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Abstract

In this article, we study the Bruhat-Chevalley-Renner order on the complex sym-

plectic monoid MSpn. After showing that this order is completely determined by the

Bruhat-Chevalley-Renner order on the linear algebraic monoid of n × n matrices Mn,

we focus on the Borel submonoid of MSpn. By using this submonoid, we introduce

a new set of type B set partitions. We determine their count by using the “folding”

and “unfolding” operators that we introduce. We show that the Borel submonoid of a

rationally smooth reductive monoid with zero is rationally smooth. Finally, we analyze

the nilpotent subsemigroups of the Borel semigroups of Mn and MSpn. We show that,

contrary to the case of MSpn, the nilpotent subsemigroup of the Borel submonoid of

Mn is irreducible.

Keywords: Symplectic monoid, Renner monoid, Borel submonoid, ratio-
nally smooth, set partitions, (un)folding
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1 Introduction

Let M be a complex reductive monoid with unit group G, and let B be a Borel subgroup in
G. Then we have a square of inclusions as in the following diagram

B M

B G

where B is the Zariski closure of B in M ; we will call B the Borel submonoid determined
by B. Although its combinatorics and geometry are relatively less explored compared to
that of the ambient reductive monoid, the Borel submonoid is a very important object for
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the study of the representation theory of M [11, Theorem 3.4]. In the special case of the
linear algebraic monoid of n×n matrices, the B×B-orbits in B are parametrized by the set
partitions of {1, . . . , n}, providing a gateway to an unchartered domain for combinatorialists,
see [7]. In this regard, our goal in this paper is to present first combinatorial results, whose
analogous versions are obtained in [7], for the Borel submonoid of a “symplectic monoid”
that we will define next.

Let l be a positive integer, and set n := 2l. The set of all l× l matrices with entries from

C will be denoted by Ml. We let J denote the n× n matrix, J =

[
0 Jl

−Jl 0

]
, where Jl is the

unique antidiagonal l × l permutation matrix, that is,

Jl =




0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

...
0 1 · · · 0 0
1 0 · · · 0 0



.

The symplectic group is defined by Spn := {A ∈ GLn : A⊤JA = J}. This is the group
of linear automorphisms of Cn that preserve the skew-bilinear form that is defined by J .
(Once we fix the even integer n = 2l, in the sequel, it will be convenient for us to denote
Spn by G.) Let us denote the central extension of Spn in GLn by GSpn. This is the
smallest reductive subgroup of GLn that contains both of the subgroups G and the group
of invertible scalar matrices {cIn : c ∈ C∗}, where In denotes the n × n identity matrix.
The Zariski closure of GSpn in Mn is called the n-th symplectic monoid. Such monoids were
first considered by Grigor’ev [13]. The following concrete description of the n-th symplectic
monoid, which we will denote by MSpn, is due to Doty [10, Proposition 4.3]: MSpn :=
{A ∈ Mn : A⊤JA = AJA⊤ = cJ, c ∈ C}. Basic geometric ingredients (the Renner monoid,
the cross section lattice, and a cell decomposition) of MSpn are described explicitly by Li
and Renner in [16]. An in-depth analysis of the rational points of MSpn over finite fields,
including some fascinating combinatorial formulas about its Renner monoids, are described
by Cao, Lei, and Li in [9]. To describe the main results of our paper, next, we will briefly
review the Renner monoid of MSpn in relation with the rook monoid.

To keep our notation simple, let us denote by B the Borel subgroup consisting of the upper
triangular matrices in GSpn. The natural action of B×B on MSpn is defined by (b1, b2) ·x =
b1xb

−1
2 , where b1, b2 ∈ B, x ∈ MSpn. This action has finitely many orbits [21, 16] and

moreover the orbits are parametrized by a finite inverse semigroup, MSpn =
⊔

σ∈RG
BσB.

The finite inverse semigroup RG is called the symplectic Renner monoid; it is the symplectic
version of the rook monoid Rn, which consists of 0/1 square matrices of size n with at most
one 1 in each row and each column. In fact, RG is a submonoid of Rn. The elements of
Rn are called rooks, and we will call the elements of RG the symplectic rooks. The Bruhat-
Chevalley-Renner order on Rn is defined by

σ ≤ τ ⇐⇒ BnσBn ⊆ BnτBn (1.1)
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for σ, τ ∈ Rn. (We will introduce the most general form of the Bruhat-Chevalley-Renner
order in the preliminaries section.) An explicit combinatorial description of ≤, in the spirit
of Deodhar’s criteria, is obtained in [8]. By using this explicit characterization of ≤, it is
shown in [6] that (Rn,≤) is a graded, bounded, EL-shellable poset.

The first main observation in our paper, Theorem 3.9, states that, for σ, τ ∈ RG, we have

σ ≤ τ in RG ⇐⇒ σ ≤ τ in Rn.

An important family of subposets of Rn are defined as follows. Let k be an integer in
{0, 1, . . . , n}, and let

Bn(k) := {σ ∈ Rn : σ is upper triangular and rank(σ) = k}

and

Bn :=

n⊔

k=0

Bn(k).

Then Bn parametrizes the Bn ×Bn-orbits in the Borel monoid Bn. Actually, Bn is the lower
interval [0, 1] = {x ∈ Rn : x ≤ 1} in Rn. Therefore, Bn is also EL-shellable. Generalizing
this observation, in [7], joint with Cherniavsky, the first author showed that each poset
(Bn(k),≤) (k ∈ {0, 1, . . . , n}) is a graded, bounded, EL-shellable poset. In fact, it turns out
that (Bn(k),≤) is a union of

(
n

k

)
maximal subintervals all of which have the same minimum

element. An important combinatorial aspect of this development is that, as a set, Bn(k)
is in bijection with the set partitions of {1, . . . , n + 1} with k blocks. In particular, the
cardinality |Bn(k)| is given by the Stirling numbers of the second kind, S(n + 1, k). In our
second main result, we obtain similar results for the rank k elements of the Borel submonoid
B in MSpn. We should mention that the type BC analogs of the set partitions with respect
to “refinement order” is well known [19]. For a more recent study of their combinatorial
properties, see [1].

