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Abstract

We study a new notion of cyclic avoidance of abelian powers. A finite word w avoids abelian
N-powers cyclically if for each abelian N-power of period m occurring in the infinite word wω ,
we have m ≥ |w|. Let A(k) be the least integer N such that for all n there exists a word of
length n over a k-letter alphabet that avoids abelian N-powers cyclically. Let A∞(k) be the least
integer N such that there exist arbitrarily long words over a k-letter alphabet that avoid abelian
N-powers cyclically.

We prove that 5 ≤ A(2) ≤ 8, 3 ≤ A(3) ≤ 4, 2 ≤ A(4) ≤ 3, and A(k) = 2 for k ≥ 5.
Moreover, we show that A∞(2) = 4, A∞(3) = 3, and A∞(4) = 2.

Keywords: abelian equivalence, abelian power, abelian power avoidance, cyclic abelian power avoidance,
circular word

1 Introduction

Ever since the seminal work of A. Thue [36], repetitions or repetition avoidance in infinite words
has been a central theme in the field of combinatorics on words. Thue showed that there ex-
ists a ternary word which avoids squares, in symbols xx, that is, two identical blocks occurring
adjacently in the word. Further, he showed that there exists a binary word avoiding cubes, i.e.,
factors of the form xxx. These results are best possible concerning integral powers in terms of
the size of the underlying alphabet. Thue’s results have inspired numerous papers on avoiding
powers culminating in the papers by Currie and Rampersad [12] and Rao [30] proving Dejean’s
conjecture on repetition thresholds.

An extremely prominent topic in combinatorics on words is the abelian equivalence of words.
Two words u and v are abelian equivalent, in symbols u ∼ v, if each letter of the underlying
alphabet occurs equally many times in both words. This concept leads to that of an abelian
power: an abelian N-power of period m is a word u0u1 · · · uN−1 such that u0 ∼ u1 ∼ . . . ∼ uN−1
and the words ui have common length m. Thus avoidance of abelian squares, abelian cubes, etc.
can be considered. Erdős suggested in 1957 the problem of whether abelian squares are avoidable
on four letters [14]. Thus the problem of searching for an alphabet of minimal cardinality over
which an infinite word avoiding abelian squares exists was initiated. Evdokimov [15] gave the
first upper bound of 25. Later, Pleasants [28] lowered the bound to five, and finally in 1992
Keränen [21] answered Erdős’s question in the positive by constructing an appropriate infinite
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word over four letters. Similar questions were considered for smaller alphabets but higher-order
powers: Dekking [13] showed that there exist an infinite binary word which avoids abelian fourth
powers and an infinite ternary word avoiding abelian cubes. Dekking’s and Keränen’s results are
optimal: any binary word of length 10 contains an abelian cube, and any ternary word of length
8 contains an abelian square.

There are many variations of the study of avoidance of abelian powers. One direction is to
consider avoidance in partial words [4, 5]. Another is to consider abelian powers occurring in
words belonging to specific word classes; see, e.g., [16, 17]. Finally, the very notion of abelian
equivalence can be generalized. See [20, 31, 37] for research on k-abelian equivalence and bino-
mial equivalence. Of course, there is research on abelian equivalence beyond avoidance. We refer
the reader to the recent survey [29]. Abelian equivalence has also been studied on graphs: the
study of abelian 2-power-free graph colorings has been initiated under the term anagram-free
colorings in [19, 38]. A coloring of a graph is anagram-free if no sequence of colors correspond-
ing to a path in the graph is an abelian 2-power. We remark that anagram-free colorings of cycles
correspond to circular avoidance of abelian 2-powers (see below).

A notion related to this paper is the notion of circular avoidance. A word w avoids N-powers
circularly if no word in the conjugacy class of w contains an N-power as a factor. This is a more
restrictive type of avoidance and more difficult to study because the language of words avoiding
N-powers circularly is not closed under taking factors. This results in interesting phenomena.
For example, Currie shows in [9] that there exists a ternary word of length n avoiding squares
circularly for n ≥ 18, but no such word of length 17 exists. For more on this notion, see, e.g.,
[11] and references therein. According to our knowledge no research on the abelian analogue of
circular avoidance exists.

This paper introduces a stronger form of the circular avoidance called cyclic avoidance, and
we mainly study it in the abelian setting. A word w avoids abelian N-powers cyclically if any
abelian N-power occurring in wω = ww · · · has period at least the length |w| of w. The difference
between circular and cyclic avoidance is that, in cyclic avoidance, periods up to length |w| − 1
are disallowed while in circular avoidance only periods up to ⌊|w|/N⌋ are disallowed in wω.
Cyclic avoidance of abelian powers was introduced in the recent paper [27] by the authors of this
paper. There it served as a tool to construct infinite words with prescribed growth rate of abelian
exponents. Due to the different focus, the abelian cyclic avoidance was only briefly studied in
[27] and only to the extent that was necessary for the main result of that paper. The purpose of
this paper is to extend this preliminary research by considering the question of what is the least
number of letters required to avoid abelian N-powers cyclically.

Let A(k) be the least integer N such that for all n there exists a word of length n over a k-letter
alphabet that avoids abelian N-powers cyclically. Similarly, let A∞(k) be the least integer N

such that there exist arbitrarily long words over a k-letter alphabet that avoid abelian N-powers
cyclically. The main results of this paper are as follows.

Theorem 1.1. We have 5 ≤ A(2) ≤ 8, 3 ≤ A(3) ≤ 4, 2 ≤ A(4) ≤ 3, and A(k) = 2 for k ≥ 5.

The lower bound for A(2) might be a bit surprising at first sight. However, it can be checked
that no binary word of length 8 avoids abelian 4-powers cyclically. The bounds for A(3), A(4),
and A(5) are quite straightforward from the results of Dekking and Keränen mentioned previ-
ously, but the upper bound for A(2) requires an explicit construction.

Extending the results of [27], we prove the following theorem.

Theorem 1.2. We have A∞(2) = 4, A∞(3) = 3, and A∞(4) = 2.

The last result of the theorem can be seen as progress in resolving a conjecture appearing in
[38, p. 17], which reads: for all but finitely many n, there exists a four-letter word of length n

avoiding abelian 2-powers circularly.
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We also extend previous results of Aberkane and Currie [1, 9] concerning the circular avoid-
ance of powers to our cyclic setting. The results are as follows.

Theorem 1.3. If n /∈ {5, 7, 9, 10, 14, 17} then there exists a word of length n over a 3-letter alphabet that

avoids 2-powers cyclically.

Theorem 1.4. For each n, there exists a word of length n over a 2-letter alphabet that avoids 5/2+-powers

cyclically.

The paper is structured as follows. In Section 2, we introduce notation and the main notions.
We develop preliminary properties of cyclic abelian repetitions, and recall relevant results from
the literature. In Section 3 we prove Theorem 1.2. The binary and ternary cases were proved
already in our previous work. The case of the four letter alphabet requires some technical de-
velopments. In Section 4, we prove Theorem 1.1. The nonbinary results follow quite straight-
forwardly from results in the literature when combined with our observations in Section 3. The
upper bound for the binary case requires an involved construction, splitting into even and odd
length words, and is the main technical part of the section. In Section 5, we extend known results
on circular avoidance of ordinary powers to our cyclic setting. We then conclude with future
directions of research in Section 6.

