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UNIFORM TIGHT FRAMES AS OPTIMAL SIGNALS

GERGELY AMBRUS, BO BAI, JIANFENG HOU

Abstract. Non-orthogonal communication is a promising technique
for future wireless networks (e.g., 6G and Wi-Fi 7). In the vector chan-
nel model, designing efficient non-orthogonal communication schemes
amounts to the following extremum problem:

maxmin
k

|vk|
2

σ2 +
∑

l 6=k
〈vk, vl〉2

where the maximum is taken among vector systems (vk)
N

1 ⊂ R
d satisfy-

ing c1 6 |vk|
2
6 c2 for every k, and the parameter σ > 0 corresponds to

the noise of the channel. We show that in the case σ = 0, uniform tight
frames are the only optimal configurations. We also give quantitative
bounds on the optimal capacity of vector channels with relatively small
noise.

1. Introduction

As essential elements in wireless communications, orthogonal frequency
division multiplexing (OFDM) and multiple-input multiple-output (MIMO)
have been widely deployed in cellular communications (e.g., 4G and 5G)
and Wi-Fi networks. In an OFDM system, the transmitter and receiver (for
example, base station, access point, smart phones and other user devices)
uses multiple orthogonal subcarriers to transmit information. In a typical
MIMO system, on the other hand, the transmitter and receiver are usu-
ally equipped with multiple antennas to enhance information transmission
efficiency and reliability [7, 18].

To further improve transmission efficiency, non-orthogonal communica-
tion schemes attract much attention both from academia and industry. In
this work, we study the non-orthogonal communication problem in the fol-
lowing simple yet essential vector channel model [13]:

(1) y =
N∑

k=1

vk + w,

where vk ∈ R
d represents the vector sent by the k-th transmitter, and y ∈ R

d

is the vector received at the receiver, with w ∈ R
d being the Gaussian noise

vector with w ∼ N(0, σ2). As we are approaching the massive machine type
communications beyond 5G, it is highly required to support huge number of
low rate users with limited channel dimensions d. Specifically, the aim is to

2010 Mathematics Subject Classification. 42C40, 52C35.
Key words and phrases. tight frames, energy minimization, frame potential, frame du-

ality, signal processing.
Research of the first author was supported by NKFIH grants PD-125502 and KKP-

133819.

1

http://arxiv.org/abs/2002.03974v3


2 GERGELY AMBRUS, BO BAI, JIANFENG HOU

find the proper communication scheme (i.e., construct vk with k = 1, . . . , N
for N > d) so that the optimal channel capacity (i.e., the maximum rate of
reliable communication) may be achieved.

For the purpose of error correction, we may choose the vectors vi so that
the distance of any two of them is as large as possible. This is closely
related to the spherical coding (or packing) problem, in which the goal is
to find a set of N points (codewords) on the unit sphere Sd−1 of R

d so
that the minimum distance between the N points is as large as possible [4,
9]. The spherical code method has gained popularity in connection with
the construction of spreading sequences for Code-Division Multiple-Access
(CDMA) systems [22].

In the present article, we set off to maximize channel capacity. This is
defined to be the theoretical smallest upper bound on the information rate
of data that can be communicated at an arbitrarily low error rate using an
average received signal power S through an analog communication channel
subject to additive white Gaussian noise (AWGN) power Φ, where the unit
is bits/symbol. The classical Shannon-Hartley Theorem [15, 20] states that
the channel capacity C is given by

C =
1

2
log2

(
1 +

S

Φ

)
.

Returning to the vector channel model (1), if the k-th transmitter is as-
signed to a codeword vk ∈ R

d, then its received signal power S is |vk|2,
the squared Euclidean norm of vk (see [13]). The noise of k-th transmitter
consists of two parts: one originates of its own channel noise w ∼ N(0, σ2),
while the other part is yielded by the interference with the other transmit-
ters, which is expressed by the quantity

∑
l 6=k〈vk, vl〉2. Therefore, the power

of noise may be expressed as Φ = σ2 +
∑

l 6=k〈vk, vl〉2 (see [17, 21]), and the
channel capacity from the k-th transmitter to the receiver can be formulated
as

log

(
1 +

|vk|2
σ2 +

∑
l 6=k〈vk, vl〉2

)
,

where 1
2 is omitted in the equation (throughout the article we use the con-

vention 1/0 = ∞.) The aim is to find v1, . . . , vN ∈ R
d such that the minimal

channel capacity is as large as possible. Accordingly, we address the follow-
ing question:

Problem 1. Assume that d > 2, N > d, 0 < c1 < c2 are positive bounds,

and σ > 0 is a constant. Determine the quantity

(2) max
v1,...,vN∈Rd

c16|vi|26c2 ∀i

min
16k6N

log

(
1 +

|vk|2
σ2 +

∑
l 6=k〈vk, vl〉2

)
.

