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In this paper we consider a general class E of self-similar sets 
with complete overlaps. Given a self-similar iterated function 
system Φ = (E, {fi}mi=1) ∈ E on the real line, for each point 
x ∈ E we can find a sequence (ik) = i1i2 . . . ∈ {1, . . . , m}N , 
called a coding of x, such that

x = lim
n→∞

fi1 ◦ fi2 ◦ · · · ◦ fin(0).

For k = 1, 2, . . . , ℵ0 or 2ℵ0 we investigate the subset 
Uk(Φ) which consists of all x ∈ E having precisely k
different codings. Among several equivalent characterizations 
we show that U1(Φ) is closed if and only if Uℵ0 (Φ) is 
an empty set. Furthermore, we give explicit formulae for 
the Hausdorff dimension of Uk(Φ), and show that the 
corresponding Hausdorff measure of Uk(Φ) is always infinite 
for any k ≥ 2. Finally, we explicitly calculate the local 
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dimension of the self-similar measure at each point in Uk(Φ)
and Uℵ0(Φ).

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Given β ∈ (1, 2], for each x ∈ Iβ := [0, 1/(β − 1)] there exists a sequence (di) of zeros 
and ones such that

x =
∞∑
i=1

di
βi

,

and the sequence (di) is called a β-expansion of x. Non-integer base expansions of reals, 
as a natural extension of dyadic expansions, were pioneered by Rényi [30] and Parry [28]. 
In 1990s Erdős et al. [10–12] discovered that for each k = 1, 2, · · · or ℵ0 there exist a base 
β ∈ (1, 2) and a number x ∈ Iβ such that x has exactly k different β-expansions. This 
turns out to be very different from the dyadic expansions, where each x ∈ I2 has a unique 
dyadic expansion excluding countably many exceptions. After the exciting discovery of 
Erdős and his collaborators there was a great interest in the study of non-integer base 
expansions. By using ergodic theorem Sidorov showed in [31] that for β ∈ (1, 2) Lebesgue 
almost every x ∈ Iβ has a continuum of β-expansions (see also, [3]). In the past 30 years 
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there has been a great progress on non-integer base expansions, especially on unique 
β-expansions (see example, [1,6,15,22]). For finite β-expansions, very little is known (see 
[2,21,32]). This motivates us to study the multiple expansions (codings) in a fractal 
setting. For more information on non-integer base expansions we refer the reader to the 
survey paper [20] and the survey chapter [7].

In this paper we consider multiple expansions for self-similar sets with overlaps. For 
1 ≤ i ≤ m let fi(·) be a similitude on R defined by

fi(x) = rix + bi,

where ri ∈ (0, 1) and bi ∈ R. Then there exists a unique non-empty compact set E⊂ R

satisfying (cf. [17])

E =
m⋃
i=1

fi(E).

In this case, the couple Φ = (E, {fi}mi=1) is called a self-similar iterated function system
(SIFS), and the compact set E is called a self-similar set generated by {fi}mi=1.

Now we introduce a class E of SIFS Φ = (E, {fi}mi=1) on R which will be our object 
throughout the paper. Denote by I = [a, b] the convex hull of the self-similar set E. We 
say that Φ ∈ E if it satisfies the following conditions (A)–(D).

(A) a = f1(a) < f2(a) < · · · < fm(a) < fm(b) = b.
(B) fi(I) ∩ fi+2(I) = ∅ for any i ∈ {1, . . . ,m− 2}.
(C) There exist i, j ∈ {1, · · · , m − 1} such that

fi(I) ∩ fi+1(I)�=∅ and fj(I) ∩ fj+1(I)=∅.

(D) If fi(I) ∩ fi+1(I) �= ∅, then there exist positive integers ui and vi such that

fi(I) ∩ fi+1(I) = fimui (I) = f(i+1)1vi (I),

where fi1···ik(·) := fi1 ◦ · · · ◦fik(·) denotes the compositions of the maps fi1 , . . . , fik .

The intervals fi(I), i = 1, · · · , m are called the basic intervals of Φ = (E, {fi}mi=1). Then 
by Conditions (A)–(D) it follows that m ≥ 3, and the basic intervals are located from left 
to right in the following way (see, e.g., Fig. 1). The most left one is f1(I), and the second 
one is f2(I), and the most right one is fm(I). Furthermore, there exist two neighboring 
basic intervals having a non-empty intersection, and there also exist two neighboring 
basic intervals having an empty intersection. But any three basic intervals must have 
an empty intersection. By Condition (D) it follows that any basic interval cannot be 
included in another basic interval, and the intersection of basic intervals cannot be a 
singleton.
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Fig. 1. The basic intervals f1(I), f2(I), f3(I) and f4(I) with I = [0, 1], and the maps fi, 1 ≤ i ≤ 4 are 
defined as in (1.3) with β = 4, M = 1, N = 2. Then f1(I) ∩ f2(I) = f14(I) = f21(I) and f3(I) ∩ f4(I) =
f344(I) = f411(I). So the SIFS Φ = (E, {fi}4

i=1) ∈ E. Then dimH Uk(Φ) = dimH U1(Φ) ≈ 0.0943436 and 
dimH U2ℵ0 (Φ) = dimH E ≈ 0.934164. See Example 1.4 for more explanations.

Here we mention that Condition (D) is always associated with the complete over-
lap condition (cf. [16]). This class of complete overlapping SIFSs has been studied 
by many people from different aspects. Ngai and Wang [26] calculated the Hausdorff 
dimension of the overlapping self-similar sets. Rao and Wen [29] considered the topol-
ogy of a special class of overlapping self-similar sets Eλ generated by f1(x) = x

3 , 
f2(x) = x+λ

3 and f3(x) = x+2
3 , where λ ∈ [0, 1]. In particular, they determined for 

which rational numbers λ the self-similar set Eλ contains interior points (Kenyon [19]
proved a similar result). The generating IFSs for Eλ was recently investigated by Da-
jani et al. [5]. Let Φ = (E, {fi}mi=1) ∈ E . Then for any x ∈ E there exists a sequence 
(di) = d1d2 · · · ∈ {1, 2, · · · , m}N such that (cf. [13])

x = lim
n→∞

fd1···dn
(0) =: π((di)). (1.1)

The sequence (di) is called a coding of x with respect to the alphabet {1, . . . ,m}. We 
point out that a point x ∈ E may have multiple codings by Conditions (C) and (D). For 
k = 1, 2, · · · , ℵ0 or 2ℵ0 we set

Uk(Φ) := {x ∈ E : x has exactly k different codings}.

Recently, the first four authors [4] considered a special candidate Φ0 = (E, {fi}3
i=1) of E

which was first introduced by Ngai and Wang [26], where

f1(x) = x

β
, f2(x) = x + 1

β
, f3(x) = x + β

β

with β > (3 +
√

5)/2. Based on the characterization of U1(Φ0) given by Zou et al. [33]
they showed that the Hausdorff dimensions of Uk(Φ0) are the same for all integers k ≥ 1.

Inspired by the work of [4] we investigate the multiple codings of the SIFSs in E from 
different aspects. (I) We classify the collection E via the multiple codings set Uk(Φ), 
see Theorem 1; (II) We calculate in Theorem 2 the Hausdorff dimension of Uk(Φ), and 
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show that Uk(Φ) has infinite Hausdorff measure for any k ≥ 2 assuming Uk(Φ) �= ∅; (III) 
We determine in Theorem 3 the local dimension of the self-similar measure at points in 
Uk(Φ) and Uℵ0(Φ).

1.1. Classifications of E

Our first result focuses on the classification of E . For a set X we denote by |X| its 
cardinality.

Theorem 1. Let Φ = (E, {fi}mi=1) ∈ E. Denote by I = [a, b] the convex hull of E.

(A). The following statements are equivalent.
(i) f1(I) ∩ f2(I) �= ∅ or fm−1(I) ∩ fm(I) �= ∅.
(ii) dimH Uk(Φ) = dimH U1(Φ) for all integers k ≥ 1.
(iii) f1(b) ∈ Uℵ0(Φ) or fm(a) ∈ Uℵ0(Φ).
(iv) |Uℵ0(Φ)| = ℵ0.
(v) U1(Φ) is not closed.

(B). The following statements are also equivalent.
(i) f1(I) ∩ f2(I) = fm−1(I) ∩ fm(I) = ∅.
(ii) dimH Uk(Φ) = dimH U1(Φ) if k = 2� with � ∈ N ∪ {0}, and Uk(Φ) = ∅

otherwise.
(iii) f1(b) /∈ Uℵ0(Φ) and fm(a) /∈ Uℵ0(Φ).
(iv) Uℵ0(Φ) = ∅.
(v) U1(Φ) is closed.

Remark 1.1.
• In the next result Theorem 2 we will show that for any integer k ≥ 1 with Uk(Φ) �= ∅

we must have dimH Uk(Φ) > 0.
• Theorem 1 classifies the collection E and gives several dichotomies. For example, for 

any Φ ∈ E , either |Uℵ0(Φ)| = ℵ0 or Uℵ0(Φ) = ∅.
• Although the closedness of U1(Φ) can be used to classify the elements of E . This does 

not mean the same holds for Uk(Φ) with k ≥ 2. In fact, we show in Propositions 4.2
and 4.5 that for any k ≥ 2 with Uk(Φ) �= ∅, the set Uk(Φ) is not closed.

1.2. Hausdorff dimension and Hausdorff measure of Uk(E)

In general, without the complete overlap condition (D) it is hard to calculate the 
Hausdorff dimensions of E and Uk(Φ). In our class E we are able to explicitly determine 
the Hausdorff dimensions of the attractor E and the set Uk(Φ). Furthermore, we show 
that for k ≥ 2 with Uk(Φ) �= ∅ the corresponding Hausdorff measure of Uk(Φ) is always 
infinite.
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Definition 1.2. Given Φ = (E, {fi}mi=1) ∈ E , the overlapping vectors u = (u1, . . . , um), v =
(v1, . . . , vm) of Φ are defined by

{
ui = u, vi = v if fi(I) ∩ fi+1(I) = fimu(I) = f(i+1)1v (I),
ui = vi = ∞ if fi(I) ∩ fi+1(I) = ∅.

Then by Definition 1.2 um and vm are always equal to ∞. Observe by Theorem 1 that 
Uℵ0(Φ) is either a countable set or the empty set. So it suffices to consider the Hausdroff 
dimension and Hausdorff measure of Uk(Φ) for k = 1, 2, . . . or k = 2ℵ0 .

Theorem 2. Let Φ = (E, {fi}mi=1) ∈ E with fi(x) = rix + bi for 1 ≤ i ≤ m, and let 
u = (u1, . . . , um), v = (v1, . . . , vm) be the overlapping vectors defined as in Definition 1.2.

(i) The Hausdorff dimensions of U2ℵ0 and E are given by

dimH U2ℵ0 (Φ) = dimH E = t,

where t ∈ (0, 1) is the root of

m∑
i=1

rti(1 − ruit
m ) = 1.

Furthermore, the corresponding Hausdorff measures are positive and finite, i.e.,

Ht(U2ℵ0 (Φ)) = Ht(E) ∈ (0,∞).

(ii) For any finite integer k ≥ 1 satisfying Uk(Φ) �= ∅, the Hausdorff dimension of 
Uk(Φ) is given by

dimH Uk(Φ) = dimH U1(Φ) = s,

where s ∈ (0, 1) is the root of

m∑
i=1

rsi

(
1 − ruis

m (2 − r
vm−1s
1 − ru1s

m )
1 − r

vm−1s
1 ru1s

m

)
= 1.

Furthermore, the corresponding Hausdorff measure of Uk(Φ) admits

Hs(U1(Φ)) ∈ (0,∞)

and

Hs(Uk(Φ)) = ∞ for any k ≥ 2 satisfying Uk(Φ) �= ∅.
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Remark 1.3.
• By Propositions 5.3 and 5.5 the sets U1(Φ) and E are both identical to strongly 

connected graph-directed sets satisfying the open set condition (OSC). So by [25] the 
results obtained in Theorem 2 also hold for packing dimension and corresponding 
packing measure.

• After the paper was finished we noticed that Theorem 2 (i) for the Hausdorff dimen-
sion of E was also studied by Deng et al. [8, Theorem 8]. However, our method is 
different from theirs, where they determined the dimension of E by considering an 
infinite iterated function system satisfying the OSC.

• The Hausdorff dimension formula for Uk(Φ) described in Theorem 2 (ii) is in a 
compact form. If Φ = (E, {fi}mi=1) ∈ E with f1(I) ∩ f2(I) = fm−1(I) ∩ fm(I) = ∅, 
then u1 = vm−1 = ∞. By Theorem 2 (ii) the Hausdorff dimension of Uk(Φ) can be 
simplified as dimH Uk(Φ) = s, where s ∈ (0, 1) is the root of

1 =
m∑
i=1

rsi (1 − 2ruis
m ).

Similarly, if Φ = (E, {fi}mi=1) ∈ E with f1(I) ∩ f2(I) �= ∅ and fm−1(I) ∩ fm(I) = ∅, 
then u1 ∈ N and vm−1 = ∞. Again by Theorem 2 (ii) it follows that dimH Uk(Φ) = s

satisfies

1 =
m∑
i=1

rsi (1 − 2ruis
m + r(ui+u1)s

m ).

Also, if Φ = (E, {fi}mi=1) ∈ E with f1(I) ∩ f2(I) = ∅ and fm−1(I) ∩ fm(I) �= ∅, then 
u1 = ∞ and vm−1 ∈ N. By Theorem 2 (ii) the Hausdorff dimension of Uk(Φ) is given 
by dimH Uk(Φ) = s, where s ∈ (0, 1) is the root of

1 =
m∑
i=1

rsi (1 − 2ruis
m + ruis

m r
vm−1s
1 ).

1.3. Local dimension of a self-similar measure in Uk(Φ) and Uℵ0(Φ)

Given a probability vector p = (p1, p2, . . . , pm) with each pi > 0, let μp be the self-
similar measure defined on Φ = (E, {fi}mi=1) ∈ E (cf. [17]). Then

μp =
m∑
i=1

piμp ◦ f−1
i .

The measure μp can also be deduced from the projection of Bernoulli measure on the sym-
bolic space {1, . . . ,m}N . More precisely, let νp be the Bernoulli measure on {1, . . . ,m}N

defined by
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νp([i]) = pi for i = 1, . . . ,m,

where [i] :=
{

(j�) ∈ {1, . . . ,m}N : j1 = i
}

is a cylinder set. Then

μp = νp ◦ π−1,

where π is the projection map defined in (1.1).
Given x ∈ E, we define the lower and upper local dimensions of μp at x by

dimlocμp(x) := lim inf
r→0

logμp(B(x, r))
log r , dimlocμp(x) := lim sup

r→0

logμp(B(x, r))
log r ,

where B(x, r) = (x − r, x + r) is the open ball in R with center at x and radius r. 
If the lower and upper local dimensions coincide, then the common value, denoted by 
dimloc μp(x), is called the local dimension of μp at x.