2 Preliminaries

We use standard terminology and notation of combinatorics on words; see [23, 24] for standard
references. Let A be an alphabet, that is, a finite set of letters, or symbols. A word over the alphabet
A is a sequence of letters of A obtained by concatenation. We denote the empty word by ε. The
length of a word w is denoted by |w|, and the symbol |w|a stands for the number of occurrences of
the letter a in w. If u and v are two words, then we denote their concatenation by uv. If w = uzv,
then z is a factor of w. If u = ε (resp. v = ε), then z is a prefix (resp. suffix) of w. A word z is a
proper prefix (resp. proper suffix) of w if z is a prefix (resp. suffix) of w and z 6= ε and z 6= w. If z is
a factor of w, then we say that z occurs in w. If w = uv, then by u−1w and wv−1 we respectively
mean the words v and u. If w = uu · · · u where u is repeated N times, we write w = uN and say
that w is an (ordinary) N-power of period |u|. A fractional power with exponent R, R > 1, is a word
of the form xNx′, where x′ is a prefix of x and R = N + |x′|/|x|. The set of all words over A is
denoted by A∗. A language is a subset of A∗. A word w is primitive if w = un only when n = 1. If
there exist words x and y such that u = xy and v = yx, then we say that u and v are conjugate. If
w = a0a1 · · · an−1, ai ∈ A, then the reversal of w is the word an−1 · · · a1a0.

An infinite word w is a mapping from N → A (we index words from 0). We refer to infinite
words in boldface symbols. We denote the infinite repetition of a finite word u by uω.

Let us define the Parikh mapping ψ : A∗ → N
|A| by setting ψ(w) = (|w|a)a∈A. We refer to the

vector ψ(w) as the Parikh vector of w.

Definition 2.1. Let u, v ∈ A∗. We say that u and v are abelian equivalent if ψ(u) = ψ(v).

The following definition generalizes N-powers.

Definition 2.2. Let u0, . . ., uN−1, N ≥ 2, be abelian equivalent and nonempty words of common
length m. Then their concatenation u0 · · · uN−1 is an abelian N-power of period m and exponent
N. If a word (finite or infinite) w does not contain as factors abelian N-powers, then we say that
w avoids abelian N-powers or that w is abelian N-free.

The next definition is central to this paper.

Definition 2.3. Let w be a word. Then w avoids abelian N-powers cyclically if for each abelian
N-power of period m occurring in the infinite word wω, we have m ≥ |w|.
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Example 2.4. Let w = 1000100. Then both w and w2 avoid abelian 5-powers. However, the
word w3 has the abelian 5-power 100 · 010 · 010 · 001 · 001 of period 3 as a prefix. Therefore w

does not avoid abelian 5-powers cyclically. Since w4 contains an abelian 6-power of period 4
beginning from the second letter, the word w does not avoid abelian 6-powers cyclically either.
By a straightforward inspection, it can be seen that it avoids abelian 7-powers cyclically. This fact
is immediate from the example following the next lemma.

Notice that there might not be an integer N such that a word w avoids abelian N-powers
cyclically. This happens when, e.g., w is conjugate to an abelian power. The following result
characterizes this situation.

Lemma 2.5. A word w avoids abelian |w|-powers cyclically if and only if for each k < |w|, wk is not

conjugate to an abelian power with period less than |w|. Further, if w does not avoid abelian |w|-powers

cyclically, then it does not avoid abelian N-powers cyclically for any N.

Proof. If w is such that wk is conjugate to an abelian power of period m with m < |w|, then it is
immediate that w does not avoid abelian N-powers cyclically for any N. Suppose that w is such
that for each k < |w|, the word wk is not conjugate to an abelian power with period less that |w|.
Consider an abelian |w|-power u0 · · · u|w|−1 of period m occurring in wω. By conjugating w if
necessary, we may assume that u0 · · · u|w|−1 is a prefix of wω. Let ℓ = m|w|/ gcd(m, |w|) so that
u0 · · · uℓ/m−1 = wℓ/|w|. The assumption then implies that m ≥ |w| or ℓ/|w| ≥ |w|. The latter also
implies that m ≥ |w|, so w avoids abelian |w|-powers cyclically.

The previous example shows that the exponent |w| in the above characterization is tight. We
apply the above characterization to a subclass of words avoiding abelian |w|-powers cyclically.

Example 2.6. Let w be a word over A with gcd({|w|a : a ∈ A}) = 1. This is satisfied, e.g., when
w is not a power of a letter and |w| is a prime number. We claim that w avoids abelian |w|-powers
cyclically. If wk is conjugate to an abelian N-power u0 · · · uN−1 with N > k, then

k = gcd({|wk|a : a ∈ A}) = gcd({N|u0|a : a ∈ A}) = N gcd({|u0|a : a ∈ A}) ≥ N > k

which is impossible. Thus if wk is conjugate to an abelian power, the period of this abelian power
must be at least |w|. The claim follows from Lemma 2.5.

The condition gcd({|w|a : a ∈ A}) = 1 is not necessary: the word 001122 avoids abelian
3-powers cyclically and so avoids abelian 6-powers cyclically.

The following lemma is elementary, but it simplifies the arguments in the rest of the paper
drastically.

Lemma 2.7. Assume that xω contains an abelian N-power of period m with 1
2 |x| ≤ m < |x|. Then it

contains an abelian N-power with period |x| − m.

Proof. There is nothing to prove when m = 1
2 |x|, so we may assume that m > 1

2 |x|. Without
loss of generality, we may further assume that xω begins with an abelian N-power u0 · · · uN−1.
We show, by induction on N, that if xω begins with an abelian N-power with period m, then the
word xN−1 ends with an abelian N-power sN−1 · · · s0 of period |x| − m.

Consider first the base case N = 2. Since m satisfies 1
2 |x| < m < |x|, we have |u0| < |x| <

|u0u1|. We may write x = u0s0 and u1 = s0 p, where s0 is the length |x| − m suffix of x and p is a
prefix of x. Notice that |p| < m, so we have u0 = ps1 for the suffix s1 of u0 of length |s0|. We find
that

0 = ψ(u0)− ψ(u1) = ψ(ps1)− ψ(s0 p) = ψ(s1)− ψ(s0).

Thus s1 is abelian equivalent to s0, and x ends with the abelian 2-power s1s0.
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Let then N > 2. By proceeding as in the base case, we find that x ends with the abelian 2-
power s1s0 of period |x| − m. Consider the conjugate z = s0u0 of x: the word zω begins with
the abelian power u1 · · · uN−1. By the induction hypothesis, zN−2 ends with the abelian power
sN−1 · · · s1 of period |x| − m. To conclude the proof, we notice that xN−1 = u0zN−2s0. The claim
follows.

