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Abstract

The Kazhdan-Lusztig polynomial of a matroid was introduced by Elias, Proud-
foot, and Wakefield [Adv. Math. 2016]. Let Um,d denote the uniform matroid of
rank d on a set of m + d elements. Gedeon, Proudfoot, and Young [J. Combin.

Theory Ser. A, 2017] pointed out that they can derive an explicit formula of the
Kazhdan-Lusztig polynomials of Um,d using equivariant Kazhdan-Lusztig polynomi-
als. In this paper we give two alternative explicit formulas, which allow us to prove
the real-rootedness of the Kazhdan-Lusztig polynomials of Um,d for 2 ≤ m ≤ 15 and
all d’s. The case m = 1 was previously proved by Gedeon, Proudfoot, and Young
[Sém. Lothar. Combin. 2017]. We further determine the Z-polynomials of all Um,d’s
and prove the real-rootedness of the Z-polynomials of Um,d for 2 ≤ m ≤ 15 and all
d’s. Our formula also enables us to give an alternative proof of Gedeon, Proudfoot,
and Young’s formula for the Kazhdan-Lusztig polynomials of Um,d’s without using
the equivariant Kazhdan-Lusztig polynomials.

AMS Classification 2010: 05A15, 26C10, 33F10

Keywords: Kazhdan-Lusztig polynomial, uniform matroid, Z-polynomial, Zeilberger’s
algorithm, real-rootedness

1 Introduction

The goal of this paper is threefold: giving a nice formula for computing the Kazhdan-
Lusztig polynomials of arbitrary uniform matroids; determining the Z-polynomials of
arbitrary uniform matroids; and proving the real-rootedness of both the Kazhdan-Lusztig
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polynomials and the Z-polynomials for some special uniform matroids. Before stating our
main results, let us first give an overview of some background.

Recently, Elias, Proudfoot, and Wakefield [4] introduced the notion of the Kazhdan-
Lusztig polynomial of a matroid. Given a loopless matroid M , let L(M) denote the lattice
of flats of M , let χM (t) denote its characteristic polynomial, and let rkM denote the rank
of M . They proved that there is a unique way to associate to each M a polynomial
PM(t) ∈ Z[t] satisfying the following properties:

• If rkM = 0, then PM(t) = 1.

• If rkM > 0, then degPM(t) < 1
2
rkM .

• For every M , trkMPM(t−1) =
∑

F∈L(M)

χMF
(t)PMF (t),

where the symbol MF represents the contraction of M at F , and MF represents the
localization of M at F .

The Kazhdan-Lusztig polynomials for matroids turn out to possess many interesting
properties. For example, Elias, Proudfoot and Wakefield [4] proposed a conjecture which
states that the Kazhdan-Lusztig polynomial of an arbitrary matroid has only non-negative
coefficients, and they also proved this conjecture for any representable matroid. Another
interesting conjecture is due to Gedeon, Proudfoot, and Young [8], which states that the
Kazhdan-Lusztig polynomial of a matroid has only negative zeros.

To study the properties of the Kazhdan-Lusztig polynomial of a matroid, it is desir-
able to give an explicit formula to compute its coefficients. However, it seems hopeless to
do this for arbitrary matroid. Recently, much work has been focused on determining the
Kazhdan-Lusztig polynomials for specific families of matroids. For instance, Gedeon [6]
determined the Kazhdan-Lusztig polynomials for thagomizer matroids, Gedeon, Proud-
foot, and Young [8] determined the Kazhdan-Lusztig polynomials for complete bipartite
graphs with one part having exactly two vertices, and Lu-Xie-Yang [12] determined the
Kazhdan-Lusztig polynomials for fan matroids, wheel matroids, and whirl matroids. The
Kazhdan-Lusztig polynomials for braid matroids have been studied in [4, 8, 10].

This paper focuses on the Kazhdan-Lusztig polynomials of uniform matroids. Let Um,d

denote the uniform matroid of rank d on a set of m+ d elements. Throughout this paper,
we always assume that m and d are positive integers. Elias, Proudfoot, and Wakefield
[4] obtained a recursive relation among the coefficients of Kazhdan-Lusztig polynomials
PUm,d

(t). Suppose that

PUm,d
(t) =

⌊ d−1
2

⌋
∑

i=0

cim,dt
i.

Elias, Proudfoot, and Wakefield derived the following result.
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Proposition 1.1 ([4, Proposition 2.19 ]). For any m, d, and 0 ≤ i ≤ ⌊d−1
2
⌋, we have

cim,d = (−1)i
(

m+ d

i

)

+

i−1
∑

j=0

i+j
∑

k=2j+1

(−1)i+j+k

(

m+ d

m+ k, i+ j − k, d− i− j

)

cjm,k. (1.1)

Using this recursion, they obtained explicit formulas for the first few coefficients
of PUm,d

(t). Based on this recursive formula, one can also obtain an explicit formula
for PU1,d

(t), see Proudfoot, Wakefield, and Young [14]. By introducing the equivariant
Kazhdan-Lusztig polynomial of a matroid, Gedeon, Proudfoot, and Young [7] pointed out
that a general formula for cim,d can be obtained. The following explicit formula can be
derived using their approach:

Theorem 1.2. For any m, d, and 1 ≤ i ≤ ⌊d−1
2
⌋, we have

cim,d =

min(m,d−2i)
∑

h=1

(e− i− h+ 1)(m+ d)!

e(e + 1)(i+ h)(i+ h− 1)(e− i)!(h− 1)!i!(i− 1)!
, (1.2)

where e = m+ d− i− h.

In this paper we obtain two alternative formulas for cim,d. Here is the first one:

Theorem 1.3. For any m, d, and 0 ≤ i ≤ ⌊d−1
2
⌋, we have

cim,d =

(

d+m

i

) m
∑

h=1

(−1)h+1h

d− h− i+m

(

d− h− i+m

d− 2i− h

)(

m+ i

m− h

)

. (1.3)

Since the right hand side of (1.3) is an alternating sum, it is hard to deduce the
positivity of cim,d. However, based on this formula we can obtain another formula for cim,d,
which is manifestly positive.