We will denote by BG the submonoid of all upper triangular elements in the symplectic
Renner monoid RG. In other words, BG = {x ∈ RG : x ≤ 1} = [0, 1] in RG. The k-th
symplectic Stirling poset, denoted by BG(k), is the subposet defined by

BG(k) := {x ∈ BG : rank(x) = k}. (1.2)

In Theorem 4.6, we prove that the k-th symplectic Stirling poset is a graded bounded poset
with unique minimum element, and with

(
l

k

)
2k maximal elements, all of which are rank k

diagonal idempotents. It is now a natural question to find the cardinality of each of the
posets BG(k). We answer this question in Theorem 5.13. It turns out that

|BG(k)| =
∑

a+b+c=k

2a+c3b
(
l

b

)
S(l + 1, l + 1− a)S(l + 1, l + 1− c),

where (a, b, c) ∈ Z3
≥0. Here, for integers s, t ∈ Z such that s ≤ t, S(s, t) stands for the

(s, t)-th Stirling numbers of the second kind.
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Reductive monoids are regular in the semigroup theory sense. Geometrically, the only
smooth reductive monoids with one-dimensional center are the monoids of n×n matrices [20].
A complex algebraic variety of dimension n is called rationally smooth if for every x ∈ X ,
the local cohomology groups H i(X,X \ {x}) are zero for i 6= 2n, and H2n(X,X \ {x}) =
Q. It turns out that the rationally smooth reductive monoids have rich combinatorial and
geometric structures [22, 23]. Their classification has been completed by Renner [22, 24]. In
particular, MSpn is a rationally smooth monoid. Gonzales showed that the rationally smooth
reductive monoids are GKM manifolds, see [12]. This means that the relevant (equivariant)
cohomological data for such a monoid can be recovered from the knowledge of torus invariant
points and curves alone.

In Theorem 6.3, we show that, if M is a rationally smooth reductive monoid with zero,
and B is a Borel submonoid in M , then B is rationally smooth as well. Although we do
not exploit this information here, we can now use Renner’s H-polymomials for computing
the intersection cohomology Poincaré polynomials of many Borel submonoids. In particular,
this idea is applicable to the case of MSpn. We plan to revisit this topic in a future paper.

We now describe the organization of our paper. In Section 2 we briefly summarize some
basic properties of the symplectic groups and monoids. Section 3 is devoted to the study of
the Bruhat-Chevalley-Renner order on MSpn. In this section we prove our first result, The-
orem 3.9. Empowered by the concrete description of the partial order, we begin our study of
the Borel submonoid of MSpn in Section 4. In particular, in this section, we give a count of
the number of rank k elements of the symplectic upper triangular rooks, Theorem 5.13. The
purpose of Section 6 is to show that the Borel submonoids of rationally smooth reductive
monoids with zeros are rationally smooth, Theorem 6.3. In the final part of our paper, we
return to our study of the symplectic monoids. We observe that, unlike the case of the
monoid of n × n matrices, the subsemigroup of nilpotent elements of the Borel submonoid
of MSpn is not irreducible for n ≥ 2.

Acknowledgements. The authors thank Yonah Cherniavsky and Zhenheng Li. The
first author is partially supported by a grant from the Louisiana Board of Regents.

2 Preliminaries

In this section we will review the basic ingredients of our objects.

2.1 Symplectic groups.

Let n be a positive integer of the form n = 2l for some l ∈ Z. Let us denote by H (resp.
G) the special linear group SLn (resp. the symplectic group Spn). Then G ⊆ H with
equality if n = 2. We will denote by TH and BH the maximal diagonal torus and the Borel
subgroup consisting of upper triangular matrices in H , respectively. Then the intersections
TG := G ∩ TH and BG := G ∩BH are, respectively, the maximal diagonal torus and a Borel
subgroup containing TG in G.
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Let θ : H → H denote the following involutory automorphism:

θ(A) = J(A⊤)−1J−1 A ∈ H.

Then the fixed subgroup of θ in H is G. In other words, we have Hθ = G. Also, it is easy to
verify that BG = Bθ

H and that TG = T θ
H . With this choice of TH and BH , we know that the

normalizer of TH in H , that is, NH(TH) is equal to the n× n monomial matrices in H , and
the elements of the Weyl group, WH := NH(TH)/TH , are represented by the permutation
matrices of size n. We will denote WH by Sn. The one-line notation of an element w of Sn

is the sequence (w1, . . . , wn), where wi = w(i) for i ∈ {1, . . . , n}. In this notation, the Weyl
group of (G, TG) has a convenient description as the fixed point subgroup of the induced
involution, θ : Sn → Sn which is defined by

θ(w) := (n+ 1− wn, n + 1− wn−1, . . . , n+ 1− w1) w ∈ Sn.

In other words, we have
WG = {w ∈ Sn : θ(w) = w}.

By working with the root system corresponding to (G,BG, TG), one knows that (WG, SG),
as a Coxeter group, is generated by

SG = {rirn−i : 1 ≤ i ≤ l − 1} ∪ {rl},

where rj (j ∈ {1, . . . , n− 1}) denotes the simple transposition rj = (j, j + 1) in Sn. Let us
define s1, . . . , sl by setting

sj :=

{
rjrn−j if j ∈ {1, . . . , l − 1};

rl if j = l.
(2.1)

In this notation, the Coxeter-Dynkin diagram of (G,BG, TG) can be depicted as in Figure 2.1.
This labeling is consistent with the labeling that is given in [4].

s1 s2 . . . sl−1 sl

Figure 2.1: The Coxeter-Dynkin diagram of type Cl.

2.2 Symplectic monoids.

Let M be a reductive monoid with unit group G. Then, by definition, G is a connected
reductive group. Let B be a Borel subgroup in G, and let T be a maximal torus of G that
is contained in B. Then the Weyl group of G is given by W := NG(T )/T . The Bruhat-
Chevalley decomposition of G is the finite decomposition G =

⊔
w∈W BẇB. Likewise, the

B×B-orbits in M are parametrized by a finite inverse semigroup, which is called the Renner
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monoid of M ; it is defined as the quotient R := NG(T )/T , where NG(T ) denotes the Zariski
closure of NG(T ) in M . Then the Bruhat-Chevalley-Renner decomposition of M is given by

M =
⊔

r∈R

BṙB.

The dot on r indicates that we are choosing a representative of r from NG(T ). In general,
it is not true that R is a submonoid of M . An excellent survey of the Renner monoids of
classical monoids can be found in [15].

Notation 2.2. Let G denote, as before, the symplectic group Spn. Then the Renner monoid
of the symplectic monoidMSpn will be denoted by RG. The Weyl group of G will be denoted
by WG.

1) Let θ denote the involution that we introduced before, that is, θ(i) = n − i + 1 for
i ∈ {1, . . . , n}. A subset S ⊆ {1, . . . , n} is called an admissible subset if θ(S) ∩ S = ∅. For
i, j ∈ {1, . . . , n}, let Eij denote the (i, j)-th elementary matrix. Then the (k, l)-th entry of
Eij is 1 if (k, l) = (i, j), and it is 0 if (k, l) 6= (i, j). In [16, Theorem 3.1.8], it is shown that

RG =

{
∑

i∈I,w∈WG

Ei,wi : I is admissible

}
. (2.3)

2) An injective partial transformation on {1, . . . , n} is an injective map f : D → R, where
D = D(f) and R = R(f) are two subsets from {1, . . . , n} with equal cardinalities.