3 Values of A∞(k)

The aim of this section is to prove Theorem 1.2. Recall that A∞(k) is the least N such that there
exist arbitrarily long words over a k-letter alphabet that avoid abelian N-powers cyclically. Our
constructions for the main result of the section involve building arbitrarily long words with mor-
phisms. Next we recall the definition of a morphism and related abelian avoidance results.

A morphism σ : A∗ → B∗ is a mapping such that σ(uv) = σ(u)σ(v) for all words u, v ∈ A∗.
The morphism σ is prolongable on a letter a if σ(a) has prefix a and limn→∞|σn(a)| = ∞. Thus
iterating σ on the letter a produces an infinite word that is a fixed point of σ. We denote this
fixed point by σω(a). The set {w : w is a factor of σn(a) for some n ≥ 0 and a ∈ A} is called the
language of the morphism σ.

Definition 3.1. A morphism σ : A∗ → B∗ is abelian N-free if σ(w) is abelian N-free for all abelian
N-free words w in A∗.

Notice that |σ(a)| ≥ 1 for each letter a when σ is a prolongable abelian N-free morphism.
Indeed, if σ(a) = ε and σ(b) 6= ε, then the abelian N-free word babN−1 has an abelian N-power
in its image.

There are several results in the literature concerning abelian N-free morphisms. For example,
Dekking gave sufficient conditions for a morphism to be abelian N-free in [13]. Later, Carpi ex-
tended the results of Dekking by giving sharper sufficient conditions for a morphism to be abelian
N-free in [6]. It is worth mentioning that Carpi’s general conditions, for abelian N-freeness, are
necessary and sufficient once the domain alphabet has cardinality at least 6 [6, Proposition 2].
It remains open to this day, whether the conditions characterize abelian N-free morphisms for
smaller domain alphabets.

Let us recall some morphisms that are abelian N-free for small values of N. The first is the
morphism σ3, found in [10], that satisfies Dekking’s conditions for the exponent 4. The morphism
σ3 is different from the morphism of [13, Thm. 1]. We use this different morphism to reduce the
amount of computations required to prove Theorem 4.3. See [10, Example 2] for the proof of the
following lemma.

Lemma 3.2. The morphism σ3 : 0 7→ 0001, 1 7→ 101 satisfies Dekking’s conditions for the exponent 4. It

is thus abelian 4-free.

By [13, Thm. 2], the morphism σ4 : 0 7→ 0012, 1 7→ 112, 2 7→ 022 satisfies Dekking’s conditions
for the exponent 3 and is thus abelian 3-free. The above two morphisms are prolongable on
the letter 0. It thus follows that the infinite words σω

3 (0) and σω
4 (0) avoid abelian 4-powers and

3-powers respectively.
Let π : 0 7→ 1, 1 7→ 2, 2 7→ 3, 3 7→ 0. Consider the morphism φ : {0, 1, 2, 3}∗ → {0, 1, 2, 3}∗

defined by setting

φ(0) = 0120232123203231301020103101213121021232021·

013010203212320231210212320232132303132120,

φ(1) = π(φ(0)),

φ(2) = π(φ(1)),

φ(3) = π(φ(2)).
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Keränen proved in the breakthrough paper [21] that the fixed point φω(0) of the morphism φ is
abelian 2-free. See also his more recent paper [22] for additional morphisms with this property.
Carpi simplified Keränen’s proof in [6] by showing that it satisfies Carpi’s conditions for the
exponent 2, and it is thus abelian 2-free. It is noteworthy that the morphism does not satisfy
Dekking’s conditions for the exponent 2.

Let us prove a general result related to abelian N-power cyclical avoidance and abelian N-free
morphisms.

Proposition 3.3. Let σ : A∗ → B∗ be an abelian N-free morphism, and assume that w in A∗ is a word

that avoids abelian N-powers cyclically. If N > 2, then σ(w) avoids abelian N-powers cyclically. If

N = 2 and |w| ≥ 2, then σ(w) avoids abelian 2-powers cyclically.

Proof. Suppose for a contradiction that σ(w) does not avoid abelian N-powers cyclically. As-
sume thus that u0 · · · uN−1 is an abelian N-power occurring in σ(w)ω with |u0| < |σ(w)|. By
Lemma 2.7, we may assume that |u0| ≤ ⌊|σ(w)|/2⌋, so

|u0 · · · uN−1| ≤ N⌊|σ(w)|/2⌋ ≤ N|σ(w)|/2 ≤ ⌈N/2⌉|σ(w)|.

We conclude that u0 · · · uN−1 is a factor of σ(w)⌈N/2⌉+1. Let a0 · · · aℓ−1, ai ∈ A, be a factor
of w⌈N/2⌉+1 of minimal length for which σ(a0 · · · aℓ−1) contains u0 · · · uN−1. We may write
σ(a0 · · · aℓ−1) = p0u0 · · · uN−1sℓ−1 with σ(a0) = p0s0 and σ(aℓ−1) = pℓ−1sℓ−1. Since σ is abelian
N-free, it follows that a0 · · · aℓ−1 contains an abelian N-power v0 · · · vN−1. As w avoids abelian
N-powers cyclically, we have |v0| ≥ |w|. Therefore the word vi has a conjugate of w as a factor,
so |σ(vi)| ≥ |σ(w)| for all i. Thus

N|σ(w)| ≤ |σ(v0 · · · vN−1)| ≤ |σ(a0 · · · aℓ−1)| ≤ |σ(w)⌈N/2⌉+1| = (⌈N/2⌉+ 1)|σ(w)|.

This inequality holds only when N ≤ 3 in which case equality is forced. For N ≥ 4, this contra-
diction suffices for the claim. For the remainder of the proof, we operate under the assumption
N ≤ 3. Observe that the above computation shows that |σ(v0 · · · vN−1)| = |σ(a0 · · · aℓ−1)| =
N|σ(w)|. It follows that vi = w for all i and wN = a0 · · · aℓ−1.

We claim that either |p0u0| ≥ |σ(w)| or |uN−1sℓ−1| ≥ |σ(w)|. Indeed, this is clear if N = 2
and if N = 3 and |p0u0|, |u2sℓ−1| < |σ(w)|, then |u1| > |σ(w)| contrary to our assumptions. We
assume that |p0u0| ≥ |σ(w)|; the other case is symmetric.

Next we claim that |p0u0u1| ≤ 2|σ(w)|. If not, then |p0| > |σ(w)| ≥ |σ(a0)| because |u0u1| ≤
2⌊|σ(w)/2|⌋ ≤ |σ(w)| by our assumption. Since p0 is a prefix of σ(a0), this is impossible. We
may thus write σ(w) = pu1s in such a way that p0u0 = σ(w)p.