In the present article, we solve Problem 1 in the special case σ = 0, and
obtain a stability version for small values of σ > 0. The latter is essential
for practical applications in signal processing.
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We start by a trivial simplification. Note that for any strictly monotone
increasing function f , the maxima of

min
16k6N

f

(
|vk|2

σ2 +
∑

l 6=k〈vk, vl〉2

)

and

min
16k6N

|vk|2
σ2 +

∑
l 6=k〈vk, vl〉2

are attained at the same vector configurations (subject to arbitrary bound-
ary conditions). Since log(1 + x) is strictly monotone increasing on [0,∞),
we may consider the latter target function when seeking the solution of
Problem 1.

In order to formulate our results, we introduce a couple of notions. We are
going to call a vector system (vi)

N
1 ⊂ R

d uniform if |vi| = c holds for every i
with some constant c > 0. Equivalently, (vi)

N
1 ⊂ cSd−1, where Sd−1 denotes

the unit sphere in R
d. The vector system v1, . . . , vN is a uniform tight frame

of norm c, if |vk| = c holds for every k ∈ [N ] (where [N ] = {1, . . . , N}), and
N∑

i=1

vk ⊗ vk =
Nc2

d
Id.

Some basic properties of tight frames are collected in the subsequent section.
First, we study the σ = 0 case, that is, when the channel is assumed to

be noise-free. According to the above remarks, our task is to find the vector
systems maximizing

(3) M(v1, . . . , vN ) = min
16k6N

|vk|2∑
l 6=k〈vk, vl〉2

subject to c1 6 |vi|2 6 c2 for every 1 6 i 6 N . We are going to call vector
systems for which the maximum is attained to be extremal.

When N 6 d, (3) is maximized when (vi)
N
1 is an orthogonal system.

In this case, the denominator is 0 for every k, thus, M(v1, . . . , vN ) = ∞.
Clearly, only orthogonal systems correspond to this value. Thus, from
now on we may assume that the number of the vectors exceeds d, hence,
M(v1, . . . , vN ) < ∞.

Theorem 1. Assume that 2 6 d < N , and 0 < c1 < c2. The vector system

v1, . . . , vN ⊂ R
d is a maximizer of M(v1, . . . , vN ) defined in (3) subject to

the condition c1 6 |vi|2 6 c2 for every i ∈ [N ] if and only if (vi)
N
1 is a

uniform tight frame of norm
√
c1.

By a simple calculation (see (15)) we obtain the optimal estimate for the
capacity of a noise-free channel.

Corollary 1. The answer to Problem 1 when σ = 0 is

max
v1,...,vN∈Rd

c16|vi|26c2 ∀i

min
16k6N

N log

(
1 +

|vk|2∑
l 6=k〈vk, vl〉2

)
= N log

(
1 +

d

c1(N − d)

)
.
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We note that the answer to Problem 1 clearly depends on the value of σ:
not only the optimal capacity does so, but the structure of the extremal vec-
tor systems as well. To illustrate this, assume that σ is very large compared
to c2N . In this case, the dominant term of σ2 +

∑
l 6=k〈vk, vl〉2 is the first

one. Therefore, the extremum of (2) is attained when |vi|2 = c2 for every i
– that is, the vector norms are maximal, as opposed to the case σ = 0.

However, in practical applications, we may assume that the noise is rel-
atively small. This is the situation that we are going to study. First, we
restrict the search to uniform vector systems.

Theorem 2. Assume that σ 6 c1
√

(N − d)/d. Then there is a uniform

tight frame of norm
√
c1 which maximizes

(4) min
16k6N

|vk|2
σ2 +

∑
l 6=k〈vk, vl〉2

among uniform vector systems (vi)
N
1 ⊂ √

cSd−1 with c1 6 c 6 c2.

