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CYCLES OF GIVEN LENGTHS IN UNICYCLIC COMPONENTS IN SPARSE

RANDOM GRAPHS

MARC NOY, VONJY RASENDRAHASINA, VLADY RAVELOMANANA, AND JUANJO RUÉ

Abstract. Let L be subset of {3, 4, . . . } and let X
(L)
n,M be the number of cycles belonging to unicyclic

components whose length is in L in the random graph G(n,M). We find the limiting distribution of

X
(L)
n,M in the subcritical regime M = cn with c < 1/2 and the critical regime M = n

2

(

1 + µn−1/3
)

with µ = O(1). Depending on the regime and a condition involving the series
∑

ℓ∈L zℓ/(2ℓ), we
obtain in the limit either a Poisson or a normal distribution as n → ∞.
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1. Introduction

A graph is unicyclic if it is connected and has a unique cycle. We say that a cycle in a graph is
isolated if it is the unique cycle in a unicyclic connected component. Let G(n,M) be the random graph
with n vertices and exactly M edges drawn uniformly at random from the set of

(

n
2

)

possible edges.
This is the model introduced in the seminal paper of Erdős and Rényi [3], in which each graph has the
same probability

(
(

n
2

)

M

)−1

.

We are interested in the number of isolated cycles in G(n,M) whose lengths are restricted to take

certain values. More precisely, let N>3 = {3, 4, . . .} and L a subset of N>3. We denote by X
(L)
n,M

the random variable equal to the number of isolated cycles in G(n,M) whose lengths lie in L. Our

main result gives the limiting distribution of X
(L)
n,M for various values of M , corresponding to the

so-called subcritical and critical regimes. Depending on the regime and a condition involving the
generating function λ(z) =

∑

ℓ∈L zℓ/(2ℓ), we obtain in the limit as n → ∞ either a Poisson or a
normal distribution.

The number of cycles in G(n,M) has been studied since the appearance of [3]. When M = cn,
Erdős and Rényi showed [3, Theorem 3b] that the number of cycles of length k converges to a Poisson
law with parameter (2c)k/(2k). Let Xn,M be the random variable equal to the number of isolated
cycles in G(n,M). When M = cn and c < 1/2, asymptotically almost surely (that is, with probability
tending to 1 as n → ∞) all cycles are isolated. As a consequence we have

lim
n→∞

E[Xn,cn] =
∑

k>3

(2c)k

2k
=

1

2
log

1

1 − 2c
− c− c2.

We next recall the different regimes for sparse random graphs (see for instance [7, 1]). The following
results hold asymptotically almost surely (shortened to a.a.s.).

• Subcritical regime. When M = cn with c < 1/2, the connected components of G(n,M) are
either trees or unicyclic graphs.

• Barely subcritical regime. When M = n
2

(

1 − µn−1/3
)

with µ → ∞ and µ = o
(

n1/3
)

,

• Critical regime. This is when M = n
2

(

1 + µn−1/3
)

and µ = O(1). In this regime the
connected components of G(n,M) are trees, unicyclic graphs, and complex components. A
complex component is obtained from a connected cubic multigraph K by performing the
following operations: first replace edges in K by induced paths of any length so that to obtain
a simple graph C, and then attach rooted trees to the vertices of C.

• Supercritical regime. When M = cn with c > 1/2, there exists a unique component L of
linear size and the remaining components are either trees or unicyclic graphs. The ‘Symmetry
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principle’ (see [7, Section 5.6]) says that in this case G(n.M)\L in some sense ‘looks like’ a
subcritical random graph with suitable parameters.

In the barely subcritical regime Kolchin showed that if r0 = 1
6 logn − 1

2 log µ, then the normalized
random variable (Xn,M −r0)/

√
r0 tends in distribution to a Gaussian law (see [8, Theorem 1.1.15]). In

the critical regime, Flajolet, Knuth and Pittel [4, Corollary 6] showed that E[Xn,M ] ∼ 1
6 logn. By the

so-called symmetry property [7, Theorem 5.24], Xn,M properly normalized should also be Gaussian

when M = n
2 (1 + µn−1/3) and µ → ∞ with µ = o(n1/3).