To determine the local dimension of μp is a central topic of multifractal analysis. 
Recently, Ngai and Xie [27] calculated the Hausdorff dimension of the self-similar measure 
μp, which provides a typical value of dimH μp(x). For more results on the multifractal 
analysis of μp we refer to the papers of Lau and Ngai [23], Feng and Lau [14], and 
references therein.

As a compensation of [27] we explicitly calculate the local dimension of μp at points 
in Uk(Φ) and Uℵ0(Φ). For n ∈ N let {1, . . . ,m}n be the set of all length n words over 
the alphabet {1, . . . ,m}. Denote by {1, . . . ,m}∗ =

⋃∞
n=0 {1, . . . ,m}n the set of all finite 

words, where for n = 0 we set {1, . . . ,m}0 = {ε} with ε the empty word.

Theorem 3. Let Φ = (E, {fi}mi=1) ∈ E with the convex hull conv(E) = [a, b], and let 
u = (u1, . . . , um), v = (v1, . . . , vm) be the overlapping vector defined as in Definition 1.2.

(i) If x ∈ Uk(Φ), then there exist a word i ∈ {1, . . . ,m}∗ and a unique y ∈ U1(Φ) such 
that x = fi(y). Furthermore,

dimlocμp(x) = dimlocμp(y) = lim inf
n→∞

∑n
k=1 log pjk∑n
k=1 log rjk

,

dimlocμp(x) = dimlocμp(y) = lim sup
n→∞

∑n
k=1 log pjk∑n
k=1 log rjk

,

where j1j2 . . . is the unique coding of y.
(ii) If x ∈ Uℵ0(Φ), then either x = fi(f1(b)) for some i ∈ {1, . . . ,m}∗ and then

dimloc μp(x) = min
{

log pm
log rm

,
log p2 + (v1 − 1) log p1

u1 log rm

}
,

or x = fi(fm(a)) for some i ∈ {1, . . . ,m}∗ and thus
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dimloc μp(x) = min
{

log p1

log r1
,
log pm−1 + (um−1 − 1) log pm

vm−1 log r1

}
.

1.4. An example

At the end of this section we give an example to illustrate the main results Theo-
rems 1–3.

Example 1.4. Given two integers M, N ≥ 1, let β ∈ (1, 4] satisfy

4
β

< 1 + 1
βM

+ 1
βN

. (1.2)

Define the maps

f1(x) = x

β
, f2(x) = x

β
+ 1

β
− 1

βM+1 ,

f3(x) = x

β
+ 1 − 2

β
+ 1

βN+1 , f4(x) = x

β
+ 1 − 1

β
.

(1.3)

Then there exists a unique non-empty compact set E satisfying E =
⋃4

i=1 fi(E). It is 
easy to check that the convex hull of E is the unit interval I = [0, 1]. The basic intervals 
fi(I) with 1 ≤ i ≤ 4 are plotted as in Fig. 1. The inequality in (1.2) guarantees that 
f2(I) ∩ f3(I) = ∅. Furthermore, one can verify that

f1(I) ∩ f2(I) = f14M (I) = f21M (I),

f3(I) ∩ f4(I) = f34N (I) = f41N (I).

So, Φ = (E, {fi}4
i=1) ∈ E for any integers M, N ≥ 1.

First, by Theorems 1 and 2 it follows that for any k ∈ N,

dimH Uk(Φ) = dimH U1(Φ) = s,

where s ∈ (0, 1) satisfies

βs + 2βNs + 2βMs = 4 + β(N−M)s + β(M−N)s.

Moreover, the corresponding Hausdorff measures satisfy

Hs(U1(Φ)) ∈ (0,∞), and Hs(Uk(Φ)) = ∞ ∀ k ≥ 2.

Second, by Proposition 3.4 it follows that Uℵ0(Φ) is a countable set consisting of all 
points with a coding ending with either 14∞ or 41∞. Furthermore, by Theorem 2 it 
follows that the Hausdorff dimensions of U2ℵ0 (Φ) and E are given by
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dimH U2ℵ0 (Φ) = dimH E = t,

where t ∈ (0, 1) satisfies

βt + β−Mt + β−Nt = 4.

And the corresponding Hausdorff measures admit

Ht(U2ℵ0 (Φ)) = Ht(E) ∈ (0,∞).

Third, for a given probability vector p = (p1, p2, p3, p4) with each pi > 0 we define 
the corresponding self-similar measure μp by

μp =
4∑

i=1
piμp ◦ f−1

i .

Then by Theorem 3 it follows that for any x ∈ Uk(Φ) there exists a unique y ∈ U1(Φ)
such that

dimlocμp(x) = dimlocμp(y) = −1
log β lim sup

n→∞

∑n
k=1 log pjk

n
,

dimlocμp(x) = dimlocμp(y) = −1
log β lim inf

n→∞

∑n
k=1 log pjk

n
,

where j1j2 . . . is the unique coding of y. Moreover, for any x ∈ Uℵ0(Φ) we have the 
following two cases:

x = fi

(
1
β

)
or x = fi

(
1 − 1

β

)

for some i ∈ {1, 2, 3, 4}∗. If x = fi( 1
β ), then

dimloc μp(x) = min
{

log p4

− log β ,
log p2 + (M − 1) log p1

−M log β

}
.

If x = fi(1 − 1
β ), then

dimloc μp(x) = min
{

log p1

− log β ,
log p3 + (N − 1) log p4

−N log β

}
.

In particular, if pi = 1
4 for all 1 ≤ i ≤ 4, then

dimloc μp(x) = log 4 for all x ∈ Uℵ0(Φ).
log β
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The rest of the paper is organized as follows. The proof of Theorem 1 is given in 
Sections 2–4. First in Section 2 we characterize the set of points in E with finitely many 
codings, and prove the equivalence (i) ⇔ (ii) in Theorem 1 (A) and (B). Second in 
Section 3 we describe the set of points in E with countably many codings, and establish 
the equivalence (i) ⇔ (iii) ⇔ (iv). Finally in Section 4 we investigate the topology of 
Uk(Φ), and deduce the equivalence (i) ⇔ (v). In Section 5 we show that the univoque 
set U1(Φ) and the self-similar set E are both identical to the strongly connected graph-
directed sets satisfying the OSC. Based on this we prove Theorem 2 in Section 6 for 
the Hausdorff dimensions and Hausdorff measures of E and Uk(Φ). In particular, we 
show that the corresponding Hausdorff measure of Uk(Φ) is always infinite for any k ≥ 2
satisfying Uk(Φ) �= ∅. In Section 7 we prove Theorem 3 for the local dimension of the 
self-similar measure μp at points in Uk(Φ) and Uℵ0(Φ). Finally, in Section 8 we pose 
some remarks on a possible extension of our class E .

2. Finitely many codings

Let Φ = (E, {fi}mi=1) ∈ E and k ∈ N. In this section we will consider the set Uk(Φ)
consisting of all x ∈ E having precisely k different codings with respect to {fi}mi=1, and 
prove the equivalence (i) ⇔ (ii) in Theorems 1 (A) and (B), respectively.

Let {1, . . . ,m}N be the set of sequences (di) with each di ∈ {1, . . . ,m}, and let 
{1, . . . ,m}∗ be the set of all finite words over the alphabet {1, . . . ,m}. For any two words 
c = c1 . . . cm, d = d1 . . . dn ∈ {1, . . . ,m}∗ we let cd = c1 . . . cmd1 . . . dn denote their con-
catenation. Moreover, for k ∈ N we write ck = cc · · · c the k times concatenation of c with 
itself, and let c∞ denote the infinite concatenation of c with itself. Recall that {fi}mi=1 is 
the collection of contractive similitudes. For a word d = d1d2 . . . dn ∈ {1, . . . ,m}∗ we let 
fd = fd1 ◦ fd2 ◦ · · · ◦ fdn

denote the compositions of the maps fd1 , . . . , fdn
. In particular, 

for the empty word ε we set fε the identity map.
For a set F ⊂ R we denote by conv(F ) the convex hull of F .

Lemma 2.1. Let (E, {fi}mi=1) ∈ E with I = conv(E). If fimu(I) = f(i+1)1v (I) for some 
i ∈ {1, . . . ,m− 1} and u, v ∈ N, then fimu(·) = f(i+1)1v (·).

Proof. Note that for any x ∈ R we can write

fimu(x) = rx + t, f(i+1)1v (x) = r′x + t′, (2.1)

for some r, r′ ∈ (0, 1) and t, t′ ∈ R. Suppose that I = [a, b]. Then by using fimu(I) =
f(i+1)1v (I) it follows that

ra + t = fimu(a) = f(i+1)1v (a) = r′a + t′,

rb + t = fimu(b) = f(i+1)1v (b) = r′b + t′.

This implies r = r′ and t = t′. By (2.1) we have fimu(·) = f(i+1)1v (·). �
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Lemma 2.2. Let (E, {fi}mi=1) ∈ E with I = conv(E). If

fi(I) ∩ fi+1(I) = fimu(I) = f(i+1)1v (I)

for some i ∈ {1, · · · , m − 1} and u, v ∈ N, then for any x ∈ fi(I) ∩ fi+1(I) ∩E all of its 
codings either begin with imu−1 or begin with (i + 1)1v−1.

Proof. Let (di) be a coding of x with respect to {fi}mi=1. Note that π(d1d2 . . .) = x ∈
fi(I) ∩ fi+1(I) ∩E and that any three basic intervals have an empty intersection. Then

d1 = i or d1 = i + 1.

If d1 = i with u = 1 or d1 = i + 1 with v = 1, then we are done. So, we will finish the 
proof by considering the following two cases.

Case (I). d1 = i and u > 1. Note that x = π(id2d3 · · · ) ∈ fimu(I). Then

π(d2d3 · · · ) ∈ fmu(I), (2.2)

and we claim that d2 = m.
Suppose on the contrary that d2 �= m. Then in view of the location of these basic 

intervals we have d2 = m − 1. So, by (2.2) and Condition (D) it follows that

π(d2d3 · · · ) ∈ fmu(I) ∩
(
fm−1(I) ∩ fm(I)

)
⊆ fmu(I) ∩ fm1(I),

leading to a contradiction with f1(I) ∩fm(I) = ∅. Therefore, d2 = m. Iterating the above 
procedure it follows that d2 · · · du = mu−1.

Case (II). d1 = i + 1 and v > 1. Note that x = π((i + 1)d2d3 · · · ) ∈ f(i+1)1v (I). Then

π(d2d3 · · · ) ∈ f1v (I), (2.3)

and we will prove that d2 = 1. If d2 �= 1, then d2 = 2. So, by (2.3) and Condition (D) it 
follows that

π(d2d3 · · · ) ∈ f1v (I) ∩
(
f1(I) ∩ f2(I)

)
⊆ f1v (I) ∩ f1m(I),

leading to a contradiction with f1(I) ∩fm(I) = ∅. Hence d2 = 1. By iteration we conclude 
that d2 · · · dv = 1v−1. �

Now we turn to show that the Hausdorff dimensions of Uk(Φ) and U1(Φ) coincide for 
any k ≥ 2 satisfying Uk(Φ) �= ∅. Later on in Section 6 we will explicitly calculate the 
Hausdorff dimension of U1(Φ). In particular, we have dimH U1(Φ) > 0 for any Φ ∈ E . 
The upper bound of dimH Uk(Φ) follows directly.
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Lemma 2.3. Let Φ = (E, {fi}mi=1) ∈ E. Then for any k ∈ N we have

dimH Uk(Φ) ≤ dimH U1(Φ).

Proof. Take x ∈ Uk(Φ). Then all codings of x will eventually end in

π−1(U1(Φ)) = {(ci) ∈ {1, · · · ,m}∞ : π((ci)) ∈ U1(Φ)}.

In other words,

Uk(Φ) ⊆
⋃

d1···dn∈{1,2,··· ,m}∗

fd1···dn
(U1(Φ)).

Therefore, the lemma follows by the countable stability of Hausdorff dimension 
(cf. [13]). �

For the lower bound of dimH Uk(E) we split the proof into the following two subsec-
tions.

(i) f1(I)∩f2(I) �= ∅ or fm−1(I)∩fm(I) �= ∅; (ii) f1(I)∩f2(I) = fm−1(I)∩fm(I) = ∅.

2.1. f1(I) ∩ f2(I) �= ∅ or fm−1(I) ∩ fm(I) �= ∅

Let Φ = (E, {fi}mi=1) ∈ E with convex hull I = conv(E). By Condition (C) there exists 
i0 ∈ {1, . . . ,m− 1} such that fi0(I) ∩fi0+1(I) = ∅. In the following lemma we show that 
the Hausdorff dimension of U1(Φ) is dominated by that of the subset consisting of all 
x ∈ U1(E) whose unique coding starts at digit i0 or i0 + 1.

Lemma 2.4. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E). If fi0(I) ∩ fi0+1(I) = ∅ for 
some i0 ∈ {1, · · · , m − 1}, then

dimH U1(Φ) = dimH(fi0(E) ∩ U1(Φ)) = dimH(fi0+1(E) ∩ U1(Φ)).

Proof. Note that U1(Φ) =
⋃m

j=1(fj(E) ∩ U1(Φ)). It suffices to prove

dimH(fi0(E) ∩ U1(Φ)) ≥ dimH

⎛
⎝ m⋃

j=i0+1
fj(E) ∩ U1(Φ)

⎞
⎠ (2.4)

and

dimH(fi0+1(E) ∩ U1(Φ)) ≥ dimH

⎛
⎝ i0⋃

j=1
fj(E) ∩ U1(Φ)

⎞
⎠ .
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Without loss of generality we only prove (2.4). Let

ϕ :
m⋃

j=i0+1
fj(E) ∩ U1(Φ) −→ fi0(E) ∩ U1(Φ)

x �→ fi0(x).

First we prove that ϕ is well-defined. Take x ∈
⋃m

j=i0+1 fj(E) ∩ U1(Φ). It suffices to 
prove that fi0(x) ∈ U1(Φ). Suppose on the contrary that fi0(x) /∈ U1(Φ). Note that 
fi0(I) ∩ fi0+1(I) = ∅. Then by the locations of the fundamental intervals it follows that

fi0(x) ∈ fi0−1(I) ∩ fi0(I) ⊆ fi01(I).