Observe that ψ(u0) = ψ(σ(w))− ψ(p0) + ψ(p) and ψ(u1) = ψ(σ(w))− ψ(p)− ψ(s). Since
ψ(u0) = ψ(u1), we conclude that ψ(p0)− ψ(p) = ψ(p) + ψ(s). Since the Parikh vector ψ(p) +
ψ(s) has nonnegative entries, we see that p is a prefix of p0 (both words are prefixes of σ(w)). We
conclude that the words sp and p−1p0 are abelian equivalent. Thus by writing sp0 = sp · p−1p0,
we see that sp0 is an abelian 2-power. Suppose now that N = 2. This implies that s = sℓ−1, so
sℓ−1 p0 is an abelian 2-power. Since sℓ−1 p0 is a factor of σ(aℓ−1a0), it must be that aℓ−1 = a0 as σ

is abelian 2-free. Therefore wω contains the abelian 2-power aℓ−1a0 of period 1. Since w avoids
abelian 2-powers cyclically, we infer that |w| = 1. This gives the latter claim.

Suppose finally that N = 3. Then sσ(w) = u2sℓ−1. We have ψ(u2) = ψ(σ(w)) + ψ(s) −
ψ(sℓ−1). Since ψ(u0) = ψ(u1) = ψ(u2), we get ψ(p0)− ψ(p) = ψ(p) + ψ(s) = ψ(sℓ−1) − ψ(s).
Since ψ(p) + ψ(s) has nonnegative entries, we conclude that s is a suffix of sℓ−1. We may now
write sℓ−1 p0 = sℓ−1s−1 · sp · p−1 p0 and conclude that sℓ−1 p0 is an abelian 3-power. Now sℓ−1 p0 is
a factor of σ(aℓ−1a0), so the image of the abelian 3-free word aℓ−1a0 contains an abelian 3-power.
This contradicts the fact that σ is abelian 3-free. This proves the former claim.
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Notice that for the case N = 2 in the above proposition, the assumption |w| ≥ 2 cannot be
omitted. Indeed, the word 0 avoids abelian 2-powers cyclically, but the word φ(0) does not (here
φ is Keränen’s morphism). This is evident from the fact that φ(0) begins and ends with the letter
0, so φ(0)2 contains the abelian 2-power 00.

The fact that A∞(2) = 4 and A∞(3) = 3 was already established in [27, Thm. 8]. Our follow-
ing proof simplifies and unifies the arguments due to the above proposition. The main task here
is to prove that A∞(4) = 2, and we do this by iterating Keränen’s morphism φ on suitable words.

Proof of Theorem 1.2. Recall the morphisms σ3 and σ4 defined above. They are abelian 4-free and
abelian 3-free, respectively. Now the word 0 avoids abelian N-powers cyclically for all N ≥ 2.
Thus Proposition 3.3 implies that the words in the sequences (σn

3 (0))n and (σn
4 (0))n avoid abelian

N-powers cyclically for N = 4 and N = 3, respectively. As the morphisms are prolongable on 0,
this establishes that A∞(2) = 4 and A∞(3) = 3.

The word 01 avoids abelian 2-powers cyclically. Thus Proposition 3.3 implies that the words
in the sequence (φn(01))n avoid abelian 2-powers cyclically. Therefore A∞(4) = 2 as φ is pro-
longable on 0.

4 Bounds for A(k)

Recall that A(k) is the least N such that for all n there exists a word of length n over a k-letter
alphabet that avoids abelian N-powers cyclically. This section is devoted to proving Theorem 1.1.
When k ≥ 3, the idea is simply to add a new letter to a word avoiding abelian N-powers cyclically.
For k = 2, this idea does not work, and we provide an explicit construction of the required words.

Lemma 4.1. Let w be a word that avoids abelian N-powers and # a letter that does not appear in w. Then

the word w# avoids abelian N-powers cyclically.

Proof. Set w = (w#)ω, and assume for a contradiction that an abelian N-power u0 · · · uN−1 such
that |u0| < |w#| occurs in w. By Lemma 2.7, we may assume that |u0| ≤

1
2 |w#|. Thus |u0u1| ≤

|w#| and # can occur in u0u1 at most once. Thus # does not occur in u0, and so u0 · · · uN−1 must
be a factor of w. This contradicts the assumption that w avoids abelian N-powers.

Theorem 4.2. We have 3 ≤ A(3) ≤ 4, 2 ≤ A(4) ≤ 3, and A(k) = 2 for k ≥ 5.

Proof. It is straightforward to verify that every ternary word of length 8 contains an abelian 2-
power, so A(3) ≥ 3. Obviously A(k) ≥ 2 for k ≥ 4.

Recall the abelian 4-free morphism σ3 from Lemma 3.2. Taking w to be a factor of σω
3 (0)

of length n − 1, we see by an application of Lemma 4.1 that the word w# of length n over the
alphabet {0, 1, #} avoids abelian 4-powers cyclically. In addition, the word 0 avoids abelian 4-
powers cyclically, so A(3) ≤ 4.

The morphisms σ4 and φ, as defined in Section 3, are abelian 3-free and abelian 2-free, respec-
tively. Similar to the previous paragraph, we see that A(4) ≤ 3 and A(5) ≤ 2.

Our next aim is to prove the following theorem.

Theorem 4.3. We have 5 ≤ A(2) ≤ 8.

We prove Theorem 4.3 by explicitly constructing the required words for each length. Our
construction is inspired by the proof of [4, Thm. 4]. Consider the morphism σ : 0 7→ 0001, 1 7→ 101
of Lemma 3.2 and the prefix w of its fixed point σω(0) of length n. Let h : 0 7→ 1, 1 7→ 0 and w be

7



the reversal of h(w). Set

f = w⋄w,

g1 = ww, and

g2 = w•w,

where ⋄ ∈ {0, 1} and w• is obtained from w by changing its final letter to 0. We further define
F = f ω, G1 = gω

1 , and G2 = gω
2 . Recall that the words w and w do not contain abelian 4-powers

as factors. This follows from Lemma 3.2 and the discussion following it. Furthermore, w• avoids
abelian 5-powers.

In Subsection 4.1, we prove that f avoids abelian 8-powers cyclically for all n. Subsection 4.2
establishes that g1 avoids abelian 8-powers cyclically if n is odd and g2 avoids abelian 8-powers
cyclically when n is even. These results establish that A(2) ≤ 8. Theorem 4.3 follows from
the observation that there does not exist a binary word of length 8 avoiding abelian 4-powers
cyclically. However, such a word exists in the circular sense (see the introduction): 00010011.

The approach taken in Subsection 4.1 is identical to that of Subsection 4.2. Several of the
structural lemmas carry over with very minor modifications. In particular, we encourage the
reader to notice that the presence of the symbol ⋄ does not often play any role. We shall make
use of the following notion.

Definition 4.4. Let u be a binary word over the alphabet {0, 1}, and define ∆(u) = |u|0 − |u|1. If
∆(u) > 0 (resp. ∆(u) < 0, ∆(u) = 0), then u is light (resp. heavy, neutral).

Let us first establish some properties of the fixed point σω(0) of σ. In particular, we consider
properties of short factors of σω(0), which can be verified with the help of a computer.

The word w below refers to the construction of the words f , g1, and g2.