Theorem 1.4. For any m, d, and 0 ≤ i ≤ ⌊d−1
2
⌋, we have

cim,d =
1

d− i

(

d+m

i

)m−1
∑

h=0

(

d− i+ h

h + i+ 1

)(

i− 1 + h

h

)

. (1.4)

The formula (1.4) has some advantages. First, it can be used to prove (1.2) without
resorting to the equivariant Kazhdan-Lusztig polynomials of uniform matroids. Secondly,
its elegant form allows us to prove the real-rootedness of the Kazhdan-Lusztig polynomials
of some uniform matroids. Gedeon, Proudfoot, and Young [8] proved that the polynomial
PU1,d

(t) has only negative zeros. Based on (1.4), we obtain the following result.

Theorem 1.5. For any 2 ≤ m ≤ 15 and any d ≥ 1, the polynomial PUm,d
(t) has only

negative zeros.
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The next part of this paper is concerned with the Z-polynomials of uniform matroids.
The notion of the Z-polynomial of a matroid was introduced by Proudfoot, Xu, and
Young [15]. Given a matroid M , its Z-polynomial is defined by

ZM(t) :=
∑

F∈L(M)

trkMFPMF (t).

Proudfoot, Xu, and Young [15] showed that

ZUm,d
(t) = td +

d
∑

k=1

(

d+m

k +m

)

td−kPUm,k
(t). (1.5)

Based on this formula, they proved that ZU1,d
(t) is just a Narayana polynomial. Denote

by zim,d the coefficient of ti in ZUm,d
(t). We obtain an explicit expression of zim,d as given

below.

Theorem 1.6. For any m, d, and 0 ≤ i ≤ d, we have

zim,d =

(

d+m

i+m

)(

d+m

i

)

(

d+m

m

)

m−1
∑

h=0

i(h−m+ 1) +m

(h+ 1)m

(

i− 1 + h

h

)(

d− i+ h

h

)

(1.6)

Proudfoot, Xu, and Young [15] also conjectured that the Z-polynomial ZM(t) has only
negative zeros for any matroidM . It is well known that the classical Narayana polynomial
has only negative zeros. Thus, their conjecture is valid for ZU1,d

(t). Parallel to Theorem
1.5, we obtain the following result.

Theorem 1.7. For 2 ≤ m ≤ 15 and any d ≥ 1, the polynomial ZUm,d
(t) has only negative

zeros.

This paper is organized as follows. In Section 2 we first give a proof of Theorem 1.3 by
using Proposition 1.1, and then derive Theorem 1.4 from Theorem 1.3. We would like to
point out that Zeilberger’s algorithm plays an important role for our proofs of Theorems
1.3 and 1.4. The second part of Section 2 is devoted to the proof of Theorem 1.5. Finally
we give a new proof of Theorem 1.2 without the help of equivariant Kazhdan-Lusztig
polynomials. In Section 3, we prove Theorems 1.6 and 1.7. To prove the real-rootedness
of PUm,d

(t) and ZUm,d
(t), we utilize the theory of multiplier sequences and the theory of

n-sequences.

2 The Kazhdan-Lusztig polynomials

This section is devoted to the study of the Kazhdan-Lusztig polynomials of uniform
matroids. First, we verify that (1.3) satisfies the recursive relation (1.1), and then derive
(1.4) from (1.3). Secondly, we use (1.3) to prove Theorem 1.5. Finally, we show how to
prove (1.2) by using (1.3).

4



2.1 Polynomial coefficients

The aim of this subsection is to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. It suffices to show that (1.3) satisfies the recursion (1.1) together
with the initial values c0m,1 = 1. It is straightforward to verify that the right hand side of
(1.3) is equal to 1 when d = 1 and i = 0.

It remains to show that (1.3) satisfies the recursion (1.1). To this end, we substitute
(1.3) into (1.1), which yields the left hand side

(LHS) =

(

d+m

i

) m
∑

h=1

(−1)h+1h

d− h− i+m

(

d− h− i+m

d− 2i− h

)(

m+ i

m− h

)

(2.1)

and the right hand side

(RHS) = (−1)i
(

d+m

i

)

+

i−1
∑

j=0

i+j
∑

k=2j+1

m
∑

h=1

(−1)i+j+k+h+1 h

k − h− j +m

(

m+ j

m− h

)(

k +m

j

)

×

(

k − h− j +m

k − 2j − h

)(

m+ d

m+ k, i+ j − k, d− i− j

)

.

It is enough to show that (LHS) = (RHS).

In the following we will reduce the triple summation in (RHS) into a single summation.
By interchanging the order of summation of (RHS), we obtain

(RHS) = (−1)i
(

d+m

i

)

+

i−1
∑

j=0

m
∑

h=1

i+j
∑

k=2j+1

(−1)i+j+k+h+1 h

k − h− j +m

(

m+ j

m− h

)(

k +m

j

)

×

(

k − h− j +m

k − 2j − h

)(

m+ d

m+ k, i+ j − k, d− i− j

)

.

Note that
(

m+ d

m+ k, i+ j − k, d− i− j

)

=

(

m+ d

d− i− j

)(

m+ i+ j

m+ k

)

,

(

k − h− j +m

k − 2j − h

)

=
k − h− j +m

m+ j

(

k − h− j +m− 1

k − 2j − h

)

.

Substituting into the right hand side of the above summation, we get

(RHS) = (−1)i
(

d+m

i

)

+

i−1
∑

j=0

m
∑

h=1

i+j
∑

k=2j+1

(−1)i+j+k+h+1 h

m+ j

(

m+ j

m− h

)(

k +m

j

)

×

(

k − h− j +m− 1

k − 2j − h

)(

m+ d

d− i− j

)(

m+ i+ j

m+ k

)

.
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Therefore,

(RHS) = (−1)i
(

d+m

i

)

+

i−1
∑

j=0

m
∑

h=1

(−1)i+j+h+1 h

m+ j

(

m+ j

m− h

)(

m+ d

d− i− j

)

Fj,h, (2.2)

where

Fj,h =

i+j
∑

k=2j+1

(−1)k
(

k +m

j

)(

k − h− j +m− 1

k − 2j − h

)(

m+ i+ j

m+ k

)

.