Definition 2.4. The set of all injective partial transformations on {1, . . . , n} is called the
rook monoid; we will denote it by Rn. As we mentioned before, Rn is the Renner monoid of
Mn.

In [16, Theorem 3.1.10], Li and Renner show that

RG = {x ∈ Rn : D(x) and R(x) are admissible, and x is singular} ∪WG. (2.5)

3) For k ∈ {0, 1, . . . , n}, let ek denote the diagonal idempotent, ek := E11+E22+· · ·+Ekk.
Also, let e0 denote the n× n 0-matrix. The cross-section lattice of RG is then given by

ΛG := {e0, e1, e2, . . . , el, en}. (2.6)

(Notice the jump in the indices of the last two idempotents el to en. This is not a typo!) In
this notation, the Renner monoid of MSpn is given by

RG =
⊔

ei∈Λ

WGeiWG. (2.7)

Since en is the identity element, the subset WGenWG is equal to WG. Therefore, the rank of
a singular element in RG is at most l.
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3 The Bruhat-Chevalley-Renner order

Let M be a reductive monoid with unit group G. Let B be a Borel subgroup in G, and let
T be a maximal torus in G such that T ⊆ B. Let us denote the Renner monoid of M by R.
The Bruhat-Chevalley-Renner order on R is the following partial order: for x, y ∈ R,

x ≤BCR y ⇐⇒ BxB ⊆ ByB,

where the bar over ByB stands for the Zariski closure in M . Whenever it is clear from the
context, we will omit writing the subscript BCR in ≤BCR. Note that the restriction of ≤ to
W is known as the Bruhat-Chevalley order on W , which is defined by the same formulation,

x ≤ y ⇐⇒ BxB ⊆ ByB for x, y ∈ W,

where the bar over ByB stands for the Zariski closure in G.
The Weyl group W is a graded poset with the rank function ℓW : W → Z≥0 defined by

ℓW (w) = dimBwB − dimB for w ∈ W.

Note that W is a Coxeter group and it has a system of Coxeter generators, denoted by S. For
w ∈ W , ℓW (w) can also be defined as the minimal number of simple reflections si1 , . . . , sir
from S with w = si1 · · · sir . A subgroup that is generated by a subset I ⊂ S will be denoted
by WI and it will be called a parabolic subgroup of W . For I ⊆ S, we will denote by DI the
following set:

DI := {x ∈ W : ℓW (xw) = ℓW (x) + ℓW (w) for all w ∈ WI}. (3.1)

The type-map, λ : Λ → 2S, is defined by λ(e) := {s ∈ S : se = es} for e ∈ Λ. The
containment ordering between G×G-orbit closures in M is transferred via λ to a sublattice
of the Boolean lattice on S. Associated with λ(e) are the following sets: λ∗(e) := ∩f≤eλ(f)
and λ∗(e) := ∩f≥eλ(f). We define the subgroups

W (e) := Wλ(e), W∗(e) := Wλ∗(e), W ∗(e) := Wλ∗(e).

Then we have

1. W (e) = {a ∈ W : ae = ea},

2. W ∗(e) = ∩f≥eW (f),

3. W∗(e) = ∩f≤eW (f) = {a ∈ W : ae = ea = e}.

We know from [18, Chapter 10] that W (e),W ∗(e), and W∗(e) are parabolic subgroups of W ,
and furthermore, we know that W (e) ∼= W ∗(e)×W∗(e). If W (e) = WI and W∗(e) = WK for
some subsets I,K ⊂ S, then we define D(e) := DI and D∗(e) := DK .
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Theorem/Definition (Pennell-Putcha-Renner): For every x ∈ WeW there exist
elements a ∈ D∗(e), b ∈ D(e), which are uniquely determined by x, such that

x = aeb−1. (3.2)

The decomposition of x in (3.2) will be called the standard form of x. Let e, f be two
elements from Λ. It is proven in [17] that if x = aeb−1 and y = cfd−1 are two elements in
standard form in R, then

x ≤ y ⇐⇒ e ≤ f, a ≤ cw, w−1d−1 ≤ b−1 for some w ∈ W (f)W (e). (3.3)

We will occasionally write D(e)−1 to denote the set {b−1 : b ∈ D(e)}.

3.1 Deodhar’s criteria.

Our goal in this section is to present a practical description of the Bruhat-Chevalley-Renner
order on the rook monoid.

Let us denote by Bn the Borel subgroup of invertible upper triangular matrices in Mn.
The Renner monoid Rn is a graded poset with the following rank function [21]:

ℓ(x) = dim(BnxBn), x ∈ Rn.

There is a combinatorial formula for computing the values of ℓ [8].
We represent elements of Rn by n-tuples. For x = (xij) ∈ Rn we define the sequence

(x1, . . . , xn) by

xj =

{
0 if the j-th column consists of zeros,

i if xij = 1.
(3.4)

By abuse of notation, we denote both the matrix and the sequence (x1, . . . , xn) by x. For
example, the associated sequence of the partial permutation matrix

x =




0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0




is x = (3, 0, 4, 0).
Next, we define a useful partial order on finite sets of integers. Let {i1, . . . , ik} and

{j1, . . . , jk} be two equinumerous sets of integers such that i1 < · · · < ik and j1 < · · · < jk.
We will write

{i1, . . . , ik} 6 {j1, . . . , jk} ⇐⇒ i1 ≤ j1, i2 ≤ j2, . . . , ik ≤ jk. (3.5)

Let x = (x1, . . . , xn) be an element from Rn. For i ∈ {1, . . . , n}, we define

x̃(i) := {x1, . . . , xi}.

In this notation, the main result of [8] is as follows.
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Theorem 3.6. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two elements from Rn. Then
x ≤BCR y if and only if for every i ∈ {1, . . . , n− 1} we have x̃(i) 6 ỹ(i).

Example 3.7. Let x = (3, 1, 5, 2, 4) and y = (5, 2, 4, 3, 1) be two elements from R5. Since

x̃(1) = {3} 6 {5} = ỹ(1),

x̃(2) = {1, 3} 6 {2, 5} = ỹ(2),

x̃(3) = {1, 3, 5} 6 {2, 4, 5} = ỹ(3),

x̃(4) = {1, 2, 3, 5} 6 {2, 3, 4, 5} = ỹ(4),

we see that x ≤BCR y.

Theorem 3.6 is quite useful for explicit computations.

