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Abstract

Associated with the r-Shi arrangement and r-Catalan arrangement in Rn, we intro-
duce a cubic matrix for each region to establish two bijections in a uniform way. Firstly,
the positions of minimal positive entries in column slices of the cubic matrix will give a
bijection from regions of the r-Shi arrangement to O-rooted labeled r-trees. Secondly,
the numbers of positive entries in column slices of the cubic matrix will give a bijection
from regions of the r-Catalan arrangement to pairings of permutation and r-Dyck path.
Moreover, the numbers of positive entries in row slices of the cubic matrix will recover
the Pak-Stanley labeling, a celebrated bijection from regions of the r-Shi arrangement
to r-parking functions.
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1 Concepts and Backgrounds

This paper aims to establish two bijections: from regions of the r-Shi arrangement to
O-rooted labeled r-trees, and from regions of the r-Catalan arrangement to pairings of per-
mutation and r-Dyck path. To this end, we introduce a cubic matrix for each region to read
the combinatorial information from the region.

A hyperplane arrangement A is a finite collection of hyperplanes in a vector space V ,
see [35, 47]. When V is a real space, the set V \ ∪H∈AH consists of finitely many connected
components, called regions of A. Denote by R(A) the set of regions of A. For any positive
integers r and n, the r-Shi arrangement Sr

n in Rn consists of the following hyperplanes

Sr
n : xi − xj = −r + 1,−r + 2, . . . , 0, 1, . . . , r, 1 ≤ i < j ≤ n.

∗Supported by Hunan Provincial Innovation Foundation for Postgraduate (CX2018B215)
†Supported by NSFC 11871204

1

http://arxiv.org/abs/2005.08574v1


The case of r = 1 is the classical Shi arrangement Sn introduced by Shi [44] in 1986. Shi
further obtained the number of regions of Sr

n.

Theorem 1.1. [45] For any positive integers r and n, the number of regions of Sr
n is

|R(Sr
n)| = (rn + 1)n−1.

Let O = {o1, . . . , or} and V = {v1, . . . , vn} be two disjoint sets of labeled vertices.
First introduced by Harary and Palmer [18] in 1968, an O-rooted labeled r-tree T on
O ∪ V is a graph having the property: there is a valid rearrangement ν = (vi1 , . . . , vin)
of vertices v1, . . . , vn, such that each vij with j ∈ [n] is adjacent to exactly r vertices in
{o1, . . . , or, vi1 , . . . , vij−1

} and, moreover, these r vertices are themselves mutually adjacent
in T . Section 3 will be devoted to some characterizations of the O-rooted labeled r-trees.
Denote by T r

n the set of all O-rooted labeled r-trees. In the case of r = 1, write Tn = T 1
n ,

whose members are called O-rooted labeled trees. The size of T r
n has been counted by

Foata [10], Beineke and Pippert [4, 5], Gainer-Dewar and Gessel [16] etc., which extends the
Cayley formula |Tn| = (n + 1)n−1 of [7].

Theorem 1.2. [4, 5, 10] For any positive integers r and n, the cardinality of T r
n is

|T r
n | = (rn + 1)n−1.

Closely related to O-rooted labeled r-trees and r-Shi arrangement, the r-parking func-

tion of length n is a sequence α = (α1, . . . , αn) ∈ Zn
≥0 such that the monotonic rearrangement

a1 ≤ a2 ≤ · · · ≤ an of the numbers α1, . . . , αn satisfies ai ≤ r(i− 1). Denote by Pr
n the set of

all r-parking functions of length n. In the case of r = 1, write Pn = P1
n whose members are

called parking functions of length n. Explored by Pitman and Stanley [39], Yan [51] etc.,
the cardinality of Pr

n is exactly the same as R(Sr
n) and T r

n , namely,

|Pr
n| = (rn + 1)n−1.

Naturally we may ask if there are some bijections among R(Sr
n), T r

n , and Pr
n. A celebrated

bijection R(Sr
n) → Pr

n (abbreviation for ‘from R(Sr
n) to T r

n ’) is the Pak-Stanley labeling
which was first suggested by I. Pak in the case of r = 1, and extended to general r by R.
P. Stanley [48, 49]. Later, relevant to the Pak-Stanley labeling, many results on bijections
R(Sr

n) → Pr
n have been obtained, see [2, 3, 8, 31, 40, 47–49] etc.. For the bijection Pr

n → T r
n ,

currently we just know that it can be established by a composition of three other bijections
given in [36] by I. Pak and A. Postnikov. In the case of r = 1, bijections Pn → Tn have
been well studied since 1968, see [11, 13, 22, 25, 41, 43] etc.. To the best of our knowledge, no
explicit bijection R(Sr

n) → T r
n has been established, which is exactly our motivation of this

paper. Our first main result is to establish a bijection R(Sr
n) → T r

n , see Theorem 2.2. To this
end, we will introduce a cubic matrix for r-Shi arrangement, which will also let us define the
Pak-Stanley labeling in an easy way, see Theorem 2.4.

Surprisingly, the cubic matrix method can be applied to the r-Catalan arrangement Cr
n

in Rn, the collection of hyperplanes

Cr
n : xi − xj = 0,±1, . . . ,±r, for 1 ≤ i < j ≤ n.

When r = 1, denote Cn = C1
n, called the Catalan arrangement. The number of regions of

Cr
n was first obtained by Athanasiadis [1] in 2004.

2



Theorem 1.3. [1] For any positive integers r and n, the number of regions of Cr
n is

|R(Cr
n)| = n!C(n, r) =

n!

rn + 1

(

rn + n

n

)

.

In Theorem 1.3, the number C(n, r) = 1
rn+1

(

rn+n

n

)

is called the Fuss-Catalan number

or Raney number, which counts the number of the r-Dyck paths of length n. As written
in [23], the Fuss-Catalan number was first studied by Fuss [15] in 1791, forty-seven years
before Catalan investigated the parenthesization problem, see [12, 17, 19, 23, 28, 32, 33, 38] for
more results on the Fuss-Catalan number. The paper [20] presented several combinatorial
structures which are counted by Fuss-Catalan numbers. In the case of r = 1, C(n, r) =
Cn = 1

n+1

(

2n
n

)

is the Catalan number, see [50] for a complete investigation on the Catalan
number. Dyck path has many generalizations that have been widely studied in the past,
see [6,9,14,21,26,27,29,30,42]. As a generalization of Dyck path, a r-Dyck path of length

n is a lattice path in the x-y plane moving from (0, 0) to (n, rn) with steps (1, 0) and (0, 1)
and never going above the line y = rx. Denote by Dr

n the collection of all r-Dyck paths of
length n and Dn = D1

n the set of all Dyck paths of length n. In 1989, Krattenthaler [24]
obtained the number of r-Dyck paths of length n.

Theorem 1.4. [24] For any positive integers r and n, the cardinality of Dr
n is

|Dr
n| = C(n, r).

As our second main result, we will establish a bijection R(Cr
n) → Sn×Dr

n in Theorem 2.6
via the cubic matrix defined for the r-Catalan arrangement, which will extend the bijection
defined in [47, p. 69].

