

√
w1, n

√
w2)

n
√
w1

,
y2( n

√
w0, n

√
w1, n

√
w2)

n
√
w2

)

∈ E3

is a solution of system (15). Conversely, if (y0, y1, y2) ∈ E3 is a solution of system (15), then

(w0 · y0(wn
0 , w

n
1 , w

n
2 ), w1 · y1(wn

0 , w
n
1 , w

n
2 ), w2 · y2(wn

0 , w
n
1 , w

n
2 )) ∈ E3

is a solution of system (14).
Due to Lemma 3.14, we can derive a consequence for system (15) of the form

p(w0, w1, w2) = 0
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for some nonzero polynomial p ∈ K[w0, w1, w2]. Since p is a nonzero element in the ground field
E, the above equation is equivalent to 1 = 0. Therefore, system (15) has no solution in E3. By
the consistent property, so is system (14). Due to the weak version of Hilbert Nullstellensatz
[25, Theorem 5.4, p. 33], the ideal of K(w0, w1, w2)[z0, z1, z2] generated by I contains 1. In
other words, we have

1 = h1f1 + h2g1 + h3f2 + h4g2 (16)

for some polynomials h1, h2, h3, h4 in K(w0, w1, w2)[z0, z1, z2]. Let h ∈ K[w0, w1, w2] be the
common denominator of the coefficients (in K(w0, w1, w2)) of h1, h2, h3, h4. Multiplying both
sides of (16) by h, we see that h ∈ I. Hence, we conclude that h is a nonzero polynomial in
I ∩K[w0, w1, w2].

Note that if Pi, Qi are polynomials in K[z] \ {0} of degrees at most n ≥ 1 such that
gcd(Pi, Qi) = 1 for i = 1, 2, then the claim in the above theorem still holds. However, the
condition that deg Pi

Qi
= n ≥ 1 is necessary for the next corollary, where i = 1, 2.

Corollary 3.16.
Let I be the ideal defined in Theorem 3.15. Then I ∩K[z0, z1, z2] 6= {0}.
Proof. For i ∈ {1, 2}, we denote new polynomials P̂ , Q̂ in K[z] \ {0} as follows:

P̂i(z) = znPi

(

1

z

)

and Q̂i(z) = znQi

(

1

z

)

.

Since deg( Pi

Qi
) = n and gcd(Pi, Qi) = 1, we have deg( P̂i

Q̂i
) = n and gcd(P̂i, Q̂i) = 1. The four

generators of I can be rewritten in terms of P̂i, Q̂i as

zn1 P̂1

(

w1

z1

)

− zn0 P̂2

(

w0

z0

)

, zn1 Q̂1

(

w1

z1

)

− zn0 Q̂2

(

w0

z0

)

,

zn2 P̂1

(

w2

z2

)

− zn1 P̂2

(

w1

z1

)

, zn2 Q̂1

(

w2

z2

)

− zn1 Q̂2

(

w1

z1

)

.

We conclude from Theorem 3.15 that I ∩K[z0, z1, z2] 6= {0}.
Corollary 3.17.
Algorithm 3.11 is correct.

Proof. Assume that (A(x), B(x)) ∈ K[x]2 is a solution of (11) with gcd(A,B) = 1. Set

φ : K[w0, w1, w2, z0, z1, z2] → K[x]
F (w0, w1, w2, z0, z1, z2) 7→ F (B(x), B(x+ 1), B(x+ 2), A(x), A(x + 1), A(x + 1)).

It is clear to see that φ is a ring homomorphism. Applying the usual shift operator to sys-
tem (11), we obtain























P̃1(A(x+ 1), B(x + 1)) = P̃2(A(x), B(x)),

Q̃1(A(x+ 1), B(x+ 1)) = Q̃2(A(x), B(x)),

P̃1(A(x+ 2), B(x + 2)) = P̃2(A(x+ 1), B(x+ 1)),

Q̃1(A(x+ 2), B(x+ 2)) = Q̃2(A(x+ 1), B(x+ 1)).

The above system implies that I ⊆ ker(φ). By Theorem 3.15 and Corollary 3.16, there exist
nonzero elements FA ∈ I ∩ K[z0, z1, z2] and FB ∈ I ∩ K[w0, w1, w2]. Therefore, we conclude
that φ(FA) = 0 and φ(FB) = 0.
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From experiments, we observe that resultant computation is much more efficient than that
of Gröbner bases in Step 1 of Algorithm 3.11. Since generators of the ideal I of Algorithm 3.11
are homogenous, the output difference equations are also homogenous. We will present an al-
gorithm for computing polynomial solutions of second-order autonomous homogenous AO∆Es
in the next subsection.

3.4 Polynomial solutions of autonomous second-order homogenous

AO∆Es

In this subsection, we consider the following problem:

Problem 3.18.
Let F ∈ K[y, z, w] be a trivariate homogeneous polynomial. Find all polynomial solutions of
the difference equation F (y(x), y(x+ 1), y(x + 2)) = 0.