3.2 The Bruhat-Chevalley-Renner order on RG.

As before, let n be an even number, n = 2l, l ∈ Z+. Recall that WG denotes the Weyl group
of Spn. Then WG is the centralizer in Sn of the involution θ = (1, n)(2, n−1) · · · (l, l+1). As
a Coxeter group, WG has type BCl. In [2, Corollary 8.1.9], it is shown that for two elements
u and v from WG,

u ≤ v in WG ⇐⇒ u ≤ v in WH = Sn. (3.8)

We will extend (3.8) to the Renner monoid of MSpn.

Theorem 3.9. Let x any y be two elements from RG. Then

x ≤ y in RG ⇐⇒ x ≤ y in Rn.

Proof. We write x and y in their standard form, x = aeb−1 and y = cfd−1, where a ∈
D∗(e), b ∈ D(e), c ∈ D∗(f), d ∈ D(f). Of course, a, b, c, and d are elements of WG. By (3.3)
we know that

x ≤ y in RG ⇐⇒ e ≤ f, a ≤ cw, w−1d−1 ≤ b−1,

for some w ∈ WG(f)WG(e). The idempotents of RG are in Rn, hence, the Bruhat-Chevalley-
Renner order on them is the one that is induced from Rn. It follows from (3.8) that the
relations a ≤ cw and w−1d−1 ≤ b−1 hold in WG if and only if they hold in Sn ⊆ Rn.
Therefore, the relation x ≤ y holds in RG if and only if it holds in Rn.

Corollary 3.10. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two elements from RG. Then
x ≤BCR y if and only if for every i ∈ {1, . . . , n− 1} we have x̃(i) 6 ỹ(i).

Proof. It follows from Theorem 3.9 that x ≤BCR y in RG if and only if x ≤BCR y in Rn.
The rest of the proof follows from Theorem 3.6.
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4 The Borel Submonoid of MSpn

We will follow our convention that if the even integer n = 2l is fixed, then G stands for Spn.
We will denote by BG, as before, the Borel subgroup in Spn that is defined by

BG := Bn ∩ Spn.

The Borel subgroup of the unit group GSpn of MSpn is given by B := C∗BG, and the
corresponding Borel submonoid of MSpn is the Zariski closure of B in MSpn. Evidently, B
is a connected, hence irreducible, algebraic group. Then B is an irreducible B × B-variety.
The orbits of B ×B are parametrized by x ∈ RG such that x ≤ 1. Indeed, we have

BG = Bn ∩ RG := {x ∈ RG : x ≤ 1}.

We depict the Bruhat-Chevalley-Renner order on BSp4 in Figure 4.1.
We are going to reformulate the description of BG in two different ways.

1. It is observed in [17, Lemma 2.3] that an element r from RG satisfies r ≤ 1 if and only
if a ≤ b, where aeb−1 is the standard form of r. Thus, we have

BG = {aeb−1 : aeb−1 is in standard form, e ∈ ΛG, a ∈ D∗(e), b ∈ D(e), and a ≤ b}.
(4.1)

2. Let D(x) (resp. R(x)) denote the domain (resp. range) of an element x ∈ Rn. The
data of D(x) and R(x) are not enough to recover x. One needs to know the (bijective)
assignment between them to uniquely determine x. Let D(x) and R(x) be as follows:

D(x) = {i1, . . . , ik} and R(x) = {j1, . . . , jk},

where
x(it) = jt for t ∈ {1, . . . , k}.

We will assume that the entries of D(x) are listed in the increasing order as in 1 ≤
i1 < · · · < ik ≤ n, however, we may not have the same ordering on the corresponding
elements of R(x).

Notice that in order for x be ≤ 1 in the Bruhat-Chevalley-Renner order its matrix
representation has to have all of its nonzero entries on or above the main diagonal.
Since D(x) gives the column indices of the nonzero entries in x, and since R(x) gives
the row indices of the nonzero entries in x, we see that

x ≤ 1 ⇐⇒ it ≥ jt for every t ∈ {1, . . . , k}.

By (2.5), for the elements x in RG \ {1}, both of the subsets D(x), R(x) ⊆ {1, . . . , n}
are admissible.
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(1, 2, 3, 4)

(0, 0, 3, 4) (0, 2, 0, 4) (1, 0, 3, 0) (1, 2, 0, 0)

(0, 0, 2, 4) (0, 0, 3, 1) (0, 1, 0, 3) (0, 2, 0, 1) (1, 0, 2, 0)

(0, 0, 0, 4) (0, 0, 1, 3) (0, 0, 2, 1) (0, 0, 3, 0) (0, 1, 0, 2) (0, 2, 0, 0) (1, 0, 0, 0)

(0, 0, 0, 3) (0, 0, 1, 2) (0, 0, 2, 0) (0, 1, 0, 0)

(0, 0, 0, 2) (0, 0, 1, 0)

(0, 0, 0, 1)

(0, 0, 0, 0)

Figure 4.1: Bruhat-Chevalley-Renner order on BSp4.
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Question 4.2. What is the cardinality of BG? By the second item, our problem is equivalent
to the question of finding, for every k ∈ {1, . . . , l}, the number of pairs of admissible subsets

I = {i1, . . . , ik} and J = {j1, . . . , jk}

such that

1. 1 ≤ i1 < · · · < ik ≤ n and J ⊂ {1, . . . , n}; there are no order constraints on the
elements of J .

2. it ≥ jt ≥ 1 for every t ∈ {1, . . . , k}.

It turns out that the number of admissible subsets of {1, . . . , n} has a pleasant formula.
We begin with a simple lemma.

Lemma 4.3. Let n and k be two positive integers such that 1 ≤ k ≤ n. Assume that n is
an even number, n = 2l. Let An,k denote the set of admissible subsets of {1, . . . , n} with k
elements. If an,k denotes the cardinality of An,k, then

an,k =

k∑

r=0

(
l

r

)(
l − r

k − r

)
=

(
l

k

)
2k.

Proof. Clearly, by the pigeon-hole principle, if k > l, then An,k = ∅. Also, in this case,
(
l−r

k−r

)

is 0 for every r ∈ {0, . . . , k}, hence, an,k = 0. Therefore, we will assume that k ≤ l.
Let A = {i1, . . . , ik} (i1 < · · · < ik) be an element from An,k. The entries of A satisfy the

inequalities
1 ≤ i1 < · · · < ir ≤ l < ir+1 < · · · < ik ≤ n.