We claim that

Fj,h = (−1)h
(

m+ i+ j

m+ i

)(

i− j

h

)

. (2.3)

This is because

Fj,h =

i+j
∑

k=2j+h

(−1)k
(

k +m

j

)(

k − h− j +m− 1

k − 2j − h

)(

m+ i+ j

m+ k

)

=

i−j−h
∑

k=0

(−1)k+h

(

k + 2j + h+m

j

)(

k + j +m− 1

k

)(

m+ i+ j

m+ k + 2j + h

)

= (−1)h
i−j−h
∑

k=0

(−1)k
(

k + j +m− 1

k

)(

m+ i+ j

m+ k + 2j + h

)(

k + 2j + h+m

j

)

= (−1)h
i−j−h
∑

k=0

(−1)k
(

k + j +m− 1

k

)(

m+ i+ j

m+ i

)(

m+ i

i− j − h− k

)

= (−1)h
(

m+ i+ j

m+ i

) i−j−h
∑

k=0

(

−j −m

k

)(

m+ i

i− j − h− k

)

= (−1)h
(

m+ i+ j

m+ i

)(

i− j

i− j − h

)

,

where the last equality is obtained by the Chu-Vandermonde identity.

Substituting (2.3) into (2.2), we obtain that

(RHS) =(−1)i
(

d+m

i

)

+
i−1
∑

j=0

(−1)i+j+1

(

m+ d

d− i− j

)(

m+ i+ j

m+ i

)

×

(

m
∑

h=1

h

m+ j

(

m+ j

m− h

)(

i− j

h

)

)

.

6



Again by the Chu-Vandermonde identity, we have

m
∑

h=1

h

m+ j

(

m+ j

m− h

)(

i− j

h

)

=
m
∑

h=1

i− j

m+ j

(

m+ j

m− h

)(

i− j − 1

h− 1

)

=
i− j

m+ j

(

m+ i− 1

m− 1

)

.

Thus, we have

(RHS) =(−1)i
(

d+m

i

)

+

i−1
∑

j=0

(−1)i+j+1 i− j

m+ j

(

m+ d

d− i− j

)(

m+ i+ j

m+ i

)(

m+ i− 1

m− 1

)

.

Combining the above identity and (2.1), we see that (LHS) = (RHS) is equivalent to
the following identity:

m
∑

h=1

(−1)i+h+1h(d− h− i+m− 1)!

(h+ i)!(m− h)!(d− 2i− h)!
−

i
∑

j=0

(−1)j+1(i− j)(m+ d− i)!

(i+m)(j +m)j!(d− i− j)!(m− 1)!
= 1.

It remains to prove the above identity. Let

pm =
m
∑

h=1

(−1)i+h+1h(d− h− i+m− 1)!

(h+ i)!(m− h)!(d− 2i− h)!
,

qm =
i
∑

j=0

(−1)j+1(i− j)(m+ d− i)!

(i+m)(j +m)j!(d − i− j)!(m− 1)!
.

Since both pm and qm are hypergeometric summations, we are able to prove pm − qm = 1
with the aid of a computer algebra system. As illustrated by the following lines, the
application of Zeilberger’s algorithm yields the following equality

pm+1 − pm = qm+1 − qm.

Here we use a Mathematica package fastZeil due to Paule and Schorn [13].

In[1]:= << RISC f̀astZeil ;̀

In[2]:= Zb
[ (−1)j+1(i − j)(d− i + m)!

(i + m)(j + m)j!(d− i − j)!(m− 1)!
, {j, 0, i},m

]

;

In[3]:= FullSimplify[%] /. Gamma[n ] → (n − 1)!

Out[3]=

{

(d− i)(SUM[m]− SUM[1 +m]) ==
(−1)i+1(d− i+m)!

(i+m)(i+m+ 1)(i− 1)!m!(d − 2i− 1)!

}}

In[4]:= Zb
[h(−1)i+h+1(d− h − i + m − 1)!

(h + i)!(m− h)!(d− 2i − h)!
, {h, 0,m},m

]

;

In[5]:= FullSimplify[%] /. Gamma[n ] → (n − 1)!
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Out[5]=

{

(d− i)(i +m)(i+m+ 1)(−SUM[m] + SUM[1 +m]) ==
(−1)i(d− i+m)!

(i− 1)!m!(d − 2i− 1)!

}

The proof of the theorem will be complete once we show that p1 − q1 = 1. By direct
computation, we have

p1 =
(−1)i

i+ 1

(

d− i− 1

i

)

.

On the other hand, we have

q1 =
1

i+ 1
×

i−1
∑

j=0

(−1)j+1(i− j)

(

d− i+ 1

j + 1

)

= −1 +
1

i+ 1
×

i−1
∑

j=−1

(−1)j+1(i− j)

(

d− i+ 1

j + 1

)

= −1 +
(−1)i

i+ 1
×

i
∑

j=0

(−1)i−j(i− j + 1)

(

d− i+ 1

j

)

= −1 +
(−1)i

i+ 1
×

i
∑

j=0

(

−2

i− j

)(

d− i+ 1

j

)

= −1 +
(−1)i

i+ 1

(

d− i− 1

i

)

,

where the last equality is obtained by the Chu-Vandermonde identity. This completes the
proof.

Proof of Theorem 1.4. In view of (1.3) and (1.4), it suffices to show that

m
∑

h=1

(−1)h+1h

d− h− i+m

(

d− h− i+m

d− 2i− h

)(

m+ i

m− h

)

=
1

d− i

m−1
∑

h=0

(

d− i+ h

h + i+ 1

)(

i− 1 + h

h

)

.

Denote by f i
m,d the left hand side of the above identity, and denote by gim,d its right hand

side. It is routine to show that

f i
1,d = gi1,d =

1

d− i

(

d− i

i+ 1

)

.

Therefore, it is sufficient to show that

f i
m+1,d − f i

m,d = gim+1,d − gim,d =
1

d− i

(

d− i+m

m+ i+ 1

)(

i− 1 +m

m

)

.

Now apply Zeilberger’s algorithm to f i
m,d along the following lines.
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In[6]:= Zb
[ (−1)h+1h

d − h − i + m
Binomial[d − h − i + m, d − h − 2i]Binomial[i + m,m − h]

, {h, 1,m},m, 1
]

;

In[7]:= FullSimplify[%] /. Gamma[n ] → (n − 1)!