Calculating the corresponding channel capacity (see (18)) yields:

Corollary 2. Assuming that σ 6 c1
√

(N − d)/d and that (vi)
N
1 is a uniform

vector system,

max
v1,...,vN∈√cSd−1

c16c6c2

min
16k6N

N log

(
1 +

|vk|2
σ2 +

∑
l 6=k〈vk, vl〉2

)

= N log

(
1 +

c1
σ2 + c21(N − d)/d

)
.

(5)

Next, we consider the general case. Although extremal vector systems are
not necessarily uniform, we show that for small σ, there exists an extremal
vector system containing relatively few vectors of non-minimal norm.

Theorem 3. Assuming that σ < c1/
√
d, there exists a vector system which

is extremal with respect to Problem 1 containing at most

d
c21 − σ2

c21 − dσ2

vectors of norm strictly larger than
√
c1.

For channels with a larger amount of noise, we provide the following
bound on the number vectors of non-minimal norm (note that this is indeed
weaker for large values of c2/c1).

Theorem 4. For all σ > 0, there exists a vector system which is extremal

with respect to Problem 1 containing at most

(6) d
(2σ2 + 2c22 − c21)

c21

vectors of norm strictly larger than
√
c1.

We conclude the article by proving the following stability estimate for the
channel capacity in the general case under the assumptions that the noise of
the channel is not too large, and the number of vectors is sufficiently large.
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Theorem 5. Assume that σ < c1/
√
2d and that N > 2dc22/c

2
1. Then

max
v1,...,vN∈Rd

c16|vi|26c2 ∀i

min
16k6N

log

(
1 +

|vk|2
σ2 +

∑
l 6=k〈vk, vl〉2

)

6 log


1 +

d

c1(N − d) + σ2 · d
c1

− d2

c1N
(c22 − c21)

c2
1
−σ2

c2
1
−dσ2


 .

This provides a quantitative estimate on the difference between (2) and
(5), showing that for practical applications, using a uniform tight frame of
norm

√
c1 as the set of possible codewords is a well-justified choice.

2. Tight frames

From the theoretical viewpoint, Problem 1 is closely related to the notion
of frames, introduced originally by Duffin and Schaeffer [10]. A vector system
(vi)

N
1 ⊂ R

d is called a frame if there exist 0 < A 6 B < ∞ such that

A|w|2 6

N∑

i=1

〈w, vi〉2 6 B|w|2

holds for every vector w ∈ R
d. If A = B holds above, the vector system is a

tight frame. Frame theory has become a well-studied topic in recent years,
with plenty of real-world applications. Of the excessive literature on frame
theory and its application in information theory, we only pick the volumes
[6] and [19], in which the interested reader may find ample literature on the
subject.

An alternative definition of tight frames involves the notion of the tensor

product of the vectors u, v ∈ R
d, which is the R

d → R
d linear map u ⊗ v

satisfying
(u⊗ v)z = u〈z, v〉

for every z ∈ R
d. Given a vector system (vi)

N
1 ⊂ R

d, we define its frame

operator [3] A by

(7) A(v1, . . . , vN ) =
N∑

i=1

vi ⊗ vi .

A set of vectors v1, . . . , vN in R
d is called a tight frame if its frame operator

is a constant multiple of the identity operator, that is,

(8)
N∑

i=1

vi ⊗ vi = λ Id

with a real constant λ ∈ R. This is equivalent to requiring that

N∑

i=1

〈w, vi〉2 = λ|w|2

holds for every vector w ∈ R
d.

A uniform vector system (vi)
N
1 ⊂ R

d which satisfies (8) is called a uniform

tight frame. In the special case when the common norm is 1, we talk about a
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unit norm tight frame (UNTF). By comparing traces in (8), it immediately
follows that in this latter case, λ = N/d. The complete characterization
of unit norm tight frames was given by Benedetto and Fickus [3] – it also
follows that UNTF’s exist for every N > d (see [14] as well, and [16] for the
non-uniform case).

We associate to a vector system (vi)
N
1 ⊂ R

d its frame potential (or 2-
frame potential [11]) defined by

FP (v1, . . . , vN ) =

N∑

i,j=1

〈vi, vj〉2.

The frame potential was introduced by Duffin and Schaeffer [10] (see [3],
[12] and [8] for further applications and generalizations).

Let G(v1, . . . , vN ) denote the Gram matrix corresponding to the vector
system (vi)

N
1 , that is, the N ×N matrix G satisfying

G(v1, . . . , vN )ij = 〈vi, vj〉 .