We will determine the number of such A. Clearly, the first r entries, i1, . . . , ir, can be
chosen in

(
l

r

)
ways. Then the remaining entries, ir+1, . . . , ik, cannot be contained in the set

{θ(is) = n− is+1 : s ∈ {1, . . . , r}}. In other words, {ir+1, . . . , ik} ⊆ {l+1, . . . , 2l}\{θ(is) =
n − is + 1 : s ∈ {1, . . . , r}}. Then, the number of possibilities for {ir+1, . . . , ik} is given by(
l−r

k−r

)
. Therefore, in total, we have

∑k

r=0

(
l

r

)(
l−r

k−r

)
possibilities for A. This finishes the proof

of the first equality. To prove the second equality, we manipulate the summation as follows:

k∑

r=0

(
l

r

)(
l − r

k − r

)
=

k∑

r=0

l!

(l − r)!r!

(l − r)!

(l − k)!(k − r)!
=

k∑

r=0

l!

r!(l − k)!(k − r)!
. (4.4)

Let us multiply and divide each summand in the last sum in (4.4) by k!. Then by reorganizing
the terms we get

k∑

r=0

l!

(l − k)!k!

k!

r!(k − r)!
=

k∑

r=0

(
l

k

)(
k

r

)
=

(
l

k

) k∑

r=0

(
k

r

)
=

(
l

k

)
2k.

This finishes the proof.
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Since the empty set is admissible, we set an,0 = 1.

Corollary 4.5. The total number of admissible subsets of {1, . . . , n}, that is, | ∪l
k=0An,k|, is

equal to 3l.

Proof. We will determine the number
∑l

k=0 an,k =
∑l

k=0

(
l

k

)
2k. But, by the binomial theo-

rem, f(2) =
∑l

k=0

(
l

k

)
2k, where f(x) = (1 + x)l.

Theorem 4.6. The k-th symplectic Stirling poset BG(k) is a graded bounded poset with a
unique minimum element. There are

(
l

k

)
2k maximal elements in BG(k).

Proof. If k = n (resp. k = 0), then BG(k) = {id} (resp. BG(k) = {0}), hence, in these cases
there is nothing to prove. We proceed with the assumption that 1 ≤ k ≤ l. Since BG is
equal to the intersection RG ∩ Bn, we have

BG(k) = Bn(k) ∩ RG for k ∈ {1, . . . , l}.

Notice that the rook id(k) := (0, . . . , 0, 1, 2, . . . , k) is a symplectic rook. In fact, id(k) is the
unique minimum of Bn(k). It follows from Theorem 3.9 that id(k) is the unique minimum
element in BG(k) as well. Next, we will show that BG(k) is a graded poset. To this end, it will
suffice to show that every maximal element of BG(k) has the same rank. In [7, Lemma 5.1], it
is shown that the maximal elements of BG(k) are given by the diagonal idempotents of rank
k in Rn. Clearly, any diagonal idempotent of rank k whose domain and range are admissible
subsets in {1, . . . , n} are contained in BG(k). But for a diagonal matrix, the domain and the
range agree, therefore, the number of diagonal idempotents in BG(k) is equal to the number
of admissible subsets in {1, . . . , n}. This number is equal to

(
l

k

)
2k by Lemma 4.3. Next, we

will show that there are no other maximal elements in BG(k). Towards a contradiction, let
a = (a1, . . . , an) be a maximal element in BG(k) which is not a diagonal idempotent. Since a
is an upper triangular rook, we know that ai ≤ i for every i ∈ {1, . . . , n}. Let i ∈ {1, . . . , n}
be the smallest index such that 0 < ai � i. Let j denote ai. Then we know that aj = 0. Let
b denote the rook matrix that is obtained by interchanging ai and aj . It is easy to verify
that b is an element of BG(k) such that a < b. This contradicts with our assumption that a
is a maximal element. Hence, the proof of our theorem is finished.

Remark 4.7. For each d ∈ {1, . . . , l}, by (3.5), we have a very special poset structure on
An,d. It is easily seen from [14, Section 6.1.1] that (An,d,6) is isomorphic to the Bruhat-
Chevalley order on the Grassmann variety G/Pd, where G = Spn and Pd is the maximal
parabolic subgroup corresponding to the set of simple generators SG \ {sd} in WG.

Proposition 4.8. Let ΛG be the cross section lattice of G as in (2.6). If e is an element
from ΛG\{1}, then WG(e) is a maximal parabolic subgroup in WG. Conversely, any maximal
parabolic subgroup of WG is obtained this way.
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Proof. The cross section lattice ΛG is part of the cross section lattice of the monoid Mn. It
is easy to verify that, if the matrix rank of e is d, then the centralizer of e in WH = Sn is
the maximal parabolic subgroup generated by the set {r1, . . . , rn−1} \ {rd}. Let s1, . . . , sl
denote, as defined in (2.1), the simple Coxeter generators for WG. Now it is easy to check
that, for every j ∈ {1, . . . , l} \ {d}, we have

sje = esj , hence, WG(e) = 〈sj : j ∈ {1, . . . , l} \ {d}〉.

Our second assertion is now easy to verify. This finishes the proof.

Next, we will compute the stabilizer of an element e from ΛG \ {1}.

Proposition 4.9. Let e be an element from ΛG \ {1}. If the matrix rank of e is d, where
1 ≤ d < l, then (WG)∗(e) is generated by the simple Coxeter generators sd+1, . . . , sl. If d = l,
then (WG)∗(e) = {1}.

Proof. Once again, the proof will follow from the corresponding computation that is per-
formed in the rook monoid (the Renner monoid of Mn). In that case, by explicitly comput-
ing the matrix products rje (j ∈ {1, . . . , n − 1}), one sees that rje = erj = e if and only
if j ∈ {d + 1, . . . , n − 1}. It follows immediately from this observation that sj = rjrn−j

stabilizes e if and only if j ∈ {d + 1, . . . , l}. It also follows that if the rank of e is l, then sl
does not stabilize e, hence, (WG)∗(e) = {1}. This finishes the proof.

5 Folding, unfolding

Let n be a positive integer. A collection S1, . . . , Sr of subsets of the set S := {1, . . . , n} is
said to be a set partition of S if Si’s (i = 1, . . . , r) are mutually disjoint and ∪r

i=1Si = S. In
this case, the Si’s are called the blocks of the partition. The collection of all set partitions
of S is denoted by Πn. We will often drop set parentheses and commas and just put vertical
bars between blocks. If S1, . . . , Sk are the blocks of a set partition π from Πn, then the
standard form of π is defined as S1|S2| · · · |Sk, where we assume that minS1 < · · · < minSk

and the elements of each block are listed in increasing order. For example, π = 136|2459|78
is a set partition from Π9. Set partitions can be visualized by using “arc-diagrams” which
we will define next.