Out[7]=

{

(d− i)(i +m)(1 + i+m)(−SUM[m] + SUM[1 +m]) ==
(d− i+m)!

(i− 1)!m!(d − 2i− 1)!

}

Thus we have

f i
m+1,d − f i

m,d =
(d− i+m)!

(d− i)(i+m)(i+m+ 1)(i− 1)!m!(d− 2i− 1)!

=
1

d− i

(

d− i+m

m+ i+ 1

)(

i− 1 +m

m

)

,

as desired. This completes the proof.

2.2 Real zeros

This subsection is devoted to the study of the real-rootedness of the Kazhdan-Lusztig
polynomials PUm,d

(t) by using the theory of multiplier sequences and the theory of n-
sequences, for which we refer the reader to [2, 1, 3].

Let us recall some related concepts and results. A sequence Γ = {γk}
∞
k=0 of real

numbers is called a multiplier sequence if, whenever any real polynomial

f(t) =

n
∑

k=0

akt
k

has only real zeros, so does the polynomial

Γ[f(t)] =
n
∑

k=0

γkakt
k.

We have the following result.

Lemma 2.1. For any m and d, the sequence {
(

d+2m
i+m

)

}∞i=0 is a multiplier sequence.

Proof. It immediately follows from the following known fact:

both { 1
(m+i)!

}∞i=0 and { 1
(m+d−i)!

}∞i=0 are multiplier sequences, see [12] and references
therein.

A sequence Γ = {γi}
n
k=0 is called an n-sequence if for every polynomial f(t) of degree

less than or equal to n and with only real zeros, the polynomial Γ[f(t)] also has only real
zeros. We need the following algebraic characterization of n-sequences.
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Theorem 2.2 ([2]). Let Γ = {γk}
n
k=0 be a sequence of real numbers. Then Γ is an n-

sequence if and only if the zeros of the polynomial Γ[(1 + t)n] are all real and of the same

sign.

Now we can prove Theorem 1.5. By Theorem 1.4, we see that

PUm,d
(t) =

1
(

d+2m
m

)

⌊ d−1
2

⌋
∑

i=0

(

d+ 2m

i+m

)(

d− i− 1

i

)

fm(d, i)t
i, (2.4)

where

fm(d, i) =

m−1
∑

h=0

1

(m− h)
(

m

h

)

(

i+m

m− h− 1

)(

i− 1 + h

h

)(

d− i+ h

h

)

. (2.5)

Note that i can take any integer value between 0 and d in the above formula, namely,
fm(d, i) is well defined for 0 ≤ i ≤ d. Moreover, it is straightforward to compute that

fm(d, d) =
m−1
∑

h=0

1

(m− h)
(

m

h

)

(

d+m

m− h− 1

)(

d− 1 + h

h

)

=
m−1
∑

h=0

h!(m− h− 1)!

m!
·

(m+ d)!

(m− h− 1)!(d+ h + 1)!
·
(d+ h− 1)!

(d− 1)!h!

=
(m+ d)!

m!(d− 1)!

m−1
∑

h=0

1

(d+ h)(d+ h+ 1)

=
(m+ d)!

m!(d− 1)!

(

1

d
−

1

d+m

)

=
(m+ d)!

m!(d− 1)!
·

m

d(d+m)

=

(

m+ d− 1

m− 1

)

.

To prove Theorem 1.5, we first establish the following result.

Lemma 2.3. For any m and d, the polynomial

1
(

d+2m
m

)

⌊ d−1
2

⌋
∑

i=0

(

d+ 2m

i+m

)(

d− i− 1

i

)

ti, (2.6)

has only real zeros.

Proof. By Lemma 2.1 it suffices to show that

⌊ d−1
2

⌋
∑

i=0

(

d− i− 1

i

)

ti, (2.7)

10



has only real zeros. This is true since the d-th Fibonacci polynomial

Fd(t) =

⌊ d−1
2

⌋
∑

i=0

(

d− i− 1

i

)

td−2i−1

has only pure imaginary zeros for d ≥ 3, see [9, 11].

In view of (2.4) and Lemma 2.3, Theorem 1.5 will be proved once we show that
{fm(d, i)}

d
i=0 is a d-sequence for 2 ≤ m ≤ 15. Numerical evidence suggests the following

conjecture.

Conjecture 2.4. For any m, d, and 0 ≤ i ≤ d, let fm(d, i) be defined as in (2.5). Then

{fm(d, i)}
d
i=0 is a d-sequence.

Note that if Conjecture 2.4 is true, then the real-rootedness of the Kazhdan-Lusztig
polynomials PUm,d

(t) will immediately follow from Lemma 2.3. While Conjecture 2.4 is
generally open, we can prove the following result.

Theorem 2.5. For any d and 2 ≤ m ≤ 15, the sequence {fm(d, i)}
d
i=0 is a d-sequence.

Next we will provide a general approach to prove Theorem 2.5. Theoretically, our
approach is applicable for any given m. However, we would need more and more com-
puter time as m becomes larger. (On a Ubuntu server with Intel Xeon CPU E5-2640 v3
(2.60GHz), it takes 9 hours calculation for m = 14 and 20 hours for m = 15.)

By Theorem 2.2, in order to prove 2.5, it suffices to show that

Qd(t) =

d
∑

i=0

fm(d, i)

(

d

i

)

ti (2.8)

has only nonnegative zeros for 2 ≤ m ≤ 15. By (2.5) it is easy to see that fm(d, i) can
be considered as a polynomial in i and d for any fixed m, and as a polynomial in i the

polynomial fm(d, i) is of degree 2(m − 1) with leading coefficients (−1)m−1

(m−1)!m!
and constant

term 1. Thus, we may express fm(d, i) in terms of the falling factorials, say

fm(d, i) =

2(m−1)
∑

k=0

gm,k(d)(i)k, (2.9)

where gm,k(d) is a polynomial of d and (i)k = i(i− 1) · · · (i− k+1). It is easy to see that

gm,0(d) = 1 and gm,2(m−1)(d) =
(−1)m−1

(m−1)!m!
. Combining (2.8) and (2.9), we obtain that

Qd(t) =
d
∑

i=0





2(m−1)
∑

k=0

gm,k(d)(i)k





(

d

i

)

ti

11



=

2(m−1)
∑

k=0

gm,k(d)

(

d
∑

i=0

(i)k

(

d

i

)

ti

)

=

2(m−1)
∑

k=0

gm,k(d)t
k((1 + t)d)(k)

=

2(m−1)
∑

k=0

gm,k(d)(d)kt
k(1 + t)d−k

= (1 + t)d
2(m−1)
∑

k=0

gm,k(d)(d)k

(

t

1 + t

)k

.