This implies that x ∈ f1(I), leading to a contradiction with f1(I) ∩
⋃m

j=i0+1 fj(I) = ∅.
Therefore, ϕ is well-defined. Note that ϕ is a similitude. Hence, by [13, Proposition 

3.3] it follows that

dimH

(
fi0(E) ∩ U1(Φ)

)
≥ dimH ϕ

⎛
⎝ m⋃

j=i0+1
fj(E) ∩ U1(Φ)

⎞
⎠

= dimH

⎛
⎝ m⋃

j=i0+1
fj(E) ∩ U1(Φ)

⎞
⎠ .

This establishes (2.4). �
Lemma 2.5. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E), and let k ∈ N.

(i) If f1(I) ∩ f2(I) = f1mu(I) = f21v (I) and fi0(I) ∩ fi0+1(I) = ∅ for some i0 ∈
{2, . . . ,m− 1}, then

π(1mu(k−1)c) ∈ Uk(Φ)

for any π(c) ∈ fi0(E) ∩ U1(Φ).
(ii) If fm−1(I) ∩ fm(I) = f(m−1)mu(I) = fm1v (I) and fi0(I) ∩ fi0+1(I) = ∅ for some 

i0 ∈ {1, . . . ,m− 2}, then

π(m1v(k−1)c) ∈ Uk(Φ)

for any π(c) ∈ fi0+1(E) ∩ U1(Φ).

Proof. Since the proof of (ii) is similar, we only prove (i).
Take π(c) = π((ci)) ∈ fi0(E) ∩ U1(Φ). Then c1 = i0. It suffices to prove that for any 

integer k ≥ 0,
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zk := π(1mukc)

has exactly k+1 different codings. We will prove this by induction on k. Suppose k = 0. 
Then z0 = π(1c). Note that fi0(I) ∩ fi0+1(I) = ∅ for some i0 ∈ {2, · · · , m − 1}. Denote 
by I = [a, b]. Then by Condition (A) it follows that

z0 = π(1i0c2c3 · · · ) ≤ f1i0(b) < f1mu(a) = f21v (a) = f2(a),

where the equality f1mu(a) = f21v (a) follows by Lemma 2.1. This together with π(c) =
π(i0c2c3 · · · ) ∈ U1(Φ) implies that z0 ∈ U1(Φ).

Now suppose that zk has k + 1 different codings for some k ≥ 0. We will prove that 
zk+1 has exactly k + 2 different codings. Note that

zk+1 = f1mu(π(mukc)) = f21v (π(mukc)) = f21v−1(zk). (2.5)

By the induction hypothesis this implies that zk+1 has at least k + 2 different codings: 
one is 1mu(k+1)c, and the others start at 21v−1. In the following we show that zk+1 has 
precisely k + 2 different codings. Suppose (di) is a coding of zk+1. Then by (2.5) and 
Lemma 2.2 it follows that

d1 · · · du = 1mu−1 or d1 · · · dv = 21v−1.

By the induction hypothesis it suffices to prove that d1 · · · du = 1mu−1 implies (di) =
1mu(k+1)c.

Suppose d1 · · · du = 1mu−1. We claim that du+1 · · · du(k+1)+1 = muk+1. Let j ∈
{1, . . . , uk + 1} be the smallest integer such that du+j �= m. Then by (2.5) we have

π(du+jdu+j+1 · · · ) = fmuk+2−j (π(c)). (2.6)

In view of the locations of the basic intervals we have du+j = m − 1. Therefore, by (2.6)
and Condition (D) it follows that

fmuk+2−j (π(c)) ∈ fm−1(I) ∩ fm(I) ⊆ fm1(I).

This implies that fmuk+1−j (π(c)) ∈ f1(I). If j < uk+1, then we obtain fm(I) ∩f1(I) �= ∅, 
leading to a contradiction with fi0(I) ∩ fi0+1(I) = ∅. If j = uk + 1, then we get π(c) ∈
f1(I), leading to a contradiction with π(c) = π(i0c2c3 · · · ) ∈ U1(Φ) and i0 ≥ 2. Thus, 
du+1 . . . du(k+1)+1 = muk+1. Since π(c) ∈ U1(Φ), we conclude that (di) = 1mu(k+1)c.

Hence, by induction it follows that zk has exactly k + 1 different codings for any 
integer k ≥ 0. This establishes (i). �
Lemma 2.6. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E). If f1(I) ∩f2(I) �= ∅ or fm−1(I) ∩
fm(I) �= ∅, then
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dimH Uk(E) ≥ dimH U1(E) ∀ k ∈ N.

Proof. Without loss of generality we assume f1(I) ∩ f2(I) �= ∅. By Condition (C) there 
exists i0 ∈ {2, . . . ,m− 1} such that fi0(I) ∩ fi0+1(I) = ∅. Then by Lemma 2.4 it follows 
that

dimH U1(Φ) = dimH(fi0(E) ∩ U1(Φ)). (2.7)

Note that f1(I) ∩ f2(I) �= ∅. Then by Condition (D) there exist u = u1, v = v1 ∈ N such 
that f1(I) ∩ f2(I) = f1mu(I) = f21v (I). So by Lemma 2.5 (i) it follows that

{π(1mu(k−1)c) : π(c) ∈ fi0(E) ∩ U1(Φ)} ⊆ Uk(Φ).

Hence, by (2.7) we conclude that

dimH Uk(Φ) ≥ dimH(fi0(E) ∩ U1(Φ)) = dimH U1(Φ). �
2.2. f1(I) ∩ f2(I) = fm−1(I) ∩ fm(I) = ∅

Let Φ = (E, {fi}mi=1) ∈ E . Different from the previous subsection it happens in this 
case that Uk(Φ) = ∅ for some k ∈ N.

Lemma 2.7. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E). If f1(I) ∩ f2(I) = fm−1(I) ∩
fm(I) = ∅, then

Uk(Φ) = ∅ for any k �= 2� with � ∈ N ∪ {0} .

Proof. For x ∈ E we denote by N(x) the number of different codings of x with respect 
to {fi}mi=1. Let k ≥ 2 and take x ∈ Uk(Φ). Then N(x) = k. So, there exists

x1 ∈ Uk(Φ) ∩ fi(I) ∩ fi+1(I) (2.8)

for some i ∈ {2, . . . ,m− 2} such that N(x) = N(x1). Note that fi(I) ∩ fi+1(I) �= ∅. 
Then by Condition (D) there exist u = ui, v = vi ∈ N such that

fi(I) ∩ fi+1(I) = fimu(I) = f(i+1)1v (I). (2.9)

Observe that f1(I) ∩f2(I) = fm−1(I) ∩fm(I) = ∅. Then in view of the locations of these 
basic intervals we obtain

f1(I) ∩ fi(I) = ∅ ∀i �= 1 and fj(I) ∩ fm(I) = ∅ ∀j �= m. (2.10)

Therefore, by (2.8)–(2.10) and an argument similar to the one in the proof of 
Lemma 2.2 it follows that all codings of x1 either begin with imu or begin with (i +1)1v. 
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By (2.9) and Lemma 2.1 it gives that fimu(·) = f(i+1)1v (·). Then there exists a unique 
y ∈ E such that x1 = fimu(y) = f(i+1)1v (y). Furthermore,

N(x1) = N(fmu(y)) + N(f1v (y)) = 2N(y),

where the last equality holds by (2.10) that

N(fmu(y)) = N(y) = N(f1v (y)).

Hence, we conclude that N(x) = N(x1) = 2N(y).
By iteration of the above arguments it follows that N(x) must be of the form 2� for 

some � ∈ N ∪ {0}. This completes the proof. �
In fact the condition k �= 2� in the above lemma is also a necessary condition for 

Uk(Φ) = ∅.

Lemma 2.8. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E). If f1(I) ∩ f2(I) = fm−1(I) ∩
fm(I) = ∅, then

dimH U2�(Φ) ≥ dimH U1(Φ) ∀� ∈ N ∪ {0} .

Proof. We will prove the inequality dimH U2�(Φ) ≥ dimH U1(Φ) by induction on �. Triv-
ially this inequality holds if � = 0. Now we assume this inequality holds for some � ≥ 0. 
It suffices to prove

dimH U2�+1(Φ) ≥ dimH U2�(Φ).

By Condition (C) there exists i ∈ {2, · · · , m − 2} such that fi(I) ∩ fi+1(I) �= ∅. Then 
Condition (D) gives two indexes u = ui, v = vi ∈ N such that

fi(I) ∩ fi+1(I) = fimu(I) = f(i+1)1v (I).

By Lemma 2.1 this yields that fimu(·) = f(i+1)1v (·). Note that any three basic intervals 
have an empty intersection. So, by (2.10) it follows that

{fimu(x) = f(i+1)1v (x) : x ∈ U2�(Φ)} ⊆ U2�+1(Φ),

which implies dimH U2�+1(Φ) ≥ dimH U2�(Φ).
By induction we conclude that dimH U2�(Φ) ≥ dimH U1(Φ) for any � ∈ N. �

Proof of (i) ⇔ (ii) in Theorems 1 (A) and (B). Let Φ = (E, {fi}mi=1) ∈ E with I =
conv(E). By Lemmas 2.3 and 2.6 it follows that if f1(I) ∩f2(I) �= ∅ or fm−1(I) ∩fm(I) �=
∅, then
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dimH Uk(Φ) = dimH U1(Φ) for all k ∈ N.

On the other hand, if f1(I) ∩f2(I) = fm−1(I) ∩fm(I) = ∅, then by Lemmas 2.3, 2.7 and 
2.8 it follows that{

dimH Uk(Φ) = dimH U1(Φ) if k = 2� with � ∈ N ∪ {0} ,
Uk(Φ) = ∅ otherwise.

Therefore, the equivalence (i) ⇔ (ii) holds true. �
3. Countably many codings

Given Φ = (E, {fi}mi=1) ∈ E , we will consider in this section the set Uℵ0(Φ) of points 
having countably many codings, and prove the equivalences (i) ⇔ (iii) ⇔ (iv) in Theo-
rem 1 (A) and (B), respectively. The equivalence (i) ⇔ (iii) follows from the following 
result.

Proposition 3.1. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E) = [a, b].

(i) f1(I) ∩ f2(I) �= ∅ if and only if f1(b) ∈ Uℵ0(Φ).
(ii) fm−1(I) ∩ fm(I) �= ∅ if and only if fm(a) ∈ Uℵ0(Φ).

Proof. Since the proofs of (i) and (ii) are similar, we only prove (i).
Suppose f1(I) ∩ f2(I) = ∅. Then in view of the locations of these basic intervals we 

have

f1(I) ∩ fi(I) = ∅ for any i ∈ {2, . . . ,m} . (3.1)

Note that b = π(m∞) ∈ U1(Φ). Then by (3.1) it follows that f1(b) ∈ U1(Φ). This proves 
the sufficiency in (i).

For the necessity in (i) we assume f1(I) ∩ f2(I) �= ∅. Then by Condition (D) there 
exist u = u1, v = v1 ∈ N such that f1(I) ∩ f2(I) = f1mu(I) = f21v (I), which gives 
f1mu(·) = f21v (·) by Lemma 2.1. Then

f1(b) = π(1m∞) = π(21v−11m∞) = · · · = π((21v−1)k1m∞) = · · · (3.2)

for k = 1, 2, . . .. This implies that f1(b) has at least countably many codings.
In the following we show that f1(b) indeed has countably many codings. Suppose that 

(di) is a coding of f1(b). Note that f1(b) ∈ E and f1(b) ∈ f1(I) ∩ f2(I) = f1mu(I) =
f21v (I). Then by Lemma 2.2 it follows that d1 · · · du = 1mu−1 or d1 · · · dv = 21v−1.

• If d1 · · · du = 1mu−1, then by (3.2) we have

π(du+1du+2 · · · ) = π(m∞) ∈ U1(Φ).



K. Dajani et al. / Advances in Applied Mathematics 124 (2021) 102146 19
This implies that (di) = 1m∞.
• If d1 · · · dv = 21v−1, then by (3.2) it yields that

π(dv+1dv+2 · · · ) = π(1m∞) = f1(b).

By iteration of the above arguments it follows that all codings of f1(b) are of the form

(21v−1)k1m∞, k ≥ 0.

Hence, f1(b) ∈ Uℵ0(Φ). This proves the necessity in (i). �
Proof of (i) ⇔ (iii) in Theorem 1 (A) and (B). This follows directly from Proposition 
3.1. �

In the following it remains to prove the equivalence (i) ⇔ (iv) in Theorem 1 (A) and 
(B).

Lemma 3.2. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E). If f1(I) ∩ f2(I) = fm−1(I) ∩
fm(I) = ∅, then Uℵ0(Φ) = ∅.

Proof. Suppose on the contrary that Uℵ0(Φ) �= ∅, and take x ∈ Uℵ0(Φ). Then x must 
have a coding (di) satisfying

xn := π(dn+1dn+2 · · · ) ∈ E ∩
m−2⋃
i=2

(
fi(I) ∩ fi+1(I)

)
(3.3)

for infinitely many n ≥ 1.
Take n satisfying (3.3) and assume that xn ∈ E ∩ fi(I) ∩ fi+1(I) for some i ∈

{2, . . . ,m− 2}. By Condition (D) there exist u = ui, v = vi ∈ N such that

xn = π(dn+1dn+2 . . .) ∈ fi(I) ∩ fi+1(I) = fimu(I) = f(i+1)1v (I). (3.4)

Note that f1(I) ∩ f2(I) = fm−1(I) ∩ fm(I) = ∅. Then in view of the locations of the 
basic intervals it follows that

f1(I) ∩ fj(I) = f�(I) ∩ fm(I) = ∅ (3.5)

for any j �= 1 and any � �= m. Therefore, by (3.4) and Lemma 2.2, and using (3.5) it 
follows that

dn+1 · · · dn+u+1 = imu or dn+1 · · · dn+v+1 = (i + 1)1v.
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Note by (3.4) and Lemma 2.1 that fimu(·) = f(i+1)1v (·). Therefore, we have a substitution 
imu ∼ (i + 1)1v in dn+1dn+2 · · · . In other words, there exists a unique y ∈ E such that 
xn = fimu(y) = f(i+1)1v (y).

Note that (3.3) holds for infinitely many n ∈ N. Then by an argument similar to 
the above it follows that there exist infinitely many independent substitutions in (di). 
This implies that x has a continuum of codings, leading to a contradiction with x ∈
Uℵ0(Φ). �
Lemma 3.3. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E).