Lemma 4.5. If u is a factor of w such that |u| ≥ 29, then u is light.

Proof. It is straightforward to check that if u is a factor of the language of σ such that 29 ≤ |u| ≤
2 × 29 = 58, then u is light. Any factor of length at least 58 can be written as a concatenation of
words of length between 29 and 58, so it follows that all factors u with |u| ≥ 29 are light.

Lemma 4.6. If u is a factor of w such that |u| < 29, then ∆(u) ≥ −3.

Proof. This is a finite check.

Lemma 4.7. If u is a factor of w such that |u| ≥ 64, then ∆(u) ≥ 6.

Proof. Let u be a factor of w such that |u| ≥ 6× 29 = 174 and factorize u = u0 · · · u5 in such a way
that |ui| ≥ 29 for all i. Since |ui| ≥ 29, we have ∆(ui) > 0 by Lemma 4.5. Consequently, we see
that ∆(u) = ∑

5
i=0 ∆(ui) ≥ 6. It can be verified with the help of a computer that if 64 ≤ |u| < 174,

then ∆(u) ≥ 6.

4.1 Odd Length Case

The aim of this subsection is to prove the following proposition.

Proposition 4.8. The word f avoids abelian 8-powers cyclically.

While the letter ⋄ can be freely chosen to be either 0 or 1, we use the symbol as a marker in
the proofs that follow. Proposition 4.8 can be verified to be true when |w| < 5 × 29 = 145. Thus
in what follows, we implicitly assume that |w| ≥ 145.

Let u0 · · · uN−1 be an abelian N-power occurring in F, and consider a word ui for some i. We
classify the word ui as follows.
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· · ·F :

u0 u1 u2

α0 β0 α1 β1 α2 β2

w w

Figure 1: A depiction of the structure of F. The words u0 and u2 are of type A and u1 is of type B.

(A) ui = αi⋄βi for a suffix αi of w and a prefix βi of w;

(B) ui = αiβi for a nonempty suffix αi of w and a nonempty prefix βi of w.

In the proofs, we implicitly use the above factorizations using the words αi and βi. Notice
that it is not necessary for ui to have type A or B. See Figure 1 for clarification.

The following simple observation is very important in the subsequent proofs.

Lemma 4.9. Suppose that u and v are words of common length such that |u| ≥ 29. If u is a factor of w

and v is a factor of w, then u and v are not abelian equivalent.

Proof. If u is a factor of w and |u| ≥ 29, then u is light by Lemma 4.5. If v is a factor of w, then v is
a factor of w and must thus also be light. This means that v is heavy, so u and v cannot be abelian
equivalent.

Next we show that any abelian 8-power occurring in F must have a relatively large period.

Lemma 4.10. If an abelian 8-power of period m occurs in F, then m >
1
2 |w|.

Proof. Assume for a contradiction that F contains an abelian 8-power u0 · · · u7 such that |u0| ≤
1
2 |w|. There exists ui such that ui is of type A or B because w and w avoid abelian 4-powers. We
suppose that ui is of type A; the case that it is of type B is analogous. Suppose first that |u0| < 29.
If i ≤ 3, then ui+1ui+2ui+3ui+4 is a factor of w because |w| ≥ 5× 29 = 145. This is impossible as w

avoids abelian 4-powers. Thus i ≥ 4, but then ui−4ui−3ui−2ui−1 is an abelian 4-power occurring
in w. We conclude that |u0| ≥ 29.

Assume that 1 ≤ i ≤ 6, so that ui−1 and ui+1 exist. Since |u0| ≤
1
2 |w|, the word ui+1 ends

before the end of w and the word ui−1 begins after the beginning of w. Therefore ui−1 is a factor
of w and ui+1 is a factor of w. Lemma 4.9 shows that ui−1 and ui+1 cannot be abelian equivalent;
a contradiction. Suppose then that i = 0. Then u1 is a factor of w since |u0| ≤

1
2 |w|. Since w

avoids abelian 4-powers, the word u1u2u3u4 cannot be a factor of w. Thus u2, u3, or u4 is of
type B. Consequently, one of the words u3, u4, and u5 must be a factor w. This again contradicts
Lemma 4.9. The case i = 7 is similar.

The following two lemmas are technical lemmas that indicate what values ∆(ui) may take for
a ui of type A or B depending on the lengths of the corresponding words αi and βi.

Lemma 4.11. Suppose that the word F contains an abelian N-power u0 · · · uN−1. Say ui is of type B and

write ui = αiβi.

(i) If |αi| ≥ |βi|, then ∆(ui) ≥ −3.

(ii) If |αi| ≤ |βi|, then ∆(ui) ≤ 3.

Proof. Suppose that |αi| ≥ |βi|. Since βi is a prefix of w, the word βi is a suffix of w. We may thus
write αi = zβi for some word z. Since |βiβi|0 = |βiβi|1, we have ∆(ui) = ∆(z). The word z is
a factor of w, so if ∆(z) ≤ 0, then |z| < 29 by Lemma 4.5, and hence ∆(z) ≥ −3 by Lemma 4.6.
Claim (i) follows. Claim (ii) is proved symmetrically.
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Lemma 4.12. Suppose that the word F contains an abelian N-power u0 · · · uN−1. Say ui is of type A and

write ui = αi⋄βi.

(i) If |αi| ≥ |βi|, then ∆(ui)− ∆(⋄) ≤ 3.

(ii) If |αi| ≤ |βi|, then ∆(ui)− ∆(⋄) ≥ −3.

Proof. This proof is similar to that of Lemma 4.11. Say |αi| ≥ |βi|. Then βi is a suffix of w, and we
may write αi = zβi. Thus ∆(αiβi) = ∆(z). If ∆(z) ≥ 0, then ∆(z) ≤ 3 by Lemmas 4.5 and 4.6. It
follows that ∆(ui) = ∆(αi⋄βi) = ∆(z) + ∆(⋄) ≤ 3 + ∆(⋄). Claim (ii) is analogous.

We aim to combine Lemma 4.10 and the following observation. Together they imply that if
an abelian 8-power u0 · · · u7 occurs in F, then each of the factors ui has type A or type B.

Lemma 4.13. Let u0u1u2 be an abelian 3-power occurring in F. If

(i) u0 occurs in w or w or

(ii) u2 occurs in w or w,

then |u0| ≤
1
2 |w|.

Proof. Assume on the contrary that |u0| >
1
2 |w| and u0 occurs in w. Now |u0| ≥ 29, so u0 is

light, and thus u1 is also light. Since |u0| >
1
2 |w|, the word u1 is of type B. If |α1| ≤ |β1|, then

∆(u0) = ∆(u1) ≤ 3 by Lemma 4.11, and this contradicts Lemma 4.7 (recall that we assume that
|w| ≥ 145, so |u0| >

1
2 |w| ≥ 72). Therefore |α1| > |β1|. Since u0α1 is a suffix of w, it follows

that |u0α1| ≤ |w|. Consequently, we have |β1u2| ≤ |w| which means that u2 is a factor of w. This
contradicts Lemma 4.9 since u0 is a factor of w.