Some results have been obtained fixing a set L of positive integers as possible cycle lengths. Fol-

lowing [4], define an L-cycle as an isolated cycle whose length is in L. Let X
(L)
n,M be the number of

L-cycles in G(n, M). It is shown in [4, Corollary 7] that if limn→∞
2M
n = λ < 1, then the probability

that a graph (or multigraph) with n vertices and M edges has no L-cycle is equal to

√
1 − λ exp





∑

l>1,ℓ/∈L

λℓ

2l



+ O
(

n−1/2
)

= exp



−
∑

l>1,ℓ∈L

λℓ

2l



+ O
(

n−1/2
)

. (1)

Our results concern the distribution of the random variables X
(L)
n,M . In particular, we obtain full

limiting distributions both in the subcritical and the critical regimes.

Theorem 1.1. Let L ⊆ N>3 and set λL(z) =
∑

ℓ∈L
zℓ

2ℓ , considered as a function of one complex

variable in the unit disk |z| < 1. Let X
(L)
n,M be the random variable equal to the number of L-cycles in

G(n,M). Then the following holds:

(A) (Subcritical regime). Let c = c(n) be such that 0 < lim supn→∞ c < 1/2 and M = cn. Then

X
(L)
n,M

λL(2c)
d−→ Poisson(1) , as n → ∞. (2)

(B) (Barely subcritical regime). Let M = n
2 (1 − µn−1/3) with limµ = +∞ and µ = o(n1/3). Then

two situations may happen: if limn→∞ λL(2Mn ) < +∞, then

X
(L)
n,M

λL

(

2M
n

)

d−→ Poisson (1) , as n → ∞. (3)

Otherwise, if limn→∞ λL(2Mn ) = +∞, then

X
(L)
n,M − λL

(

2M
n

)

√

λL

(

2M
n

)

d−→N (0, 1), as n → ∞. (4)

(C) (Critical regime). Let M = n
2 (1+µn−1/3), with µ = O(1). Let α be the unique positive solution

of µ = 1
α − α. Then two situations may happen: if limn→∞ λL(e−αn−1/3

) < +∞, then

X
(L)
n,M

λL

(

e−αn−1/3
)

d−→ Poisson (1) , as n → ∞. (5)

Otherwise, if limn→∞ λL

(

e−αn−1/3
)

= +∞, then

X
(L)
n,M − λL

(

e−αn−1/3
)

√

λL

(

e−αn−1/3
)

d−→N (0, 1), as n → ∞. (6)

Points (A), (B) and (C) in Theorem 1.1 are the contents of Theorems 3.1, 3.2 and 3.4 given in
the Section 3. We remark that in the previous statement there is no discontinuity between equations

(2)–(3)–(5) and equations (4)–(6): the Taylor expansion of the term e−αn−1/3

in the statement for the
critical regime is equal to 1 − αn−1/3 + o(n−1/3), which coincides with the term 1 − µn−1/3 in the
barely subcritical region.

The proofs are based on estimating coefficients of generating functions by means of Cauchy integrals
along suitable contours and applying the saddle-point method.
Remarks. Observe that (1) follows directly from (2). Let us mention that technical refinements of
our techniques would provide similar results for the region just before the supercritical regime, namely
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M = n
2 (1 +µn−1/3) when µ → ∞, µ = o(n1/12). We do not include the analysis of this region because

the computations become too involved.
Finally, one may wonder why in the previous theorem we do not have a corresponding result for the

supercritical regime. The reason is that in this case our techniques, based on the detailed structure
of G(n, p) together with saddle-point estimates for the associated generating functions, do not apply
in this situation. Given the Symmetry principle mentioned above, one should expect the number of
L-cycles in the supercritical regime follows a limit Poisson law as in the subcritical regime, but the
tools provided by the Symmetry principle do no seem precise enough to prove such a statement.

