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Abstract

Whitney’s 2-Isomorphism Theorem characterises when two graphs have isomorphic cycle
matroids. We present an analogue of this theorem for graphs embedded in surfaces by
characterising when two graphs in surface have isomorphic delta-matroids.
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1. Introduction

There is a well-known symbiotic relationship between graph theory and matroid theory,
with each area informing the other. (A good introduction to this relationship can be found
in [24]). The transition between graphs and matroids is usually through cycle matroids.
However, care must be taken when moving between graphs and matroids since there is not a
1-1 correspondence between the sets of graphs and cycle matroids — different graphs can give
rise to the same cycle matroids. Whitney’s 2-Isomorphism Theorem [28] (see also [26, 27])
characterises this indeterminacy by determining when two graphs have isomorphic cycle
matroids:

Whitney’s 2-Isomorphism Theorem. Let G and H be graphs, with cycle matroids C(G)
and C(H). Then C(G) and C(H) are isomorphic matroids if and only if G and H are related
by isomorphism, vertex identification, vertex cleaving, or Whitney twisting.

The graph moves in the theorem are described in Figure 1 (their formal definitions, which
are not needed here, can be found in Chapter 5 of [23]). Graphs G and H that are related
as in the theorem statement are said to be 2-isomorphic.

G1 G2
identification−−−−−−−→
←−−−−−−−

cleaving

G1 G2 G1 G2 Whitney←−−−→
twisting

G1

G2

Figure 1: 2-isomorphism: vertex identification, vertex cleaving and Whitney twisting
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The cycle matroid C(G) of a graph embedded in a surface, G, records no information
about its embedding. Thus the symbiotic relationship above between matroid theory and
graph theory does not extend to one between matroid theory and topological graph theory.
For a matroidal analogue of a graph embedded in a surface, one should instead consider
delta-matroids. Delta-matroids generalise matroids and were introduced in the mid-1980s,
independently, by Bouchet in [1]; Chandrasekaran and Kabadi, under the name of pseudo-
matroids, in [7]; and Dress and Havel, under the name of metroids, in [15]. (Here we follow
the terminology and notation of Bouchet.) In [11], Chun, Moffatt, Noble and Rueckriemen
proposed that a symbiotic relationship, analogous to that between graph theory and matroid
theory, holds between topological graph theory and delta-matroid theory. This perspective
has led to a number of recent advances in both areas.

For this relationship, it is convenient (but not essential) to realise graphs embedded in
surfaces as ribbon graphs (these are defined in Section 2.2). The delta-matroid D(G) of a
ribbon graph G provides a topological analogue of a cycle matroid of a graph. Just as in
the classical case of graphs and matroids, care must be taken when passing between ribbon
graphs and delta-matroids since different ribbon graphs can have the same delta-matroid.
In this paper we characterise when two ribbon graphs have the same delta-matroid. That
is, we provide an analogue of Whitney’s Theorem for ribbon graphs their delta-matroids:

Theorem 1. Let G and H be ribbon graphs, and let D(G) and D(H) be their delta-matroids.
Then D(G) ∼= D(H) if and only if G can be obtained from H by ribbon graph isomorphism,
vertex joins, vertex cuts, or mutation.

Vertex joins, vertex cuts and mutation are described in Definitions 1 and 2. However, for
digesting the theorem statement, the reader is likely to find that a quick look at Figures 4
and 5 suffices for the moment.

The result in Theorem 1 is likely to agree with the reader’s intuition. However, from the
perspective of the classical graphs case, the approach to its proof may be unexpected. In
particular, Theorem 1 is entirely independent of Whitney’s 2-isomorphism Theorem. Instead,
its proof relies upon Cunningham’s theory of graph decompositions [13], and Bouchet’s work
on circle graphs [2]. Indeed we feel that the proof provides an illuminating example of how
ribbon graph theory and delta-matroid theory synchronise by bringing together a number of
independently-developed results from each area.