(i) If f1(I) ∩ f2(I) = f1mu(I) = f21v (I) and fm−1(I) ∩ fm(I) = ∅, then |Uℵ0(Φ)| =
ℵ0. Furthermore, any point in Uℵ0(Φ) must have a coding ending with 1m∞ ∼
(21v−1)∞.

(ii) If f1(I) ∩f2(I) = ∅ and fm−1(I) ∩fm(I) = f(m−1)mp(I) = fm1q (I), then |Uℵ0(Φ)| =
ℵ0. Furthermore, any point in Uℵ0(Φ) must have a coding ending with m1∞ ∼
((m − 1)mp−1)∞.

(iii) If f1(I) ∩f2(I) = f1mu(I) = f21v (I) and fm−1(I) ∩fm(I) = f(m−1)mp(I) = fm1q (I), 
then |Uℵ0(Φ)| = ℵ0. Furthermore, any point in Uℵ0(Φ) must have a coding ending 
with 1m∞ ∼ (21v−1)∞ or m1∞ ∼ ((m − 1)mp−1)∞.

Proof. Since the proofs of (ii) and (iii) are similar, we only prove (i). Suppose f1(I) ∩
f2(I) �= ∅ but fm−1(I) ∩ fm(I) = ∅. By Condition (D) there exist u = u1, v = v1 ∈ N

such that

f1(I) ∩ f2(I) = f1mu(I) = f21v (I), (3.6)

which yields f1mu(·) = f21v (·) by Lemma 2.1.
Denote by I = [a, b] the convex hull of E. We claim that f1n(b) ∈ Uℵ0(Φ) for any 

n ≥ 1. We will prove this by induction on n. Clearly, for n = 1 we have by Lemma 3.1
that f1(b) ∈ Uℵ0(Φ). Now suppose f1n(b) ∈ Uℵ0(Φ) for some n ≥ 1, and consider f1n+1(b). 
If f1n+1(b) ∈ f2(I), then by Condition (D) it follows that

f1n+1(b) ∈ f1(I) ∩ f2(I) ⊆ f1m(I),

which implies f1n(b) ∈ fm(I), leading to a contradiction with f1(I) ∩ fm(I) = ∅. By the 
induction hypothesis this proves f1n+1(b) ∈ Uℵ0(Φ). Hence, by induction it follows that 
{f1n(b) : n ≥ 1} ⊆ Uℵ0(Φ).

In the following it suffices to prove that any point in Uℵ0(Φ) must have a coding 
ending with 1m∞ ∼ (21v−1)∞. Take x ∈ Uℵ0(Φ). Suppose on the contrary that x has a 
coding (di) ending with neither 1m∞ nor (21v−1)∞. Observe that (di) satisfies

π(dn+1dn+2 · · · ) ∈ E ∩
m−2⋃ (

fi(I) ∩ fi+1(I)
)

(3.7)

i=1
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for infinitely many n ≥ 1.
Take n satisfying (3.7), and assume π(dn+1dn+2 · · · ) ∈ fi(I) ∩ fi+1(I) for some i ∈

{1, · · · , m − 2}. Then by Condition (D) there exist p = ui, q = vi ∈ N such that

π(dn+1dn+2 · · · ) ∈ fi(I) ∩ fi+1(I) = fimp(I) = f(i+1)1q (I). (3.8)

By Lemma 2.1 it follows that fimp(·) = f(i+1)1q (·), and then by Lemma 2.2 we have

dn+1 · · · dn+p = imp−1 or dn+1 · · · dn+q = (i + 1)1q−1.

Now we split the proof into the following two cases.
Case (I). dn+1 · · · dn+p = imp−1. Then by (3.8) and using fm−1(I) ∩ fm(I) = ∅ it 

follows that dn+p+1 = m. Therefore, we have a substitution dn+1 · · · dn+p+1 = imp ∼
(i + 1)1q.

Case (II). dn+1 · · · dn+q = (i + 1)1q−1. Then by (3.8) it follows that dn+q+1 = 1 or 2.

• If dn+q+1 = 1, then we have a substitution dn+1 · · · dn+q+1 = (i + 1)1q ∼ imp.
• If dn+q+1 = 2, then by (3.6) and (3.8) it yields that

π(dn+q+1dn+q+2 · · · ) ∈ f1(I) ∩ f2(I) = f1mu(I) = f21v (I).

So, by Lemma 2.2 it follows that dn+q+1 · · · dn+q+v = 21v−1 and dn+q+v+1 = 1 or 2. 
Note by the assumption that (di) does not end with (21v−1)∞. Then by iteration it 
follows that there exists N ≥ n + q such that

dN+1 · · · dN+v+1 = 21v.

Again, we have a substitution 21v ∼ 1mu.
By Cases (I)–(II) and (3.7) it follows that there exist infinitely many independent 

substitutions in (di). This implies that x has a continuum of codings, leading to a con-
tradiction with x ∈ Uℵ0(Φ). We complete the proof of (i). �

By the proof of Lemma 3.3 it follows that if f1(I) ∩ f2(I) �= ∅, then any x ∈ Uℵ0(Φ)
must have a coding ending with 1m∞, which is a coding of f1(b). Similarly, if fm−1(I) ∩
fm(I) �= ∅, then any x ∈ Uℵ0(Φ) must have a coding ending with m1∞, which is a coding 
of fm(a). As a corollary of Lemma 3.3 we have a complete characterization of Uℵ0(Φ).

Proposition 3.4. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E). Then

Uℵ0(Φ)

=

⎧⎪⎨
⎪⎩
⋃

i∈{1,...,m}∗ {fi(f1(b))} if f1(I) ∩ f2(I) �= ∅, fm−1(I) ∩ fm(I) = ∅;⋃
i∈{1,...,m}∗ {fi(fm(a))} if f1(I) ∩ f2(I) = ∅, fm−1(I) ∩ fm(I) �= ∅;⋃

∗ {f (f (b)), f (f (a))} if f (I) ∩ f (I) �= ∅, f (I) ∩ f (I) �= ∅.
i∈{1,...,m} i 1 i m 1 2 m−1 m
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Proof of (i) ⇔ (iv) in Theorem 1 (A) and (B). This follows directly from Lemmas 3.2
and 3.3. �
4. Topology of Uk(Φ)

In this section we investigate the topology of Uk(Φ), and prove the equivalence (i) ⇔
(v) in Theorem 1 (A) and (B) respectively. First we prove the following useful lemma.

Lemma 4.1. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E).

(i) If f1(I) ∩ f2(I) = f1mu(I) = f21v (I) and fi0(I) ∩ fi0+1(I) = ∅ for some i0 ∈
{2, . . . ,m− 1}, then for any integer � ≥ 0

π(i0m(21v−1)�c) ∈ U1(Φ),

where π(c) ∈ fi0+1(E) ∩ U1(Φ).
(ii) If fm−1(I) ∩ fm(I) = f(m−1)mu(I) = fm1v (I) and fi0(I) ∩ fi0+1(I) = ∅ for some 

i0 ∈ {1, . . . ,m− 2}, then for any integer � ≥ 0

π((i0 + 1)1((m− 1)mu−1)�c) ∈ U1(Φ),

where π(c) ∈ fi0(E) ∩ U1(Φ).

Proof. Since the proof of (ii) is similar, we only prove (i).
Let x� := π(i0m(21v−1)�c). We will prove x� ∈ U1(Φ) by induction on �. First we 

prove x0 = π(i0mc) ∈ U1(Φ). Note that fi0(I) ∩ fi0+1(I) = ∅. Then in view of the 
location of the basic intervals it follows that

fi(I) ∩ fj(I) = ∅ ∀ i ≤ i0 and j ≥ i0 + 1. (4.1)

Let (di) be a coding of x0. We will prove (di) = i0mc, where c ∈ π−1(fi0+1(E) ∩U1(Φ))
has a prefix i0 + 1. Since π(c) ∈ U1(Φ), it suffices to prove d1 = i0 and d2 = m.

If d1 �= i0, then by (4.1) we must have d1 = i0 − 1. By Condition (D) this implies

π(i0mc) ∈ fi0−1(I) ∩ fi0(I) ⊂ fi01(I),

which gives π(mc) ∈ f1(I) ∩ fm(I), leading to a contradiction with (4.1). So d1 = i0. To 
determine d2 suppose on the contrary d2 �= m. Then d2 must be m − 1. By Condition 
(D) it follows that

π(mc) ∈ fm−1(I) ∩ fm(I) ⊂ fm1(I).
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This together with π(c) ∈ fi0+1(E) yields π(c) ∈ f1(I) ∩ fi0+1(I), again leading to a 
contradiction with (4.1). Therefore, (di) = i0mc is the unique coding of x0, and then 
x0 ∈ U1(Φ).

We proceed with the induction hypothesis that x� = π(i0m(21v−1)�c) ∈ U1(Φ) for 
some � ≥ 0, and we consider x�+1. By the induction hypothesis it follows that

π((21v−1)�c) ∈ U1(Φ). (4.2)

Let (di) be a coding of x�+1. By (4.2) it suffices to prove d1 . . . dv+2 = i0m21v−1. By 
an argument similar to the one in the proof of x0 ∈ U1(Φ) it follows that d1 = i0. To 
determine the second digit d2 we assume on the contrary that d2 �= m. Then d2 = m −1, 
which implies π(m(21v−1)�+1c) ∈ fm−1(I) ∩ fm(I) ⊂ fm1(I). So

π((21v−1)�+1c) ∈ f1(I) ∩ f2(I) = f21v (I). (4.3)

If � ≥ 1, then (4.3) implies

π((21v−1)�c) ∈ f1(I) ∩ f2(I),

leading to a contradiction with (4.2). If � = 0, then (4.3) implies π(c) ∈ f1(I) ∩ fi0+1(I), 
leading to a contradiction with (4.1). Therefore, d2 = m.

To prove d3 = 2 we consider the following two cases.

• If d3 = 1, then π((21v−1)�+1c) ∈ f1(I) ∩ f2(I) = f21v (I). By the above arguments 
this will lead to a contradiction.

• If d3 = 3, then π((21v−1)�+1c) ∈ f2(I) ∩f3(I) ⊂ f2m(I), which gives π(1v−1(21v−1)�c)
∈ fm(I). Again this leads to a contradiction with (4.1).

Therefore, d3 = 2. If v = 1, then by the induction hypothesis we are done.
If v > 1, then we claim d4 . . . dv+2 = 1v−1. Suppose d4 �= 1. Then π(1v−1(21v−1)�c) ∈

f1(I) ∩ f2(I) ⊂ f1m(I), which leads to a contradiction with (4.1). By iteration of these 
arguments we can deduce that d4 = · · · = dv+2 = 1.

Hence, d1 . . . dv+2 = i0m21v−1. By the induction hypothesis we conclude that (di) =
im(21v−1)�+1c, and thus x�+1 ∈ U1(Φ), completing the proof. �
Proposition 4.2. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E). If f1(I) ∩ f2(I) �= ∅ or 
fm−1(I) ∩ fm(I) �= ∅, then Uk(Φ) is not closed for any k ∈ N.

Proof. Take k ∈ N. We will prove that Uk(Φ) is not closed by considering the following 
two cases.

(I). f1(I) ∩ f2(I) �= ∅. By Condition (D) there exist u = u1, v = v1 ∈ N such 
that f1(I) ∩ f2(I) = f1mu(I) = f21v (I). Furthermore, by Condition (C) there exists 
i0 ∈ {2, . . . ,m− 1} such that fi0(I) ∩ fi0+1(I) = ∅. We claim that for any � ∈ N
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xk,� := π(1mu(k−1) i0m(21v−1)�c) ∈ Uk(Φ),

where π(c) ∈ fi0+1(E) ∩ U1(Φ). By Lemma 4.1 (i) it follows that π(i0m(21v−1)�c) ∈
fi0(E) ∩ U1(Φ). Then the claim follows by Lemma 2.5 (i).

Observe that xk,� ∈ Uk(Φ) converges to

xk = lim
�→∞

zk,� = π(1mu(k−1)i0m(21v−1)∞),

which has a coding ending with (21v−1)∞. So by Proposition 3.4 it follows that xk ∈
Uℵ0(Φ). This implies that Uk(Φ) is not closed.

(II). fm−1(I) ∩ fm(I) �= ∅. Then there exist u = um−1, v = vm−1 ∈ N such that 
fm−1(I) ∩ fm(I) = f(m−1)mu(I) = fm1v (I). Furthermore, by Condition (C) there exists 
i0 ∈ {1, . . . ,m− 2} such that fi0(I) ∩ fi0+1(I) = ∅. By Lemmas 2.5 (ii) and 4.1 (ii) it 
follows that

yk,� := π(m1v(k−1) (i0 + 1)1((m− 1)mu−1)�c) ∈ Uk(Φ),

where π(c) ∈ fi0(E) ∩ U1(Φ). However, the limit

yk = lim
�→∞

yk,� = π(m1v(k−1) (i0 + 1)1((m− 1)mu−1)∞)

has a coding ending with ((m − 1)mu−1)∞ ∼ m1∞. So by Proposition 3.4 it follows that 
yk ∈ Uℵ0(Φ). Therefore, Uk(Φ) is not closed. �

Now we consider the closeness of Uk(Φ) by assuming f1(I) ∩f2(I) = fm−1(I) ∩fm(I) =
∅. Note by Lemma 2.7 that Uk(Φ) = ∅ if k �= 2� with � ∈ N ∪ {0}.

Lemma 4.3. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E). If f1(I) ∩ f2(I) = fm−1(I) ∩
fm(I) = ∅ and fi(I) ∩ fi+1(I) = fimu(I) = f(i+1)1v (I) for some i ∈ {2, . . . ,m− 2}, then

π(1n(imu)�1∞) ∈ U2�(Φ)

for any integers n, � ≥ 0.

Proof. Since f1(I) ∩ f2(I) = ∅, it suffices to prove

x� := π(1(imu)�1∞) ∈ U2�(Φ).

We prove this by induction on �. Clearly, for � = 0 we have x0 = π(1∞) = a ∈ U1(Φ). 
Now suppose x� ∈ U2�(Φ) for some � ≥ 0, and we will prove x�+1 ∈ U2�+1(Φ).

Since f1(I) ∩ f2(I) = ∅, by using π(1(imu)�1∞) = x� ∈ U2�(Φ) it follows that 
π((imu)�1∞) ∈ U2�(Φ), and then by using fm−1(I) ∩ fm(I) = ∅ we have
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π(m(imu)�1∞) ∈ U2�(Φ). (4.4)

Let (di) be a coding of x�+1 = π(1(imu)�+11∞). Since f1(I) ∩ f2(I) = ∅, it follows that 
d1 = 1. For the second digit d2 we claim that d2 ∈ {i, i + 1}.