2 Main Results

Our first main result is a bijection R(Sr
n) → T r

n , which will be stated in Section 2.1 and
proved in Section 4. The second main result is a bijection R(Cr

n) → Sn × Dr
n and will be

given in Section 2.2.

2.1 Bijection R(Sr
n) → T r

n

By introducing a cubic matrix for r-Shi arrangement, in this section we establish a bijection
R(Sr

n) → T r
n and present a straightforward way to view the Pak-Stanley labelling. Given a

region ∆ ∈ R(Sr
n) and a representative x = (x1, x2, . . . , xn) ∈ ∆, define the cubic matrix

Cx =
(

cijk(x)
)

∈ Rn×n×r to be

cijk(x) =











xi − xj − k, if i < j;

0, if i = j;

xi − xj − k + 1, if i > j,

(1)

which is an r-tuple of square matrices as the index k running from 1 to r. For any i, j ∈ [n],
let

rowi(Cx) =
(

cijk(x)
)

j∈[n],k∈[r]
and colj(Cx) =

(

cijk(x)
)

i∈[n],k∈[r]
,

3



called the i-th row slice and j-th column slice of Cx respectively. Note that each hyper-
plane H ∈ Sr

n is exactly defined by the equation H : cijk(x) = 0 for some i, j and k, and all
points of ∆ lie in the same side of H since ∆ ∩ H = ∅. It follows that cijk(x) has the same
sign for all x ∈ ∆, namely, Sgn

(

cijk(x)
)

is independent of the choice of representatives x ∈ ∆
and can be denoted by

Sgnijk(∆) = Sgn
(

cijk(x)
)

. (2)

Then Sgn(∆) =
(

Sgnijk(∆)
)

automatically defines a bijection

Sgn : R(Sr
n) → {Sgn(∆) | ∆ ∈ R(Sr

n)}. (3)

The symbol x is understand as either a point of Rn or indeterminate depending on its meaning
in the context.

Definition 2.1. Let O = {o1, . . . , or} and V = {v1, . . . , vn} be two disjoint sets of labeled ver-
tices. Given a region ∆ ∈ R(Sr

n) and x ∈ ∆, for any j ∈ [n], let f(vj) = (f1(vj), . . . , fr(vj)) ∈
(O ∪ V )r be defined recursively as follows,

ı if all entries of colj(Cx) are nonpositive, let pj = 0 and

f(vj) = (o1, o2, . . . , or),

(ii) otherwise, pj 6= 0 and colj(Cx) has a unique minimal positive entry at (pj , qj), let

f(vj) =
(

f1(vpj), . . . , fqj−1(vpj), fqj+1(vpj ), . . . , fr(vpj), vpj
)

,

and let the map F : V →
(

O∪V

r

)

with

F (vj) = {fi(vj) | i ∈ [r]}.

Define the graph Tx on the vertex set O∪V such that the vertex vj and vertices in F (vj) form
an (r + 1)-clique for all j ∈ [n].

Below is the first main result of this paper, whose proof is highly nontrivial and will be
given in Section 4.

Theorem 2.2. With the same notations as Definition 2.1, the following map is a bijection,

Ψr
n : R(Sr

n) → T r
n , Ψr

n(∆) = Tx for any x ∈ ∆. (4)

In the case of r = 1, the statements of Definition 2.1 and Theorem 2.2 become quiet
simple, see Corollary 2.3.

Corollary 2.3. Let O = {o1} and V = {v1, . . . , vn} be two disjoint sets of labeled vertices.
Given a region ∆ of Sn, for any x ∈ ∆, define an n× n matrix Ax =

(

aij(x)
)

with

aij(x) =











xi − xj − 1, if i < j;

0, if i = j;

xi − xj , if i > j,

and a graph Tx on O ∪ V such that for each j ∈ [n], vj is adjacent to vpj , where pj is defined
as follows,
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ß if column j of Ax has no positive entry, assume pj = 0 and v0 = o1;

(ii) otherwise, column j of Ax has a unique minimal positive entry at row pj.

Then Tx is an O-rooted labeled tree and independent of the choice of representatives x ∈ ∆.
Moreover, the map Ψn : R(Sn) → Tn with Ψn(∆) = Tx is a bijection.

In 1998, a celebrated bijection R(Sr
n) → Pr

n was obtained by Stanley [49] and called the

Pak-Stanley labeling, which is defined recursively as follows. Start with the base region
∆0 ∈ R(Sr

n) with
∆0 : x1 > x2 > · · · > xn > x1 − 1,

whose labeling is assumed to be λ(∆0) = (0, . . . , 0) ∈ Zn
≥0. Suppose ∆ ∈ R(Sr

n) has been
labeled by λ(∆) ∈ Zn

≥0, and an unlabeled region ∆′ ∈ R(Sr
n) is separated from ∆ by a unique

hyperplane H : cijk(x) = 0. Then define the region ∆′ to be labeled by λ(∆′) = λ(∆) + ei.
Using the cubic matrix Cx, Theorem 2.1 of [49] can be restated as follows.

Theorem 2.4. [49] Given a region ∆ of Sr
n and x ∈ ∆, for any i ∈ [n], let

λi(∆) = the number of positive signs of Sgn
(

rowi(Cx)
)

.

The following map is a bijection

λ : R(Sr
n) → Pr

n, ∆ 7→ λ(∆) =
(

λ1(∆), . . . , λn(∆)
)

.

Proof. Note that the base region is

∆0 = {y ∈ Rn | cijk(y) < 0, i, j ∈ [n], k ∈ [r]}.

If the region ∆ is separated from ∆0 by the hyperplane H : cijk(y) = 0, then x ∈ ∆ implies
cijk(x) > 0. From the definition of the Pak-Stanley labeling, it is easily seen that λi(∆) is
the number of the hyperplanes H : cijk(y) = 0 separating ∆ from ∆0. Namely, λi(∆) is the
number of positive entries in the i-th row slice of Cx.

Remark 2.5. Theoretically, the compositions of our bijection (Ψr
n)−1 : T r

n → R(Sr
n) in

Theorem 2.2 and the Pak-Stanley labeling λ : R(Sr
n) → Pr

n in Theorem 2.4 will produce a
bijection T r

n → Pr
n, while it seems to be highly complicated and difficult to be stated explicitly.

2.2 Bijection R(Cr
n) → Sn ×Dr

n

In this section, we will establish a bijection R(Cr
n) → Sn × Dr

n. Similar as [47, p. 68],
the permutation group Sn acts on Rn by permuting coordinates, i.e., if π ∈ Sn, for x =
(x1, . . . , xn) ∈ Rn we have

π(x) = (xπ(1), . . . , xπ(n)).

Given a region ∆ ∈ R(Cr
n) and x ∈ ∆, there is a unique permutation π∆ ∈ Sn, independent

of the choice of x ∈ ∆, such that

xπ∆(1) > · · · > xπ∆(n).