2. Background

In this section, we give brief overview of some relevant definitions and properties of
delta-matroids and ribbon graphs. The material presented here is standard, and a reader
familiar with ribbon graphic delta-matroids may safely skip or skim this section. Additional
background on delta-matroids can be found in [11, 21], and on ribbon graphs in [17].

2.1. Delta-matroids

A set system is a pair D = (E,F), where E is a finite set, called the ground set, and F
is a collection of subsets of E. The subsets of E in F are called feasible sets. A set system
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D = (E,F) is proper if F is non-empty, is normal if F contains the empty set, and is even
if every feasible set is of the same parity (i.e., the feasible sets are all of odd size or are all
of even size).

The symmetric difference, X4Y , of two sets X and Y is (X∪Y )\ (X∩Y ). A set system
D = (E,F) is said to satisfy the Symmetric Exchange Axiom if for any X and Y in F , if
there exists u ∈ X4Y , then there exists v ∈ X4Y such that X4{u, v} is in F .

A delta-matroid is a proper set system D = (E,F) that satisfies the Symmetric Ex-
change Axiom. A matroid is a delta-matroid in which all feasible sets have the same size, in
which case the feasible sets are called bases. (This definition is equivalent to the usual basis
definition of a matroid.)

Two delta-matroids or set systems D1 = (E1,F1) and D2 = (E2,F2) are isomorphic,
written D1

∼= D2, if there exists a bijection φ : E1 → E2 such that a subset X of E1 is in F1

if and only if φ(X) is in F2.

We will consider the operations of twisting and loop complementation on set systems.
Twisting was introduced by Bouchet in [1], and loop complementation by Brijder and Hooge-
boom in [6]. Let D = (E,F) be a set system, e ∈ E, and A ⊆ E. The twist of D with
respect to A, denoted by D ∗ A, is (E, {A4X : X ∈ F}).

Loop complementation of D on e, denoted by D + e, is defined to be the set system
(E,F ′) where

F ′ = F4{F ∪ e : F ∈ F and e /∈ F}.

If e1, e2 ∈ E then (D+ e1) + e2 = (D+ e2) + e1. This means that if A = {a1, . . . , an} ⊆ E we
can unambiguously define the loop complementation of D on A, by D+A := D+a1+· · ·+an.

If D is a delta-matroid, then D ∗A is always a delta-matroid, but, in general, D+A need
not be. However, for the class of delta-matroids we are interested in here (the delta-matroids
of ribbon graphs), it always is (this follows from Item (4) of Theorem 3 below).

We shall make use of properties of binary delta-matroids. Let A be a symmetric matrix
over some field, whose rows and columns are labelled (in the same order) by a set E. For
X ⊆ E, let A[X] denote the principal submatrix of A given by the rows and columns
indexed by X. Define a collection F of subsets of E by taking X ∈ F if and only if A[X]
is non-singular. By convention, A[∅] is considered to be non-singular. Bouchet proved in [3]
that D(A) := (E,F) is a delta-matroid. Note that D(A) is necessarily normal.

A normal delta-matroid D is said to be binary if D ∼= D(A) for some symmetric matrix
A over GF(2). A delta-matroid is binary if it is a twist of a normal binary delta-matroid.

An important fact for us here is that normal binary delta-matroids are completely deter-
mined by their feasible sets of size at most 2, a result due to Bouchet and Duchamp [5]:

Theorem 2. Let (E,F ′) be a normal set system. Then there is exactly one binary delta-
matroid D = (E,F) such that the collections of sets of size at most two in F and F ′ are
identical.

The fundamental graph of a normal even delta-matroid D = (E,F) is the graph with
vertex set E, and with an edge xy if and only if {x, y} ∈ F . The fundamental graph
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completely determines the ground set and the feasible sets of size at most two of an even set
system. Hence, by Theorem 2, it uniquely determines a normal even binary delta-matroid.
Thus we have that a normal even binary delta-matroid is completely determined by its
fundamental graph, and, conversely, that every simple graph uniquely determines a normal
even binary delta-matroid.