2. Preliminaries and notation

All graphs considered in this paper are labelled. The size of a graph is the number of vertices. The
excess of a graph G is the number of vertices minus the number of edges. In G(n,M) the excess is
M − n.

2.1. Analytic combinatorics of graphs. We use the language of analytic combinatorics as in [5].
Given a generating function A(x) =

∑

n>0 anx
n, we write [xn]A(x) = an. If A(x) =

∑

n>0 anx
n and

B(x) =
∑

n>0 bnx
n, we write A(x) � B(x) if there exists n0 such that [xn]A(x) 6 [xn]B(x) for n > n0.

All the generating functions that appear in this work are exponential generating functions of the form
∑

n>0 anx
n/n!, or EGF for short (see [5, Chapter 2]).

We denote by T (x) and W−1(x) the EGF of rooted and unrooted labelled trees, respectively. It is
well known that

T (x) = xeT (x) =

∞
∑

n=1

nn−1x
n

n!
, W−1(x) = T (x) − T (x)2

2
. (7)

The EGF W0(x) of unicyclic graphs (connected graphs with n vertices and n edges) is given by (see
for instance [6, Equation (3.5)])

W0(x) =
∑

k>3

T (x)k

2k
= −1

2
log (1 − T (x)) − T (x)

2
− T (x)2

4
. (8)

We write λ(t) =
∑

k>3
tk

2k = − 1
2 log(1 − t) − t/2 − t2/4, so that W0(x) = λ(T (x)).

2.2. From Poisson parametrizations to central limit theorems. We include the following result
by Kolchin that provides an approximation to a normal law by a Poisson parametrization.

Theorem 2.1 ([8, Theorem 1.1.15]). Let k = λn + ρn
√
λn. If (1 + ρn)6/λn → 0 as n → ∞ then

e−λn
λk
n

k!
=

1√
2πλn

e−ρ2
n/2

(

1 +
ρ3n − ρn

6
√
λn

+ O

(

1 + ρ6n
λn

))

.

3. Proof of Theorem 1.1

We present separately the proof for each regime in Theorem 1.1. The main idea in all proofs is
to encode the typical structure of random graphs in the regime under consideration using generating
functions and then obtain large power estimates by means of saddle point bounds.

3.1. Subcritical regime. In this regime, the connected components of G(n,M) are a.a.s. a set of
acyclic graphs (a forest) together with a set of unicyclic graphs. We exploit this property in order to
get the following result which refines the first statement in Theorem 1.1:

Theorem 3.1. Let c such that 0 < c < 1/2, and M = cn. Let L ⊆ N>3 and λL(z) =
∑

ℓ∈L
zℓ

2ℓ . Then

the random variable X
(L)
n,M equal to the number of L-cycles satisfies

Pr
[

X
(L)
n,M = k

]

= e−λL(2c)λL(2c)k

k!

(

1 + O
(

n−1
))

.

Moreover, if k → ∞ as n → ∞ then

Pr
[

X
(L)
n,M = k

]

= O(k−k).
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Proof. It suffices to consider graphs whose connected components are trees and unicyclic graphs.
Using the symbolic method we obtain that the probability that G(n,M) contains exactly k unicyclic
components containing an L-cycle is equal to

Pr
[

X
(L)
n,M = k

]

=
n!
((n

2)
M

)

[xn]
W−1(x)n−M

(n−M)!

λL(T (x))k

k!
eW0(x)−λL(T (x)) . (9)

The term λL(T (x))k

k! encodes the components containing an L-cycle, while the term eW0(x)−λL(T (x))

encodes the rest of unicyclic components (whose lengths do not belong to L). Using Cauchy integral’s
formula we get

[xn]W−1(x)n−MλL(T (x))keW0(x)−λL(T (x)) = (10)

2M−n

2πi

∮

(2W−1(x))
n−M

λL(T (x))keW0(x)−λL(T (x)) dx
xn+1 .