If d2 /∈ {i, i + 1}, then by using π(d2d3 . . .) ∈ fi(I) we must have d2 = i − 1. So 
π((imu)�+11∞) ∈ fi−1(I) ∩ fi(I) ⊂ fi1(I), which implies

π(mu(imu)�1∞) ∈ f1(I),

leading to a contradiction with f1(I) ∩ fm(I) = ∅. Therefore, d2 = i or d2 = i + 1.
By the claim it follows that

π(d2d3 . . .) = π((imu)�+11∞) ∈ fi(I) ∩ fi+1(I) = fimu(I) = f(i+1)1v (I).

This together with Lemma 2.2 implies that either d2 . . . du+1 = imu−1 or d2 . . . dv+1 =
(i + 1)1v−1. Observe that

π(imu−1 m(imu)�1∞) = π((i + 1)1v−1 1(imu)�1∞),

where we have used fimu = f(i+1)1v by Lemma 2.1. Then by (4.4) and the induction 
hypothesis π(1(imu)�1∞) = x� ∈ U2�(Φ) it follows that π(d2d3 . . .) = π((imu)�+11∞)
has precisely 2� + 2� = 2�+1 different codings. So x�+1 ∈ U2�+1(Φ). By induction this 
completes the proof. �

Given δ > 0, for a subset F of R we define its δ-neighborhood by

Fδ := {x ∈ R : |x− y| < δ for some y ∈ F} .

In the following proposition we show that U1(Φ) is closed by assuming f1(I) ∩ f2(I) =
fm−1(I) ∩ fm(I) = ∅. To prove this we need the following lemma.

Lemma 4.4. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E). If fi(I) ∩ fi+1(I) = fimu(I) =
f(i+1)1v (E) for some i ∈ {1, . . . ,m− 1}, then

fi(I) ∩ fi+1(I) ∩ E = fi(E) ∩ fi+1(E) = fimu(E) = f(i+1)1v (E).

Proof. By Lemma 2.1 we have fimu = f(i+1)1v , and then fimu(E) = f(i+1)1v (E). Clearly, 
fimu(E) = f(i+1)1v (E) ⊂ fi(E) ∩ fi+1(E) ⊂ fi(I) ∩ fi+1(I) ∩E. So it suffices to prove

fi(I) ∩ fi+1(I) ∩ E ⊂ fimu(E). (4.5)

Take x ∈ fi(I) ∩fi+1(I) ∩E. By Lemma 2.3 it follows that x has a coding (di) beginning 
either with imu−1 or with (i +1)1v−1. Since fi(I) ∩fi+1(I) = fimu(I) = f(i+1)1v (I), this 
gives
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π(imu−1du+1du+2 . . .) ∈ fimu(I)∩E or π((i+ 1)1v−1dv+1dv+2 . . .) ∈ f(i+1)1v (I)∩E.

Whence,

π(du+1du+2 . . .) ∈ fm(I) ∩ E or π(dv+1dv+2 . . .) ∈ f1(I) ∩ E.

Therefore, to establish (4.5) it suffices to prove the following claim.
Claim: fm(I) ∩E = fm(E) and f1(I) ∩E = f1(E).
Since the proof for the second equality is similar, we only prove the first equality 

fm(I) ∩E = fm(E). If fm−1(I) ∩fm(I) = ∅, then it is easy to verify fm(I) ∩E = fm(E). 
Now suppose fm−1(I) ∩ fm(I) �= ∅. Then there exist positive integers p, q such that 
fm−1(I) ∩ fm(I) = f(m−1)mp(I) = fm1q (I). It is clear that fm(E) ⊂ fm(I) ∩ E. To 
prove that this is indeed an equality let us assume for some y ∈ (fm(I) ∩ E) \ fm(E). 
Then by Lemma 2.3 y must have a coding (si) beginning with s1 . . . sp = (m − 1)mp−1. 
Since y /∈ fm(E), we must have sp+1 = m − 1, for otherwise we will have a substitution 
(m − 1)mp ∼ m1q which leads to y ∈ fm(E). Furthermore, π(sp+1sp+2 . . .) ∈ fm−1(I) ∩
fm(I) ∩E. By the same argument we can also deduce that

sp+1 . . . s2p = (m− 1)mp−1, s2p+1 = m− 1 and

π(s2p+1s2p+2 . . .) ∈ fm−1(I) ∩ fm(I) ∩ E.

Iterating this argument we conclude that y has a coding

s1s2 . . . = ((m− 1)mp−1)∞.

By Lemma 3.3 it follows that y also has a coding m1∞, which implies y ∈ fm(E), leading 
to a contradiction. Hence, the equality fm(I) ∩ E = fm(E) holds. �
Proposition 4.5. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E). If f1(I) ∩f2(I) = fm−1(I) ∩
fm(I) = ∅, then Uk(Φ) is closed if and only if k �= 2� with � ∈ N. In particular, U1(Φ) is 
closed.

Proof. First we prove the necessity. Suppose k = 2� for some integer � ≥ 1. By Conditions 
(C) and (D) there exists i ∈ {2, . . . ,m− 2} such that fi(I) ∩ fi+1(I) = fimu(I) =
f(i+1)1v (I). Then by Lemma 4.3 it follows that

xn := π(1n(imu)�1∞) ∈ Uk(Φ) ∀n ∈ N.

However, the limit x∞ := limn→∞ xn = π(1∞) = a ∈ U1(Φ). So, Uk(Φ) is not closed for 
any k = 2� with � ∈ N.

To prove the sufficiency, in view of Lemma 2.7, it suffices to prove that U1(Φ) is closed. 
Let T :

⋃m
i=1 fi(I) → I be the inverse map of the IFS {fi}mi=1, i.e.,
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T (x) = f−1
i (x) if x ∈ fi(I).

Then T is a multivalued map satisfying E = T (E). So, if x has a coding (di) ∈
{1, . . . ,m}N , then T (x) has a coding σ((di)) = (di+1), where σ is the left-shift map. 
Note that f1(I) ∩ f2(I) = fm−1(I) ∩ fm(I) = ∅. Then

g := min {dist(f1(I), f2(I)), dist(fm−1(I), fm(I))} > 0.

By Condition (D) it follows that if fi(I) ∩ fi+1(I) �= ∅, then there exist ui, vi ∈ N such 
that fi(I) ∩ fi+1(I) = fimui (I) = f(i+1)1vi (I). Let

δ := min {rirui
m g : fi(I) ∩ fi+1(I) �= ∅} > 0.

Now we claim that

U1(Φ) = {x ∈ E : Tn(x) /∈ Oδ ∀n ≥ 0} , (4.6)

where Oδ is the δ-neighborhood of O :=
⋃m−1

i=1 (fi(I) ∩ fi+1(I)).
First we prove the inclusion ‘⊃’ in (4.6). Take x /∈ U1(Φ). Then x has (at least) two 

different codings (di), (d′i) such that

d1 . . . dN = d′1 . . . d
′
N and |dN+1 − d′N+1| = 1

for some integer N ≥ 0. This implies TN (x) ∈ fdN+1(I) ∩ fd′
N+1

(I) ⊂ Oδ, and then 
establishes the inclusion ‘⊃’.

To prove the inverse inclusion in (4.6) it suffices to prove that any x ∈ Oδ ∩E has at 
least two different codings. By the definition of δ it follows that

Oδ ∩E = O ∩ E.

Take x ∈ O∩E. Then x ∈ fi(I) ∩ fi+1(I) ∩E for some i ∈ {2, . . . ,m− 2}. By Condition 
(D) there exist u = ui, v = vi ∈ N such that

fi(I) ∩ fi+1(I) = fimu(I) = f(i+1)1v (I),

which implies fimu = f(i+1)1v by Lemma 2.1. So by Lemma 4.4 any x ∈ fi(I) ∩fi+1(I) ∩E
has at least two different codings: one begins with imu, and the other begins with (i +1)1v. 
This establishes the claim.

Note that Oδ is the finite union of open intervals, and then it is an open set. By (4.6)
it follows that

U1(Φ) = E \
∞⋃

n=0
T−n(Oδ),

and then it is closed. This completes the proof. �
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Proof of (i) ⇔ (v) in Theorem 1 (A) and (B). The equivalence (i) ⇔ (v) follows by 
Propositions 4.2 and 4.5. �
5. Geometrical structure of E and U1(Φ)

In this section we show that the self-similar set E and the set U1(Φ) of points with 
a unique coding can be both described as the strongly connected graph-directed set 
satisfying the OSC (see [25]).

5.1. Geometrical structure of U1(Φ)

Given Φ = (E, {fi}mi=1) ∈ E , first we consider the graph-directed structure of the 
univoque set U1(Φ). Let

F :=
⋃

fi(I)∩fi+1(I)=fimui (I)=f(i+1)1vi (I)

{imui , (i + 1)1vi}

be the set of forbidden blocks, and let

XF :=
{

(di) ∈ {1, . . . ,m}N : (di) does not contain any block from F
}
.

Then (XF, σ) is a N -step subshift of finite type (cf. [24]), where N + 1 is the length of 
the longest word in F, and σ is the left shift map. For n ∈ N∪{0} we denote by Bn(XF)
the set of all length n admissible words in XF, i.e.,

Bn(XF) = {d = d1 . . . dn : d occurs in some sequence of XF} .

In particular, for n = 0 the set B0(XF) is the singleton consisting of the empty word ε. 
We will show that (XF, σ) is transitive, which means any two admissible words can be 
connected in XF.

Now we construct a directed graph G = (BN (XF), E) for the set U1(Φ). Let BN (XF)
be the set of vertices of our graph G. So each admissible word of length N in XF is a 
vertex of G. For two vertices c = c1 . . . cN , d = d1 . . . dN ∈ BN (XF) we draw a directed 

edge from c to d, denoted by 
→
cd, if

c2 . . . cN = d1 . . . dN−1 and c1 . . . cNdN ∈ BN+1(XF).

In this case the corresponding map for the edge 
→
cd is denoted by f→

cd
= fc1 . Let E be 

the set of all directed edges in G. We will show that the set U1(Φ) can be identical to 
the graph-directed set satisfying the OSC.

Note that the set U1(Φ) is not alway closed (see Proposition 4.2). We define a countable 
subset N of π(XF) which is not included in U1(Φ).
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Definition 5.1. The subset N of π(XF) is defined as follows:

• If f1(I) ∩ f2(I) = f21v (I) and fm−1(I) ∩ fm(I) = ∅, then

N =
∞⋃

n=0

⋃
d∈Bn(XF)

{
π(d(21v−1)∞)

}
;

• If f1(I) ∩ f2(I) = ∅ and fm−1(I) ∩ fm(I) = f(m−1)mp(I), then

N =
∞⋃

n=0

⋃
d∈Bn(XF)

{
π(d((m− 1)mp−1)∞)

}
;

• If f1(I) ∩ f2(I) = f21v (I) and fm−1(I) ∩ fm(I) = f(m−1)mp(I), then

N =
∞⋃

n=0

⋃
d∈Bn(XF)

{
π(d(21v−1)∞), π(d((m− 1)mp−1)∞)

}
.

• If f1(I) ∩ f2(I) = fm−1(I) ∩ fm(I) = ∅, then N = ∅.

In fact, by Proposition 3.4 it follows that any point in N has countably many codings. 
For each word c = c1 . . . cN ∈ BN (XF) we set

Uc := {π((di)) : (di) ∈ XF, d1 . . . dN = c} ,

where π is the projection map defined in (1.1). By Lemma 2.1 and our construction of 
XF it follows that

U1(Φ) ∪N = π(XF) =
⋃

c∈BN (XF)

Uc, (5.1)

where the union in the above equation is pairwise disjoint. Furthermore, for each c ∈
BN (XF) we have

Uc =
⋃

→
cd∈E

f→
cd

(Ud). (5.2)

One can also verify that the union in (5.2) is pairwise disjoint. Therefore, by (5.1) and 
(5.2) it follows that up to a countable set N the set U1(Φ) is a graph-directed set 
satisfying the OSC.

Lemma 5.2. The subshift of finite type XF is transitive. Or equivalently, the directed 
graph G is strongly connected.
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Proof. By our construction it is clear that XF is a N -step subshift of finite type. So it 
suffices to prove that XF is transitive.

By Condition (C) there exists j ∈ {1, . . . ,m− 1} such that

fj(I) ∩ fj+1(I) = ∅. (5.3)

For any two admissible words c = c1 . . . cp and d = d1 . . . dq in XF we will construct a 
word η such that cηd is still an admissible word in XF. To rephrase it, the word cηd
does not contain any block from F. Note that XF is a N -step subshift of finite type. We 
prove the transitivity in the following two steps. In the first step we show that c can be 
extended to the right which gives an admissible word cw ending with mN ; in the second 
step we show that the word mN can be connected to d via a word w′. Then by using 
[24, Theorem 2.1.8] it follows that cww′d is an admissible word in XF.

Step I. We extend the word c to the right such that the new word cw is admissible 
in XF and ends with mN . This will be verified by the following five cases.

(i). c = c1 . . . cp ends with imk for some i �= m and k ∈ {1, . . . , p− 1}. If fi(I) ∩
fi+1(I) = ∅, then we can choose w = mN , and one can easily check that cwm∞ ∈ XF. 
If fi(I) ∩ fi+1(I) �= ∅, then there exist u = ui, v = vi ∈ N such that

fi(I) ∩ fi+1(I) = fimu(I) = f(i+1)1v (I).

Since c = c1 . . . cp−k−1im
k is an admissible word, we have k < u. By (5.3) it follows that

• if j �= 1, then we can take w = jmN , and thus cwm∞ = c1 . . . cp−k−1im
kjm∞ ∈ XF;

• if j = 1, then we can choose w = (j + 1)jmN = 21mN , and thus cwm∞ =
c1 . . . cp−k−1im

k21m∞ ∈ XF.

(ii). c = mp. Then by an argument similar to the proof in Case (i) one can verify that 
cm∞ ∈ XF. So we can take w = mN in this case.

(iii). c = c1 . . . cp ends with i1� for some i �= 1 and � ∈ {1, . . . , p− 1}. If fi−1(I) ∩
fi(I) = ∅, then in view of (5.3) we can take

w =
{

(j + 1)jmN if j + 1 �= m,

jmN = (m− 1)mN if j + 1 = m.
(5.4)

Indeed, one can check that cwm∞ = c1 . . . cp−�−1i1�(j + 1)jm∞ ∈ XF if j + 1 �= m, and 
cwm∞ = c1 . . . cp−�−1i1�(m − 1)m∞ ∈ XF if j + 1 = m.