2.2. Ribbon graphs

A ribbon graph G = (V,E) is a surface with boundary, represented as the union of two
sets of discs — a set V of vertices and a set E of edges — such that: (1) the vertices and
edges intersect in disjoint line segments; (2) each such line segment lies on the boundary of
precisely one vertex and precisely one edge; and (3) every edge contains exactly two such
line segments. A ribbon graph is shown in Figure 2a.

A bouquet is a ribbon graph on exactly one vertex, and a quasi-tree is a ribbon graph that
has exactly one boundary component (recalling that a ribbon graph is always a surface with
boundary). A loop in a ribbon graph is non-orientable if together with its incident vertex
it forms a Möbius band, and is orientable otherwise. For a ribbon graph G = (V,E), and a
subset A of its edges, we let k(A) denote the number of connected components of the ribbon
subgraph (V,A), and we let b(A) denote the number of boundary components of (V,A).

It is well-known that ribbon graphs are equivalent to cellularly embedded graphs in
surfaces. (Ribbon graphs arise naturally from neighbourhoods of cellularly embedded graphs.
On the other hand, topologically a ribbon graph is a surface with boundary, and capping the
holes gives rise to a cellularly embedded graph in the obvious way. See [17, 19] for details.)
We say that a ribbon graph is plane if it describes a graph cellularly embedded in a disjoint
union of spheres.

Ribbon graph equivalence agrees with the usual notion of equivalence of graphs in sur-
faces. Two ribbon graphs G1 = (V1, E1) and G2 = (V2, E2) are equivalent if there is a
homeomorphism (which is orientation preserving when G1 is orientable) from G1 to G2

mapping V1 to V2, and E1 to E2, and so preserving the cyclic order of half-edges at each
vertex.

Arrow presentations, from [8], provide convenient combinatorial descriptions of ribbon
graphs. An arrow presentation is a set of closed curves, each with a collection of disjoint
labelled arrows lying on them, and where each label appears on precisely two arrows. An
arrow presentation is shown in Figure 2b.

Arrow presentations describe ribbon graphs. A ribbon graph G can be formed from an
arrow presentation by identifying each closed curve with the boundary of a disc (forming the
vertex set of G). Then, for each pair of e-labelled arrows, taking a disc (which will form an
edge of G), orienting its boundary, placing two disjoint arrows on its boundary that point
in the direction of the orientation, and identifying each e-labelled arrow on this edge. See
Figure 2. Conversely a ribbon graph can be described as an arrow presentation by arbitrarily
labelling and orienting the boundary of each edge disc of G. Then on each arc where an
edge disc intersects a vertex disc, place an arrow on the vertex disc, labelling the arrow with
the label of the edge it meets and directing it consistently with the orientation of the edge
disc boundary. The boundaries of the vertex set marked with these labelled arrows give an
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arrow presentation. Arrow presentations are equivalent if they describe isomorphic ribbon
graphs.

1

2

3

4

(a) A ribbon graph

1

2

3

4

12
3

4

(b) An arrow presentation

Figure 2: A ribbon graph and its description as an arrow presentation

We shall make use of two notions of duals of ribbon graphs: partial duals and partial
petrials. Both notions have a natural geometric definition in terms of ribbon graphs, but for
the application here, their definitions in terms of arrow presentations are most helpful.

Informally, partial petriality, introduced in [16], may be though of as an operation that
“adds or removes half-twists to the edges of a ribbon graph”. Formally, the partial petrial
of G formed with respect to e is the ribbon graph Gτ(e) obtained from G by detaching an
end of e from its incident vertex v creating arcs [a, b] on v, and [a′, b′] on e (so that G is
recovered by identifying [a, b] with [a′, b′]), then reattaching the end by identifying the arcs
antipodally, so that [a, b] is identified with [b′, a′]. For a subset of edges A of G, Gτ(A) is the
ribbon graph obtained by forming the partial petrial of with respect to each edge in A (in
any order).