After the change of variables z = T (x), it becomes

[xn]W−1(x)n−MλL(T (x))keW0(x)−λL(T (x)) =
2M−n

2πi

∮

g(z)λL(z)kenh(z)
dz

z
, (11)

where

g(z) = (1 − z)eλ(z)−λL(z), (12)

h(z) = z − log z +
(

1 − M
n

)

log
(

2z − z2
)

. (13)

Note that the function h(z) given by (13) is exactly the same as [2, Equation (30)], which satisfies
the conditions h′(2c) = h′(1) = 0. In the range M = cn with 0 < c < 1

2 , we can apply saddle-point

methods by choosing a circular path {2ceiθ, θ ∈ [−π, π)} as the contour of integration. As shown

in [4], we split the integral in (11) into three parts, namely
∫ −θ0
−π

+
∫ θ0
−θ0

+
∫ π

θ0
. It suffices to integrate

from −θ0 to θ0, for a convenient value of θ0, because the remaining integrals can be bounded by the
magnitude of the central integrand. Following the proof of [2, Theorem 3.2] and choosing θ0 = n−2/5

(so that nθ20 → ∞ but nθ30 → 0 as n → ∞) we have

exp
(

nh(2ceiθ)
)

= exp
(

nh(2c) − nc(1−2c)
2(1−c) θ2

)

(

1 + iO(nθ3) + O(nθ4)
)

, (14)

and for all choices of θ in [−π,−θ0] ∪ [θ0, π) we have

∣

∣exp
(

nh(2ceiθ) − nh(2c)
)∣

∣ = exp
(

−O(n1/5)
)

. (15)

As 2c < 1 in the vicinity of θ0, we have

g
(

2ceiθ
)

= g(2c)
(

1 + iO(θ) + O(θ2)
)

, (16)

and

λL(2ceiθ)k = λL(2c)k
(

1 + iO(θ) + O(θ2)
)

(17)

for fixed k > 0. Using expansions (14), (16), (17) and the bound (15) we have
∮

g(z)λL(z)kenh(z)
dz

z
= i

∫ θ0

−θ0

g(2ceiθ)λL(2ceiθ)kenh(2ce
iθ)dθ

(

1 + e−O(n1/5)
)

= ig(2c)λL(2c)kenh(2c)
∫ +θ0

−θ0

e−nσ
θ2

2 · (1 + iO(θ) + O(θ2) + iO(nθ3) + O(nθ4))dθ
(

1 + e−O(n1/5)
)

,

∮

g(z)λL(z)kenh(z)
dz

z
= i

∫ θ0

−θ0

g(2ceiθ)λL(2ceiθ)kenh(2ce
iθ)dθ

(

1 + e−O(n1/5)
)

= ig(2c)λL(2c)kenh(2c)
∫ +θ0

−θ0

e−nσ
θ2

2 · (1 + iO(θ) + O(θ2) + iO(nθ3) + O(nθ4))dθ
(

1 + e−O(n1/5)
)

,

where σ = c(1−2c)
1−c . If we set x =

√
nσθthe integral in the above equation becomes

1√
nσ

∫ σ1/2n1/10

−σ1/2n1/10

e−
x2

2

(

1 + iO
(

x√
nσ

)

+ O
(

x2

nσ

)

+ iO
(

n x3

√
nσ3

)

+ O
(

x4

nσ2

))

dx. (18)
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Observe that σ = O(1) and the estimate (18) is a real number (because (10) is a real number). Hence
(18) is equal to

1√
σn

∫ σ1/2n1/10

−σ1/2n1/10

e−
x2

2

(

1 + O

(

x2

n

)

+ O

(

x4

n

))

dx.

It follows that
∫ θ0

−θ0

g(2ceiθ)λL(2ceiθ)kenh(2ce
iθ)dθ =

√

2π

σn
g(2c)λL(2c)kenh(2c)

(

1 + O
(

n−1
)

+ e−O(n1/5)
)

.