A linearly ordered poset is called a chain. We will identify chains by their Hasse diagrams;
we draw a Hasse diagram by placing the smallest entry on the left and connecting the vertices
by arcs. For example, in Figure 5.1, we have the chain on 9 vertices, where each arc represents
a covering relation.

1 2 3 4 5 6 7 8 9

Figure 5.1: A chain on 9 vertices.
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Definition 5.1. A labeled chain is a chain whose vertices are labeled by distinct numbers.
An arc-diagram on n vertices is a disjoint union of labeled chains where the labels are from
{1, . . . , n} and each label i ∈ {1, . . . , n} is used exactly once. We depict an example in
Figure 5.2.

1 2 3 4 5 6 7 8 9

Figure 5.2: An arc-diagram on 9 vertices

Clearly, in an arc-diagram subchains represents the blocks of the corresponding set par-
tition. We know from [3, Lemma 1.17] that the number of set partitions of S = {1, . . . , n}
into k blocks, denoted by S(n, k), and called the (n, k)-th Stirling number of the second kind,
is given by the formula S(n, k) = 1

k!

∑k

i=1(−1)i
(
k

i

)
(k − i)n. The recurrence formula for the

Stirling numbers of the second kind is well-known:

S(l + 1, k) = S(l, k − 1) + kS(l, k),

where

S(l, k) =






1 if l = k = 0;

0 if l > 0 and k = 0;

0 if l < 0 or k < 0 or l < k.

Let Bn denote the submonoid of Rn such that if x ∈ Bn, then x is an upper triangular
matrix. The subsemigroup of nilpotent elements in Bn will be denoted by Bnil

n . For each A
in Bn, there exists a unique (n+ 1)× (n+1) nilpotent matrix, Ã, which is obtained from A
by appending to it a column and a row of zeros as follows:

A 7−→ Ã :=



0
... A
0 . . . 0


 ∈ Bn+1 (A ∈ Bn). (5.2)

In this notation, it is easily verified that (5.2) defines a set bijection Bn −→ Bnil
n+1. There is a

simple bijection between Bnil
n+1 and Πn+1 which is defined as follows: the matrix corresponding

to the set partition A has an entry equal to 1 in row i and and column j if and only if (i, j)
is an arc of A. Therefore, for k ∈ {1, . . . , n+ 1}, we have

S(n+ 1, k) = |{A ∈ Bn : rankA = n + 1− k}|. (5.3)
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It follows from the bijections above that the number of elements of Bn is given by the
summation bn+1 :=

∑n+1
k=0 S(n + 1, k), which is called the (n + 1)th Bell number. As a

convention, we set b0 = 1 and b1 = 1.
It is easy to check that the number of elements of Rn of rank k is given by

|{A ∈ Rn : rank(A) = k}| =

(
n

k

)
n!

(n− k)!
. (5.4)

We will express this cardinality by using Stirling numbers of the second kind.
Every element A of Rn has a triangular decomposition in Rn,

A = Al + Ad + Au, (5.5)

where Al is a strictly lower triangular matrix, Ad is a diagonal matrix, and Au is a strictly
upper triangular matrix.

Proposition 5.6. Let Sa,b,c(n) denote the number of elements A ∈ Rn such that rank(Al) =
a, rank(Ad) = b, and rank(Au) = c, where Al, Ad, and Au are as in (5.5). Then we have

(
n

k

)
n!

(n− k)!
=

∑

a+b+c=k

Sa,b,c(n)

=
∑

a+b+c=k

(
n

b

)
S(n + 1, n+ 1− a)S(n+ 1, n+ 1− c).

Proof. The number of strictly upper triangular elements of rank k in Rn is equal to the
number of strictly lower triangular rank k elements in Rn. Now the proof of the first
equality follows from the equality in (5.4) and the uniqueness of the triangular decomposition
in (5.5). The proof of the second equality follows from (5.3) together with the fact that there
are exactly

(
n

b

)
diagonal 0/1 matrices of rank b.

We proceed with the assumption that n is an even number of the form n = 2l, l ∈ Z+.
In the sequel, we will count the number of elements of BG, where G = Spn, by a technique
that we call unfolding. But before that we want to demonstrate that the elements of RG

behave well under “folding”. We already mentioned the result of Li and Renner [16, Theorem
3.1.10], which states that, if an element A from RG is singular, then both of the domain
and the range of A are admissible subsets in {1, . . . , n}. Furthermore, the elements of D(A)
correspond to the indices of the nonzero columns of A, and the elements of R(A) correspond
to the indices of the nonzero rows of A. This shows that A can be folded vertically as well
as horizontally. We will demonstrate what we mean here by an example.

Example 5.7. In this example, we fold an element of RSp8 horizontally from top to bottom:
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1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0







0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0







Example 5.8. In this example, we fold the matrix of the previous example vertically from
left to right:

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0







0 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0







Definition 5.9. We will denote the horizontal folding operation from top to bottom by FTB.
Likewise, we will denote the vertical folding operation from left to right by FLR.

Clearly, the operations FTB and FLR can be composed. In fact, they commute,

FTBFLR = FLRFTB. (5.10)

Let F denote the composition of the folding operators as in (5.10). We will refer to F
by the folding map.

Proposition 5.11. The folding map is a surjective map from RSpn onto the rook monoid
Rl. Furthermore, the restricted folding map, F |BG

, which we will denote by F ′, is surjective
as well.

Proof. If we show that F ′ is surjective, then the surjectivity of F will follow. To this end,
let A be an element from Rl, and let A = Al + Ad + Au be its triangular decomposition.
Recall from the introduction that Jl denotes the l × l permutation matrix with 1’s on its

anti-diagonal. Now we define an n × n matrix B as follows: B :=

[
0 Ãl

0 Ad + Au

]
, where 0

is the l × l 0 matrix, and Ãl := JlAl. In other words, Ãl is the matrix whose ith row is the
(l− i+1)th row of Al. Since the indices of the nonzero columns of B are contained in the set

17



{l+1, . . . , n}, the domain of B is an admissible subset in {1, . . . , n}. It is also easy to check
that the set of row indices of B is an admissible subset of {1, . . . , n}. Clearly, B is upper
triangular matrix, therefore, B ∈ BG. Finally, by its construction, the image of B under F ′

is equal to A, F ′(B) = F (B) = A. This finishes the proofs of our assertions.

We are now ready to count the number of elements of BG by “unfolding” the elements
of Rl first horizontally from bottom to top, and then vertically from right to left. We will
demonstrate our count by an example.