In terms of arrow presentations, an arrow presentation for Gτ(e) can be obtained by
reversing the direction of exactly one e-labelled arrow in an arrow presentation for G. See
Figure 3.

e e
Gτ(e)←−−−→ e e

G{e}
←−−−→

e

e

Figure 3: Partial petrial and partial dual in terms of arrow presentations

In terms of ribbon graphs, the (geometric) dual G∗ of G, is formed by gluing a disc, which
will form a vertex of G∗, to each boundary component of G by identifying the boundary of
the disc with the curve, then removing the interior of all vertices of G. A partial dual,
introduced by Chmutov in [8], is obtained by “forming the dual with respect to a subset of
the edges” as follows. Let G = (V,E) be a ribbon graph, A ⊆ E, and regard the boundary
components of the ribbon subgraph (V,A) as curves on G. Glue a disc to G along each of
these curves by identifying the boundary of the disc with the curve, and remove the interior
of all vertices of G. The resulting ribbon graph is the partial dual GA.

Partial duality can be described as a splicing operation on arrow presentations. Let G
be a ribbon graph with an edge e. Then the partial dual of G with respect to e is the ribbon
graph denoted G{e} obtained from G by the following process: (1) describe G as an arrow
presentation, (2) ‘splice’ the arrow presentation at the two e-labelled arrows as indicated in
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the right-hand side of Figure 3. (3) The ribbon graph described by this arrow presentation
is G{e}.

When e 6= f are edges of a ribbon graph G = (V,E), it is easily seen that (G{e}){f} =
(G{f}){e}. Thus GA can be obtained from G by forming the partial dual with respect to each
edge of A in any order.

2.3. Ribbon graphic delta-matroids

The cycle matroid C(G) of a graph G = (V,E) can be defined as the pair (E,B), where
B consists of the edge sets of the maximal spanning forests of G. Thus the cycle matroid
C(G) of a ribbon graph G = (V,E) can be defined as (E,B), where B := {A ⊆ E :
b(A) = k(E) and (V,A) is a plane ribbon graph} (since a connected, plane ribbon graph
with exactly one boundary component is precisely a tree). The delta-matroid D(G) of a
ribbon graph G arises by dropping the plane requirement in this formulation of C(G). It
provides an embedded graph analogue of a cycle matroid.

Let G = (V,E) be a ribbon graph. Then D(G) is the set system (E,F) where F := {A ⊆
E : b(A) = k(E)}. In particular, this means that when G is connected, F is collection of the
edge sets of all spanning quasi-trees of G (whereas C(G) is formed from the edge sets of the
spanning trees). As an example, if G is the ribbon graph in Figure 2a, then D(G) = (E,F)
where E = {1, 2, 3, 4} and F = {{1}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 2, 3, 4}}.

A proof that D(G) is indeed a delta-matroid can be found in [4], where it is written in
terms of Eulerian circuits in medial graphs, or in [11], where it is written in terms of ribbon
graphs.

The importance of partial duals and partial petrials here is that they are the rib-
bon graph analogues of the fundamental delta-matroid operations of twisting and loop-
complementation. The following theorem collects this together with some other properties
of ribbon graphic delta-matroids. In the theorem, Items 1 and 2 are due to Bouchet and
from [4] and [3], respectively. Items 3 and 4 are due to Chun, Moffatt, Noble and Rueck-
riemen and from [11] and [10], respectively.

Theorem 3. Let G = (V,E) be a ribbon graph, and A ⊆ E. Then,

1. D(G) is even if and only if G is orientable,

2. D(G) is binary,

3. D(GA) = D(G) ∗ A,

4. D(Gτ(A)) = D(G) + A.

3. Mutation and the main result

This section provides the terminology for Theorem 1. In particular, it introduces ribbon
graph analogues of vertex identification, vertex cleaving, and Whitney twisting. We start
with the analogues of vertex identification and vertex cleaving.
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Definition 1. Suppose that G1 and G2 are ribbon graphs. For i = 1, 2, suppose that αi is an
arc that lies on the boundary of Gi and entirely on a vertex boundary. If a ribbon graph G
can be obtained from G1 and G2 by identifying the arc α1 with α2 (where the identification
merges the vertices), then we say that G is obtained from G1 and G2 by a vertex join, and
that G1 and G2 are obtained from G by a vertex cut.