The remaining cases are proved by applying the analogous Lemma 4.12.

We next prove the main technical lemma of this part. The proof of Proposition 4.8 is almost
immediate after this.

Lemma 4.14. The word F does not contain abelian 8-powers of period m such that m ≤ |w|.

Proof. Assume for a contradiction that F contains an abelian 8-power u0 · · · u7 such that |u0| ≤
|w|. By Lemma 4.10, we may assume that |u0| >

1
2 |w|. By Lemma 4.13, the words u0, . . ., u7 are

not factors of w or w. Therefore each ui is of type A or B. In fact, the words u0, u2, u4, and u6 are
of the same type, as are u1, u3, u5, and u7. Moreover, the word u0 is of type A if and only if u1 is
of type B.

Notice that v0v1v2v3, with vi = u2iu2i+1, is an abelian 4-power of period 2|u0| occurring in F.
Let M = | f | − 2|u0|. Since |u0| ≤ |w| < | f |/2, we have M > 0. By applying Lemma 2.7, we see
that F contains an abelian 4-power s3s2s1s0 of period M. In fact, by inspecting the proof of the
aforementioned lemma, the abelian 4-power s3 · · · s0 ends where v0 · · · v3 begins.

Assume that u0 is of type A, the other case being symmetric. Let us write w = β−1α0 for a
word β−1. Since u1 is of type B, we may write v0 = α0⋄wβ1. Moreover, we have β−1 = β1s′0 with
|s′0| = M. Since s3 · · · s0 ends where v0 · · · v3 begins, we see that s′0 = s0. Repeating the argument
for vi, i = 1, 2, 3, in place of v0, we see that β2i−1 = β2i+1si. Hence β−1 = β7s3s2s1s0. But now w

contains the abelian 4-power s3 · · · s0, which is absurd.

Proof of Proposition 4.8. Suppose for a contradiction that F contains an abelian 8-power of period
m such that m < | f | = 2|w| + 1. By Lemma 2.7, we may suppose that m ≤ |w|. However,
Lemma 4.14 indicates that no such abelian power exists. This is a contradiction.
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4.2 Even Length Case

In this section, we prove the following two propositions.

Proposition 4.15. The word g1 avoids abelian 8-powers cyclically if |w| is odd.

Proposition 4.16. The word g2 avoids abelian 8-powers cyclically if |w| is even.

As the reader might have observed, the letter ⋄ often did not play a particular role in the
proofs of Subsection 4.1. This means that the previous lemmas transfer to the case of the words
G1 and G2 mostly intact. Consequently, we omit repetitive details from the proofs of this section
and indicate only what has changed.

Similar to Subsection 4.1, let u0 · · · uN−1 be an abelian N-power occurring in G1 such that
|u0| ≤ |w|, and consider a word ui for some i. We classify the word ui as follows.

(A) ui = αiβi for a nonempty suffix αi of w and a nonempty prefix βi of w.

(B) ui = αiβi for a nonempty suffix αi of w and a nonempty prefix βi of w.

For an abelian N-power u0 · · · uN−1 occurring in G2 such that |u0| ≤ |w|, we define the type of
ui as follows.

(A) ui = αiβi for a nonempty suffix αi of w• and a nonempty prefix βi of w.

(B) ui = αiβi for a nonempty suffix αi of w and a nonempty prefix βi of w•.

Propositions 4.15 and 4.16 can be again verified when |w| < 145, so we assume that w has
length at least 145 for the remainder of this section. In the following lemmas, we shall make
no use of the parity of |g1| or |g2|. In fact, the parity shall only play a role in the proofs of
Proposition 4.15 and Proposition 4.16 at the end of this section.

Lemma 4.17. If an abelian 8-power of period m occurs in G1 or G2, then m >
1
2 |w|.

Proof. Assume for a contradiction that either of the words contains an abelian 8-power u0 · · · u7
with period m ≤ 1

2 |w|. We first show that ui is of type A or type B for some i. Assume the contrary
that no ui is of type A or type B. Say the word u0 occurs in w and that w is followed by w′ where
w′ ∈ {w, w•}. Since w avoids abelian 4-powers, one of the words u1, u2, or u3, say uj, is a prefix
of w′ (since they do not have a type). Since j ≤ 3, we see that uj+4 exists. There exists uk such
that uk is a prefix of w and w′ = ujuj+1 · · · uk−1 for otherwise the abelian 5-power ujuj+1 · · · uj+4
is a prefix of w′, but neither w nor w• can have such a factor. It follows that either w′ is an abelian
N-power for some N ≤ 4 or w′ = uj. In the former case, we have |u0| = |w′|/N ≥ 145/4 ≥ 36,
so u0 is light by Lemma 4.5. However, the word uj, a proper prefix of w′, is heavy by Lemma 4.5.
Therefore it must be that w′ = uj, but this contradicts the assumption that |uj| ≤

1
2 |w|. The case

that u0 occurs in w′ is symmetric.
To conclude the proof, we may now follow the proof of Lemma 4.10. Notice in particular that

if ui is of type A, then αi is nonempty, and thus the change of the final letter of w does not affect
ui−1.

The following two lemmas are combinations of Lemmas 4.11 and 4.12 adjusted for the words
G1 and G2.

Lemma 4.18. Suppose that the word G1 contains an abelian N-power u0 · · · uN−1. Suppose that ui is of

type A.

(i) If |αi| ≥ |βi|, then ∆(ui) ≤ 3.

(ii) If |αi| ≤ |βi|, then ∆(ui) ≥ −3.
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Suppose that ui is of type B.

(i) If |αi| ≥ |βi|, then ∆(ui) ≥ −3.

(ii) If |αi| ≤ |βi|, then ∆(ui) ≤ 3.

Proof. Follow the proof of Lemma 4.11.

Lemma 4.19. Suppose that the word G2 contains an abelian N-power u0 · · · uN−1. Suppose that ui is of

type A.

(i) If |αi| ≥ |βi|, then ∆(ui) ≤ 5.

(ii) If |αi| ≤ |βi|, then ∆(ui) ≥ −1.

Suppose that ui is of type B.

(i) If |αi| ≥ |βi|, then ∆(ui) ≥ −3.

(ii) If |αi| ≤ |βi|, then ∆(ui) ≤ 3.

Proof. We show how to handle the cases (i). Say ui is of type A and |αi| ≥ |βi|. We may write
αi = zβi

•
for a word z (here we have |βi| > 0 by definition). It follows that ∆(ui) = ∆(z) + 2.

Since z is a factor of w, we have ∆(z) ≤ 3, so ∆(ui) ≤ 5.
Suppose that ui is of type B and |αi| ≥ |βi|. Since |αi| > 0 by its definition and |ui| ≤ |w|, we

see that |βi| < |w|. It follows that αi = zβi for a word z. Thus ∆(ui) = ∆(z). Since z is a factor of
w, we see that ∆(z) ≥ −3.

