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Abstract

Let K be a finite, connected, abstract simplicial complex. The Morse

complex of K, first introduced by Chari and Joswig, is the simplicial

complex constructed from all gradient vector fields on K. We show

that if K is neither the boundary of the n-simplex nor a cycle, then

Aut(M(K)) ∼= Aut(K). In the case where K = Cn, a cycle of length n,

we show that Aut(M(Cn)) ∼= Aut(C2n). In the case where K = ∂∆n, we

prove that Aut(M(∂∆n)) ∼= Aut(∂∆n)× Z2. These results are based on

recent work of Capitelli and Minian.
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1 Introduction

In 2005, Chari and Joswig [3] introduced the Morse complex of a simplicial
complex. The Morse complex is based on Forman’s discrete Morse theory [5, 6]
where after fixing a simplicial complex K, one builds a new simplicial complex
M(K) from the collection of all gradient vector fields or arrows on K. Chari
and Joswig computed the homotopy type of the Morse complex when K is the
n-simplex. Ayala et al. have shown that the pure Morse complex of a tree is
collapsible and some other results on the pure Morse complex of an arbitrary
graph [1]. Kozlov studied shellability and other properties for trees [9], although
the language of the Morse complex was not available to him at the time. Re-
cently, Capitelli and Minian showed that the isomorphism type of the Morse
complex completely determines the isomorphism type of the corresponding sim-
plicial complex [2]. Other than these results, very little is known about the
Morse complex. Its sheer size alone makes it a notoriously complex object of
study.

The goal of this paper is to compute the automorphism group of the Morse
complex M(K). We derive a formula relating Aut(M(K)) to Aut(K) for K any
finite, connected, abstract simplicial complex. Our main result is the following:
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Theorem 1. Let K be a finite, connected, abstract simplicial complex. Then

Aut(M(K)) ∼=







Aut(K) if K 6= ∂∆n, Cn

Aut(C2n) if K = Cn

Aut(K)× Z2 if K = ∂∆n.

Here ∂∆n is the boundary of the n-simplex and Cn is the cycle of length n.
Theorem 1 is proved in three parts. The first is Proposition 20 where we prove
that Aut(M(K)) ∼= Aut(K) for K 6= Cn, ∂∆

n. In Section 3.1, we show that
one can induce an automorphism on M(K) from an automorphism of K . We
then show that there is an injection of Aut(K) into Aut(M(K)) in Proposition
19. We are then able to show that Aut(M(K)) ∼= Aut(K) for K 6= ∂∆n, Cn

by utilizing results of Capitelli and Minian [2]. These results concern when we
may pull an automorphism of the Morse complex back to an automorphism of
the original complex. The case where K = Cn follows as a corollary of the more
general fact that Aut(M(K)) ∼= Aut(H(K)) where H(K) is the Hasse diagram
of K. We establish this later isomorphism in Proposition 22 and prove that
Aut(M(Cn)) ∼= Aut(C2n) in Proposition 23.

The case where K = ∂∆n is Proposition 32. In this case, there are auto-
morphisms of the Morse complex which are not induced by a simplicial map
on the original complex, called ghost automorphisms. We define what we call
the reflection map π which is a cosimplicial map in the sense that if α ⊆ β,
then π(α) ⊇ π(β). This cosimplicial map induces and then generates all the
ghost automorphisms of the Morse complex of ∂∆n. By studying these ghost
automorphisms, we account for all automorphisms of M(∂∆n).

The outline of this paper is as follows: Section 2 gives necessary background,
terminology, and notation. Section 3 is the heart of the paper where we com-
pute the automorphism group of M(K). In Section 3.1, we show that any
automorphism K induces an automorphisms of M(K) so that there is an in-
jective homomorphism Aut(K) → Aut(M(K)). This injection turns out to
be an isomorphism in the case where in the case where K 6= Cn or ∂∆n by
Proposition 20. We then turn to the cases K = Cn and K = ∂∆n. We show
that Aut(M(Cn)) ∼= Aut(C2n) in Section 3.2. This follows fairly easily from
the fact that Aut(M(K)) ∼= Aut(H(K)) (Proposition 22). Finally, Section 3.3
is devoted to computing the automorphism group of ∂∆n via the ghost auto-
morphisms mentioned above.

2 Background

All our simplicial complexes are assumed to be abstract, finite, and connected
simplicial complexes. Our reference for the basics of simplicial complexes is [4]
or [7].

Let n ≥ 1 be an integer, and write [vn] := {v0, v1, . . . , vn}. We use K to
denote a simplicial complex and α, σ etc. to denote a simplex of K. If K is a
simplicial complex on n+ 1 vertices, the set V (K) := [vn] is the vertex set of
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K or the set of 0-simplices of K. We use σ(i) to denote a simplex of dimension
i, and we write τ < σ(i) to denote any face of σ of dimension strictly less than
i. The number dim(σ)−dim(τ) is called the codimension of τ with respect

to σ.

Definition 2. A simplicial map f : K → L is a function induced by a map on
the vertex sets fV : V (K) → V (L) with the property that if σ = vi0vi1 . . . vim is
a simplex in K, then f(σ) := fV (vi0 )fV (vi1 ) . . . fV (vim) is a simplex of L.