Note that R(Cr
n) is Sn-invariant, i.e., for any π ∈ Sn and ∆ ∈ R(Cr

n), we have

π(∆) = {π(x) | x ∈ ∆} ∈ R(Cr
n).

5



For π ∈ Sn, denote by
Rπ(Cr

n) =
{

∆ ∈ R(Cr
n) | π∆ = π

}

.

In particular, let

R1(Cr
n) =

{

∆ ∈ R(Cr
n) | π∆ = 1 is the identity permutation

}

.

It is clear that π is a bijection from Rπ(Cr
n) to R1(Cr

n) and

R(Cr
n) =

⊔

π∈Sn

Rπ(Cr
n).

To obtain the bijection R(Cr
n) → Sn × Dr

n, it is enough to establish a bijection R1(Cr
n) →

Dr
n. Given a region ∆ ∈ R1(Cr

n) and a representative x = (x1, x2, . . . , xn) ∈ ∆, define the
cubic matrix Dx =

(

dijk(x)
)

∈ Rn×n×r to be

dijk(x) =

{

xi − xj − k, if i 6= j;

0, if i = j;

Similar as before, each hyperplane H ∈ Cr
n is exactly defined by the equation H : dijk(x) = 0

for some i, j ∈ [n] with i 6= j and k ∈ [r]. So we still have that Sgn
(

dijk(x)
)

is independent
of the choice of representatives x ∈ ∆.

For any r-Dyck path P ∈ Dr
n, if the vertical line x = i − 1

2
intersects P at the y-

coordinate hi(P ), the sequence h(P ) = (h1(P ), . . . , hn(P )) ∈ Zn is nondecreasing and satisfies
0 ≤ hi(P ) ≤ r(i− 1), called the height sequence of P . Conversely, it is clear that any non-
decreasing sequence h = (h1, . . . , hn) with 0 ≤ hi ≤ r(i − 1) uniquely determines a r-Dyck
path P of length n such that h(P ) = h. Indeed, the height sequence of a r-Dyck path is also
a r-parking function. Now we are ready to give the bijection R1(Cr

n) → Dr
n. Given any region

∆ ∈ R1(Cr
n) and x ∈ ∆, let h(∆) =

(

h1(∆), . . . , hn(∆)
)

be a sequence defined by

hj(∆) = the number of positive signs of Sgn
(

colj(Dx)
)

, j ∈ [n]. (5)

As we shall see in Theorem 2.6, the sequence h(∆) is exactly the height sequence of a r-Dyck
path of length n, say P∆, which defines the bijection

R1(Cr
n) → Dr

n, ∆ 7→ P∆. (6)

Now for any region ∆ ∈ R(Cr
n), we have ∆ ∈ Rπ∆

(Cr
n) and ∆′ = π∆(∆) ∈ R1(Cr

n). By abuse of
notations, denote by P∆ the corresponding r-Dyck path P∆′ obtained from the above bijection
(6), namely P∆ = Pπ∆(∆) for any ∆ ∈ R(Cr

n). Below is our second main result.

Theorem 2.6. For any positive integers r and n, the following map is a bijection,

Φr
n : R(Cr

n) → Sn ×Dr
n, Φr

n(∆) = (π∆, P∆).

Proof. Notice from Theorem 1.3 and 1.4 that the both R(Cr
n) and Sn × Dr

n have the same
cardinality n!C(n, r). By the above arguments, it is enough to show that the map defined in
(6) is injective. For any ∆ ∈ R1(Cr

n) and x = (x1, . . . , xn) ∈ ∆, we have x1 > x2 > · · · > xn.
It is easily seen from the definition of the cubic matrix Dx =

(

dijk(x)
)

∈ Rn×n×r that

(a) dijk(x) > 0 implies i < j;

6



(b) if i < j < j′, then dijk(x) > 0 implies dij′k(x) > 0 since dij′k(x) > dijk(x).

Note from the definition of (5) that for j ∈ [n],

hj(∆) = #
{

(i, k) ∈ [n] × [r] | dijk(x) > 0
}

. (7)

The properties (a) and (b) imply hj(∆) ≤ r(j − 1) for any j ∈ [n] and h1(∆) ≤ h2(∆) ≤
· · · ≤ hn(∆) respectively. So h(∆) =

(

h1(∆), . . . , hn(∆)
)

is a height sequence of a r-Dyck
path of length n, i.e., the map given in (6) is well-defined. Next we prove the injectivity of
the map in (6) by contradiction. Suppose ∆ and Ω are two distinct regions in R1(Cr

n) with
h(∆) = h(Ω) and let x ∈ ∆ and y ∈ Ω. From ∆ 6= Ω, we have a minimal index j ∈ [n] such
that the hyperplane H : dijk(z) = 0 separates ∆ from Ω. Assume

dijk(x) = xi − xj − k > 0 and dijk(y) = yi − yj − k < 0.

Since hj(∆) = hj(Ω), from (7) there must exist a pairing (i′, k′) 6= (i, k) such that

di′jk′(x) = xi′ − xj − k′ < 0 and di′jk′(y) = yi′ − yj − k′ > 0.

By property (a), we have i, i′ < j. If i = i′, we have k′ > xi − xj > k since dijk(x) > 0 and
di′jk′(x) < 0 and k > yi− yj > k′ since dijk(y) < 0 and di′jk′(y) > 0, which is a contradiction.
If i < i′, we have k > yi − yj > yi′ − yj > k′ since dijk(y) < 0 and di′jk′(y) > 0. Consider the
hyperplane H : dii′(k−k′)(z) = 0. We have

dii′(k−k′)(x) = dijk(x) − di′jk′(x) > 0,

dii′(k−k′)(y) = dijk(y) − di′jk′(y) < 0,

which means that the hyperplane H : dii′(k−k′)(z) = 0 separates ∆ from Ω, a contradiction
to the minimality of the index j. By similar arguments as the case i < i′, we can obtain a
contradiction for the case i > i′. So we can conclude that the map in (6) is injective, which
completes the proof.

It is easily seen that Theorem 2.6 not only extends the bijection R(Cn) → Sn×Dn defined
in [47, page 69], but make it more straightforward with the help of the cubic matrix. Below is
an example to illustrate the construction of the Dyck path from a region in the case of r = 1.

Example 2.7. Let ∆ ∈ R(C6) be the region

∆ =







x = (x1, . . . , x6) ∈ R6

∣

∣

∣

∣

∣

∣

x4 > x3 > x6 > x1 > x2 > x5,
x3 − x1 > 1, x1 − x2 > 1,
x4 − x6 < 1, x6 − x1 < 1, x2 − x5 < 1.







.

It is obvious that π∆ = 436125 ∈ S6 and for 1 ≤ i < j ≤ 6,

∆′ = π∆(∆) =







x = (x1, . . . , x6) ∈ R6

∣

∣

∣

∣

∣

∣

x1 > x2 > x3 > x4 > x5 > x6,
x2 − x4 > 1, x4 − x5 > 1,
x1 − x3 < 1, x3 − x4 < 1, x5 − x6 < 1.







.