If L denotes the N × d matrix with rows v⊤1 , . . . , v
⊤
N , then

(9) G(v1, . . . , vN ) = LL⊤,

and on the other hand,

(10) A(v1, . . . , vN ) = L⊤L.

The frame potential of the vector system may be expressed as

FP (v1, . . . , vN ) = trG2 =

N∑

i,j=1

G2
ij = ‖G‖2HS ,

the square of the Hilbert-Schmidt norm of G. Thus, using (9), (10), and the
property that for arbitrary N ×N matrices R,S, tr(RS⊤) = tr(R⊤S),

(11) FP
(
(vi)

N
1

)
= ‖G‖2HS = tr(LL⊤LL⊤) = tr(L⊤LL⊤L) = ‖A‖2HS .

The above formula is called the frame potential duality, which lies at the
core of the proof of the characterization of UNTF’s [3].

3. The noise-free case

Proof of Theorem 1. Let (v1, . . . , vN ) be an extremal vector system, and in-
troduce

(12) mk =
|vk|2∑

l 6=k〈vk, vl〉2

for every k = 1, . . . , N . Then, by (3), M(v1, . . . , vN ) = mink mk, and since
(vi)

N
1 is extremal, M(v1, . . . , vN ) is maximal among the suitable vector sys-

tems. Call a direction vector u ∈ Sd−1 minimal, if u = vk/|vk| for some
k ∈ [N ] with mk = M(v1, . . . , vN ). Denote by M(v1, . . . , vN ) the set of
minimal directions corresponding to the vector system (vi)

N
1 .
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We will show that extremal vector systems are uniform. To that end,
assume |vi| >

√
c1 for some i ∈ [N ]. We alter the vector system by defining

ṽk =

{
vk, for k 6= i√

c1
|vk| vk, for k = i

for every k ∈ [N ]. Accordingly, introduce

(13) m̃k =
|ṽk|2∑

l 6=k〈ṽk, ṽl〉2

for every k ∈ [N ].

Claim 1. The vector system (ṽ1, . . . , ṽN ) described above is also extremal.

Moreover, M(ṽ1, . . . , ṽN ) ⊆ M(v1, . . . , vN ) holds, with equality if and only

if vi is orthogonal to every direction in M(v1, . . . , vN ) different from vi/|vi|.
Proof. Clearly, mi = m̃i. Taking any k ∈ [N ] \ {i}, we have that 〈ṽk, ṽi〉2 6
〈vk, vi〉2, where equality holds if and only if 〈vk, vi〉 = 0. Since all the terms
〈vk, vl〉 not involving vi remain unchanged, we see that m̃k > mk for every
k ∈ [N ]. In particular, mink∈[N ] m̃k > mink∈[N ]mk, and since this latter is
globally maximal, we derive that (ṽ1, . . . , ṽN ) must be extremal too.

For the second statement, the inclusion is trivial by the above argument.
Notice that mk = m̃k holds if and only if k = i or 〈vk, vi〉 = 0. Thus, if
M(ṽ1, . . . , ṽN ) = M(v1, . . . , vN ), then every minimal direction is either the
direction of vi, or orthogonal to it. �

Applying Claim 1 repeatedly to each vector of norm greater than
√
c1

leads to a uniform vector system of norm
√
c1 which is extremal. By scaling,

we may assume that c1 = 1. Next, we characterize uniform extremal vector
systems using an argument along the lines of Theorem 6.2. in [3].

Clearly,

min
16k6N

1∑
l 6=k〈vk, vl〉2

is maximized if and only if its reciprocal is minimized. Thus, we may study
the extremum problem

min
v1,...,vN∈Sd−1

max
16k6N

∑

l 6=k

〈vk, vl〉2.

Since |vk| = 1 for every k ∈ [N ], this is attained at the same configurations
as the minmax of

Ek :=

N∑

l=1

〈vk, vl〉2.

By frame potential duality (11),

N max
16k6N

Ek >

N∑

k,l=1

〈vk, vl〉2

= ‖G(v1, . . . , vN )‖2HS

= ‖A(v1, . . . , vN )‖2HS .
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Since (7) shows that trA = N , the Cauchy-Schwarz inequality applied to
the diagonal entries of A implies that

(14) ‖A(v1, . . . , vN )‖2HS >
N2

d
,

therefore,

min
v1,...,vN∈Sd−1

max
k

N∑

l=1

〈vk, vl〉2 >
N

d
.