That is

[xn]W−1(x)n−MλL(T (x))keW0(x)−λL(T (x)) = 2M−n 1√
2πσn

g(2c)λL(2c)kenh(2c)
(

1 + O
(

n−1
))

(19)

Using Stirling’s formula for the corresponding range of M , we have

1
((n

2)
M

)

n!

(n−M)!k!
=

1

k!

√

2πnM

n−M

2MnnMM

n2M (n−M)n−M
exp

(

−2M +
M

n
+

M2

n2

)

(

1 + O
(

n−1
))

. (20)

Multiplying (19) and (20), after cancellations we obtain

Pr
[

X
(L)
n,M = k

]

= e−λL(2c)λL(2c)k

k!

(

1 + O
(

n−1
))

.

This proves the first part of the theorem.
Now, suppose that k → ∞ as n → ∞. The previous arguments work in a similar way. Instead of

using the estimate (17), which is only valid when θ is small enough, we exploit the fact that λL has
non-negative Taylor coefficients. Hence, Equation (17) can be replaced by the relation

∣

∣λL(2ceiθ)k
∣

∣ 6 λL(2c)k,

which is valid for each choice of θ ∈ [−π, π). Applying the same arguments as before and that 1
k! <

ek

kk

for large k, we conclude that

Pr
[

X
(L)
n,M = k

]

6 e−λL(2c)λL(2c)k

k!

(

1 + O
(

n−1
))

< Ce−λL(2c) (eλL(2c))k

kk
,

for a suitable constant C. The second result in the theorem follows from the fact that c < 1
2 , and

hence λL(2c) is bounded. �

3.2. Barely subcritical regime. In the barely subcritical regime the asymptotic structure of G(n,M)
is the same as in the subcritical regime. However, the integration countour we use is slightly more
complicated in order to encode cycles of arbitrary length.

Theorem 3.2. Let M = n
2 (1 − µn−1/3) with µ tending to infinity with µ = o

(

n1/3
)

. Let L ⊆ N>3

and λL(z) =
∑

ℓ∈L
zℓ

2ℓ . Then the random variable X
(L)
n,M equal to the number of L-cycles satisfies

Pr
[

X
(L)
n,M = k

]

= e−λL( 2M
n )λL

(

2M
n

)k

k!

(

1 + O
(

µ−3
))

. (21)

Assume moreover that limn λL

(

2M
n

)

= ∞. Then for fixed real numbers y0 < y1

Pr



y0 6
Xn,M − λL

(

2M
n

)

√

λL

(

2M
n

)

6 y1



→ 1√
2π

∫ y1

y0

e−u2/2du, as n → ∞. (22)

Proof. The arguments and notation are similar to the ones in the proof of Theorem 3.1. As mentioned
in the proof of Theorem 3.1, a.a.s. in this regime G(n,M) contains only trees and unicyclic graphs as
components. We need estimates for (9) in this new range of M . We use again the same methods as in
the proof of [2, Theorem 3.2]. Let

ω(n) =
(n− 2M)1/4

n1/6
, τ =

n(n−M)

M(n− 2M)
, θ0 =

√

τ

n
ω(n).

Then nθ2 → ∞ and nθ3 → 0 as n → ∞. The expansion of h in the vicinity of θ0 is

h

(

2M

n
eiθ
)

= h

(

2M

n

)

− M(n− 2M)

2n(n−M)
θ2 − i

(n2 − 5nM + 2M2)M

6(n−M)2
θ3 + O(θ4). (23)

5



For θ ∈ [−θ0,+θ0], k = Θ
(

λL(2Mn )
)

, the expansion of λL in the vicinity of θ0 is

λL

(

2M
n eiθ

)k

λL

(

2M
n

)k
= 1 + iO

(

k

λL

(

2M
n

)

n

(n− 2M)
θ

)

+ O

(

k2

λL

(

2M
n

)2

n2

(n− 2M)2
θ2

)

= 1 + iO

(

n

(n− 2M)
θ

)

+ O

(

n2

(n− 2M)2
θ2
)

.