It follows that for any x ∈ ∆′,

Sgn(cij1(x)) =

{

−, if (i, j) ∈
{

(1, 2), (1, 3), (2, 3), (3, 4), (5, 6)
}

;

+, if (i, j) ∈
{

(1, 4), (2, 4), (1, 5), (2, 5), (3, 5), (4, 5), (1, 6), (2, 6), (3, 6), (4, 6)
}

.

So we have h(∆′) = (0, 0, 0, 2, 4, 4), which is the height sequence of the Dyck path P∆ = P∆′.
Namely, Φ1

n(∆) = (π∆, P∆) with π∆ = 436125 and P∆ = the red path of Figure -1.
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Figure -1: The Dyck path D∆

3 O-Rooted Labeled r-Trees

Preparing for Theorem 2.2, we give some characterizations on O-rooted labeled r-trees in
this section. For the structural integrity, below we restate the definition of O-rooted labeled
r-trees following from Foata [10] in 1971.

Definition 3.1. [10] Let O = {o1, . . . , or} and V = {v1, . . . , vn} be two disjoint sets of labeled
vertices. An O-rooted labeled r-tree T on O∪V is a graph having the property: there is a
valid rearrangement ν = (vi1, . . . , vin) of vertices v1, . . . , vn, such that each vij with j ∈ [n] is
adjacent to exactly r vertices in {o1, . . . , or, vi1, . . . , vij−1

} and, moreover, these r vertices are
themselves mutually adjacent in T . Let

F ν
T

(vij ) = {v | v is adjacent to vij in T} ∩ {o1, . . . , or, vi1 , . . . , vij−1
},

whose members are called fathers of vij in T under ν.

Remark 3.2. Note from the above definition that the father set of vi1 in T under ν is the root
set O, so vertices of O are mutually adjacent in T . In the case of r = 1, for any ordinary tree
T on the labeled vertices O∪V , suppose that ν is a rearrangement having the property: vi is
ahead of vj in ν whenever dT (vi, o1) < dT (vj , o1) as distances of two vertices in T . Obviously
such ν always exists and is valid for defining T as an O-rooted labeled tree.

To make the above definition more clear, Propositions 3.3-3.5 are characterizations on valid
rearrangements and father sets, which might have been obtained by others in the literature
but not noticed by us yet. Indeed, the r-trees have been characterized exactly to be the
maximal graphs with a given treewidth in [34], and the chordal graphs all of whose maximal
cliques are the same size r+1 and all of whose minimal clique separators are also all the same
size r in [37].

Proposition 3.3. Let O = {o1, . . . , or} and V = {v1, . . . , vn} be two disjoint sets of labeled
vertices, and T an O-rooted labeled r-tree on O ∪ V . For each i ∈ [n], the father set F ν

T
(vi) is

independent of the choice of valid rearrangements ν for T , and denoted by FT (vi).

Proof. Without loss of generality, we may assume that ǫ = (v1, . . . , vn) is a valid rearrangement
for T . Given a new valid rearrangement ν of vertices v1, . . . , vn for T , suppose s is the minimal
number such that F ǫ

T
(vs) 6= F ν

T
(vs). If oj ∈ F ǫ

T
(vs) \ F

ν
T

(vs) for some j ∈ [r], then oj /∈ F ν
T

(vs)

8



implies that vs is not adjacent to oj in T , a contradiction to oj ∈ F ǫ
T
(vs). If vt ∈ F ǫ

T
(vs)\F

ν
T

(vs),
then we have t < s since vt ∈ F ǫ

T
(vs) and vs /∈ F ǫ

T
(vt) = F ν

T
(vt) by the minimality of s. Note

the fact that vs is adjacent to vt in T , a contradiction to vs /∈ F ν
T

(vt) and vt /∈ F ν
T

(vs). Hence,
F ǫ

T
(vi) = F ν

T
(vi) for all i ∈ [n].

Proposition 3.4. Let O = {o1, . . . , or} and V = {v1, . . . , vn} be two disjoint sets of labeled
vertices, and T an O-rooted labeled r-tree on O ∪ V . A rearrangement ν of vertices v1, . . . , vn
is valid for T if and only if vs is ahead of vt in ν whenever vs ∈ FT (vt).

Proof. The sufficiency is obvious from the definition of O-rooted labeled r-tree. To prove the
necessity, we may assume that ǫ = (v1, . . . , vn) is a valid rearrangement for T . Proposition 3.3
implies F ǫ

T
(vi) = FT (vi). Now suppose that ν is a rearrangement such that vs is ahead of vt

in ν whenever vs ∈ F ǫ
T
(vt). Let Gν

T
(vi) consist of those vertices o1, . . . or who are adjacent to

vi in T , and vertices v1, . . . vn who are adjacent to vi in T and ahead of vi in ν. Immediately,
we have F ǫ

T
(vi) ⊆ Gν

T
(vi) for all i ∈ [n] and Gν

T
(vi)∩O = F ǫ

T
(vi)∩O. To obtain the necessity,

i.e., ν is valid for T , it is enough to show F ǫ
T
(vi) = Gν

T
(vi). Suppose Gν

T
(vt) 6= F ǫ

T
(vt) and

vs ∈ Gν
T
(vt) \ F

ǫ
T
(vt) for some s, t ∈ [n]. By the definition of Gν

T
(vt), vs ∈ Gν

T
(vt) implies that

vs is ahead of vt in ν and adjacent to vt in T . From the assumption of ν, we have vt /∈ F ǫ
T
(vs).

Note that vs and vt are adjacent, a contradiction to vt /∈ F ǫ
T
(vs) and vs /∈ F ǫ

T
(vt).

Proposition 3.5. Let O = {o1, . . . , or} and V = {v1, . . . , vn} be two disjoint sets of labeled
vertices, and F : V →

(

O∪V

r

)

. There is an O-rooted labeled r-tree T on O ∪ V with F (vi) =
FT (vi) for all i ∈ [n] if and only if F satisfies the following properties:

(a) if vi1 ∈ F (vi2), . . . , vij−1
∈ F (vij) for some i1, . . . , ij ∈ [n], then vij /∈ F (vi1);

(b) if F (vj) 6= O, then there is a vertex vi ∈ F (vj) such that |F (vj) ∩ F (vi)| = r − 1.

Moreover, both the r-tree T and the vertex vi in (b) are unique.

Proof. Let’s prove the second part first. If T is an O-rooted labeled r-tree on O ∪ V with
F (vi) = FT (vi), then all vertices of F (vi) ∪ {vi} are mutually adjacent, which exactly form
all edges of T . So T is uniquely determined by F (vi) = FT (vi). To prove the uniqueness of
vi in (b), note that (a) implies vj /∈ F (vj) for all j ∈ [n]. Suppose there is another vertex
vi′ ∈ F (vj) with i′ 6= i such that |F (vj) ∩ F (vi′)| = r − 1. Then we have vi ∈ F (vi′) and
vi′ ∈ F (vi), a contradiction to (a).