Therefore, to prove Theorem 2.5 it suffices to show that

Gm,d(t) =

2(m−1)
∑

k=0

gm,k(d)(d)kt
k (2.10)

has only real zeros for 2 ≤ m ≤ 15. Note that Gm,d(1) 6= 0 since, by (2.9), we have

Gm,d(1) =

2(m−1)
∑

k=0

gm,k(d)(d)k1
k = fm(d, d) =

(

d+m− 1

m− 1

)

> 0.

We proceed to show our strategy to prove the real-rootedness of Gm,d(t) defined by
(2.10). For given m and d < 2(m−1), we can directly verify the real-rootedness of Gm,d(t)
when d < 2(m − 1) with the help of a computer algebra system. When d ≥ 2(m − 1)
for fixed m, we will prove that Gm,d(t) is of degree 2(m− 1) and it has 2(m− 1) distinct
real zeros. The former is obvious, and the latter can be proved via a criterion due to
Borchardt and Hermite, we will recall below, see the discussions in [16, pp. 349]. Suppose
that A(t) =

∑n

i=0 an−it
i and B(t) =

∑n

i=0 bn−it
i are two polynomials with a0 6= 0. For

any 1 ≤ k ≤ n, let

∆2k (A(t), B(t)) = det



















a0 a1 a2 . . . a2k−1

b0 b1 b2 . . . b2k−1

0 a0 a1 . . . a2k−2

0 b0 b1 . . . b2k−2
...

...
...

...
0 0 0 . . . bk



















2k×2k

.

These determinants are known as the Hurwitz determinants of A(t) and B(t). Borchardt
and Hermite’s criterion can be stated as follows.

Theorem 2.6 ([16, Corollary 10.6.13]). Suppose that A(t) is a real polynomial of degree n
with a0 6= 0. Then A(t) has n distinct real zeros if and only if the corresponding Hurwitz

determinants satisfy

∆2k(A(t), A
′(t)) > 0, for every 1 ≤ k ≤ n. (2.11)

12



Now we can prove Theorem 2.5.

Proof of Theorem 2.5. Following the preceding arguments, we will takem = 2 to illustrate
our proof. We first expand fm(d, i) in terms of the falling factorials. For m = 2 we have

fm(d, i) = 1 +
(d+ 2)i

2
−

i2

2
= (i)0 +

d+ 1

2
(i)1 −

1

2
(i)2.

Then we determine the explicit expression of Gm,d(t) defined by (2.10). In the case of
m = 2, we have

Gm,d(t) = 1 +
d+ 1

2
(d)1t−

1

2
(d)2t

2 = 1 +
d(d+ 1)

2
t−

d(d− 1)

2
t2.

Finally, it remains to prove the real-rootedness of Gm,d(t) under each of the following two
cases: (i) d < 2(m− 1); (ii) d ≥ 2(m− 1).

Let us first consider the case of d < 2(m − 1). For m = 2, such d can only be 1. In
this case, we have G2,1(t) = 1 + t, which is clearly real-rooted.

We proceed to consider the case of d ≥ 2(m− 1). In this case, Gm,d(t) is a polynomial
in t of degree 2(m − 1). By Theorem 2.6, we need to prove the positivity of 2(m − 1)
Hurwitz determinants ∆2k(Gm,d(t), G

′
m,d(t)) for 1 ≤ k ≤ 2(m − 1). To this end, let

d′ = d − 2(m − 1) ≥ 0. It suffices to show that for any 1 ≤ k ≤ 2(m − 1) the Hurwitz
determinant ∆2k(Gm,d(t), G

′
m,d(t)) is a polynomial in d′ with positive coefficients. For

m = 2, it is straightforward to compute that

∆2(G2,d(t), G
′
2,d(t)) = det

(

−1
2
(d− 1)d 1

2
d(d+ 1)

0 −(d− 1)d

)

=
1

2
(d− 1)2d2

=
d′4

2
+ 3d′3 +

13d′2

2
+ 6d′ + 2,

and

∆4(G2,d(t), G
′
2,d(t)) = det









−1
2
(d− 1)d 1

2
d(d+ 1) 1 0

0 −(d − 1)d 1
2
d(d+ 1) 0

0 −1
2
(d− 1)d 1

2
d(d+ 1) 1

0 0 −(d − 1)d 1
2
d(d+ 1)









=
1

16
(d− 1)2d3

(

d3 + 2d2 + 9d− 8
)

=
d′8

16
+ d′7 +

59d′6

8
+ 31d′5 +

1265d′4

16
+ 124d′3 +

233d′2

2
+ 60d′ + 13,

where d′ = d− 2 ≥ 0. For larger m, both computing the Hurwitz determinants and veri-
fying the positivity of polynomial coefficients can be done with the help of a computer alge-
bra system. For 3 ≤ m ≤ 15, a similar calculation can be found in
https://github.com/mathxie/kl uniform matroid. This completes the proof.
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Finally, we are in the position to prove Theorem 1.5.

Proof of Theorem 1.5. It immediately follows from Lemma 2.3 and Theorem 2.5 in view
of the positivity of polynomial coefficients.

2.3 Gedeon, Proudfoot and Young’s formula

The aim of this subsection is to prove Gedeon, Proudfoot, and Young’s formula (1.2)
based on our new formula (1.4) for cim,d.

To be self-contained, we will first recall Gedeon, Proudfoot, and Young’s original proof
of (1.2), with more details added here. Given a nonnegative integer n, a partition of n is
a tuple λ = (λ1, λ2, . . . , λk) of nonnegative integers such that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 and
∑k

i=1 λi = n, denoted by λ ⊢ n. For any partition λ ⊢ n, let ℓ(λ) denote the number of its
nonzero parts and let V [λ] be the irreducible representation of Sn indexed by λ. Gedeon,
Proudfoot, and Young [7] obtained the following result.