An answer for the above problem is the last key for deriving a complete algorithm for
finding rational solutions of an autonomous first-order AO∆E. In literature, there exists an
algorithm for computing polynomial solutions of absolutely irreducible autonomous first-order
AO∆Es [16, Section 3] and also a degree bound [34] for polynomial solutions of general AO∆Es
under a certain sufficient condition. However, none of them can give a direct answer for
Problem 3.18. We will give a degree bound for polynomial solutions of autonomous second-
order homogeneous AO∆Es, and thus it can be used to derive an algorithm for computing the
corresponding polynomial solutions. The approach is a difference analog of that in [39, 41].

Assume that F ∈ K[y, z, w] is a homogenous polynomial of total degree D. Consider the
following second-order AO∆E:

F (y(x), y(x+ 1), y(x + 2)) = 0. (17)

Let ∆y(x) = y(x+ 1)− y(x). Then we have

y(x+ 1) = ∆y(x) + y(x)

y(x+ 2) = ∆2y(x) + 2∆y(x) + y(x).

Substituting the above two formulae into (17), we obtain the algebraic equation:

F̃ (y(x),∆y(x),∆2y(x)) = 0, (18)

where
F̃ (y, z, w) = F (y, y + z, y + 2z + w)

is also a homogenous polynomial of total degree D in K[y, z, w].
For each I = (i1, i2, i3) ∈ N3, we define ||I|| = i1 + i2 + i3. Now we may write

F̃ =
∑

||I||=D

cIy
i1zi2wi3 , (19)
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where cI ∈ K. Set

E(F̃ ) = {I ∈ N3 | cI 6= 0},
m(F̃ ) = min{i2 + 2i3 | I ∈ E(F̃ )},
M(F̃ ) = {I ∈ E(P̃ ) | i2 + 2i3 = m(F̃ )},
PF̃ (t) =

∑

I∈M(F̃ )

cI t
i2 [t(t− 1)]i3 .

We call PF̃ (t) the indicial polynomial of F̃ (at infinity).

Proposition 3.19.
Let PF̃ (t) be the indicial polynomial of F̃ at infinity. Then PF̃ (t) 6= 0.

Proof. Set f(t) =
P
F̃
(t)

tm(F̃ )
. Then

f(t) =
∑

I∈M(F̃ )

cI

(

t− 1

t

)i3

.

Let T = t−1
t
. Then f(t) is the evaluation of the nonzero univariate polynomial

∑

I∈M(F̃ )

cIx
i3 at T.

Since T is transcendental over K, we conclude that f(t) is nonzero. Thus, PF̃ (t) 6= 0.

Assume that p(x) =
∑d

i=0 aix
i ∈ K(c)[x] is a nonzero polynomial solution of (18), where c

is transcendental over K(x), d and ai’s are unkown. Then

∆p(x) = ad · d · xd−1 + lower terms in x,

∆2p(x) = ad · d · (d− 1) · xd−2 + lower terms in x.

Thus, for each I = (i1, i2, i3) ∈ N3 with ||I|| = D, we have

pi1(∆p)i2(∆2p)i3 = (adx
d)i1(addx

d−1)i2(add(d− 1)xd−2)i3 + lower terms in x

= ai1+i2+i3
d di2 [d(d− 1)]i3xd(i1+i2+i3)−(i2+2i3) + lower terms in x

= aDd d
i2 [d(d − 1)]i3xdD−(i2+2i3) + lower terms in x. (20)

Based on the above argument, we have the following proposition.

Proposition 3.20.
Let p(x) be a nonzero polynomial solution of (18) with degree d. Then PF̃ (d) = 0.

Proof. Since p(x) is a nonzero polynomial solution of (18) with degree d, we have that

[xdD−m(F̃ )]
(

F̃ (p(x),∆p(x),∆2p(x))
)

= 0.

By (20), the above equation is equivalent to aDd ·PF̃ (d) = 0. On account of ad 6= 0, we conclude
that PF̃ (d) = 0.

By Proposition 3.19 and the above one, we can compute a degree bound of polynomial
solutions of F̃ by computing non-negative integers solutions of the indicial polynomial at
infinity. Afterwards, we may compute the polynomial solutions by making an ansatz and then
solving the corresponding algebraic equations by using Gröbner bases.
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4 Algorithms for computing rational solutions of

autonomous first-order AO∆Es

Based on the results of the previous section, we summarize an algorithm for determining
rational solutions of an autonomous first-order AO∆E.

Algorithm 4.1.
Given a separable difference equation P1(y(x+1))

Q1(y(x+1)) =
P2(y(x))
Q2(y(x))

with gcd(Pi, Qi) = 1 and deg P1
Q1

=

deg P2
Q2

≥ 1, i = 1, 2, compute a bound N for the degrees of its rational solutions.