(24)

The integrand can be bounded on [−π,−θ0) ∪ (θ0, π) because
∣

∣

∣

∣

exp

(

nh

(

2M

n
eiθ
)

− nh

(

2M

n

))∣

∣

∣

∣

= O(e−ω(n)2/2). (25)

Combining (23), (24) and (25), we have

Pr
[

X
(L)
n,M = k

]

= n!

((
n
2)
M

)(n−M)!

2M−n

2π g
(

2M
n

)

exp
(

nh
(

2M
n

)) λL( 2M
n )

k

k! ×

∫ θ0
−θ0

e−nτ θ2

2

(

1 + iO
(

n
(n−2M)θ

)

+ O
(

n2

(n−2M)2 θ
2
))

×
(

1 + in (n2−5nM+2M2)M
6(n−M)2 θ3 + O(nθ4)

)

dθ
(

1 + O(e−ω(n)2/2)
)

.

We set θ =
√

τ/nx and the integral becomes

√

τ

n

∫ ω(n)

−ω(n)

e−
x2

2

(

1 + iO

(

n

(n− 2M)3/2
x

)

+ O

(

n2

(n− 2M)3
x2

))

.

(

1 + iO

(

n

(n− 2M)3/2
x3

)

+ O

(

n

(n− 2M)3
x4

))

dx

=

√

τ

n

∫ ω(n)

−ω(n)

e−
x2

2

(

1 + O

(

n2

(n− 2M)3
x4

))

dx

=

√

2πτ

n

(

1 + O

(

n2

(n− 2M)3

))

.

After simple algebraic manipulations as in the proof of Theorem 3.1 we obtain

Pr
[

X
(L)
n,M = k

]

= e−λL( 2M
n )λL

(

2M
n

)k

k!

(

1 + O
(

µ−3
))

.

This proves the first part of the theorem.

We assume now that limn λL

(

2M
n

)

= ∞. Set k = λL

(

2M
n

)

+ρn

√

λL

(

2M
n

)

with |ρn| = o
(

λL

(

2M
n

))1/6
.

We can apply Theorem 2.1 and obtain

Pr
[

X
(L)
n,M = k

]

=
1

√

2πλL

(

2M
n

)

e−ρ2
n/2



1 +
ρ3n − ρn
√

λL

(

2M
n

)

+ O





1 + ρ3n
√

λL

(

2M
n

)









=
1

√

2πλL

(

2M
n

)

e−ρ2
n/2(1 + o(1)).

The central limit theorem for X
(L)
n,M follows, that is, for fixed real y0 < y1 we have

Pr



y0 6
X

(L)
n,M − λL

(

2M
n

)

√

λL

(

2M
n

)

6 y1



→ 1√
2π

∫ y1

y0

e−u2/2du, as n → ∞.

�

3.3. Critical regime. In this regime we have to take into account the appearance of complex compo-
nents. Let pk(n,M ;L, r) be the probability that G(n,M) has a total excess r with exactly k unicyclic
components containing an L-cycle. The following lemma gives an estimate for pk(n,M ;L, r).
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Lemma 3.3. Let M = n
2 (1 +µn−1/3) with µ = O(1). Let α be the positive solution to µ = 1

α −α. Let

k = λL

(

e−αn−1/3
)

+ ρ
√

λL

(

e−αn−1/3
)

,

which satisfies ρ = ω

(

λL

(

e−αn−1/3
)1/6

)

.

Then for fixed r we have

pk(n,M ;L, r) = e
−λL

(

e−αn−1/3
)

λL

(

e−αn−1/3
)k

k!

√
2πer A(3r + 1/2, µ) ·

(

1 + O
(

n−1/12
))

,

where

er =
(6r)!