The operations introduced in Definition 1 are illustrated in Figure 4, and are standard
operations in ribbon graph theory. We say that two ribbon graphs are related by vertex joins
and vertex cuts if there is a sequence of such operations taking one to the other. Note that
vertex joins and vertex cuts provide a way to delete or add isolated vertices. It is important
to observe that the definition of a vertex join does not allow for any “interlacing” of the
edges of G1 and G2. For example, the ribbon graph in Figure 2a cannot be written as the
vertex join of two non-trivial ribbon graphs.

G1 G2

vertex join−−−−−−→
←−−−−−
vertex cut

G

Figure 4: Vertex joins and vertex cuts

The following definition introduces an operation called mutation which provides a ribbon
graph analogue of Whitney twisting. It is illustrated in Figure 5. The figure illustrates
a local change in a ribbon graph (so the ribbon graphs are identical outside of the region
shown), and the two parts of vertices that are shown in it may be from the same vertex.

G2 G2 G2 G2

Figure 5: Mutation for ribbon graphs. (The vertex parts shown need not be from distinct vertices.)

Definition 2. Let G1 and G2 be ribbon graphs. For i = 1, 2, let αi and βi be two disjoint
directed arcs that lie on the boundary of Gi and lie entirely on boundaries of (one or two)
vertices. Furthermore suppose that G is a ribbon graph that is obtained by identifying the
arcs α1 with α2, and β1 with β2, where both identifications are consistent with the direction
of the arcs. (The identification merges the vertices.) Suppose further that H is a ribbon
graph obtained by either:

1. identifying α1 with α2, and β1 with β2, where the identifications are inconsistent with
the direction of the arcs;

2. identifying α1 with β2, and β1 with α2, where the identifications are consistent with
the direction of the arcs;

7



3. identifying α1 with β2, and β1 with α2, where the identifications are inconsistent with
the direction of the arcs.

Then we say that G and H are related by mutation, and that G and H are mutants.

We note that implicit in Definition 2 is that the arcs αi and βi lie on at least three distinct
vertices. (Since if they were on a total of two vertices, G would not be a ribbon graph.) It
may also be the case that the vertices of G1 and G2 are merged into a single vertex (so, for
example, mutation can act on bouquets).

Lemma 1. Let G and H be ribbon graphs on the same edge set E, and let A ⊆ E. Then the
following hold:

1. G and H are mutants if and only if Gτ(A) and Hτ(A) are mutants,

2. G and H are mutants if and only if GA and HA are mutants.

Proof. The results follow since mutation, partial duality, and partial petriality are local
operations acting on different parts of the ribbon graph, and so may be carried out in any
order. This can be seen easily by considering arrow presentations. Suppose that G, G1,
G2, and H are all as in Definition 2. An arrow presentation for G1 t G2 can drawn as in
Figure 6a, where all the arrows are contained inside the shaded regions in the figure, and
where G1 is represented by the arrow presentation A1, and G2 by A2. In particular, this
means that corresponding pairs of arrows are contained in the same shaded regions. G and H
are then obtained by replacing the configuration shown in the dotted box with one of those
shown in Figure 6b. Then as partial duality and partial petriality act entirely within the
shaded regions of A1 and A2, it follows that mutation commutes with each of partial duality
and partial petriality. The result then follows since partial petriality and partial duality are
involutory.

A1 A2

(a) Arrow presentation (b) Configurations for mutation

Figure 6: Mutation in terms of arrow presentations

4. The proof of Theorem 1

Our proof of of Theorem 1 depends upon a result about circle graphs. A chord diagram
consists of a circle in the plane and a number straight line segments, called chords, whose
end-points lie on the circle. The end-points of chords should all be distinct. Chord diagrams
can be regarded as double occurrence words, which are cyclically ordered finite sequences of
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letters over some alphabet, such that each letter occurs exactly twice in the sequence. (Assign
a letter to each chord, then the order of the ends of the chord on the circle determines the
sequence.) Two double occurrence words are equivalent if there is a bijection between their
alphabets that sends one double occurrence word to the other or to the reversed word. Two
chord diagrams are isomorphic if they give rise to equivalent double occurrence words.