If v0, v1, . . . , vn are all the vertices of a simplex σ, we will often use the

notation σ :=
n∏

i=0

vi.

Lemma 3. If f : A → B and g : B → C are simplicial maps, then (g ◦ f)V =
gV ◦ fV .

Proof. Consider any σ ∈ V (A). Then, (g ◦ f)V (σ) = (g ◦ f)(σ). Since f, g are
simplicial maps, we also know that dim f(σ) = dimσ = 0, so f(σ) ∈ V (B).
Likewise, we know dim f(σ) = dim g(f(σ)), so g(f(σ)) ∈ V (C). Therefore,
(g ◦ f)V (σ) = (g ◦ f)(σ) = (g ◦ fV )(σ) = (gV ◦ fV )(σ), as desired.

Definition 4. A simplicial map which is a bijection is a simplicial isomor-

phism, and if f : K → K is a simplicial isomorphism, we say that f is a
simplicial automorphism. The automorphism group of K is defined by

Aut(K) := {f : K → K | f is an automorphism}.

Because we need to refer to them below, we define a cycle Cn and the
boundary of the n-simplex ∂∆n.

Definition 5. Let n ≥ 3 be an integer. Define the cycle of length n, denoted
Cn, to be the 1-dimensional simplicial complex (graph) with vertex set V (Cn) :=
{v0, v1, . . . , vn−1} and edge set given by

{v0, v1}, {v1, v2}, {v2, v3} . . . , {vn−2, vn−1}, {vn−1, v0}.

Definition 6. Let n ≥ 1 be an integer. The boundary of the n-simplex, de-
notes ∂∆n is the simplicial complex given by ∂∆n := P([vn])−{∅, {v0, . . . , vn}}.

2.1 The Morse complex

In this section, we recall the basics of the Morse complex. Our references for dis-
crete Morse theory in general are [6, 8, 10] and the Morse complex in particular
are [3, 2].

Definition 7. Let K be a simplicial complex. A discrete vector field V on
K is defined by

V := {(σ(p), τ (p+1)) : σ < τ, each simplex of K is in at most one pair}.

Any pair in (σ, τ) ∈ V is called a regular pair, and σ, τ are called regular

simplices or just regular. If (σ(p), τ (p+1)) ∈ V , we say that p+1 is the index

of the regular pair. Any simplex in K which is not in V is called critical.
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Definition 8. Let V be a discrete vector field on a simplicial complex K. A
V -path is a sequence of simplices

α
(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , α

(p)
2 . . . , β

(p+1)
k−1 , α

(p)
k

of K such that (α
(p)
i , β

(p+1)
i ) ∈ V and β

(p+1)
i > α

(p)
i+1 6= α

(p)
i for 0 ≤ i ≤ k − 1.

If k 6= 0, then the V -path is called non-trivial. A V -path is said to be closed

if α
(p)
k = α

(p)
0 . A discrete vector field V which contains no non-trivial closed

V -paths is called a gradient vector field.

Example 9. An example of a gradient vector field is given on a triangulation
of the Möbius band below:

v0 v3

v3 v0

Another gradient vector field on the Möbius band is

v0 v3

v3 v0

If a gradient vector field V has only one regular pair, we call V primitive.
Given multiple primitive gradient vector fields, we may sometimes combine them
to form a new gradient vector field. This will be accomplished “overlaying" all
the arrows of each primitive gradient vector field. Clearly such a construction
may or may not yield a gradient vector field.

Example 10. Let primitive gradient vector fields V0, V1, V2 be given by

respectively. Then V0, V1 combine to form a new gradient vector field V
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but clearly combining V1 and V2

is not a gradient vector field since the bottom left vertex is in two pairs of V .

If V,W are two gradient vector fields, write V ≤ W whenever the regular
pairs of V are also regular pairs of W . In general, we say that a collection of
primitive vector fields V0, V1, . . . , Vn is compatible if there exists a gradient
vector field V such that Vi ≤ V for all 0 ≤ i ≤ n.

Definition 11. The Morse complex of K, denote M(K), is the simplicial
complex whose vertices are given by primitive gradient vector fields and whose
n-simplices are given by gradient vector fields with n + 1 regular pairs. A
gradient vector field V is then associated with all primitive gradient vector
fields V := {V0, . . . , Vn} with Vi ≤ V for all 0 ≤ i ≤ n.

Example 12. Let K = ∂∆1 = C3 be the simplicial complex given by

a

bc

Here we adopt the convention that if (x, xy) is a primitive vector field con-
sisting of a vertex and edge, we denote this by xy. Note that this notation
only works for a primitive vector of index 1. Then one checks that the Morse
complex M(K) is given by:

ab

bcca

cb

acba
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3 The Automorphism group of M(K)

This section is devoted to computing the automorphism group of M(K). We
first show in section 3.1 that certain automorphisms of K induce automorphisms
of M(K). It will then follow by Proposition 19 that Aut(K) is isomorphic
to a subgroup of Aut(M(K)). We show in Proposition 20 that Aut(K) ∼=
Aut(M(K)) in the case where K 6= Cn or ∂∆n. The next two sections compute
Aut(M(K)) in the two excluded cases.