25r32r(3r)! (2r)!
, A(y, µ) =

e−µ3/6

3(y+1)/3

∑

k>0

(1232/3µ)k

k!Γ((y + 1 − 2k)/3)
.

Moreover, for r large enough there exist absolute constants C > 0 and ε > 0 such that

pk(n,M ;L, r) 6 e
−λL

(

e−αn−1/3
)

λL

(

e−αn−1/3
)k

k!
Ce−εr. (26)

Proof. The proof is based on analytic techniques introduced in [4] and [6]; see also [9]. The probability
pk(n,M ;L, r) is given by

pk(n,M ;L, r) =
n!
((n

2)
M

)

[xn]
W−1(x)n−M+r

(n−M + r)!
Er(x)

λL(T (x))k

k!
eW0(x)−λL(T (x)), (27)

where Er(x) is the EGF of complex components with total excess r given by [6, Equation (6.8)]. As
shown in [6], when r = o(n1/3), the series Er(x) can be approximated [6, Equation (6.8)] by er

(1−T (x))3r ,

where

er =
(6r)!

25r32r(3r)! (2r)!
,

and the error term is of order O
(

r3/2

n1/2

)

. In order to evaluate (27) we have to compute the expression

St(n,M, r)

2πi

∮

(1 − z)1−3renh1(z)
λL(z)k

k!
eW0(z)−λL(z) Er(z)

dz

z
, (28)

where

St(n,M, r) =
n!
((n

2)
M

)

2−n+M−rener
(n−M + r)!

, (29)

h1(z) = z − 1 − log z +

(

1 − M

n

)

log(2z − z2) . (30)

We remark the difference between h1(z) and the function h(z) defined in Equation (13). Note also
that h1(z) is exactly the same as in [6, Equation (10.12)], which satisfies h1(1) = h′

1(1) = 0 and also
h′′
1(1) = 0 if M = n/2. We now follow the method of the proof of [6, Lemma 3] in order to compute

our integral by choosing as path of integration

z = z(t) = e−αn−1/3−itn−1/2

, (31)

where α is the unique positive solution of µ = 1
α − α, and t belongs to the interval

(

−πn1/4λ′
L(e−αn−1/3

)−1/2, πn1/4λ′
L(e−αn−1/3

)−1/2
)

.

Given that

λL(e−αn−1/3−itn−1/2

)k

k!
e−λL(e−αn−1/3

−itn−1/2
) =

λL(e−αn−1/3

)k

k!
e−λL(e−αn−1/3

) ×





1 + iO





k

λL(e−αn−1/3)

λ′
L

(

e−αn−1/3
)

n1/2
t



+ O







k2

λL

(

e−αn−1/3
)2

λ′
L

(

e−αn−1/3
)2

n
t2













(32)
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as long as k = O
(

λL

(

e−αn−1/3
))

, our choice ensures that the O terms in (32) can be moved out of

the integral. By following the proof of [6, Equation (10.1) of Lemma 3] we obtain that, for fixed values
of r

pk(n,M ;L, r) = e−λL(e−αn−1/3
)λL(e−αn−1/3

)k

k!

√
2πerA(3r + 1/2, µ)

(

1 + O
(

n−1/12
)

+ O

(

µ4

n1/3

))

.

(33)

Since k = O
(

λL

(

e−αn−1/3
))

in the O terms above we have

λ′
L

(

e−αn−1/3
)

n1/2
t = O







λ′
L

(

e−αn−1/3
)1/2

n1/4






= O

(

1

(1 − e−αn−1/3)1/2
1

n1/4

)

= O
(

n−1/12
)

.

This proves the first statement of the theorem.
Next let us assume that r → ∞. We know that Er(z) � er

(1−T (z))3r (see for instance [6, Lemma 4]).

From (27) we have

pk(n,M ;L, r) 6
n!
((n

2)
M

)

[zn]
W−1(x)n−M+r

(n−M + r)!

λL(T (z))k

k!
eW0(z)−λL(T (z)) er

(1 − T (z))3r
.