Note that by (7), diagonal entries of A(v1, . . . , vN ) are non-negative. Thus,
equality may hold in (14) only if all diagonal entries of A(v1, . . . , vN ) are
equal, and all off-diagonal entries are 0. Therefore, A = N

d
Id, that is, the

vectors vi form a UNTF. In this case, the above bounds are indeed achieved.
This completes the characterization of uniform extremal systems: these

are uniform tight frames of norm
√
c1. Then,

(15)
|vk|2∑

l 6=k〈vk, vl〉2
=

d

c1(N − d)

holds for every 1 6 k 6 N . Thus, vk/|vk| is a minimal direction for every
k ∈ [N ].

Let us return to the general case. Let (vi)
N
1 be an extremal vector system.

Claim 1 implies that M(v1, . . . , vN ) contains the direction of every vector
vk, which is only possible if each vector of norm exceeding

√
c1 is orthogonal

to all the other vectors. Thus, the system (vi)
N
1 must be the union of an

orthogonal base of an r-dimensional subspace H consisting of vectors of
norm in (

√
c1,

√
c2], and a

√
c1-norm tight frame of S⊥ consisting of N − r

vectors. However, in this case, the value of (3) is

M(v1, . . . , vN ) =
d− r

c1(N − d)

by (15). This shows that the vector system may only be extremal when
r = 0, that is, the vector system is a uniform tight frame. �

4. Results for σ2 > 0

Proof of Theorem 2. Let |vi|2 = c for every i with c ∈ [c1, c2]. Clearly,
maximizing (4) on

√
cSd−1 is equivalent to solving

(16) min
v1,...,vN∈√c Sd−1

max
16k6N

σ2 +
∑

l 6=k〈vk, vl〉2

c
.

For a fixed value of c, the contribution of the term σ2/c is constant, therefore
it may be omitted from the target function, and the results of the previous
section apply. Therefore, the extremum value is attained when the vector
system is a uniform tight frame of norm

√
c, and the extremal value of (16)

is

(17)
σ2

c
+ c

N − d

d
.

Thus, we need to minimize the above quantity as a function of c over the in-
terval [c1, c2]. SinceN > d, (17) is decreasing on the interval [0, σ

√
d/(N − d)]
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and is increasing for c > σ
√

d/(N − d). Thus, when c1 > σ
√

d/(N − d),
the minimum over the interval [c1, c2] is attained at c = c1. �

In the extremal case, by (16) and (17),

(18)
|vk|2

σ2 +
∑

l 6=k〈vk, vl〉2
=

c1
σ2 + c21(N − d)/d

,

which proves Corollary 2.

Proof of Theorem 3. Let (vi)
N
1 be a vector system satisfying the boundary

conditions c1 6 |vi|2 6 c2 for every i.
Let I ⊂ [N ] be a subset of indices with |I| > 2 so that |vi|2 > c1 for

every i ∈ I (we will specify I later). Introduce the simultaneous scaling

corresponding to I by a factor λ < 1 of (vi)
N
1 by setting

ṽi = vi

for i 6∈ I, and

ṽi = λvi

for i ∈ I. If λ < 1 is close enough to 1, all vectors of the simultaneously
scaled configuration have norm between

√
c1 and

√
c2.

As in (12) and (13), let

µk =
|vk|2

σ2 +
∑

l 6=k〈vk, vl〉2

and

µ̃k =
|ṽk|2

σ2 +
∑

l 6=k〈ṽk, ṽl〉2
.

We study the effect of simultaneous scaling on the values µk:

Claim 2. Assume that for the index set I ⊂ [N ] consisting of at least 2

indices,

(19) σ2 <
∑

l∈I\{k}
〈vk, vl〉2

holds for every k ∈ I. Then for sufficiently small values of ε > 0, the

simultaneous scaling corresponding to I with factor λ = 1 − ε does not

decrease any of the terms µk. That is, µ̃k > µk holds for every k ∈ [N ]. In

particular, if (vi)
N
1 is extremal, then (ṽi)

N
1 needs to be extremal as well.