The intersection graph of a chord diagram is the graph G = (V,E) where V is the set of
chords, and where uv ∈ E if and only if the chords u and v intersect. A graph is a circle
graph if it is the intersection graph of a chord diagram. In general, different chord diagrams
can have the same intersection graph.

Following the terminology of [9], a share in a chord diagram is a pair of disjoint arcs of
its circle that have the property that if an end of a chord lies on the arcs, then the other end
of the chord also lies on the arcs. In terms of double occurrence words, a share w consists
of two disjoint subwords such that if one letter is contained in the pair of subwords, then so
is the other.

Let w = w1w2w3w4 be a double occurrence word in which w2 and w4 form a share (and
therefore so do w1 and w3). Then the words w1w2w3w4, w1w4w3w2, and w1w4w3w2 are
mutants of w, where wi denotes the word obtained by reversing the order of wi. Two chord
diagrams are said to be related by mutation if they define mutant double occurrence words
(up to equivalence). Figure 7 indicates how mutation acts on a chord diagram.

sh
ar

e

sh
ar
e sh

are

sh
are

Figure 7: Mutation for chord diagrams

The following theorem determines when chord diagrams have the same intersection graph.
It appears implicitly in [2, 12, 18], and explicitly in [9] (whose terminology we follow here).

Theorem 4. Two chord diagrams are related by mutation and isomorphism if and only if
they have isomorphic intersection graphs.

The idea behind the proof of this theorem is to use Cunningham’s theory of graph decom-
positions from [13] to obtain a decomposition of an intersection graph into ‘prime’ graphs
that have unique intersection graphs. This gives a decomposition of a chord diagram into
minimal shares. Mutation then corresponds to the choices that are made when reassembling
a chord diagram from these shares.

An orientable bouquet is equivalent to a chord diagram. (The boundary of the vertex
forms the circle of the chord diagram, and the edges determine the chords). Furthermore, it
is easy to see that two orientable bouquets are mutants if and only if their chord diagrams
are mutants. If we define the intersection graph of a orientable bouquet to be the intersection
graph of the corresponding chord diagram, then Theorem 4 immediately gives the following.

Corollary 1. Two orientable bouquets are related by mutation and isomorphism if and only
if they have isomorphic intersection graphs.
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One further observation we use is that the intersection graph of an orientable bouquet G
coincides with the fundamental graph of D(G) (since {e, f} is a feasible set of D(G) if and
only if the chords corresponding to edges e and f intersect).

Combining these observations gives the orientable case of the following result.

Lemma 2. Let G and H be bouquets. Then D(G) ∼= D(H) if and only if G and H are related
by mutation and isomorphism.

Proof. If one of G or H is orientable and the other non-orientable, then they cannot be related
by mutation or isomorphism, and, by Item 1 of Theorem 3, they cannot have isomorphic
delta-matroids. Thus, without loss of generality we may assume that G and H are both
orientable or both non-orientable.

First suppose that G and H are both orientable. Then D(G) and D(H) are normal, even,
binary delta-matroids, and are therefore completely determine by their fundamental graphs.
Thus D(G) ∼= D(H) if and only if they have isomorphic fundamental graphs. This happens
if and only if G and H have isomorphic intersection graphs (by the observation appearing
just after Corollary 1), and hence, by Corollary 1, if and only if G and H are related by
mutation and isomorphism.

Now suppose that G and H are both non-orientable. Let AG ⊆ E(G) denote the set
of all non-orientable loops in G, and AH ⊆ E(H) denote the set of all non-orientable loops
in H. Then {e} is a feasible set of D(G) if and only if e ∈ AG, and {e} is a feasible set
of D(H) if and only if e ∈ AH. Thus any isomorphism between either G and H, or D(G)
and D(H) identifies AG and AH. Because of this identification, we see D(G) ∼= D(H) if and
only if D(G) + AG ∼= D(H) + AH. By Item 4 of Theorem 3, this happens if and only if
D(Gτ(AG)) ∼= D(Hτ(AH)). However, since Gτ(AG) and Hτ(AH) are both orientable, it follows
from the above that D(Gτ(AG)) ∼= D(Hτ(AH)) if and only if Gτ(AG) and Hτ(AH) are related by
mutation and isomorphism, which, by Lemma 1 happens if and only if G and H are related
by mutation and isomorphism.