Then, we obtain

pk(n,M ;L, r) 6
St(n,M, r)

2πi

∮

zr(2 − z)r

(1 − z)3r
enh1(z)

λL(z)k

k!
eλ(z)−λL(z) dz

z
, (34)

with h1 is defined by (30). In this case we take as contour of integration the circle {δeiθ : θ ∈ [−π, π)}
with δ = 1 − r1/3

n1/3 < 1. On this circle, since r > 1, for some constant C and function f(n) with
limn f(n) = +∞, we have

λL(δ)k

k!
e−λL(δ) δ

2π

(

δ(2 − δ)

(1 − δ)3

)r

enh1(δ)(1 − δ)1/2
∫ π

−π

e−f(n)θ2

dθ <
C√
n
δr
(

δ(2 − δ)

(1 − δ)3

)r

enh1(δ).

Note that r 6 M = n
2 (1 + µn−1/3). Then for n large enough

δr(2 − δ)r

(1 − δ)3r
<

nr

rr
, nh1(δ) <

13

12
r +

11

6
µr2/3. (35)

Using Stirling’s formula we find that

n!
((n

2)
M

)

(n−M + r)!
en2−n+M−r <

n1/2

nr
e−µ3/6+3/42−r,

and for r → ∞, we have

er =
(6r)!

25r32r(3r)! (2r)!
6

1

r1/2

(

3r

2e

)r

. (36)

Combining (35) and (36) in (34), we deduce that

pk(n,M ;L, r) <
c0
r1/2

exp

(

−µ3

6
+

11

6
µr2/3 +

(

13

12
+ log

3

4
− 1

)

r

)

,

for some constant c0 > 0. Since 13
12 + log 3

4 − 1 < 0, when r → ∞ we deduce

pk(n,M ;L, r) 6 e−O(r).

�

We can now proof the main result in the critical regime.

Theorem 3.4. Let M = n
2 (1 + µn−1/3) where µ = O(1). Let α be the positive solution to µ = 1

α − α.

Let L ⊆ N>3 and let λL(z) =
∑

k∈L
zk

2k . Then the random variable X
(L)
n,M equal L-cycles in G(n,M)

satisfies

Pr
[

X
(L)
n,M = k

]

= e
−λL

(

e−αn−1/3
)

λL

(

e−αn−1/3
)k

k!

(

1 + O
(

n−1/12
))

. (37)
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Moreover, assume that limn→∞ λL

(

e−αn−1/3
)

= +∞. Then, for each choice of real y0 < y1

Pr



y0 6

X
(L)
n,M − λL

(

e−αn−1/3
)

√

λL

(

e−αn−1/3
)

6 y1



→ 1√
2π

∫ y1

y0

e−u2/2du, when n → ∞. (38)

Proof. By Lemma 3.3 and the dominated convergence theorem, Pr
[

X
(L)
n,M = k

]

is equal to

∑

r>0

pk(n,M ;L, r) =
∑

r>0

e
−λL

(

e−αn−1/3
)

λL

(

e−αn−1/3
)k

k!

√
2πer A(3r + 1/2, µ) ·

(

1 + O
(

n−1/12
))

.

For µ = O(1) Janson, Knuth,  Luczak and Pittel [6, Equation (13.17) and Corollary p. 61] have shown

that the probability that G(n, M) has total excess r is asymptotically
√

2πerA(3r + 1/2, µ), and that

the s-th moment of the excess r satisfies
∑

r>0

√
2πerr

sA(3r + 1/2, µ) = O(µ3s) = O(1). Hence
∑

r>0

√
2πerA(3r + 1/2, µ) = 1. This shows relation (37).

In order to prove (38), we apply Theorem 2.1 by choosing

k = λL

(

e−αn−1/3
)

+ ρn

√

λL

(

e−αn−1/3
)

,

with λL

(

e−αn−1/3
)1/6

= o(ρn). �
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