Theorem 2.7 ([7, Theorem 3.1]). For all positive m, d, and i, we have

cim,d =

min(m,d−2i)
∑

h=1

dimV [d+m− 2i− h + 1, h+ 1, 2i−1]. (2.12)

To derive (1.2) from the above theorem, we need to compute dim V [d+m− 2i− h+
1, h + 1, 2i−1] by using the hook-length formula. Let us recall some related definitions.
Each partition λ is associated to a left justified array of squares with λi cells in the i-th
row, called the Young diagram of λ. The square in the i-th row and j-th column is denoted
by (i, j). The hook-length of (i, j), denoted by h(i, j), is defined to be the number of cells
directly to the right or directly below (i, j), counting (i, j) itself once. The well known
hook-length formula states that

dimV [λ] =
n!

∏

1≤i≤ℓ(λ)
1≤j≤λi

h(i,j)

, (2.13)

see [5, pp. 50].

Now one can prove (1.2) by using (2.12) and (2.13).

The first proof of Theorem 1.2. It suffices to show that dimV [d+m−2i−h+1, h+1, 2i−1]
is equal to

(e− i− h+ 1)(m+ d)!

e(e+ 1)(i+ h)(i+ h− 1)(e− i)!(h− 1)!i!(i− 1)!
,
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where e = m + d − i − h. We can check that the hook-lengths of the first row of the
partition (d+m− 2i− h+ 1, h+ 1, 2i−1) are given by

h(1,j) =







m+ d− i− h+ 2− j, for 1 ≤ j ≤ 2;
m+ d− 2i− h+ 3− j, for 3 ≤ j ≤ h+ 1;
m+ d− 2i− h+ 2− j, for h+ 2 ≤ j ≤ m+ d− 2i− h+ 1,

(2.14)

the hook-lengths of the second row of the partition (d +m − 2i − h + 1, h + 1, 2i−1) are
given by

h(2,j) =

{

h+ i− j + 1, for 1 ≤ j ≤ 2;
h+ 2− j, for 3 ≤ j ≤ h+ 1,

(2.15)

and the hook-lengths of the last i−1 rows of the partition (d+m−2i−h+1, h+1, 2i−1)
are given by

h(k,j) = i− k − j + 4 for 3 ≤ k ≤ i+ 1 and 1 ≤ j ≤ 2.

It is routine to verify that

∏

1≤j≤m+d−2i−h+1

h(1,j) = (m+ d− i− h)(m+ d− i− h + 1)×
(m+ d− 2i− h)!

(m+ d− 2i− 2h+ 1)
;

(2.16)
∏

1≤j≤b+1

h(2,j) = (i+ h)(i+ h− 1)× (h− 1)!; (2.17)

∏

3≤k≤i+1,1≤j≤2

h(k,j) = i!(i− 1)!. (2.18)

Therefore, by (2.13), dimV [d+m− 2i− h+ 1, h+ 1, 2i−1] is equal to

(m+ d)!
∏

1≤j≤m+d−2i−b+1

h(1,j) ×
∏

1≤j≤b+1

h(2,j) ×
∏

3≤k≤i+1,1≤j≤2

h(k,j)

.

Substituting (2.16),(2.17) and (2.18) into the above identity, we obtain the desired result.
This completes the proof.

As remarked by Gedeon, Proudfoot, and Young, after they figured out the formula
(1.2), they attempted to prove this formula directly but failed. In the following we shall
use (1.4) to prove (1.2). Since (1.4) is derived from (1.3) while (1.3) can be proved by
(1.1), the following proof provides a direct way to prove (1.2).

The second proof of Theorem 1.2. First, we claim that the upper bound min(m, d − 2i)
of summation in (1.2) can be replaced with m, namely

cim,d =
m
∑

h=1

(e− i− h+ 1)(m+ d)!

e(e+ 1)(i+ h)(i+ h− 1)(e− i)!(h− 1)!i!(i− 1)!
, (2.19)
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where e = m+ d− i−h. If m ≤ d− 2i, then min(m, d− 2i) = m, and the claim is clearly
true. For m ≥ d− 2i+ 1, it suffices to show that

m
∑

h=d−2i+1

(e− i− h + 1)(m+ d)!

e(e + 1)(i+ h)(i+ h− 1)(e− i)!(h− 1)!i!(i− 1)!
= 0,

or equivalently,

m
∑

h=d−2i+1

(e− i− h+ 1)

e(e+ 1)(i+ h)(i+ h− 1)(e− i)!(h− 1)!
= 0,

where e = m+ d− i− h. Letting s = m+ (d− 2i+ 1), the above identity becomes

m
∑

h=d−2i+1

((s− h)− h)

(i+ s− h)(i+ h)× (i− 1 + (s− h))(i− 1 + h)× (−1 + s− h)!(−1 + h)!
= 0,

which is obviously true since the interchange of h with s− h just changes the summand
to its opposite value.

Note that (2.19) can be rewritten as

cim,d =

(

d+m

i

) m
∑

h=1

(e− i− h + 1)(m+ d− i)!

e(e+ 1)(i+ h)(i+ h− 1)(e− i)!(h− 1)!(i− 1)!
,

where e = m+ d− i− h. Denote by f i
m,d the summation on the right hand side, namely

f i
m,d = cim,d/

(

d+m

i

)

. By (1.4) it suffices to show that

f i
m,d =

1

d− i

m−1
∑

h=0

(

d− i+ h

h+ i+ 1

)(

i− 1 + h

h

)

,

or equivalently

f i
m+1,d − f i

m,d =
1

d− i

(

d− i+m

i+m+ 1

)(

i+m− 1

m

)

(2.20)

with

f i
1,d =

1

d− i

(

d− i

i+ 1

)

. (2.21)

The latter (2.21) is obvious and the former (2.20) can be proved by using Zeilberger’s
algorithm along the following lines:

In[8]:= e = m + d− i − h;

In[9]:= Zb[
(e − i − h + 1)(m + d − i)!

e(e + 1)(i + h)(i+ h − 1)(e − i)!(h− 1)!(i− 1)!
, {h, 1,m},m, 1]
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In[10]:= FunctionExpand[%] /. Gamma[n ] → (n − 1)!