Example 5.12. We will compute the preimage of J2 =

[
0 1
1 0

]
under the restricted folding

map F ′ : BSp4 → R2. Equivalently, we will determine the set F−1
LR(F

−1
TB(J2))∩BSp4. Since we

are looking for the upper triangular elements in the preimage, the lower halves of the 4× 2
matrices in F−1

TB(J2) must be upper triangular. The following matrices are the possibilities:

1 0

0 0

0 1

0 0







1 0

0 1

0 0

0 0







0 1

1 0

[ ]

FTB FTB

Let A1 denote the 4× 2 matrix that is on the top-left position, and let A2 denote the 4× 2
matrix that is on the top-right position. Then, the following two matrices are mapped onto
A1 by FLR:

0 0 1 0

0 0 0 0

0 0 0 1

0 0 0 0







0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0







FLR
,

1 0

0 0

0 1

0 0







Likewise, the following two matrices are folded onto A2 by FLR:

0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0







0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0







FLR
,

1 0

0 1

0 0

0 0







18



We find that, in total, there are four matrices that fold onto J2.

We are now ready to present a formula for the number of elements of BG that lie in the
preimage of the folding map F ′.

Theorem 5.13. The number of elements of rank k in BG is given by the formula

∑

a+b+c=k

2a+c3b
(
l

b

)
S(l + 1, l + 1− a)S(l + 1, l + 1− c), (5.14)

where (a, b, c) ∈ Z3
≥0.

Proof. Let A be an element from Rl with the triangular decomposition A = Al + Ad + Au.
Then it is easy to verify that

|F ′−1(A) ∩ BSpn| = |F ′−1(Al) ∩ BSpn||F
′−1(Ad) ∩ BSpn||F

′−1(Au) ∩ BSpn|. (5.15)

Let us denote the matrix ranks of Al, Ad, and Au by a, b, and c, respectively. Then we
denote the three factors on the right hand side of (5.15) by the notation fa(A), fb(A), and
fu(A), respectively. Our choice of the subscripts for fa, fb, fc will be clarified in the next two
paragraphs.

As it was shown for the special case of J2 in Example 5.12, if B is an element from
F ′−1(A), then the lower l × l half of the 2l × l matrix FLR(B) must be an upper triangular
matrix. In other words, when we unfold A to a 2l× l matrix, all of the nonzero entries of Al

are moved into the upper l× l portion of the resulting matrix, hence, there is a unique 2l× l
matrix A′

l such that FTB(A
′
l) = Al. Moreover, for every subset of the nonzero entries of A′

l,
there exists a unique A′′

l in BG such that FLR(A
′′
l ) = Al. It follows from these arguments

that

fa(A) = |F−1
LR(A

′
l)| =

(
a

0

)
+

(
a

1

)
+ · · ·+

(
a

a

)
= 2a. (5.16)

A similar argument shows that

fc(A) =

(
c

0

)
+

(
c

1

)
+ · · ·+

(
c

c

)
= 2c. (5.17)

We now consider the possible unfolding of the diagonal matrix Ad. Recall that the rank
of Ad is b. For every s element subset of the set of nonzero entries of Ad, there exists a
unique 2l × l matrix A′

d such that FTB(A
′
d) = Ad and rank(A′

d) = s. Likewise, for every r
element subset of the set of nonzero entries of A′

d, there exists a unique 2l × 2l matrix A′′
d

such that FLR(A
′′
d) = A′

d and rank(A′′
d) = r. In total, there exist

∑b

s=0

∑s

r=0

(
s

r

)(
b

s

)
elements

in the preimage F ′−1(Ad). But this double sum has a closed form:

fb(A) =

b∑

s=0

s∑

r=0

(
s

r

)(
b

s

)
= 3b. (5.18)

By combining (5.16), (5.17), and (5.18), we find that |F ′−1(A) ∩ BSpn| = 2a2c3b = 2a+c3b,
which actually depends only on the ranks of the matrices Al, Ad, and Ac. Our formula now
follows from Proposition 5.6.
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Remark 5.19. It is easy to check that BSpn(1) is equal to Bn(1). The Hasse diagram
of (Bn(1),≤) is a fishnet, see [7, Figure 1.9]. By Theorem 3.9, we know that, for every
k ∈ {1, . . . , l}, (BSpn(k),≤) is a subposet of (Bn(k),≤). However, unless k = 1, the inclusion
map BSpn(k) →֒ Bn(k) does not preserve the interval structure. Indeed, already for k = 2,
the cardinalities of BSp4(2) and B4(2) are different.

6 Rationally Smooth Borel Submonoids

Let M be a reductive monoid with zero. Let G denote its unit group, which is a connected
reductive group. Then M is called a semisimple monoid if G has a one-dimensional center.
The classification of semisimple (smooth) monoids is due to Renner [20]. It turns out that
a semisimple monoid M is smooth if and only if M is isomorphic to the monoid of n × n
matrices, Mn, for some n ∈ Z+. Note that the situation for general reductive monoids is not
very different; a reductive monoid with zero is smooth if and only if M is of the form

M =

(
G0 ×

r∏

i=1

Mni

)
/Z,

where Z is a finite central torus that does not intersect the unit group of
∏r

i=1Mni
, and

G0 is a semisimple subgroup [25, Section 11]. The semisimple monoids whose cohomological
properties are as good as one hopes for are identified by Renner also [22]. They are called
“rationally smooth” monoids.

Let X be a complex algebraic variety with dimX = n, and let x be a point in X . The
variety X is called rationally smooth at x if there exists an open neighborhood U of x such
that for all y ∈ U , the following holds:

Hm(X,X \ {y}) =

{
{0} if m 6= 2n;

Q if m = 2n.

X is called rationally smooth if it is rationally smooth at every point x inX . The classification
as well as various characterizations of rationally smooth reductive monoids is given in [22, 24].

We will now adapt another result of Renner [24, Theorem 2.2] in our setting.

Lemma 6.1. Let X and Y be two (normal) Borel submonoids of the (normal) reductive
monoids M and N , respectively. Assume that both of M and N have zero elements, and
assume that there exists a finite dominant morphism of algebraic monoids g : M → N .
Under these assumptions, X is rationally smooth if and only if Y is rationally smooth.