To prove the sufficiency of the first part, we may assume that ǫ = (v1, . . . , vn) is a valid
rearrangement for T . From Proposition 3.4, if vj ∈ F (vi), vj is ahead of vi in ǫ, i.e., j < i.
So if vi1 ∈ F (vi2), . . . , vij−1

∈ F (vij ) for some i1, . . . , ij ∈ [n], then i1 < ij which implies
vij /∈ F (vi1) and (a) holds. To prove (b), let i be the largest number with vi ∈ F (vj), i < j
obviously. Suppose vi′ ∈ F (vj) \ F (vi), then i′ < i < j and vi /∈ F (vi′). Note vi, vi′ ∈ F (vj)
and all vertices of F (vj) are mutually adjacent, which is a contradiction to vi′ /∈ F (vi) and
vi /∈ F (vi′). Thus we have F (vj) \ F (vi) = {vi}, i.e., |F (vj) ∩ F (vi)| = r − 1. Moreover, for
any vi′ ∈ F (vj) with i′ < i, we have at least vi′ , vi /∈ F (vi′), i.e., |F (vj) ∩ F (vi′)| ≤ r − 2.

To prove the necessity of the first part, from the assumption vij /∈ F (vi1) whenever vi1 ∈
F (vi2), . . . , vij−1

∈ F (vij ) for some i1, . . . , ij ∈ [n], we have vit /∈ F (vis) for 1 ≤ s < t ≤ j,
which implies vis 6= vit , i.e., is 6= it for 1 ≤ s < t ≤ j since vis ∈ F (vis+1) and vit /∈ F (vis+1),
and j ≤ n consequently. Suppose vi1 ∈ F (vi2), . . . , vik−1

∈ F (vik) for some i1, . . . , ik ∈ [n],
where k is maximal possible. The maximality of k implies vik /∈ F (vi) for all i ∈ [n]. Next
we use induction on the size of V . When |V | = 1, note that from (a), v1 ∈ F (v1) produces
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v1 /∈ F (v1), which forces v1 /∈ F (v1), i.e., F (v1) = O and the result follows clearly. Let
V ′ = V \ {vik} and F ′ : V ′ →

(

O∪V ′

r

)

with F ′(vi) = F (vi) for all vi ∈ V ′. It is clear that (a)
and (b) holds for F ′. From the induction hypothesis, there is an O-rooted labeled r-tree T ′

on O ∪ V ′ such that F ′(vi) = FT ′(vi) with vi ∈ V ′. Given a valid rearrangement ν ′ for T ′,
let T be a graph on the labeled vertex set O ∪ V obtained from T ′ by adding the r edges
between vik and each vertex of F (vik), and let ν = (ν ′, vik). The case of F (vik) = O is clear.
Otherwise, from (b) we have |F (vik) ∩ F (vi)| = r − 1 for some vi ∈ F (vik). Note all vertices
of F (vi) ∪ {vi} are mutually adjacent in T ′, which implies that all vertices of F (vik) are also
mutually adjacent in T ′. Consequently, the graph T is an O-rooted labeled r-tree and ν is a
valid rearrangement for T .

4 Proof of Theorem 2.2

Roughly speaking, in Definition 2.1 the graph Tx is obtained by the following process,

x ∈ ∆ −→ pj, qj(if pj 6= 0) −→ f(vj) −→ F (vj) −→ Tx.

which requires that pj, qj(if pj 6= 0), f(vj), F (vj), and Tx are well-defined for all j ∈ [n], see
Proposition 4.1.

Proposition 4.1. With the same notations as Definition 2.1, the graph Tx is independent of
the chioce of x ∈ ∆. Moreover, Tx is an O-rooted labeled r-tree with FTx

(vj) = F (vj) for all
j ∈ [n], namely, the map Ψr

n in (4) is well defined.

Proof. Firstly, we will show that pj and qj(if pj 6= 0) is independent of the choice of x ∈ ∆.
Let ∆ ∈ R(Sr

n) and j ∈ [n]. For the case ß of Definition 2.1, by (2) we have Sgnijk(∆) 6= +
for all i ∈ [n] and k ∈ [r], which implies pj = 0 for all x ∈ ∆. For the case (ii) of Definition
2.1, given any (i, k) 6= (i′, k′) in [n] × [r] with i > i′, by routine calculations on entries of Cx,j

we have

cijk(x) − ci′jk′(x) =















cii′(k−k′)(x), if k > k′, i > j > i′;
−ci′i(k′−k+1)(x), if k ≤ k′, i > j > i′;
cii′(k−k′+1)(x), if k ≥ k′, i > i′ > j or j > i > i′;
−ci′i(k′−k)(x), if k < k′, i > i′ > j or j > i > i′.

For all x ∈ ∆, we have Sgn
(

cijk(x) − ci′jk′(x)
)

= Sgn
(

cii′s(x)
)

or −Sgn
(

ci′is(x)
)

for some
s ∈ [r], which means that both Sgn

(

cijk(x)
)

and Sgn
(

cijk(x)− ci′jk′(x)
)

6= 0 are independent
of the choice of x ∈ ∆. It implies that for all x ∈ ∆, the j-th column slice colj(Cx) has a
unique minimal positive entry at the same position (pj , qj), i.e., (pj, qj) is independent of the
choice of x ∈ ∆.

Secondly, we will prove that f(vj) and F (vj) is well defined. Let

π : [n] → {0, 1, . . . , n} with π(j) = pj, (8)

πl+1(j) = π(πl(j)) = pπl(j) for l ≥ 0, and π0(j) = j. Note that if pj 6= 0, we have cpjjqj(x) > 0
and

cpjjqj(x) =

{

xpj − xj − qj , if pj < j;
xpj − xj − qj + 1, if pj > j,
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which implies xpj > xj and pj 6= j. Namely, we have xπ(j) > xj if π(j) 6= 0. There exists
some m ∈ [n] such that π(j), . . . , πm−1(j) 6= 0 and πm(j) = 0, otherwise π(j), . . . πn(j) 6= 0
and xj < xπ(j) < · · · < xπn(j) which is obviously impossible for x = (x1, . . . , xn). Moreover
xj < xπ(j) < · · · < xπm−1(j) implies that j, π(j), . . . , πm−1(j) are mutually distinct. It follows
from ıand (ii) of Definition 2.1 that

f(vp
πm−2(j)

) = f(vπm−1(j)) = (o1, . . . , or),

and for all l = m− 2, . . . , 1, 0, we have

f(vπl(j)) =
(

f1(vπl+1(j)), . . . , fqπl(j)
−1(vπl+1(j)), fqπl(j)

+1(vπl+1(j)), . . . , fr(vπl+1(j)), vπl+1(j)

)

. (9)

Proceeding l from m − 2 to 0 step by step recursively, finally we can obtain f(vj), which is
well-defined consequently. Moreover, note from the definition that for each l = m−2, . . . , 1, 0,

F (vπl(j)) =
(

F (vπl+1(j)) \ fqπl(j)
(vπl+1(j))

)
⋃

{vπl+1(j)},

i.e., F (vπl(j)) is obtained from F (vπl+1(j)) by removing the vertex fq
πl(j)

(vπl+1(j)) and adding the

vertex vπl+1(j). So each F (vπl(j)) consists of r members of vertices o1, . . . , or, vπm−1(j), . . . , vπl+1(j),
which is of size r since j, π(j), . . . , πm−1(j) are mutually distinct and nonzero. In particular,
|F (vj)| = |F (vπ0(j))| = r and F (vj) is well defined.