1. Set N = 0. If P1(z)
Q2(z)

= P1(z)
Q2(z)

, then output N . Otherwise, go to the next step.

2. Compute the set of constant candidates C of the given separable difference equation by
Definition 3.6.

3. Let c1, c2, . . . , cm be nonzero elements in C. Let

P̃j(z, w) = wnPj

( z

w

)

, and Q̃j(z, w) = wnQj

( z

w

)

, j = 1, 2.

For i from 1 to m do

a) Consider the difference system
{

P̃1(A(x+ 1), B(x + 1)) = ci · P̃2(A(x), B(x)),

Q̃1(A(x+ 1), B(x+ 1)) = ci · Q̃2(A(x), B(x)).
(21)

where A,B are unknown functions. Derive the following two nonzero autonomous
second-order AO∆Es for A(x) and B(x) from the above equations by using Algo-
rithm 3.11:

Fi,A(A(x), A(x + 1), A(x + 2)) = 0, and Fi,B(B(x), B(x+ 1), B(x + 2)) = 0,

where Fi,A and Fi,B are homogeneous polynomials in K[y, z, w] \ {0}.
b) Determine the indicial polynomials PFi,A

and PFi,B
of Fi,A and Fi,B, respectively.

Let

Di,A = {non-negative integer solutions of PFi,A
(t)},

Di,B = {non-negative integer solutions of PFi,B
(t)}.

c) Set N = max{{N} ∪Di,A ∪Di,B}.

4. Return N .

The termination of the above algorithm is evident. The correctness is a consequence of
Proposition 3.9, Theorem 3.7, the correctness of Algorithm 3.11 and Proposition 3.20.

To avoid triviality, we only consider non-constant rational solutions below.

Algorithm 4.2.
Given an irreducible autonomous first-order AO∆E F (y(x), y(x + 1)) = 0, compute a non-
constant rational solution or return NULL.
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1. If degy(F ) 6= degz(F ), then output NULL. Otherwise, go to the next step.

2. Compute the genus g of the corresponding curve CF defined by F (y, z) = 0. If g 6= 0,
then output NULL. Otherwise, go to the next step.

3. By using [40, Algorithm 1], determine an optimal parametrization for CF , say P(t) =
(p1(t), p2(t)).

4. Apply Algorithm 4.1 to compute a bound N for the degrees of rational solutions of the
associated separable difference equation p1(y(x+ 1)) = p2(y(x)).

5. Set M = N · degt p1. Use [16, Algorithm 4.16] to determine a non-constant rational
solution of the given AO∆E whose degree at most M . Return the rational solution if
there is any. Otherwise return NULL.

The termination of the above algorithm is clear.

Theorem 4.3.
Algorithm 4.2 is correct.

Proof. Assume that the difference equation F (y(x), y(x + 1)) = 0 admits a rational solution.
Then it has a strong rational general solution. By Proposition 2.7, we have degy F = degz F .
By Theorem 2.2, the genus of the corresponding curve CF is of genus zero. In this case, CF
admits an optimal parametrization P(t) = (p1(t), p2(t)) ∈ K(t)×K(t) and the given difference
equation has an associated separable difference equation. By Theorem 2.5, we see that if N is
a bound for the degrees of rational solutions of the associated separable difference equation,
then N ·degt p1 is a bound for the degrees of rational solutions of the given difference equation.
The correctness of step 5 follows from that of [16, Algorithm 4.16].

Example 4.4.
Consider the following irreducible autonomous first-order AO∆E:

F = (12y(x) + 49)y(x+ 1)2 − (12y2 + 62y + 56)y(x + 1) + y(x)2 + 8y(x) + 16 = 0. (22)

It is clear to see that degy(F ) = degz(F ) = 2. The corresponding algebraic curve is of genus
zero and it has an optimal parametrization

P(t) = (p1(t), p2(t)) =

(

9t2 − 12t+ 4

12t
,
9t2 + 36t+ 4

12(t+ 4)

)

.

Using the above parametrization, we can derive the following associated separable difference
equation of (22):

9y(x+ 1)2 − 12y(x+ 1) + 4

y(x+ 1)
=

9y(x)2 + 36y(x) + 4

y(x) + 4
,

where P1(z) = 9z2 − 12z + 4, Q1(z) = z, P2(z) = 9z2 + 36z + 4 and Q2(z) = z + 4.

It is clear that P1(z)
Q2(z)

6= P1(z)
Q2(z)

. So we can skip step 1 of Algorithm 4.1. By computation,

we find that the set of candidate constants C = {7 + 4
√
3, 7 − 4

√
3, 0, 1}. Using other steps of

Algorithm 4.1, we see that the degree bound for rational solutions of the associated separable
difference equation is 2. Thus, the degrees of rational solutions of the given difference equation
are bounded by 4. By applying [16, Algorithm 4.1], we can determine a rational solution, say

y(x) =
(1− 4x+ 2x2)2

2x(1− 3x+ 2x2)
.
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