Proof. By abuse of notation, we will denote the restriction g|X by g also. By our assumptions,
the algebraic monoids X and Y have zero elements, denoted by 0X and 0Y , respectively. Let
B denote the Borel subgroup contained in X , and let T be a maximal torus contained in
B. Then 0X is the unique closed B × B orbit in X , hence, X \ {0} is (rationally) smooth.
Let µ : C∗ × M → M be a central (in B) one-parameter subgroup action on M such
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that limt→0 µ(t, x) = 0X for every x ∈ M . Then the quotients PX := (X \ {0X})/C
∗ and

PM := (M \ {0X})/C
∗ are projective T × T varieties such that PX ( PM . Furthermore, PX

and PM are rationally smooth. Similarly, we have the rationally smooth, projective T ′ × T ′

varieties PY ( PN , where T ′ is the maximal torus in g(T ) ⊂ Y .
By result of Brion [5, Lemma 1.3] we know that X (resp. Y ) is rationally smooth if and

only if the Euler characteristic of PX (resp. the Euler characteristic of PY ) is equal to the
number of T ×T fixed points in PX (resp. the number of T ′ ×T ′ fixed points in PY ). Let us
denote by C(M) (resp. by C(N)) the closed G×G-orbit in PM (resp. the closed G′×G′-orbit
in PN), where G (resp. G′) is the unit group of M (resp. of N). Since the T × T fixed
points in PX lie in the closed intersection PX ∩ C(M), and since g|C(M) : C(M) → C(N) is
a bijection, we see that the Euler characteristics of X and Y are equal. In particular, X is
rationally smooth if and only if Y is rationally smooth.

Two reductive monoids M and N are said to be equivalent if there exists a reductive
monoid L with two finite dominant morphisms L → M and L → N . If M and N are
equivalent monoids, then we will write M ∼0 N . It is easy to verify that ∼0 is an equivalence
relation. Let M be a reductive monoid with zero. According to [24, Theorem 2.4],

M is rationally smooth ⇐⇒ M ∼0

r∏

i=1

Mni
. (6.2)

We are now ready to prove the main result of this section.

Theorem 6.3. Let M be a rationally smooth reductive monoid with zero. Let B be a Borel
subgroup in M and let B denote the corresponding Borel submonoid. Then B is a rationally
algebraic semigroup.

Proof. SinceM is rationally smooth, we know from (6.2) that there exists a reductive monoid
L admitting two finite dominant morphisms:

L
f g

M
∏r

i=1Mni

Without loss of generality, we may assume that L has a zero. Let BL be a Borel subgroup
of L. As f and g are finite and dominant morphisms, they are surjective. In particular, the
subgroups f(BL) and g(BL) are Borel subgroups in M and

∏r

i=1Mni
, respectively. We set

X := f(BL) and Y := g(BL). Then X and Y are Borel submonoids in M and
∏r

i=1Mni
,

respectively. Since Y is (rationally) smooth, by Lemma 6.1, so is BL. Once again by using
Lemma 6.1, we see that X is rationally smooth. This finishes the proof of our theorem.

As an application of Theorem 6.3, we consider the symplectic monoid MSpn. By the
Renner’s classification of rationally smooth simple group embeddings [23, Corollary 3.5],
MSpn is a rationally smooth semisimple monoid. Therefore, by Theorem 6.3, its Borel
submonoid is rationally smooth.
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7 Final Remarks: Nilpotent Subsemigroups

In this section we will contrast some properties of the Borel submonoids of Mn and MSpn.
We begin with a general observation.

Lemma 7.1. Let M be a reductive monoid with the Bruhat-Chevalley-Renner decomposition
M = ⊔r∈RBṙB, where B is a Borel subgroup in M , and R is the Renner monoid of M . If
an element r from R satisfies the following two properties, then every element of the orbit
BṙB, where ṙ is a representative of r in NG(T ), is nilpotent:

(1) r is nilpotent in R, that is, rm = 0 for some m ∈ Z+;

(2) r � 1.

Proof. SinceM is a linear algebraic monoid, it admits an embedding intoMn for a sufficiently
large positive integer n. By conjugating with an element of GLn, we assume that B is
contained the upper triangular Borel submonoid ofMn. Clearly, if we can prove our assertion
for M = Mn and B = Bn, then the general case will follow. In this case, the Renner monoid
is given by the rook monoid Rn, and we can identify Rn as a submonoid of Mn. An
element r from Rn satisfies the two properties in our hypotheses if and only if it is a strictly
upper triangular rook. But the product of an upper triangular matrix with a strictly upper
triangular matrix is strictly upper triangular. Therefore, any element of BrB is strictly
upper triangular, hence, nilpotent. This finishes the proof of our assertion.

We should note that we cannot replace any of the two requirements in Lemma 7.1.
Indeed, if r is not nilpotent, then any of its representatives ṙ, which is contained in BṙB, is

not nilpotent. For the second item, we consider the matrices r =

[
0 0
1 0

]
and b2 =

[
1 1
0 1

]
.

Then, we have rb2 =

[
0 0
1 1

]
, which is not nilpotent. Evidently, the set of nilpotent elements

in a Borel submonoid is a closed subset.

Definition 7.2. The subvariety B
nil

:= {x ∈ B : xm = 0 for some m ∈ Z+} will be called
the nilpotent semigroup of B.

Corollary 7.3. Let B be a Borel subgroup in a reductive monoid M with zero. Then the
nilpotent semigroup of B is a B ×B-stable algebraic subsemigroup of M .

Proof. By definition, B
nil

is defined by the polynomial relations xm = 0 (m ∈ Z+), therefore,

it is a closed subset of B. By Lemma 7.1, we know that B
nil

is B × B-stable. In fact, the

proof of this lemma shows that B
nil

is a semigroup.

Next, we will show that Bn

nil
is an irreducible variety.

Proposition 7.4. The nilpotent semigroup of Mn is an irreducible algebraic semigroup of
dimension

(
n

2

)
.
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Proof. By Lemma 7.1, we know that Bn

nil
=
⊔
BnrBn, where the union is over all strictly

upper triangular rooks in Rn. It is easy to check that

1. r0 := (0, 1, 2, . . . , n− 1) is a strictly upper triangular rook;

2. if r is a strictly upper triangular rook, then r ≤ r0.

These two conditions imply that Bnr0Bn = Bn

nil
. It is easy to check that ℓ(r0) = 1 + 2 +

· · · + (n − 1) =
(
n

2

)
. Since the orbit Bnr0Bn is an irreducible variety, so is Bn

nil
. Thus, in

light of Corollary 7.3, the proofs of our assertions are finished.

Unfortunately the nice situation as in Proposition 7.4 does not hold for the nilpotent

semigroup of BSpn. It turns out that BSpn

nil
has many irreducible components in varying

dimensions. See Figure 7.1 for an example.

(0, 1, 0, 3)

(0, 0, 1, 3) (0, 0, 2, 1) (0, 1, 0, 2)

(0, 0, 0, 3) (0, 0, 1, 2) (0, 0, 2, 0) (0, 1, 0, 0)

(0, 0, 0, 2) (0, 0, 1, 0)

(0, 0, 0, 1)

(0, 0, 0, 0)

Figure 7.1: The Hasse diagram of BSp4

nil
.
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