Out[10]=

{

−SUM[m] + SUM[1 +m] ==
(d− i+m)!

(d− i)(i +m)(i+m+ 1)(i− 1)!m!(d − 2i− 1)!

}

As indicated above, we have

f i
m+1,d − f i

m,d =
(d− i+m)!

(d− i)(i+m)(i+m+ 1)(i− 1)!m!(d− 2i− 1)!

=
1

d− i

(

d− i+m

i+m+ 1

)(

i+m− 1

m

)

,

as desired. This completes the proof.

3 The Z-polynomials

The aim of this section is to prove Theorems 1.6 and 1.7 based on Theorem 1.3.

3.1 Polynomial coefficients

In this subsection we will give a proof of Theorems 1.6. Before that, let us first prove
the following result.

Theorem 3.1. For any m, d, and 0 ≤ i ≤ d− 1, we have

zim,d =

(

d+2m
i+m

)(

d

i

)

(

d+2m
m

)

m
∑

h=1

(−1)h+1h

m

(

i+m

m− h

)(

d− i− h+m− 1

m− 1

)

(3.1)

with zdm,d = 1.

Proof. By equating coefficients on both sides of (1.5), we find that zdm,d = 1 and

zd−i
m,d =

2i−1
∑

k=i

(

d+m

k +m

)

ck−i
m,k =

i−1
∑

k=0

(

d+m

k + i+m

)

ckm,k+i,

for each 1 ≤ i ≤ d. Then substituting (1.3) into the above identity yields

zd−i
m,d =

i−1
∑

k=0

(

d+m

k + i+m

)(

k + i+m

k

) m
∑

h=1

(−1)h+1h

m+ i− h

(

m+ i− h

i− k − h

)(

m+ k

m− h

)

.

By interchanging the order of summation, we have

zd−i
m,d =

m
∑

h=1

(−1)h+1h

m+ i− h

i−1
∑

k=0

(

d+m

k + i+m

)(

k + i+m

k

)(

m+ i− h

i− k − h

)(

m+ k

m− h

)

.
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Note that
(

d+m

k + i+m

)(

k + i+m

k

)

=

(

d+m

i+m

)(

d− i

k

)

,

(

m+ i− h

i− k − h

)(

m+ k

m− h

)

=

(

i

i− h− k

)(

m+ i− h

m− h

)

.

Thus, we have

zd−i
m,d =

(

d+m

i+m

) m
∑

h=1

(−1)h+1h

m+ i− h

(

m+ i− h

m− h

) i−1
∑

k=0

(

i

i− h− k

)(

d− i

k

)

=

(

d+m

i+m

) m
∑

h=1

(−1)h+1h

m+ i− h

(

m+ i− h

m− h

) i−h
∑

k=0

(

i

i− h− k

)(

d− i

k

)

where the last equality holds since
(

i

i−h−k

)

= 0 for k > i − h. By the Chu-Vandermonde
identity, for each 1 ≤ i ≤ d we have

zd−i
m,d =

(

d+m

i+m

) m
∑

h=1

(−1)h+1h

m+ i− h

(

m+ i− h

m− h

)(

d

i− h

)

.

Further replacing i with d− i, we get that

zim,d =

(

d+m

i

) m
∑

h=1

(−1)h+1h

m+ d− i− h

(

m+ d− i− h

m− h

)(

d

i+ h

)

=

(

d+2m
i+m

)(

d

i

)

(

d+2m
m

)

m
∑

h=1

(−1)h+1h

m

(

i+m

m− h

)(

d− i− h +m− 1

m− 1

)

,

where 0 ≤ i ≤ d− 1. This completes the proof.

We proceed to prove Theorem 1.6.

Proof of Theorem 1.6. Substituting i = d into the right hand side of (1.6), we get that

zdm,d =
m−1
∑

h=0

d(h−m+ 1) +m

(h+ 1)m

(

d− 1 + h

h

)

=
m−1
∑

h=0

(

d

m
−

d− 1

h+ 1

)(

d− 1 + h

h

)

=
m−1
∑

h=0

(

d

m

(

d+ h− 1

h

)

−

(

d+ h− 1

h + 1

))

=
d

m

m−1
∑

h=0

((

d+ h

h

)

−

(

d+ h− 1

h− 1

))

−
m−1
∑

h=0

((

d+ h

h+ 1

)

−

(

d+ h− 1

h

))
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=
d

m

(

d+m− 1

m− 1

)

−

((

d+m− 1

m

)

− 1

)

= 1.

This shows that (1.6) holds for i = d in view of Theorem 3.1.

Next we show that (1.6) holds for 0 ≤ i < d− 1. By (1.6) and (3.1), it is sufficient to
show that f i

m,d = gim,d, where

f i
m,d =

m
∑

h=1

(−1)h+1h

m

(

i+m

m− h

)(

d− i− h+m− 1

m− 1

)

,

gim,d =

m−1
∑

h=0

i(h−m+ 1) +m

(h+ 1)m

(

i− 1 + h

h

)(

d− i+ h

h

)

.

It is clear that f i
1,d = gi1,d = 1. It remains to show that f i

m,d and gim,d have the same
recurrence relation with respect to m. We first use Zeilberger’s algorithm to determine
the recursion satisfied by f i

m,d.

In[11]:= Zb
[(−1)h+1h

m
Binomial[i+m,m−h]Binomial[d−i−h+m−1,m−1], {h, 1,m},m

]

;

In[12]:= FunctionExpand[%] /. Gamma[n ] → (n − 1)!

Out[12]=

{

−m(d+di−i
2+dm)SUM[m]+(1+m)(di−i

2+dm)SUM[1+m] =
(i+m)!(d− i+m)!

(i− 1)!(m!)2(d− i− 1)!

}

As indicated above, we have

(1 +m)(di− i2 + dm)f i
m+1,d −m(d+ di− i2 + dm)f i

m,d =
(i+m)!(d − i+m)!

(i− 1)!(m!)2(d− i− 1)!
.

Similarly, we apply Zeilberger’s algorithm to gim,d as follows.

In[13]:= Zb[
i(h − m + 1) + m

(h + 1)m
Binomial[i−1+h, h]Binomial[d−i+h, h], {h, 0,m−1},m];

In[14]:= FunctionExpand[%] /. Gamma[n ] → (n − 1)!