If fi−1(I) ∩ fi(I) �= ∅, then there exist u = ui−1, v = vi−1 ∈ N such that

fi−1(I) ∩ fi(I) = f(i−1)mu(I) = fi1v (I).

Since c = c1 . . . cp−�−1i1� is admissible, we have � < v. Then we can take
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w =
{

jmN if j �= 1,
(j + 1)jmN = 21mN if j = 1.

One can also verify that cwm∞ ∈ XF.
(iv). c = 1p. By an argument similar to the proof in Case (iii) we can take the word 

w as defined in (5.4). One can check that cwm∞ ∈ XF.
(v). c = c1 . . . cp with cp = i /∈ {1,m}. If fi(I) ∩fi+1(I) = ∅, then we can take w = mN

since cwm∞ = c1 . . . cp−1im
∞ ∈ XF. If fi(I) ∩ fi+1(I) �= ∅, then in view of (5.3) we can 

take w as defined in (5.4). Again, one can verify that cwm∞ ∈ XF.
Step II. There exists a word w′ such that mNw′d is admissible in XF. Suppose (di) ∈

XF begins with d. If d1 �= 1, then take w′ = m, and one can check that mNw′d1d2 . . . =
mN+1d1d2 . . . ∈ XF. If d1 = 1, then we take w′ = j +1, and thus by (5.3) it follows that 
mN (j + 1)d1d2 . . . ∈ XF.

By Steps I and II it follows that XF is a transitive subshift of finite type. So the 
directed graph G is strongly connected. �

By (5.1), (5.2) and Lemma 5.2 it follows that U1(Φ) is identical to a strongly connected 
graph-directed set satisfying the OSC. Then by using [25, Theorem 3] the Hausdorff di-
mension of U1(Φ) can be calculated via the spectral radius of the corresponding adjacency 
matrix of G, and the corresponding Hausdorff measures of U1(Φ) are positive and finite.

Proposition 5.3. Let Φ = (E, {fi}mi=1) ∈ E. Then up to a countable set the univoque 
set U1(Φ) is a strongly connected graph-directed set satisfying the OSC. So, for s =
dimH U1(Φ) the s-dimensional Hausdorff measure of U1(Φ) is positive and finite.

5.2. Geometrical structure of E

Similar to the construction of G, we construct a directed graph G∗ for the self-similar 
set E. Let

F∗ :=
{
imui : fi(I) ∩ fi+1(I) = fimui (I) = f(i+1)1vi (I)

}
be the set of forbidden blocks, and let

XF∗ :=
{

(di) ∈ {1, . . . ,m}N : (di) does not conatin any word from F∗
}
.

Then (XF∗ , σ) is a N∗-step subshift of finite type, where N∗ + 1 is the length of the 
longest word in F∗.

Now we describe the graph-directed structure of E based on the N∗-step subshift of 
finite type XF∗ . We construct a directed graph G∗ = (BN∗(XF∗), E∗) in the following 
way. Let BN∗(XF∗) be the set of vertices of our graph G∗. For two vertices c = c1 . . . cN∗

and d = d1 . . . dN∗ ∈ BN∗(XF∗) we connect a directed edge from c to d, denoted by 
→
cd, 

if c2 . . . cN∗ = d1 . . . dN∗−1 and c1 . . . cN∗dN∗ ∈ BN∗+1(XF∗). In this case we write the 
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corresponding map f→
cd

= fc1 . Let E∗ be the collection of all directed edges in the graph 
G∗. For each word c = c1 . . . cN∗ ∈ BN∗(XF∗) let

Ec := {π((di)) : (di) ∈ XF∗ , d1 . . . dN∗ = c1 . . . cN∗} .

Then the self-similar set E can be written as

E = π(XF∗) =
⋃

c∈BN∗ (XF∗ )

Ec. (5.5)

By Lemma 2.1 and our construction of XF∗ it follows that the union in (5.5) is pairwise 
disjoint. Furthermore, for each c ∈ BN∗(XF∗) we have

Ec =
⋃

→
cd∈E∗

f→
cd

(Ed). (5.6)

One can also verify that the union in (5.6) is pairwise disjoint. Therefore, by (5.5) and 
(5.6) it follows that E is a graph-directed set satisfying the OSC which can be represented 
by the directed graph G∗.

By an argument similar to the proof of Lemma 5.2 one can show that the graph G∗ is 
strongly connected.

Lemma 5.4. The subshift of finite type (XF∗ , σ) is transitive. Or equivalently, the graph 
G∗ is strongly connected.

Hence, by (5.5), (5.6), Lemma 5.4 and using [25, Theorem 3] it follows that the 
Hausdorff dimension of E can be calculated via the spectral radius of the adjacency 
matrix of G∗, and then the corresponding Hausdorff measure of E is positive and finite.

Proposition 5.5. Let Φ = (E, {fi}mi=1) ∈ E. Then the set E is a strongly connected graph-
directed set satisfying the OSC. So, for t = dimH E the t-dimensional Hausdorff measure 
of E is positive and finite.

In the next section we will explicitly determine the Hausdorff dimensions of U1(Φ)
and E.

6. Hausdorff dimensions and Hausdorff measures of E and Uk(Φ)

Let Φ = (E, {fi}mi=1) ∈ E . In this section we will investigate the Hausdorff dimensions 
and Hausdorff measures of E and Uk(Φ), and prove Theorem 2.
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6.1. Hausdorff dimensions of E and Uk(Φ)

Recall from Propositions 5.3 and 5.5 that both the self-similar set E and the univoque 
set U1(Φ) can be identical to strongly connected graph-directed sets satisfying the OSC, 
and thus the corresponding Hausdorff measures of E and U1(Φ) are positive and finite. 
Based on this and by using Bonferroni inequality we are able to determine the explicit 
formulae for the Hausdorff dimensions of E and Uk(Φ), respectively. Moreover, we prove 
that the Hausdorff measure of Uk(Φ) is infinite for any k ≥ 2 satisfying Uk(Φ) �= ∅.

Given Φ = (E, {fi}ni=1) ∈ E , by Propositions 5.3 and 5.5 it follows that the cor-
responding Hausdorff measures of E and U1(Φ) are both positive and finite, i.e., for 
s := dimH U1(Φ) and t := dimH E we have

Hs(U1(Φ)) ∈ (0,∞) and Ht(E) ∈ (0,∞). (6.1)

Furthermore, note that U1(Φ) is a proper subset of E, and E is a strongly connected 
graph-directed set satisfying the OSC. Then dimH U1(Φ) < dimH E. Note that

E = U2ℵ0 (Φ) ∪ Uℵ0(Φ) ∪
∞⋃
k=1

Uk(Φ).

So, by (6.1) and Theorem 1 it follows that

dimH U2ℵ0 (Φ) = dimH E, and Ht(U2ℵ0 (Φ)) = Ht(E) ∈ (0,∞). (6.2)

In the remaining part of this subsection we will focus on explicit formulae for the Haus-
dorff dimensions of E and U1(Φ), respectively. This will be done by the Bonferroni 
inequality (cf. [9, Exercise 3.12]).

For Φ = (E, {fi}mi=1) ∈ E we recall from Definition 1.2 that the overlapping vectors 
u = (u1, . . . , um), v = (v1, . . . , vm) of Φ are defined as follows: if fi(I) ∩ fi+1(I) �= ∅, 
then there exist u, v ∈ N such that fi(I) ∩ fi+1(I) = fimu(I) = f(i+1)1v (I), and in this 
case ui = u and vi = v. Otherwise, ui = vi = ∞. In particular, um = vm = ∞.

Proposition 6.1. Let Φ = (E, {fi}mi=1) ∈ E with fi(x) = rix + bi for 1 ≤ i ≤ m. Then the 
Hausdorff dimension t = dimH E satisfies

m∑
i=1

rti(1 − ruit
m ) = 1.

Proof. Note that E =
⋃m

i=1 fi(E), and by Condition (B) that any three basic intervals 
have empty intersection. Then by Bonferroni inequality it follows that

Ht(E) = Ht

(
m⋃

fi(E)
)

=
∑

Ht(fi(E)) −
m−1∑

Ht(fi(E) ∩ fi+1(E)), (6.3)

i=1 i=1 i=1
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where t = dimH E. Observe by Condition (D) that if fi(I) ∩ fi+1(I) �= ∅, then fi(I) ∩
fi+1(I) = fimui (I) for some positive integer ui. By Lemma 4.4 this also implies

fi(E) ∩ fi+1(E) = fimui (E).

Since the Hausdorff measure Ht is translation invariant, using the scaling property of 
the Hausdorff measure in (6.3) it follows that

Ht(E) =
m∑
i=1

Ht(fi(E)) −
∑

fi(I)∩fi+1(I) �=∅
Ht(fimui (E))

=
m∑
i=1

rtiHt(E) −
∑

fi(I)∩fi+1(I) �=∅
rtir

uit
m Ht(E)

=
m∑
i=1

rti(1 − ruit
m )Ht(E),

where the last equality holds by using that ruit
m = 0 if fi(I) ∩ fi+1(I) = ∅. Note by (6.1)

that Ht(E) ∈ (0, ∞). Then the lemma follows by dividing Ht(E) on both sides of the 
above equation. �

Now we turn to determine the explicit formula for the Hausdorff dimension of U1(Φ). 
First we need the following lemma. Set U := U1(Φ), and for a word w ∈ {1, . . . ,m}∗

write U(w) := U ∩ fw(E). Then any x ∈ U(w) has a unique coding with a prefix w.

Lemma 6.2. Let Φ = (E, {fi}mi=1) ∈ E with fi(x) = rix + bi for 1 ≤ i ≤ m.

(i) For any i ∈ {1, . . . ,m},

U(i) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fi(U) if fi−1(I) ∩ fi(I) = fi(I) ∩ fi+1(I) = ∅,
fi(U) \ fi(U(1vi−1)) if fi−1(I) ∩ fi(I) �= ∅ and fi(I) ∩ fi+1(I) = ∅,
fi(U) \ fi(U(mui)) if fi−1(I) ∩ fi(I) = ∅ and fi(I) ∩ fi+1(I) �= ∅,
fi(U) \

(
fi(U(1vi−1)) ∪ fi(U(mui))

)
if fi−1(I) ∩ fi(I) �= ∅ and fi(I) ∩ fi+1(I) �= ∅.

(ii) For any u, v ∈ N we have

U(mu) =
{

fmu(U) if fm−1(I) ∩ fm(I) = ∅,
fmu(U) \ fmu(U(1vm−1)) if fm−1(I) ∩ fm(I) �= ∅,

and

U(1v) =
{

f1v (U) if f1(I) ∩ f2(I) = ∅,
f1v (U) \ f1v (U(mu1)) if f1(I) ∩ f2(I) �= ∅.
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Proof. Let i ∈ {1, 2, . . . ,m}. Since the proofs for different cases in (i) are similar, we 
only prove that

U(i) = fi(U) \
(
fi(U(1vi−1)) ∪ fi(U(mui))

)
assuming that fi−1(I) ∩ fi(I) �= ∅ and fi(I) ∩ fi+1(I) �= ∅.

Take x ∈ U(i). Then x has a unique coding π−1(x) = x1x2 . . . with x1 = i. Clearly, 
π(x2x3 . . .) ∈ U . This implies x = π(ix2x3 . . .) ∈ fi(U). Since by Condition (D) that 
fi−1(I) ∩ fi(I) = f(i−1)mui−1 (I) = fi1vi−1 (I), any point in fi(U(1vi−1)) has at least 
two different codings: one begins with i1vi−1 and another begins with (i − 1)mui−1 . 
This gives x /∈ fi(U(1vi−1)). Similarly, note by Condition (D) that fi(I) ∩ fi+1(I) =
fimui (I) = f(i+1)1vi (I). Then any point in fi(U(mui)) has at least two codings: one 
begins with imui and another begins with (i + 1)1vi . So, x /∈ fi(U(mui)). This proves 
U(i) ⊂ fi(U) \

(
fi(U(1vi−1)) ∪ fi(U(mui))

)
.

To prove the reverse inclusion we take y ∈ fi(U) \
(
fi(U(1vi−1)) ∪ fi(U(mui))

)
. Then 

y has a coding y1y2 . . . satisfies

y1 = i and π(y2y3 . . .) ∈ U . (6.4)

Furthermore,

y2 . . . y1+vi−1 �= 1vi−1 and y2 . . . y1+ui
�= mui . (6.5)

It remains to prove y ∈ U . Suppose on the contrary that y has another coding y′1y
′
2 . . .. 

If y′1 = y1 = i, then

π(y′2y′3 . . .) = π(y2y3 . . .)

has at least two different codings, leading to a contradiction with (6.4). So y′1 �= y1. Note 
that y1 = i. This implies y ∈ fi−1(I) ∩ fi(I) or y ∈ fi(I) ∩ fi+1(I). If y ∈ fi−1(I) ∩ fi(I), 
then by (6.4) it follows that y2 . . . y1+vi−1 = 1vi−1 , leading to a contradiction with (6.5). 
If y ∈ fi(I) ∩ fi+1(I), then by (6.4) we obtain y2 . . . y1+ui

= mui , again leading to a 
contradiction with (6.5). Therefore, y1y2 . . . is the unique coding of y, i.e., y ∈ U(i). This 
completes the proof.

(ii) can be proved analogously to (i). �
Proposition 6.3. Let Φ = (E, {fi}mi=1) ∈ E with fi(x) = rix + bi for 1 ≤ i ≤ m. Then the 
Haudorff dimension s = dimH U1(Φ) satisfies

m∑
rsi

(
1 − ruis

m (2 − r
vm−1s
1 − ru1s

m )
1 − r

vm−1sru1s
m

)
= 1.
i=1 1
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Proof. Suppose without loss of generality that f1(I) ∩f2(I) �= ∅ and fm−1(I) ∩fm(I) �= ∅. 
Let U = U(Φ), and for a word w ∈ {1, 2, . . . ,m}∗ we write U(w) = U ∩ fw(E). Note 
that

U =
m⋃
i=1

U(i),

where the union is pairwise disjoint. By Lemma 6.2 (i) it follows that if fi−1(I) ∩fi(I) �= ∅
and fi(I) ∩ fi+1(I) �= ∅, then U(i) can be written as

U(i) = fi(U) \
(
fi(U(1vi−1) ∪ fi(U(mui)))

)
,

where the union is disjoint. For other cases U(i) can be written analogously, see 
Lemma 6.2 (i). Let s := dimH U . Then the s-dimensional Hausdorff measure of U can 
be written as

Hs(U) =
m∑
i=1

Hs(U(i)) =
m∑
i=1

(
Hs(fi(U)) −Hs

(
fi(U(1vi−1))

)
−Hs

(
fi(U(mui))

))

=
m∑
i=1

rsi

(
Hs(U) −Hs(U(1vi−1)) −Hs(U(mui))

)
,

(6.6)

where we set v0 := ∞. We emphasize that if fi−1(I) ∩ fi(I) = ∅, then vi−1 = ∞ which 
implies Hs(U(1vi−1)) = 0. Similarly, if fi(I) ∩ fi+1(I) = ∅, then ui = ∞ which gives 
Hs(U(mui)) = 0. So (6.6) holds for all cases independent of the locations of the basic 
intervals fi−1(I), fi(I) and fi+1(I).