Finally, it remains to show that there exists uniquely an O-rooted labeled r-tree Tx on
O ∪ V with FTx

(vj) = F (vj) for all j ∈ [n]. Recall the arguments of the above proof that if
π(j) 6= 0, F (vj) consists of r members of vertices o1, . . . , or, vπm−1(j), . . . , vπ(j), where m is the
smallest integer with πm(j) = 0 and m ≥ 2. If vi ∈ F (vj), then π(j) = pj 6= 0 and

vi ∈ {o1, . . . , or, vπm−1(j), . . . , vπ(j)},

which follows vi = vπl(j), i.e., i = πl(j) for some positive integer l ∈ [m − 1]. Now suppose
vi1 ∈ F (vi2), . . . , vij−1

∈ F (vij) for some i1, . . . , ij ∈ [n]. There exist some positive integers
l1, . . . , lj−1 such that

i1 = πl1(i2), . . . , ij−1 = πlj−1(ij).

We have i1 = πl(ij) with l = l1 + · · · + lj−1, i.e., vi1 = vπl(ij) which implies vij /∈ F (vi1). So
the map F satisfies the property (a) of Proposition 3.5. The property (b) is obvious since
vpj ∈ F (vj) and |F (vj) ∩ F (vpj)| = r − 1. The proof completes by Proposition 3.5.

Remark 4.2. (1) From the above proof, notations of Definition 2.1 can be written more
precisely as

pj = pj(∆), qj = qj(∆), f = f∆, F = F∆, and Tx = T∆, (10)

since they are all independent of the choice of x ∈ ∆. (2) We also have the following
observation

V = {v1, . . . , vn} *
⋃n

j=1 F∆(vj), (11)

otherwise, we have vi1 ∈ F∆(vi2), vi2 ∈ F∆(vi3), . . . for an infinite sequence i1, i2, . . ., which is
a contradiction since i1 = πl1(i2), i2 = πl2(i3), . . . for some positive integers l1, l2, . . ..
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It is easily seen from (1) that for any i, j, k ∈ [n] and s, t ∈ [r] with i > j > k and s+t ≤ r,
we have the following facts on linear relations among the entries of the cubic matrix Cx,

(F1) cijs(x) + cjkt(x) = cik(s+t−1)(x); (F2) ciks(x) + ckjt(x) = cij(s+t)(x);

(F3) ckis(x) + cijt(x) = ckj(s+t−1)(x); (F4) ckjs(x) + cjit(x) = cki(s+t)(x);

(F5) cjks(x) + ckit(x) = cji(s+t−1)(x); (F6) cjis(x) + cikt(x) = cjk(s+t)(x).

Lemma 4.3. If pj 6= 0 and qj are defined as (ii) of Definition 2.1, then entries of Cx have
the following sign relations,

Sgn
(

cijk(x)
)

=















Sgn
(

cipj(k−qj+1)(x)
)

, if qj ≤ k and (i, j, pj) is even;
−Sgn

(

cpji(qj−k)(x)
)

, if qj > k and (i, j, pj) is even;
−Sgn

(

cpji(qj−k+1)(x)
)

, if qj ≥ k and (i, j, pj) is odd;
Sgn

(

cipj(k−qj)(x)
)

, if qj < k and (i, j, pj) is odd,

where (i, j, pj) is even if i < j < pj, or pj < i < j, or j < pj < i, and odd otherwise.

Proof. We prove the result in the case of qj ≤ k and i < j < pj whose arguments can be
applied to other cases analogously. When i < j < pj , by the fact (F3) we have

cpjjqj(x) = cijk(x) − cipj(k−qj+1)(x),

which from the assumption is the unique minimal positive entry in the j-th column slice of
Cx. If cijk(x) is positive, by the unique minimality of cpjjqj(x) we have cijk(x) > cpjjqj(x),
which implies cipj(k−qj+1)(x) > 0. If cijk(x) is negative, by the positivity of cpjjqj(x) we have
cipj(k−qj+1)(x) < 0. Namely, Sgn(cijk(x)) = Sgn(cipj(k−qj+1)(x)).

Let Projj : Rn → Rn−1 be the projection defined by

Projj(x1, . . . , xn) = (x1, . . . , xj−1, xj+1, . . . , xn).

It is clear that Projj(∆) ∈ R(Sr
n−1) for any ∆ ∈ R(Sr

n). Below is a key lemma to prove the
injectivity of the map Ψr

n of (4).

Lemma 4.4. Given j′ ∈ [n], for any ∆′ ∈ R(Sr
n−1), i′ ∈ {0, 1, . . . , j′ − 1, j′ + 1, . . . , n},

and k′ ∈ [r] (if i′ 6= 0), there is at most one region ∆ ∈ R(Sr
n) such that Projj′(∆) = ∆′,

pj′(∆) = i′, qj′(∆) = k′ (if i′ 6= 0), and j′ 6= pj(∆) for all j ∈ [n], see (10) for notations pj(∆)
and qj(∆).

Proof. We only consider the case of j′ = n. For general j′, the arguments are analogous but
more tedious. Suppose two regions ∆,Ω ∈ R(Sr

n) satisfying that Projn(∆) = Projn(Ω) = ∆′

and

pn(∆) = pn(Ω) = i′, qn(∆) = qn(Ω) = k′ (if i′ 6= 0), and n 6= pj(∆), pj(Ω) for j ∈ [n].

We will show Sgn(∆) = Sgn(Ω), which implies ∆ = Ω since the map Sgn : R(Sr
n) → {Sgn(∆) |

∆ ∈ R(Sr
n)} is a bijection by (3). Given z ∈ ∆′, let x ∈ ∆ and y ∈ Ω such that Projn(x) =

Projn(y) = z. By (2) we have Sgnijk(∆) = Sgn(cijk(x)) and Sgnijk(Ω) = Sgn(cijk(y)). It is
enough to show that for all i, j ∈ [n] and k ∈ [r],

Sgn(cijk(x)) = Sgn(cijk(y)). (12)
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We first claim that for all j ∈ [n],

pj(∆) = pj(Ω) = pj and qj(∆) = qj(Ω) = qj (if pj 6= 0).

Indeed, if j = j′ = n, it is obvious from the assumptions. If j 6= j′ = n, note n 6= pj(∆)
(pj(Ω) resp.) for all j ∈ [n]. By the definitions of pj(∆) and qj(∆) (pj(Ω) and qj(Ω) resp.),
the minimal positive entry of colj(Cx) (colj(Cy) resp.) never appears in the n-th row slice of
Cx (Cy resp.). It follows that pj(∆) = pj(∆

′) = pj(Ω) and qj(∆) = qj(∆
′) = qj(Ω) for j 6= j′,

so the claim holds. Notice that (12) holds if pj = 0 since all entries of the j-th column slice
of Cx are nonpositive, more precisely, Sgn(cjjk(x)) = 0 and Sgn(cijk(x)) = − if i 6= j. Now
we assume pj 6= 0 and consider the following cases to prove (12).