Out[14]=

{

−m(d+di−i
2+dm)SUM[m]+(1+m)(di−i

2+dm)SUM[1+m] =
(i+m)!(d− i+m)!

(i− 1)!(m!)2(d− i− 1)!

}

We find that gim,d satisfies the same recurrence relation as f i
m,d, as desired. This

completes the proof.
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3.2 Real zeros

This subsection is devoted to the study of the real-rootedness of the Z-polynomials
ZUm,d

(t). As will be shown below, Theorem 1.7 would follow in the same manner as
Theorem 1.5.

By Theorem 1.6, we see that

ZUm,d
(t) =

1
(

d+2m
m

)

d
∑

i=0

(

d+ 2m

i+m

)(

d

i

)

bm(d, i)t
i, (3.2)

where

bm(d, i) =
m−1
∑

h=0

i(h−m+ 1) +m

(h + 1)m

(

i− 1 + h

h

)(

d− i+ h

h

)

. (3.3)

Note that i can take any integer value between 0 and d in the above formula, namely,
bm(d, i) is well defined for 0 ≤ i ≤ d. Moreover, we have bm(d, d) = 1 since zdm,d = 1.

Parallel to Lemma 2.3, we need the following result to prove Theorem 1.7. We omit
the proof of the lemma here.

Lemma 3.2. For any m and d, the polynomial

1
(

d+2m
m

)

d
∑

i=0

(

d+ 2m

i+m

)(

d

i

)

ti, (3.4)

has only real zeros.

Parallel to Conjecture 2.4, we have the following conjecture.

Conjecture 3.3. For any m, d, and 0 ≤ i ≤ d, let bm(d, i) be defined as in (3.3). Then

{bm(d, i)}
d
i=0 is a d-sequence.

We can not prove this conjecture for any m. To prove Theorem 1.7, we only need to
prove the following theorem.

Theorem 3.4. For any d and 2 ≤ m ≤ 15, the sequence {bm(d, i)}
d
i=0 is a d-sequence.

Proof. The proof is similar to that of Theorem 2.5. In fact, fm(d, i) and bm(d, i) share
some common properties. Note that bm(d, i) can also be considered as a polynomial in
i and d for any fixed m, and as a polynomial in i the polynomial bm(d, i) is of degree

2(m − 1) with leading coefficients (−1)m−1

(m−1)!m!
and constant term 1. Thus, we can express

bm(d, i) in terms of the falling factorials as done for fm(d, i):

bm(d, i) =

2(m−1)
∑

k=0

ym,k(d)(i)k. (3.5)
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To prove the theorem, it suffices to show that

Rd(t) =

d
∑

i=0

bm(d, i)

(

d

i

)

ti (3.6)

has only nonnegative zeros for 2 ≤ m ≤ 15. Recall that in the proof of Theorem 2.5 we
transform the problem of proving the real-rootedness of Qd(t) into the problem of proving
the real-rootedness of Gm,d(t) defined by (2.10). In the same manner, we are able to
reduce the problem of proving the real-rootedness of Rd(t) into the problem of proving
the real-rootedness of the polynomial

Ym,d(t) =

2(m−1)
∑

k=0

ym,k(d)(d)kt
k, (3.7)

where ym,k(d) is defined by (3.5).

The real-rootedness of Ym,d(t) can be proved along the lines of proving the real-
rootedness of Gm,d(t). We still take m = 2 to illustrate our proof. We first expand
bm(d, i) in terms of the falling factorials, and then determine the explicit expression of
Ym,d(t). For m = 2 we have

bm(d, i) = 1 +
di

2
−

i2

2
= (i)0 +

d− 1

2
(i)1 −

1

2
(i)2

Ym,d(t) = 1 +
d− 1

2
(d)1t−

1

2
(d)2t

2 = 1 +
d(d− 1)

2
t−

d(d− 1)

2
t2.

Now, to prove the real-rootedness of Ym,d(t), there are two cases to consider: (i) d <
2(m− 1); (ii) d ≥ 2(m− 1).

Let us first consider the case of d < 2(m − 1). For m = 2, such d can only be 1. In
this case, we have Y2,1(t) = 1.

We proceed to consider the case of d ≥ 2(m − 1). In this case, Ym,d(t) is obviously
a polynomial in t of degree 2(m − 1). As before, by Theorem 2.6, we need to prove the
positivity of 2(m − 1) Hurwitz determinants ∆2k(Ym,d(t), Y

′
m,d(t)) for 1 ≤ k ≤ 2(m − 1).

We find that the substitution of d′ = d − 2(m − 1) ≥ 0 is still helpful. In fact, we can
show that for any 1 ≤ k ≤ 2(m − 1) the Hurwitz determinant ∆2k(Ym,d(t), Y

′
m,d(t)) is

a polynomial in d′ with positive coefficients when m is not too big. For m = 2, it is
straightforward to compute that

∆2(Y2,d(t), Y
′
2,d(t)) = det

(

−1
2
(d− 1)d 1

2
d(d− 1)

0 −(d− 1)d

)

=
1

2
(d− 1)2d2

=
d′4

2
+ 3d′3 +

13d′2

2
+ 6d′ + 2,
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and

∆4(Y2,d(t), Y
′
2,d(t)) = det









−1
2
(d− 1)d 1

2
(d− 1)d 1 0

0 −(d − 1)d 1
2
(d− 1)d 0

0 −1
2
(d− 1)d 1

2
(d− 1)d 1

0 0 −(d − 1)d 1
2
(d− 1)d









=
1

16
(d− 1)2d2

(

d4 − 2d3 + 9d2 − 8d
)

=
d′8

16
+

3d′7

4
+

35d′6

8
+

63d′5

4
+

585d′4

16
+ 54d′3 +

97d′2

2
+ 24d′ + 5,

where d′ = d − 2 ≥ 0. For 3 ≤ m ≤ 15, a similar calculation can be found in
https://github.com/mathxie/kl uniform matroid. This completes the proof.

Finally, we are in the position to prove Theorem 1.7.

Proof of Theorem 1.7. It is clear that ZUm,d
(t) is a polynomial with positive coefficients,

see (1.5). Combining Theorem 3.4 and Lemma 3.2 we obtain the desired result.
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