Since f1(I) ∩ f2(I) �= ∅ and fm−1(I) ∩ fm(I) �= ∅, by Lemma 6.2 (ii) it follows that

Hs(U(1vi−1)) = Hs(f1vi−1 (U)) −Hs
(
f1vi−1 (U(mu1))

)
= r

vi−1s
1

(
Hs(U) −Hs(U(mu1))

)
= r

vi−1s
1 Hs(U) − r

vi−1s
1

(
Hs(fmu1 (U)) −Hs(fmu1 (U(1vm−1)))

)
= r

vi−1s
1 Hs(U) − r

vi−1s
1 ru1s

m Hs(U) + r
vi−1s
1 ru1s

m Hs(U(1vm−1))

= Hs(U)rvi−1s
1 (1 − ru1s

m ) + r
vi−1s
1 ru1s

m Hs(U(1vm−1)).

Repeating using Lemma 6.2 (ii) in the above equation we can deduce that for any 
N ∈ N ∪ {0},

Hs(U(1vi−1)) = Hs(U)rvi−1s
1 (1 − ru1s

m )
N∑

k=0

(rvm−1s
1 ru1s

m )k

+ r
vi−1s
1 ru1s

m (rvm−1s
1 ru1s

m )NHs(U(1vm−1)).
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Letting N → ∞, and then (rvm−1s
1 ru1s

m )N → 0, using that Hs(U(1vm−1)) ≤ Hs(U) < ∞
we obtain

Hs(U(1vi−1)) = Hs(U)r
vi−1s
1 (1 − ru1s

m )
1 − r

vm−1s
1 ru1s

m
. (6.7)

Similarly, one can prove

Hs(U(mui)) = Hs(U)r
uis
m (1 − r

vm−1s
1 )

1 − r
vm−1s
1 ru1s

m
. (6.8)

Substituting (6.7) and (6.8) into (6.6), and using that Hs(U) ∈ (0, ∞) it follows that

1 =
m∑
i=1

rsi −
1 − ru1s

m

1 − r
vm−1s
1 ru1s

m

m∑
i=1

rsi r
vi−1s
1 − 1 − r

vm−1s
1

1 − r
vm−1s
1 ru1s

m

m∑
i=1

rsi r
uis
m .

Note that v0 = ∞, um = ∞, and by fi1vi−1 = f(i−1)mui−1 that rirvi−1
1 = ri−1r

ui−1
m . 

Rearranging the second summation in the above equation we conclude that the Hausdorff 
dimension s = dimH U satisfies

1 =
m∑
i=1

rsi −
1 − ru1s

m

1 − r
vm−1s
1 ru1s

m

m∑
i=1

rsi r
uis
m − 1 − r

vm−1s
1

1 − r
vm−1s
1 ru1s

m

m∑
i=1

rsi r
uis
m

=
m∑
i=1

rsi

(
1 − ruis

m (2 − r
vm−1s
1 − ru1s

m )
1 − r

vm−1s
1 ru1s

m

)
.

This completes the proof. �
6.2. Hausdorff measure of Uk(Φ)

Given Φ = (E, {fi}mi=1) ∈ E , in this subsection we will show that the corresponding 
Hausdorff measure of Uk(Φ) is infinite for any k ≥ 2 satisfying Uk(Φ) �= ∅.

Let Φ = (E, {fi}mi=1) ∈ E . By Lemmas 2.5 and 2.7 we construct a large subset of 
Uk(Φ) as described in the following lemma. For simplicity we write U := U1(Φ) and 
U := π−1(U). Furthermore, we denote by Bn(U) the set of all length n prefixes of 
sequences from U.

Lemma 6.4. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E), and let k ∈ N.

(i) If f1(I) ∩ f2(I) = f1mu(I) and fi(I) ∩ fi+1(I) = ∅ for some i ∈ {2, . . . ,m− 1}, 
then

π(c1 . . . cn 1mu(k−1) d) ∈ Uk(Φ)

for any c1 . . . cn ∈ Bn(U) with cn = i +1 and for any d = d1d2 . . . ∈ U with d1 = i.
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(ii) If fm−1(I) ∩ fm(I) = fm1v (I) and fi(I) ∩ fi+1(I) = ∅ for some i ∈ {1, . . . ,m− 2}, 
then

π(c1 . . . cn m1v(k−1) d) ∈ Uk(Φ)

for any c1 . . . cn ∈ Bn(U) with cn = i and for any d = d1d2 . . . ∈ U with d1 = i +1.
(iii) If f1(I) ∩ f2(I) = fm−1(I) ∩ fm(I) = ∅ and fi(I) ∩ fi+1(I) = fimu(I) for some 

i ∈ {2, . . . ,m− 2}, then

π(c1 . . . cn (imu)k d) ∈ U2k(Φ)

for any c1 . . . cn ∈ Bn(U) with cn = m and for any d = d1d2 . . . ∈ U with d1 = m.

For Φ = (E, {fi}mi=1) ∈ E note by Proposition 5.3 that U1(Φ) is identical to a strongly 
connected graph-directed set satisfying the OSC. In [25] Mauldin and Williams showed 
that the Hausdorff dimension s = dimH U1(Φ) can be calculated via the spectral radius 
of the corresponding adjacency matrix A(s) = (ai,j(s)) which is defined in the following 
way. Recall from Section 5 that U1(Φ) can be represented by the directed graph G =
(BN (XF), E). The size of the matrix A(s) is |BN (XF)| × |BN (XF)|. For two vertices 
c = c1 . . . cN and d = d1 . . . dN , if c is connected to d, then we define the map for the 

edge 
→
cd by f→

cd
(x) = fc1(x). In this case, the corresponding entry of A(s) is defined by

ac,d(s) = rsc1 .

If c is not connected to d, then we define ac,d(s) = 0.
Note by Lemma 5.2 that the directed graph G is strongly connected. Then A(s) is an 

irreducible non-negative matrix. So it has a unique largest non-negative eigenvalue ρ(s), 
which is also called the Perron eigenvalue of A(s). It was shown in [25, Theorem 3] that 
the Hausdorff dimension s = dimH U1(Φ) satisfies

ρ(s) = 1.

Proposition 6.5. Let Φ = (E, {fi}mi=1) ∈ E and let s = dimH U1(Φ). Then

Hs(Uk(Φ)) = ∞

for any k ≥ 2 satisfying Uk(Φ) �= ∅.

Proof. Let I = conv(E) and let k ≥ 2 with Uk(Φ) �= ∅. Since the proof for different 
cases is similar, we assume without loss of generality that f1(I) ∩ f2(I) �= ∅ and fi(I) ∩
fi+1(I) = ∅ for some i ∈ {1, . . . ,m− 1}. So there exists a positive integer u such that 
f1(I) ∩ f2(I) = f1mu(I). By Lemma 6.4 (i) it follows that
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∞⋃
n=1

⋃
c1...cn∈Bn(U),cn=i+1

{
π(c1 . . . cn1mu(k−1)d1d2 . . .) : (di) ∈ U, d1 = i

}
⊂ Uk(Φ),

where U = π−1(U1(Φ)). Furthermore, note that k ≥ 2, c1 . . . cn is an admissible word in 
U, and fi(I) ∩ fi+1(I) = ∅. Then one can verify that the union in the above equation is 
pairwise disjoint. Let s = dimH U1(Φ). Therefore,

Hs(Uk(Φ))

≥
∞∑

n=1

∑
c1...cn∈Bn(U),cn=i+1

Hs
({

π(c1 . . . cn1mu(k−1)d1d2 . . .) : (di) ∈ U, d1 = i
})

= D

∞∑
n=1

∑
c1...cn∈Bn(U),cn=i+1

⎛
⎝ n∏

j=1
rscj

⎞
⎠ ,

(6.9)

where

D := Hs
({

π(1mu(k−1)d1d2 . . .) : (di) ∈ U, d1 = i
})

= rs1r
u(k−1)s
m Hs(fi(E) ∩ U1(Φ)) > 0

using Proposition 5.3. Note that D is a constant independent of the summation in (6.9). 
By using the Perron-Frobenius Theorem (cf. [24, Chapter 4]) it follows that

∑
c1...cn∈Bn(U),cn=i+1

⎛
⎝ n∏

j=1
rscj

⎞
⎠ ≥ D0 · ρ(s)n (6.10)

for some constant D0 > 0, where ρ(s) is the Perron eigenvalue of the matrix A(s). Note 
that ρ(s) = 1. By (6.9) and (6.10) we conclude that

Hs(Uk(Φ)) ≥
∞∑

n=1
D ·D0 = ∞. �

Proof of Theorem 2. The Hausdorff dimensions and Hausdorff measures of E and 
U2ℵ0 (Φ) follow by Propositions 5.5 and 6.1. This proves (i). For the Hausdorff dimen-
sion of Uk(Φ) it can be deduced from Theorem 1 and Proposition 6.3. For the Hausdorff 
measures of Uk(Φ) it follows from Propositions 5.3 and 6.5. This completes the proof. �
7. Local dimension of self-similar measure

Let Φ = (E, {fi}mi=1) ∈ E . Given a probability vector p = (p1, . . . , pm) with each 
pi > 0, recall from the first section that μp is the self-similar measure supported on E
satisfying
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μp =
m∑
i=1

piμp ◦ f−1
i .

In this section we will determine the local dimension of μp at points in Uk(Φ) and Uℵ0(Φ).

7.1. Local dimension of μp at points in Uk(Φ)

First we consider the local dimension of μp at points in Uk(Φ). Recall that B(x, r) =
(x − r, x + r) is the open interval with center at x and radius r.

Lemma 7.1. Let h(x) = αx + b with α > 0. Then

h(B(c, r)) = B(h(c), αr).

Proof. For any z = h(y) ∈ h(B(c, r)) with |y − c| < r we have

|z − h(c)| = α|y − c| < αr,

which implies that z ∈ B(h(c), αr). On the other hand, for any z ∈ B(h(c), αr) we have

α

∣∣∣∣z − b

α
− c

∣∣∣∣ =
∣∣∣∣h(z − b

α

)
− h(c)

∣∣∣∣ = |z − h(c)| < αr.

Thus, z = h( z−b
α ) with z−b

α ∈ B(c, r). �
In the following proposition we show that the local dimension of μp at each point in 

Uk(Φ) is uniquely determined by a point in U1(Φ).

Proposition 7.2. Let Φ = (E, {fi}mi=1) ∈ E and k ≥ 2. Then for any x ∈ Uk(Φ) there 
exists a word i ∈ {1, . . . ,m}∗ and a unique y ∈ U1(Φ) such that x = fi(y), and

dimlocμp(x) = dimlocμp(y), dimlocμp(x) = dimlocμp(y).

Proof. Since the proofs for different cases are similar, we assume without loss of gener-
ality that f1(I) ∩ f2(I) �= ∅ and fm−1(I) ∩ fm(I) �= ∅, where I = conv(E) is the convex 
hull of E. Let

S =
m−1⋃
i=1

(
fi(E) ∩ fi+1(E)

)
.

Then any x ∈ S has at least two different codings. Define the expanding map on E by

T : E → E; x �→ T (x) =
{

f−1
i (x) if x ∈ fi(E) \ S
f−1(x) if x ∈ fi(E) ∩ fi+1(E).
i
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Then U1(Φ) = {x ∈ E : Tn(x) /∈ S ∀n ≥ 0}.
Fix an integer k ≥ 2 and take x ∈ Uk(Φ). Then there exists a smallest integer k1 ≥ 0

such that y0 := T k1(x) ∈ S. So there exists a unique block i1 . . . ik1 ∈ {1, . . . ,m}k1 (it 
is the empty block ε if k1 = 0) such that x = fi1...ik1

(y0). Since y0 ∈ S, there exists 
j1 ∈ {1, . . . ,m− 1} such that

y0 ∈ fj1(E) ∩ fj1+1(E) = fj1mu(E) = f(j1+1)1v (E),

where u = uj1 , v = vj1 ∈ N are the overlapping indices. Note that x /∈ Uℵ0(Φ). By 
Corollary 3.4 it follows that y0 /∈

{
fj1mu(a), f(j1+1)1v (b)

}
. So, either there exists an 

integer �1 ≥ 0 such that

y0 ∈ fj1mu1�1 (E) \ fj1mu1�1+1(E), (7.1)

or there exists an integer �′1 ≥ 0 such that

y0 ∈ f(j1+1)1vm�′1 (E) \ f(j1+1)1vm�′1+1(E). (7.2)

Since the proof for the case in (7.2) can be handled similarly, without loss of generality 
we assume (7.1) holds. Note that fm−1(I) ∩ fm(I) = f(m−1)mp(I) = fm1q (I) for some 
positive integers p = um−1, q = vm−1. Then by using fjmu=f(j+1)1v and fm1q = f(m−1)mp

it follows that

f(j1+1)1v+�1 = fj1mu1�1 = fj1mu−1(m−1)mp1�1−q = · · · = fj1mu−1((m−1)mp−1)sm1�1−sq

for all s = 0, 1, . . . , � �1
q �. Here �r� stands for the integer part of a real number r. So, by 

(7.1) there exists a unique y1 ∈ E and N1 := � �1
q � + 2 different blocks

W1,1 := (j1 + 1)1v+�1 ,

W1,2 := j1m
u1�1 ,

W1,3 := j1m
u−1(m− 1)mp1�1−q,

...

W1,s+2 := j1m
u−1((m− 1)mp−1)sm1�1−sq,

...

W1,N1 := j1m
u−1((m− 1)mp−1)N1−2m1l1−(N1−2)q,

such that

y0 = fW1,i(y1) for all i ∈ {1, . . . , N1} .
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This implies that y0 has N1 different codings landing on y1. Furthermore, note that 
f1(I) ∩ fm(I) = ∅. One can verify that y0 has precisely N1 different codings landing on 
y1. Observe that x = fi1...ik1

(y0) has a unique coding landing on y0. Therefore, x has 
precisely N1 different codings landing on y1.