ı For i, j ∈ [n − 1], since Projn(x) = Projn(y) = z, we have cijk(x) = cijk(y) = cijk(z).
Thus (12) holds in this case.

(ii) For j = n and i ∈ [n], note pn(∆) = pn(Ω) = i′ 6= n and qn(∆) = qn(Ω) = k′ (if
i′ 6= 0). If k′ ≥ k and i < i′ < n, the 3rd identity of Lemma 4.3 implies Sgn(cink(x)) =
−Sgn(ci′i(k′−k+1)(x)) and Sgn(cink(y)) = −Sgn(ci′i(k′−k+1)(y)). Note from the case of
ıabove that Sgn(ci′i(k′−k+1)(x)) = Sgn(ci′i(k′−k+1)(y)). Thus (12) holds in this case.
Other cases can be obtained by similar arguments.

(iii) For i = n and j ∈ [n], we have the following four cases.
(C-1). qj ≥ k and pj < j < i = n. From the 3rd identity of Lemma 4.3, we have

Sgn(cnjk(x)) = −Sgn(cpjn(qj−k+1)(x)) and Sgn(cnjk(y)) = −Sgn(cpjn(qj−k+1)(y)).

(C-2). qj > k and j < pj < i = n. From the 2nd identity of Lemma 4.3 we have

Sgn(cnjk(x)) = −Sgn(cpjn(qj−k)(x)) and Sgn(cnjk(y)) = −Sgn(cpjn(qj−k)(y)).

(C-3). qj < k and pj < j < i = n. From the 4th identity of Lemma 4.3, we have

Sgn(cnjk(x)) = Sgn(cnpj(k−qj)(x)) and Sgn(cnjk(y)) = Sgn(cnpj(k−qj)(y)).

(C-4). qj ≤ k and j < pj < i = n. From the 1st identity of Lemma 4.3, we have

Sgn(cnjk(x)) = Sgn(cnpj(k−qj+1)(x)) and Sgn(cnjk(y)) = Sgn(cnpj(k−qj+1)(y)).

It is obvious from (ii) above that (12) holds in cases (C-1) and (C-2). Next we will
show (12) holds in (C-3) and (C-4) simultaneously by induction on k. For k = 1,
note that (12) holds if pj < j by (C-1), and also holds if qj > k = 1 and j < pj
by (C-2). In particular, we have Sgn(cn(n−1)1(x)) = Sgn(cn(n−1)1(y)) obviously. The
remainder case is qj = 1 and j < pj . From the 1st identity of Lemma 4.3, we have
Sgn(cnj1(x)) = Sgn(cnpj1(x)). Now consider j from n − 2 to 1 step by step as follows.
For j = n−2, we have pj = n−1 since j < pj , and Sgn(cn(n−2)1(x)) = Sgn(cn(n−1)1(x)) =
Sgn(cn(n−1)1(y)) = Sgn(cn(n−2)1(y)). For j = n − 3, we have pj = n − 1 or n − 2 since
j < pj, and Sgn(cnj1(x)) = Sgn(cnpj1(x)) = Sgn(cnpj1(y)) = Sgn(cnj1(y)). Continuing
above steps, we finally obtain Sgn(cnj1(x)) = Sgn(cnj1(y)) for any j ∈ [n], which proves
(12) for k = 1. Now suppose (12) holds in (C-3) and (C-4) for 1, . . . , k − 1. For general
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k, since k − qj < k, it is clear from the induction hypothesis that (12) holds in (C-3).
In particular, by (C-1) and (C-3) we have Sgn(cn(n−1)k(x)) = Sgn(cn(n−1)k(y)) for all
k ∈ [r]. For the case (C-4), if qj > 1, then k − qj + 1 < k and (12) holds in this case by
the induction hypothesis. So we only need to consider the case of qj = 1 and j < pj for
(C-4), i.e.,

Sgn(cnjk(x)) = Sgn(cnpjk(x)) and Sgn(cnjk(y)) = Sgn(cnpjk(y)).

Similar as the base case k = 1, we may consider j from n− 2 to 1 step by step, which
can prove (12) in this case. E.g. if j = n − 2 < pj, then pj = n − 1 and we have
Sgn(cn(n−2)k(x)) = Sgn(cn(n−1)k(x)) = Sgn(cn(n−1)k(y)) = Sgn(cn(n−2)k(y)). The proof
of (12) in case (iii) completes.

Proposition 4.5. The map Ψr
n in (4) is injective.

Proof. We will use induction on the dimension n ≥ 2. For the induction base n = 2, it is easy
to see that under the map Ψr

2, all 2r+1 regions of Sr
2 are 1-1 corresponding to O-rooted labeled

r-trees in T r
2 . Suppose the result holds for n− 1, i.e., if T ′

∆ = Ψr
n−1(∆

′) = Ψr
n−1(Ω

′) = T ′
Ω for

any two regions ∆′,Ω′ ∈ R(Sr
n−1), then we have ∆′ = Ω′. Now suppose ∆,Ω ∈ R(Sr

n) with
T∆ = TΩ = T ∈ T r

n . By Proposition 3.3 and Definition 2.1, we have F∆(vj) = FΩ(vj) = FT (vj)
for all j ∈ [n]. We claim that pj(∆) = pj(Ω) and qj(∆) = qj(Ω) (if pj(∆) = pj(Ω) 6= 0) for all
j ∈ [n], whose proof will be given later. From (11), we can take a vertex vj′ /∈ F∆(vj) = FΩ(vj)
for all j ∈ [n]. It is clear that

(a) j′ 6= pj(∆), j′ 6= pj(Ω) for all j ∈ [n].

(b) pj′(∆) = pj′(Ω) = i′, qj′(∆) = qj′(Ω) = k′ (if i′ 6= 0).

Let T ′ ∈ T r
n−1 be the O-rooted labeled r-tree obtained from T by removing the vertex vj′ and

the edges between vj′ and vertices of FT (vj′). Given x ∈ ∆ and y ∈ Ω, let

Projj′(∆) = ∆′, Projj′(x) = x′, Projj′(Ω) = Ω′, Projj′(y) = y′.

It follows from Projj′(x) = x′ that the cubic matrix Cx′ ∈ R(n−1)×(n−1)×r is obtained from
Cx ∈ Rn×n×r by removing the j′-th column and row slices from Cx. The above property (a)
implies that for each j ∈ [n] \ {j′}, the minimal positivity entry cpjjqj(x) of colj(Cx) never
appears in the j′-th row slice of Cx. So for j ∈ [n] \ {j′}, the minimal positivity entry of j-th
column slice colj(Cx) appears in the same position as colj(Cx′), i.e., pj(∆) = pj(∆

′) = pj and
qj(∆) = qj(∆

′) = qj (if pj 6= 0). By the definition of O-rooted labeled r-tree in Definition
2.1, we have T ′ = Tx′ = Ψr

n−1(∆
′), and T ′ = Ty′ = Ψr

n−1(Ω
′) similarly. From the induction

hypothesis, we obtain ∆′ = Ω′, i.e., Projj′(∆) = Projj′(Ω) = ∆′. Combining with the above
properties (a) and (b), Lemma 4.4 implies ∆ = Ω.