Lemma 3. Let G and H be connected ribbon graphs. Then D(G) ∼= D(H) if and only if G
and H are related by mutation and isomorphism.

Proof. If D(G) ∼= D(H), then any feasible set XG of D(G) is identified with a feasible set
XH of D(H). Then D(G) ∼= D(H) if and only if D(G) ∗XG ∼= D(H) ∗XH, for corresponding
feasible setsXG andXH. By Item 3 of Theorem 3, this holds if and only ifD(GXG) ∼= D(HXH),
where XG and XH are edge sets of corresponding quasi-trees of G and H. As both GXG and
HXH are 1-vertex ribbon graphs (as we have formed the partial dual with respect to a quasi-
tree), by Lemma 2, this happens if and only if GXG and HXH are related by isomorphism and
mutation. By Lemma 1, GXG and HXH are related by isomorphism and mutation if and only
if G and H are related by isomorphism and mutation, where XG and XH are corresponding
edge sets.

The main theorem readily follows.
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Proof of Theorem 1. It is not hard to see that vertex joins and vertex cuts do not change
the delta-matroid of a ribbon graph. The delta-matroid of a disconnected ribbon graph is
the direct sum of the delta-matroids of its components, and so it follows from Lemma 3 that
mutation does not change the delta-matroid.

Conversely, if D(G) ∼= D(H), by using vertex joins, we can obtain connected ribbon
graphs G′ and H′ such that D(G) ∼= D(G′) and D(H) ∼= D(H′). By Lemma 3 it follows that
G′ and H′ are related by mutation and isomorphism, and so G and H are related by vertex
joins, mutation, isomorphism, and vertex cuts.

We conclude by noting three corollaries to Theorem 1. The first is the observation that
the planar case of Whitney’s 2-Isomorphism Theorem follows from it. This is since the
delta-matroid of a plane ribbon graph is its cycle matroid.

Corollary 2. Let G and H planar graphs. Then C(G) and C(H) are isomorphic if and only
if G and H are related by isomorphism, vertex identification, vertex cleaving, or Whitney
twisting.

For the second corollary, two graphs are said to be Tutte equivalent if they have the
same Tutte polynomials. A useful result in the area of graph polynomials is that the Tutte
polynomial is invariant under Whitney flips. This follows from Whitney’s 2-Isomorphism
Theorem since the Tutte polynomial of a graph is determined by its cycle matroid. Recently,
much attention has been paid to versions of the Tutte polynomial for graphs in surfaces.
Many of these topological graph polynomials are determined by delta-matroids (see [10, 11,
20, 22, 25]) and so are invariant under mutation by Theorem 1.

Corollary 3. Connected mutant ribbon graphs have the same Bollobás-Riordan, Krushkal,
Las Vergnas, Penrose, ribbon graph and topological transition polynomials.

The Jones polynomial of a knot or link is a specialization of the Bollobás–Riordan polyno-
mial of all-A ribbon graph obtained from one of its diagrams [14]. Vertex joins and mutation
on ribbon graphs corresponds to connected sums and mutation of link diagrams. Hence, by
Corollary 3, we have the following result.

Corollary 4. The Jones polynomial VK(t) of a knot K satisfies the following properties.

1. VK1#K2(t) = VK1(t)VK2(t), where K1#K2 is a connected sum of knots K1 and K2.

2. VK(t) = VK′(t), where K ′ is a mutant of K.

This result is a standard fact in knot theory. What is notable here is that for alternating
links the result can be deduced from Whitney’s Theorem and that the Jones polynomial for
alternating links can be recovered from the Tutte polynomial. The above argument is the
extension of this classical approach to the case of non-alternating links.
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