Proof. If k 6∈ I, then |vk| is unchanged, while the denominator does not
increase (it decreases if and only if there is i ∈ I with 〈vi, vk〉 6= 0). Thus,

µ̃k > µk

for every k 6∈ I.
Assume now that k ∈ I. Then,

µ̃k =
λ2|vk|2

σ2 + λ2
∑

l 6∈I〈vk, vl〉2 + λ4
∑

l∈I\{k}〈vk, vl〉2
.
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Calculating the derivative of µ̃k with respect to λ at λ = 1, one obtains that
its sign agrees to that of

(20) σ2 −
∑

l∈I\{k}
〈vk, vl〉2 .

Therefore, (19) implies that the derivative is strictly negative for every k ∈ I,
which suffices for the proof. �

Let now (vi)
N
1 be an extremal vector system which, among the extremal

configurations, minimizes
∑N

i=1 |vi|2. Denote by M the number of vectors
of norm strictly larger than

√
c1 – we may and do assume that M > d and

these vectors are v1, . . . , vM . The following classical bound guarantees the
existence of two of these vectors whose inner product is large in absolute
value.

Lemma 1 (Welch [23]). Assume that M vectors w1, . . . , wM ⊂ R
d are given

so that |wi|2 > c1 for every i. Then

(21) max
i 6=j

〈wi, wj〉2 >
c21(M − d)

d(M − 1)
.

We note that an alternative bound has recently been proven by Bukh and
Cox [5], which is stronger for M ≈ d +

√
d. Yet, for our needs, the above

estimate is sufficient.
Let now i, j ∈ [M ] be the indices provided by Lemma 1, and set I = {i, j}.

Perform the simultaneous scaling corresponding to the index set I with some
factor λ < 1. Due to the minimality of

∑N
i=1 |vi|2, the scaled vector system

may not be extremal. Therefore, the condition of Claim 2 must be violated:

σ2 > 〈vi, vj〉2.
Thus, by (21),

σ2 >
c21(M − d)

d(M − 1)
.

Rearranging for M we derive

(22) M < d
c21 − σ2

c21 − dσ2

provided that c21 − dσ2 > 0 holds. �

Proof of Theorem 4. Instead of Lemma 1, we now apply

Lemma 2. Assume that Q is an M×M symmetric matrix with nonnegative

entries. Then there exists an index set J ⊂ [M ] such that for every k ∈ J ,

(23)
∑

l∈J
Qkl >

∑M
i,j=1Qij

2M
+

Qkk

2
.

Proof. Suppose on the contrary that the above inequality is not true. Start-
ing with [M ], remove the indices one-by-one, selecting in each step the index
k of a row with minimal sum of the principal minor corresponding to the
current index set. Removing this index results in deleting the corresponding
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row and column from the minor. By the above assumption, the sum of the
entries removed is strictly less than

2

(∑M
i,j=1Qij

2M
+

Qkk

2

)
−Qkk =

∑M
i,j=1Qij

M
.

Since this holds for every step, the sum of all the entries removed during the

M steps of the process is strictly less than
∑M

i,j=1Qij , which contradicts to
the fact that we remove all entries of Q. �

As before, let (vi)
N
1 be an extremal vector system with minimal

∑N
i=1 |vi|2,

and assume that the vectors which have norm >
√
c1 are exactly v1, . . . , vM .

Our goal is to show that (6) holds. Assume on the contrary that

(24) M > d
(2σ2 + 2c22 − c21)

c21
.

Let Q be the M ×M matrix defined by Qi,j = 〈vi, vj〉2. By (11) and the
Cauchy-Schwarz inequality,

M∑

i,j,=1

Qi,j =

∥∥∥∥∥

M∑

i=1

vi ⊗ vi

∥∥∥∥∥

2

HS

> d

(∑M
i=1 |vi|2
d

)2

> d

(
Mc1
d

)2

=
M2c21
d

.

(25)

Thus, Lemma 2 implies that we may select a set of indices J ⊂ [M ] for
which

(26)
∑

l∈J
Qkl >

∑M
i,j=1Qij

2M
+

Qkk

2
>

Mc21
2d

+
c21
2

holds for every k ∈ J .
Next, we show that J may not be a singleton. Indeed, suppose that

J = {k}. Then, by (23) and (25),

Qkk >

∑M
i,j=1Qij

M
>

Mc21
d

.

On the other hand, Qkk = |vk|4 6 c22. This implies that M < dc22/c
2
1, which

contradicts (24).
Thus, we may assume that |J | > 2. By (26), for all k ∈ J ,

(27)
∑

l∈J\{k}
〈vk, vl〉2 >

Mc21
2d

+
c21
2

− c22.