If y1 ∈ U1(Φ), then k = N1 and the proof is complete by taking y = y1. Otherwise, 
there exists a smallest integer k2 ≥ 0 such that T k2(y1) ∈ S. By the same argument as 
above to the point T k2(y1) we can find a unique point y2 ∈ E and N2 different blocks 
W2,1, W2,2, . . . , W2,N2 such that fW2,i = fW2,j for any i �= j, and y1 = fW2,i(y2). In 
other words, y1 has precisely N2 different codings landing on y2. This, combined with 
the discussion from x to y1, implies that x has precisely M2 ≤ N1 ·N2 different codings 
landing on y2. We emphasize that M2 might be strictly smaller than N1 ·N2 if y1 ∈ S.

Since k is finite, proceeding the above arguments for finitely many times we can find 
a unique point yJ ∈ U1(Φ) and MJ different blocks WJ,1, WJ,2, . . . , WJ,MJ

such that

x = fWJ,1(yJ ), and fWJ,i
= fWJ,j

∀ i �= j. (7.3)

Furthermore, x has precisely MJ different codings landing on yJ . Since yJ ∈ U1(Φ), this 
implies that k = MJ .

In the following it suffices to prove that the local dimension of μp at x is the same as 
that at yJ . Note that the contraction ratios of fWJ,i

, 1 ≤ i ≤ MJ are the same, denote it 
by rJ . Define

CJ :=
{
i1 . . . in ∈ {1, . . . ,m}∗ :

n∏
�=1

ri� ≤ rJ <
n−1∏
�=1

ri�

}
.

Then WJ,i ∈ CJ for all i ∈ {1, . . . ,MJ}, and

{1, . . . ,m}N =
⋃

i∈CJ

[i],

where the union is pairwise disjoint. Here [i] is a cylinder set generated by the block i. 
So, for r > 0

μp(B(x, r)) =
∑

W∈CJ

pWμp ◦ f−1
W (B(x, r))

=
MJ∑
i=1

pWJ,i
μp ◦ f−1

WJ,i
(B(x, r)) +

∑
W∈CJ\{WJ,i}MJ

i=1

pWμp ◦ f−1
W (B(x, r)).

(7.4)

Observe that for any W ∈ CJ \ {WJ,i}MJ

i=1 and for sufficiently small r > 0 the open set 
B(x, r) is separated from fW (E). So the second summation in (7.4) will disappear for 
small r > 0. By (7.3), (7.4) and Lemma 7.1 it follows that for sufficiently small r > 0,
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μp(B(x, r)) =
MJ∑
i=1

pWJ,i
μp

(
B(f−1

WJ,i
(x), r−1

WJ,i
r)
)

= μp(B(yJ , r−1
J r))

MJ∑
i=1

pWJ,i
.

Observe that 
∑MJ

i=1 pWJ,i
and r−1

J are both positive constants independent of r. This 
implies

dimlocμp(x) = dimlocμp(yJ ) and dimlocμp(x) = dimlocμp(yJ ). �
By Proposition 7.2 the local dimension of μp at points in Uk(Φ) is uniquely determined 

by the local dimension of μp at points in U1(Φ). In the following result we explicitly 
determine the local dimension of μp at points in U1(Φ).

Proposition 7.3. Let Φ = (E, {fi}mi=1) ∈ E with fi(x) = rix + bi for 1 ≤ i ≤ m. Then for 
any y ∈ U1(Φ) with its unique coding (jk) = j1j2 . . . ∈ {1, . . . ,m}N we have

dimlocμp(y) = lim inf
n→∞

∑n
k=1 log pjk∑n
k=1 log rjk

, dimlocμp(y) = lim sup
n→∞

∑n
k=1 log pjk∑n
k=1 log rjk

.

Proof. Let y ∈ U1(Φ) with its unique coding (jk). Note by Condition (C) that there 
exists at least one pair of disjoint neighboring basic intervals, i.e., fi(I) ∩ fi+1(I) = ∅ for 
some i ∈ {1, . . . ,m− 1}. Let I = [a, b] be the convex hull of E, and let

g := min {fi+1(a) − fi(b) : fi(I) ∩ fi+1(I) = ∅} .

Then g > 0 is the length of the smallest gap between the neighboring basic intervals. 
Denote by rmax := max1≤i≤m ri. Then there exists a large integer N1 ≥ 1 such that

rN1
max(b− a) < g. (7.5)

Recall from Definition 1.2 that (u1, . . . , um) and (v1, . . . , vm) are the overlapping vectors. 
Let

N2 := max
{

max
1≤i≤m,ui �=∞

ui, max
1≤i≤m,vi �=∞

vi

}
.

Take n > N2 sufficiently large, and let

Rn := rN1
max(b− a)

n∏
k=1

rjk .

Clearly, the ball B(y, Rn) contains the interval fj1...jn+N1
(I). On the other hand, by (7.5)

we have Rn < g
∏n

k=1 rjk . Observe that the basic intervals of higher level have similar 
geometrical structure to that of the first level. So, B(y, Rn) ∩ I is included in the basic 
interval fj1...jn−N

(I).

2
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Therefore,

fj1...jn+N1
(I) ⊂ B(y,Rn) ∩ I ⊂ fj1...jn−N2

(I),

which implies

n+N1∏
k=1

pjk ≤ μp(B(y,Rn)) ≤
n−N2∏
k=1

pjk . (7.6)

Here we emphasize that the integers N1, N2 are independent of n. Taking the logarithms 
and dividing by logRn on both sides of Equation (7.6) yields

∑n−N2
k=1 log pjk
logRn

≤ logμp(B(y,Rn))
logRn

≤
∑n+N1

k=1 log pjk
logRn

. (7.7)

Denote by pmin := min1≤i≤m pi and rmin := min1≤i≤m ri. Using the inequalities pi ≥
pmin and rmin ≤ ri ≤ rmax in (7.7) it follows that

logμp(B(y,Rn))
logRn

≥
∑n−N2

k=1 log pjk∑n−N2
k=1 log rjk + N2 log rmin + N1 log rmax + log(b− a)

logμp(B(y,Rn))
logRn

≤
∑n−N2

k=1 log pjk + (N1 + N2) log pmin∑n−N2
k=1 log rjk + (N1 + N2) log rmax + log(b− a)

.

Letting n → ∞ we obtain

lim inf
n→∞

logμp(B(y,Rn))
logRn

= lim inf
n→∞

∑n
k=1 log pjk∑n
k=1 log rjk

,

lim sup
n→∞

logμp(B(y,Rn))
logRn

= lim sup
n→∞

∑n
k=1 log pjk∑n
k=1 log rjk

.

(7.8)

Now for Rn+1 < r ≤ Rn we have

logμp(B(y,Rn))
logRn+1

≤ logμp(B(y, r))
log r ≤ logμp(B(y,Rn+1))

logRn
. (7.9)

Since rmin ≤ Rn+1
Rn

≤ rmax and Rn → 0 as n → ∞, we have logRn+1
logRn

→ 1 as n → ∞. By 
(7.8) and (7.9) we conclude that

dimlocμp(y) = lim inf
r→0

logμp(B(y, r))
log r = lim inf

n→∞
logμp(B(y,Rn))

logRn
= lim inf

n→∞

∑n
k=1 log pjk∑n
k=1 log rjk

,

and similarly,

dimlocμp(y) = lim sup
∑n

k=1 log pjk∑n . �

n→∞ k=1 log rjk
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7.2. Local dimension of μp at points in Uℵ0(Φ)

Recall from Proposition 3.4 that any x ∈ Uℵ0(Φ) must be of the form

x = fi(f1(b)) if f1(I) ∩ f2(I) �= ∅

for some i ∈ {1, . . . ,m}∗, or of the form

x = fj(fm(a)) if fm−1(I) ∩ fm(I) �= ∅

for some j ∈ {1, . . . ,m}∗.
The following lemma can be shown by an argument similar to that in the proof of 

Proposition 7.2.

Lemma 7.4. Let Φ = (E, {fi}mi=1) ∈ E with the convex hull conv(E) = [a, b].

• If x = fi(f1(b)) ∈ Uℵ0(Φ) with i ∈ {1, . . . ,m}∗, then

dimloc μp(x) = dimloc μp(f1(b)).

• If x = fj(fm(b)) ∈ Uℵ0(Φ) with j ∈ {1, . . . ,m}∗, then

dimloc μp(x) = dimloc μp(fm(b)).

By Lemma 7.4 it suffices to consider the local dimension of μp at f1(b) and fm(a).

Proposition 7.5. Let Φ = (E, {fi}mi=1) ∈ E with I = conv(E) = [a, b], and let u =
(u1, . . . , um), v = (v1, . . . , vm) be the overlapping vector.

(i) If f1(I) ∩ f2(I) �= ∅, then

dimloc μp(f1(b)) = min
{

log pm
log rm

,
log p2 + (v1 − 1) log p1

u1 log rm

}
.

(ii) If fm−1(I) ∩ fm(I) �= ∅, then

dimloc μp(fm(a)) = min
{

log p1

log r1
,
log pm−1 + (um−1 − 1) log pm

vm−1 log r1

}
.

Proof. Since the proof of (ii) is similar, we only prove (i). Suppose f1(I) ∩ f2(I) �= ∅. 
Then there exist integers u1, v1 ≥ 1 such that f1(I) ∩ f2(I) = f1mu1 (I) = f21v1 (I). We 
will determine the local dimension of μp at x = f1(b) ∈ Uℵ0(Φ).

Denote by ρ := min {b− fm(a), b− fm−1(b)}. Then ρ > 0, and the ball B(b, ρ) has 
empty intersection with fi(I) for any i ∈ {1, . . . ,m− 1}. This implies B(b, ρ) ⊂ fm(I). 
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On the other hand, since the set sequence fmn(I) decreases to {b} as n → ∞, there 
exists a large integer N such that B(b, ρ) ⊃ fmN (I). Therefore,

fmN (I) ⊂ B(b, ρ) ⊂ fm(I).

Take a large integer n such that Rn := r1r
n
mρ ∈ (0, 1). Note that x = f1(b) = f1mn(b). 

Then by Lemma 7.1 and the above inclusions it follows that

f1mn+N (I) ⊂ f1mn(B(b, ρ)) = B(x,Rn) ⊂ f1mn+1(I). (7.10)

Observe that f1mu1 = f21v1 . Then for any k ∈ N≥u1 ,

f1mk(I) = f(21v1−1)s1mk−su1 (I) for all s = 0, 1, . . . , � k

u1
�. (7.11)

Applying (7.11) to (7.10) yields that for n ≥ u1

�n+N
u1

�⋃
s=0

f(21v1−1)s1mn+N−su1 (I) ⊂ B(x,Rn) ⊂
�n+1

u1
�⋃

s=0
f(21v1−1)s1mn+1−su1 (I).

This implies

max
0≤s≤�n+N

u1
�
(p2p

v1−1
1 )sp1p

n+N−su1
m ≤ μp(B(x,Rn)) ≤

�n+1
u1

�∑
s=0

(p2p
v1−1
1 )sp1p

n+1−su1
m .

(7.12)
Now we split the proof into the following two cases.

Case I. p2p
v1−1
1 ≤ pu1

m . Then taking the logarithms and dividing by logRn on both 
sides of (7.12) it follows that

logμp(B(x,Rn))
logRn

≤
log
(
max0≤s≤�n+N

u1
� p1

(
p2p

v1−1
1

p
u1
m

)s)
+ (n + N) log pm

n log rm + log(r1ρ)

logμp(B(x,Rn))
logRn

≥
log
(∑�n+1

u1
�

s=0 p1

(
p2p

v1−1
1

p
u1
m

)s)
+ (n + 1) log pm

n log rm + log(r1ρ)
.

Note that p2p
v1−1
1 ≤ pu1

m . Letting n → ∞ in the above equation gives

lim logμp(B(x,Rn)) = log pm
. (7.13)
n→∞ logRn log rm
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Case II. p2p
v1−1
1 > pu1

m . Then the inequalities in (7.12) can be rearranged as

μp(B(x,Rn)) ≥ (p2p
v1−1
1 )

n+N
u1 max

0≤s≤�n+N
u1

�
p1

( pu1
m

p2p
v1−1
1

)n+N−su1
u1

,

μp(B(x,Rn)) ≤ (p2p
v1−1
1 )

n+1
u1

�n+1
u1

�∑
s=0

p1

( pu1
m

p2p
v1−1
1

)n+1−su1
u1

.

By using p2p
v1−1
1 > pu1

m and an argument similar to the proof in Case I one can verify 
that

lim
n→∞

logμp(B(x,Rn))
logRn

= log p2 + (v1 − 1) log p1

u1 log rm
. (7.14)

By (7.13) and (7.14) it follows that

lim
n→∞

logμp(B(x,Rn))
logRn

= min
{

log pm
log rm

,
log p2 + (v1 − 1) log p1

u1 log rm

}
.

Note that Rn+1/Rn is bounded away from zero and infinity, and Rn → 0 as n → ∞. 
Therefore, we can conclude from the above equation that

dimloc μp(x) = lim
r→0

logμp(B(x, r))
log r = min

{
log pm
log rm

,
log p2 + (v1 − 1) log p1

u1 log rm

}
. �

Proof of Theorem 3. For the local dimension of μp at points in Uk(Φ) it follows from 
Propositions 7.2 and 7.3. And for the local dimension of μp at points in Uℵ0(Φ) it can 
be deduced from Lemma 7.4 and Proposition 7.5. �
8. Final remarks

We believe some of the results obtained in this paper can be extended to a much more 
general class of SIFS (see e.g., [18]). Observe that Condition (D) in our class E , also 
called the complete overlap condition, is very strong. For a possible extension one might 
think of dropping out this complete overlap condition.

Example 8.1. Let E be the attractor of the IFS {fi(x)}mi=1 with m ≥ 5. Denote the convex 
hull of E by I = [a, b]. Suppose Φ = (E, {fi}mi=1) satisfies the following conditions.

• f1m = f21;
• f2(I) ∩ fi(I) = ∅ for any i > 2;
• fm ∩ fj(I) = ∅ for any j < m;
• fi(I) ⊂ (f2(b), fm(a)) for any i ∈ {3, . . . ,m− 1}.
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Observe by the last condition that we have a lot of flexibility for the locations of fi(I)
for 3 ≤ i ≤ m − 1. Then Φ does not necessarily belong to E . But one can still show that 
dimH Uk(Φ) = dimH U1(Φ) for any k ∈ N.

The object studied in this paper is in one dimension. It would be interesting to consider 
a higher dimensional analogue.
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