Lemma 4.20. Let u0u1u2 be an abelian 3-power occurring in G1. If

(i) u0 occurs in w or w or

(ii) u2 occurs in w or w,

then |u0| ≤
1
2 |w|.

Proof. Follow the proof of Lemma 4.13 and apply Lemma 4.18 appropriately.

Lemma 4.21. Let u0u1u2 be an abelian 3-power occurring in G2. If

(i) u0 occurs in w or w• or

(ii) u2 occurs in w or w•,

then |u0| ≤
1
2 |w|.

Proof. We show how to handle the case where u0 occurs in w•. Assume on the contrary that
|u0| >

1
2 |w| and u0 occurs in w•. Suppose first that u0 is a suffix of w•. If |u0| = |w|, then u1 = w

and consequently w• and w are abelian equivalent. This means that |w|0 = |w|1 = |w•|1 + 1 =
|w|1 + 1. Thus ∆(w) = −1, and this contradicts Lemma 4.5. Therefore |u0| < |w| implying that
u1 is a factor of w. Thus ∆(u1) ≥ 6 by Lemma 4.7. On the other hand, by taking into account
the changed final letter of w•, Lemma 4.6 implies that ∆(u0) ≤ −1, so it is not possible that
∆(u0) = ∆(u1).

We may thus assume that u0 is not a suffix of w•. Since |u0| >
1
2 |w|, it follows that the word u1

is of type A. If |α1| ≤ |β1|, then ∆(u0) = ∆(u1) ≥ −1 by Lemma 4.19. This contradicts Lemma 4.7,
so |α1| > |β1|. Since u0α1 is a suffix of w•, it follows that |u0α1| ≤ |w|. Hence |β1u2| ≤ |w| and u2
is a factor of w. This contradicts Lemma 4.9.

Lemma 4.22. The word G1 does not contain abelian 8-powers of period m such that m < |w|.
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Proof. The proof of Lemma 4.14 works mostly as it is for the word G1. Indeed, Lemmas 4.17
and 4.20 guarantee that each ui is of type A or B. Set M = |g1| − 2|u0|. Notice that we assume
|u0| < |w| = |g1|/2, so M > 0. The remaining arguments are the same, only the ⋄ symbol is
omitted. The conclusion is that w contains an abelian 4-power of period M ending at position
|w| − |α0|. This is impossible.

Lemma 4.23. The word G2 does not contain abelian 8-powers of period m such that m < |w|.

Proof. We proceed as in the proof of Lemma 4.14. By Lemmas 4.17 and 4.21, we may suppose that
each ui is of type A or B. Set M = |g2| − 2|u0|. Again, |u0| < |w| is assumed so M > 0. Following
the arguments of Lemma 4.14 (omitting ⋄), we find that w• contains an abelian 4-power ending
at position |w| − |α0|. Observe that since the repetition is not a suffix of w• (as |α0| > 0), the same
abelian 4-power occurs in w. This is a contradiction.

Proof of Proposition 4.15. Say |w| is odd, and suppose for a contradiction that G1 contains an
abelian 8-power of period m such that m < |g1| = 2|w|. By Lemma 2.7, we may suppose that
m ≤ |w|. Lemma 4.22 implies that m = |w|. By Lemma 4.20, it is not possible that ui = w or
ui = w for some i. Therefore all ui are of type A or B. We handle the case that |α0| ≥ |β0|; the case
|α0| ≤ |β0| is symmetric. Write α0 = z0β0 so that ∆(u0) = ∆(z0). When u0 is of type A, the word
w has prefix β0z0 and suffix z1β1 (here u1 = α1β1 = z1β1β1). Since m = |w|, we have |β0| = |β1|.
Since m = 2|β0|+ |z0| = 2|β1|+ |z1|, we conclude that z0 = z1. The same conclusion is reached
if u0 is type B. Since ∆(u0) = ∆(u1) = ∆(z1), we have ∆(z0) = ∆(z1) = ∆(z0), so ∆(z0) = 0.
Therefore |z0| is even. Since |w| = m = 2|β0|+ |z0|, it follows that |w| is even. This is contrary to
our hypothesis that |w| is odd.

Proof of Proposition 4.16. Suppose that |w| is even, and assume for a contradiction that G2 contains
an abelian 8-power of period m with m < 2|w|. As in the proof of Proposition 4.15, we see that
it must be that m = |w|. Moreover, the words ui are of type A or B by Lemma 4.21. Suppose
that u0 is of type A and |α0| ≥ |β0|. The remaining cases are similar. Write u0 = α•0 β0 = z0β0

•
β0

and u1 = α1β1 = z1β1β1 for some words z0 and z1 of the same length. Therefore ∆(u0) =
∆(z0) + 2 = ∆(u1) = ∆(z1). Since |β0| > 0, it is straightforward to see that z0 = z1. Thus
∆(z0) + 2 = ∆(z0), that is, |z0|0 − |z0|1 + 2 = |z0|1 − |z0|0. It follows that |z0|0 + 1 = |z0|1, and so
|z0| = |z0|0 + |z0|1 = 2|z0|0 + 1. Therefore |z0| is odd, and consequently |w| = 2|β0|+ |z0| is odd.
This is a contradiction.

Propositions 4.15 and 4.16 together with Proposition 4.8 imply Theorem 4.3.

5 Avoiding Ordinary Powers Cyclically

As mentioned in the introduction, previous research has considered the avoidance of ordinary
powers in circular words. A circular word is simply a conjugacy class of words, that is, a word w

avoids N-powers circularly if none of the conjugates of w contains an N-power as a factor. This
constrains the periods to have length at most ⌊|w|/N⌋ while our definition of cyclic avoidance
disallows periods up to length |w| − 1. The purpose of this section is to generalize the known
results on circular avoidance of powers to our cyclic setting.

Definition 5.1. Let w be a word. Then w avoids N-powers cyclically if for each N-power of period
m occurring in the infinite word wω, we have m ≥ |w|.

The following analogue of Lemma 2.7 is straightforward to prove.

Lemma 5.2. Assume that xω contains an N-power of period m with 1
2 |x| ≤ m < |x|. Then it contains

an N-power with period |x| − m.
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This lemma implies that the concepts of avoiding 2-powers circularly and avoiding 2-powers
cyclically are the same concept. When N > 2, this is not true. For example, the word 00 avoids
abelian N-powers circularly for N > 2, but it never avoids abelian N-powers cyclically.

Currie proved in [9] that if n /∈ {5, 7, 9, 10, 14, 17} then there exists a word of length n over
a 3-letter alphabet that avoids 2-powers circularly. By the preceding paragraph, we have the
following result (notice that 2-powers cannot be avoided with just two letters).

Theorem 5.3. If n /∈ {5, 7, 9, 10, 14, 17} then there exists a word of length n over a 3-letter alphabet that

avoids 2-powers cyclically.