To prove the claim under the assumption F∆(vj) = FΩ(vj) = FT (vj) for all j ∈ [n], note

pj(∆) = 0 ⇔ F∆(vj) = O = FΩ(vj) ⇔ pj(Ω) = 0.

Now for pj(∆) 6= 0, we have pj(Ω) 6= 0 and from the Definition 2.1,

vpj(∆) ∈ F∆(vj) = FΩ(vj) ⊆ FΩ(vpj(Ω))
⋃

vpj(Ω).
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Suppose pj(∆) 6= pj(Ω). Then we have vpj(∆) ∈ FΩ(vpj(Ω)) = FT (vpj(Ω)), and symmetrically
vpj(Ω) ∈ F∆(vpj(∆)) = FT (vpj(∆)), which is impossible by Proposition 3.5. Thus pj(∆) = pj(Ω)
for all j ∈ [n]. Define π : [n] → {0, 1, . . . , n} with π(j) = pj(∆) = pj(Ω) as (8). If πj 6= 0,
we have shown that for some m ≥ 2, we have π(j), . . . , πm−1(j) 6= 0 and πm(j) = 0. Next
we prove qj(∆) = qj(Ω). Let’s start with the convenient notations (u; i, u) and [u; i, u] for an
r-tuple u = (u1, . . . , ur), an element u, and i ∈ [r], where

(u; i, u) = (u1, . . . , ui−1, ui+1, . . . , ur, u) and [u; i, u] = {u1, . . . , ui−1, ui+1, . . . , ur, u}.

It is easy to see that if u1, . . . , ur and u are mutually distinct, then the following result holds

[u; i, u] = [u; j, u] ⇔ i = j ⇔ (u; i, u) = (u; j, u). (13)

It follows from ıand (ii) of Definition 2.1 that

f∆(vπm−1(j)) = O = fΩ(vπm−1(j)),

For any l = m− 2, . . . , 1, 0, it is clear from (9) that

F∆(vπl(j)) =
[

f∆(vπl+1(j)); qπl(j)(∆), vπl+1(j)

]

,

FΩ(vπl(j)) =
[

fΩ(vπl+1(j)); qπl(j)(Ω), vπl+1(j)

]

,

and F∆(vπl(j)) = FΩ(vπl(j)). Applying (13) and running l from m− 2 to 0, we finally obtain

qj(∆) = qj(Ω) and f∆(vj) = fΩ(vj).

Proof of Theorem 2.2. We have obtained that the map Ψr
n : R(Sr

n) → T r
n of (4) is well

defined by Proposition 4.1 and injective by Proposition 4.5, which is enough to conclude that
Ψr

n is a bijection from the fact that both R(Sr
n) and T r

n have the same cardinality by Theorem
1.1 and Theorem 1.2.

Corollary 4.6. Given j′ ∈ [n], for any ∆′ ∈ R(Sr
n−1), i

′ ∈ {0, 1, . . . , j′ − 1, j′ + 1, . . . , n}
and k′ ∈ [r] (if i′ 6= 0), there is a region ∆ ∈ R(Sr

n) such that Projj′(∆) = ∆′, pj′(∆) = i′,
qj′(∆) = k′ (if i′ 6= 0), and j′ 6= pj(∆) for all j ∈ [n].

Note that Corollary 4.6 can be easily obtained from the surjectivity of Ψr
n. Recall Lemma

4.4 that the uniqueness of the region ∆ ∈ R(Sr
n) (if exists) is crucial to guarantee the injectivity

of Ψr
n in Proposition 4.5. As a parallel situation, the existence of such region ∆ in Corollary

4.6 will produce a proof on the surjectivity of Ψr
n. However, similar as the Pak-Stanley labeling

at the very beginning appeared in [48], we currently have no direct proof on the surjectivity
of Ψr

n without using Theorem 1.1 and Theorem 1.2. So it would be of great interest to find a
direct proof on Corollary 4.6.

Recall arguments of Proposition 4.5 and Lemma 4.4, which provide an algorithm to con-
struct the region ∆ of r-Shi arrangement from an O-rooted labeled r-tree T , i.e., the inverse
map

(Ψr
n)−1 : T r

n → R(Sr
n), (Ψr

n)−1(T ) = ∆.

As a brief look, below is a small example to illustrate the bijection Ψr
n by constructing the

O-rooted labeled tree from a given region, and its inverse (Ψr
n)−1 by constructing the region

from a given O-rooted labeled tree.
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Figure -2: The bijection Ψ3 : R(S3) → T3

Example 4.7. For n = 3 and r = 1, Figure -2 describes the complete correspondence between
R(S3) and T3 under the map Ψ3. E.g., let ∆ ∈ R(S3) be the blue region in Figure -2 defined
by

∆ = {0 < x1 − x2 < 1; 0 < x1 − x3 < 1; x2 − x3 < 0},

and x = (0.2,−0.2, 0) ∈ ∆. By Theorem 2.2, we have

Ax =





0 −0.6 −0.8
−0.4 0 −1.2
−0.2 0.2 0



 ,

and p1(∆) = 0, p2(∆) = 3, p3(∆) = 0. Namely, in the O-rooted labeled tree Tx = Ψ3(∆), the
fathers of v1, v2, and v3 are o1, v3, and o1 respectively, which exactly determines Tx to be the
red tree in Figure 2. Conversely, let T ∈ T3 be the green tree in Figure -2 having o1, v1, and
v1 as the fathers of v1, v2, and v3 respectively. If Ω = Ψ−1

3 (T ), it follows from the definition of
T in Theorem 2.2 that p1(Ω) = 0, p2(Ω) = 1, and p3(Ω) = 1. Take the leaf v3 of T . Let T ′ be
the tree obtained from T by removing v3 and the edge v3 ∼ v1, and Ω′ = Proj3(Ω). According
to the proofs of Lemma 4.4 and Proposition 4.5, we have Ψ−1

2 (T ′) = Ω′ and

Sgn(Ω′) =

(

0 +
− 0

)

=

(

Sgn11(Ω) Sgn12(Ω)
Sgn21(Ω) Sgn22(Ω)

)

.

Since p3(Ω) = 1 and p1(Ω) = 0, we have Sgn13(Ω) = + and Sgn31(Ω) = −. By Lemma
4.3, we have Sgn23(Ω) = Sgn21(Ω) = − and Sgn32(Ω) = −Sgn13(Ω) = −. The sign matrix
Sgn(Ω) =

(

Sgnij(Ω)
)

3×3
exactly determines Ω to be the yellow region in Figure -2.
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