Note that (24) implies that

σ2 <
Mc21
2d

+
c21
2

− c22.

Thus, by (27), the conditions of Claim 2 are satisfied. Hence, the simulta-
neous scaling corresponding the index set J and factor 1− ε for sufficiently
small ε yields another extremal vector system. This contradicts to the min-

imality of
∑N

i=1 |vi|2 among extremal vector systems. �
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Finally, we prove a stability version of the estimate for the channel ca-
pacity.

Proof of Theorem 5. Assume that (vi)
N
1 is an extremal vector system pro-

vided by Theorem 3. Let A =
∑N

i=1 vi⊗vi be the associated frame operator.
As before,

(28) ‖A‖2HS >

(∑N
i=1 |vi|2

)2

d
.

Let

µ = min
k

|vk|2
σ2 +

∑
l 6=k〈vk, vl〉2

be the quantity for which we have to provide an upper bound. Then

|vk|2 > µσ2 + µ
∑

l 6=k

〈vk, vl〉2 = µσ2 + µ

N∑

l=1

〈vk, vl〉2 − µ|vk|4

holds for every k. By summing over k,

(29)
N∑

k=1

|vk|2 > Nµσ2 + µ‖A‖2HS − µ
N∑

k=1

|vk|4.

Introduce R =
∑N

k=1 |vk|2. By Theorem 3,

(30) Nc1 6 R 6 Nc1 + d
c21 − σ2

c21 − dσ2
(c2 − c1)

and
N∑

k=1

|vk|4 6 Nc21 + d(c22 − c21)
c21 − σ2

c21 − dσ2
.

Therefore, (28) and (29) lead to

R > µ

(
Nσ2 +

R2

d
−Nc21 − d(c22 − c21)

c21 − σ2

c21 − dσ2

)
.

Since R > Nc1, the conditions σ < c1/
√
2d and N > 2dc22/c

2
1 ensure that

the second term of the right-hand side is strictly positive. Then

(31) µ 6
R

Nσ2 + R2

d
−Nc21 − d(c22 − c21)

c2
1
−σ2

c2
1
−dσ2

.

In order to obtain an upper bound for µ, we maximize this quantity as a
function of R over the interval given by (30). By a simple calculation one
obtains that the conditions on σ and N imply that

N2c21 > Nd(c21 − σ2) + d2(c22 − c21)
c21 − σ2

c21 − dσ2
.

Therefore, (31) is decreasing over the whole interval defined by (30). Thus,
its maximum value is attained at R = Nc1, which by (31) leads to the bound

µ 6
c1

σ2 + (N
d
− 1)c21 − d

N
(c22 − c21)

c2
1
−σ2

c2
1
−dσ2

. �
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Harmon. Anal., Birkäuser/Springer, New York, 2013.

[7] X. Chen, D. Guo, Gaussian many-access channels: Definition and symmetric ca-
pacity, in Proc. IEEE Inf. Theory Workshop (ITW), Seville, Spain, Sep. 2013, pp.
1–5.

[8] X. Chen, V. Gonzalez, E. Goodman, S. Kang, and K.A. Okoudjou, Universal optimal
configurations for the p-frame potentials. Adv. Comput. Math. 46 (2020), no. 4.

[9] J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, Grundlehren der
mathematischen Wissenschaften, Springer, New York/Berlin/Heidelberg, 1993.

[10] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer.
Math. Soc. 72 (1952), 341–366.

[11] M. Ehler and K.A. Okoudjou, Minimization of the probabilistic p-frame potential.
Journal of Statistical Planning and Inference 142 (2012), no. 3, 645–659.

[12] M. Fickus, B.D. Johnson, K. Kornelson, and K.A. Okoudjou, Convolutional frames
and the frame potential. Appl. Comput. Harmon. Anal. 19 (2005), no. 1., 77–91.

[13] R. G. Gallager, Principles of Digital Communication. Cambridge University Press,
2008.

[14] V.K. Goyal, M. Vetterli, and N.T. Thao, Quantized overcomplete expansions in R
N :

analysis, synthesis, and algorithms. IEEE Transactions on Information Theory 44

(1998), no. 1., 16–31.
[15] R.V.L. Hartley, Transmission of information, The Bell System Technical Journal, 7

(1928) no. 3, 535–563.
[16] G. Ivanov, On the volume of the John-Löwner ellipsoid. Discrete Comput. Geom. 63
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