Notice that for n ∈ {5, 7, 9, 10, 14, 17} there exists a word of length n over a 4-letter alpha-
bet avoiding 2-powers cyclically. Such words are, e.g., 01023, 0102013, 010201203, 0102010313,
01020103010213, and 01020103010212313. Notice in addition that for each n there exists a word
of length n over a 3-letter alphabet that avoids 2+-powers cyclically (see below for the defini-
tion). To see this, it is sufficient to observe that the words 00102, 0010012, 001001102, 0010011202,
00100112001002, and 00100112001001202 avoid 2+-powers cyclically.

What is left is to determine the least exponent N such that for all n there exists a binary word
w of length n such that w avoids N-powers cyclically. In the context of ordinary powers, it is
natural to consider fractional exponents, and thus we give the following definition. We do not
consider fractional abelian exponents in this paper; for discussion on this concept, see [7, 32].

Definition 5.4. Let w be a word and N be a rational number such that N > 1. Then w avoids
N+-powers cyclically if for each N+-power of period m occurring in the infinite word wω, we
have m ≥ |w|. A word u is an N+-power if u is an R-power for some R > N.

Let t be the fixed point σω(0) of the morphism σ : 0 7→ 01, 1 7→ 10. The word t is the famous
Thue-Morse word; see [3, Sect. 1.6]. Aberkane and Currie proved in [2] that the Thue-Morse word
t contains a factor avoiding 5/2+-powers circularly for all lengths. We generalize this result to
our cyclic setting. This result implies Theorem 1.4.

Theorem 5.5. For each n, there exists a factor of length n of the Thue-Morse word avoiding 5/2+-powers

cyclically.

It can be shown that the exponent 5/2 is optimal for binary words by inspecting all binary
words of length 5.

In order to prove Theorem 5.5, we employ the automatic theorem-proving software Walnut
[25]. Properties of automatic sequences [3] that are expressible in a certain first-order logic are de-
cidable, and Walnut implements the decision procedure. The Thue-Morse word t is a 2-automatic
word, so Walnut is applicable. We wish to keep the discussion on the decision procedure and us-
age of Walnut brief, so we merely describe the logical formulas necessary to encode our problem
and refer the reader to [8] for a proof of Theorem 5.3 using Walnut. See also [34].

Let w be a factor of the Thue-Morse word. If wω contains an N-power of period m such that
m < |w| and N > 3, then wω contains a 3-power of period m. Therefore in order to show that w

avoids 5/2+-powers cyclically, we only need to consider N-powers with 5/2 < N ≤ 3. Notice
that such a power u is necessarily a factor of w4. We first write a predicate cRepK(i, j, m, n, p),
K = 1, . . . , 4, that evaluates to true if and only if the factor w of length n beginning at the position
i of the Thue-Morse word t is such that wK has a factor u of length m beginning at position j,
i ≤ j < i + n, such that u has period p and u is not a factor of wK−1. The predicate needs to be
written somewhat awkwardly as wK is not necessarily a factor of t. For example, we have

cRep2(i, j, m, n, p) = (i ≤ j < i + n) ∧ (i + n ≤ j + m ≤ i + 2n)∧

(∀k(j ≤ k < i + n − p) =⇒ t[k] = t[k + p])∧

(∀k(i + n − p ≤ k < i + n) =⇒ t[k] = t[k + p − n])∧

(∀k(i + n ≤ k < j + m − p) =⇒ t[k − n] = t[k + p − n]).
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We can then write a predicate ncyc(i, n) that evaluates to true if and only if the factor w of t

of length n starting at position i is such that w4 contains a factor that has period p with 5/2 <

|u|/p ≤ 3. Its definition is:

ncyc(i, n) = ∃j, m, p((0 < p < n) ∧ (5p < 2m ≤ 6p)∧

(cRep1(i, j, m, n, p)∨ cRep2(i, j, m, n, p)∨ cRep3(i, j, m, n, p)∨

cRep4(i, j, m, n, p))).

Finally the following predicate evaluates to true if and only if Theorem 5.5 is true:

∀n((n > 0) =⇒ (∃i¬ ncyc(i, n))).

Inputting the above predicates to Walnut produces an automaton accepting all inputs meaning
that Theorem 5.5 is true.

6 Discussion on Future Research

Obviously the main question is what is the value of A(k) for k = 2, 3, 4. Theorem 1.2 seems to
support the claims that A(2) = 4, A(3) = 3, and A(4) = 2, but the first claim is false as there is no
binary word of length 8 avoiding abelian 4-powers cyclically. This leads us to ask the following
questions.

Question. Is it the case that A(2) = 5, A(3) = 3, and A(4) = 2?

Question. If n 6= 8, does there exist a word of length n over a 2-letter alphabet avoiding abelian 4-powers

cyclically?

Our computer experiments have not found a counterexample to the above questions among
lengths less than 150. Notice that our question whether A(4) = 2 is stronger than the conjecture
of [38] mentioned in the preliminaries after Theorem 1.2. A positive answer to the latter question
would imply that A(2) = 5 as the word 00001011 of length 8 avoids abelian 5-powers cyclically.

We do not know how to approach these questions. The lowest hanging fruit is to improve
the construction of Section 4 and lower the upper bound on A(2). We remark that the particular
construction given here cannot be used to improve the upper bound 8 in Theorem 4.3 as some
of the words constructed contain abelian 7-powers with short period. If two words that avoid
abelian 4-powers are concatenated, then a priori abelian 7-powers could appear. An improved
construction would need to take special care to concatenate the words in such a way that their
respective abelian 3-powers of common period do not appear too close to each other. It seems
that no precise information on the structure and location of abelian 3-powers in words that avoid
abelian 4-powers is found in the literature. Even the sets of possible periods of abelian powers
occurring in infinite words have been studied very little. The only papers in this direction are the
papers [16, 26] concerning the abelian period sets of Sturmian words. This knowledge however is
not helpful in this context as Sturmian words contain abelian powers of arbitrarily high exponent
[16, Proposition 4.10]. It seems that making such concatenation arguments work for the alphabet
sizes 3 and 4 is even more difficult especially because there is less room for improvement.

An alternative way to improve our results would be to find infinite words whose language
contains the sought words. For example, Justin’s morphism 0 7→ 00001, 1 7→ 01111 seems promis-
ing [18]. It has a factor of length n avoiding abelian 5-powers cyclically for n = 1, . . . , 400. We
do not know how to prove that such a factor exists for each length. Since the the fixed point
of Justin’s morphism is automatic, it might be possible to attack this problem via automatic
theorem-proving as in Section 5. The problem in this plan is that this type of automatic theorem-
proving requires the problem to be written in a certain restricted first order logic and generally
abelian properties of words cannot be expressed in this logic [33, Sect. 5.2].
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We have dealt in this paper only with the question of existence. A significantly harder prob-
lem would be to provide a lower bound, for example, for the number of binary words of length n

that avoid abelian 4-powers cyclically. We have recorded this sequence as the sequence A334831
in Sloane’s On-Line Encyclopedia of Integer Sequences [35]. The first values of the sequence are 2, 2,
6, 8, 10, 6, 28, 0, 36, 120, 132, 168, 364, 112.
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