3.1 Induced maps on M(K)

If fV : V (K) → V (L) is a bijection on the vertex sets and induces a simplicial
map f : K → L, then f is an isomorphism. We are interested in isomorphisms
from K to K, i.e., automorphisms of K. Given an automorphism of K, we now
define an induced automorphism on M(K).

Definition 13. Let f : K → K be an automorphism. Define the induced

automorphism on the Morse complex f∗V
: V (M(K)) → V (M(K)) by

f∗V
(v) = (f(σ), f(τ)) where v = (σ(p), τ (p+1)) ∈ V (M(K)).

We then extend f∗V
to a simplicial map on all of M(K). Below we will

justify our claims that this yields a well-defined automorphism of M(K).

Proposition 14. If v = (σ(p), τ (p+1)) ∈ V (M(K)), then f∗V
(v) ∈ V (M(K)).

Proof. We seek to show that (f(σ), f(τ)) is a primitive vector of K. Since fV
is a bijection, we know that dim f(σ) = dimσ and dim f(τ) = dim τ . Hence we
have dim f(σ) = dimσ = dim τ − 1 = dim f(τ) − 1. Since σ ⊆ τ , f(σ) ⊆ f(τ)
so that (f(σ), f(τ)) is primitive and (f(σ), f(τ)) ∈ V (M(K)).

Proposition 15. Let f : K → K be a simplicial automorphism. Then the
induced map f∗ is simplicial.

Proof. Suppose for the sake of contradiction that f∗ : M(K) → M(K) is not
a simplicial map. Then there is some α = vi0vi1 · · · vim ∈ M(K) such that
f∗(α) = f∗V

(vi0)f∗V
(vi1 ) · · · f∗V

(vim ) 6∈ M(K). This implies that the induced
function f∗(α) either does not induce a gradient vector field (i.e. two vertices
in f∗(α) are not compatible), or it induces a discrete vector field that contains
a nontrivial closed V -path.

Case 1: Suppose for the sake of contradiction that there are at least two
distinct simplices, say vij = (σj , τj) and vik = (σk, τk), which are incompatible.
This implies that exactly one of the following holds:

(1) f(σi) = f(σj)

(2) f(τi) = f(τj)

(3) f(τj) = f(σk)
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(4) f(σj) = f(τk).

Suppose (1) is true. Since f is an automorphism, this implies σi = σj . How-
ever, since τi 6= τj , we cannot simultaneously have both (σi, τi) and (σi, τj),
so this would imply α 6∈ M(K), a contradiction. The cases in which (2), (3),
or (4) are true lead to similar contradictions, again due to the fact that f is a
simplicial automorphism.

Case 2: Suppose for the sake of contradiction that f∗(α) contains a non-
trivial closed V-path. Then, f∗(α) contains some vertices

f∗(σ0, τ0), f∗(σ1, τ1), f∗(σ2, τ2), . . . , f∗(σk, τk)

= (f(σ0), f(τ0)), (f(σ1), f(τ1)), (f(σ2), f(τ2)), . . . , (f(σk−1), f(τk−1))

such that f(σ0), f(τ0), f(σ1), f(τ1), . . . , f(σk−1), f(τk−1), f(σ0) is a closed V-
path, in which f(σi) < f(τi−1) for 0 ≤ i ≤ k−1 (where the indices are taken mod
k). Since f is an automorphism, it follows that σ0, τ0, σ1, τ1, . . . , σk−1, τk−1, σ0

must also be a nontrivial closed V-path. Since (σ0, τ0), (σ1, τ1), . . . , (σk−1, τk−1)
are vertices in α, it follows that α 6∈ M(K), a contradiction. Therefore, f∗(α) ∈
M(K), so f∗ must be a simplicial map.

Example 16. We give an example to show that if the simplicial map f : K → K

is not an automorphism, then f∗ is not necessarily a simplicial map. In-
deed, consider the simplicial complex K = ∆2 with vertex set {a, b, c}. Define
fV : V (K) → V (K) by fV (v) = a for all vertices v. It is easy to verify that
f is a simplicial map. Let f∗ : M(K) → M(K) be induced by f . Notice that
(a, ab) ∈ M(K), but f∗((a, ab)) = (f(a), f(ab)) = (a, a) 6∈ M(K). In order to
avoid these “degenerate" primitive vectors, we must impose the constraint that
f be an isomorphism.

We now show that a simplicial automorphism on a simplicial complex K

gives rise to a simplicial automorphism on M(K).

Proposition 17. Let f : K → K be a simplicial automorphism. Then the
induced map f∗ : M(K) → M(K) is a simplicial automorphism.

Proof. We know by Proposition 15 that f∗ is simplicial. It thus suffices to
show that f∗V

: V (M(K)) → V (M(K)) is a bijection. Consider any (σ, τ) ∈
V (M(K)). We know that f is a simplicial isomorphism, so it has an inverse
g : K → K. Thus, (g(σ), g(τ)) ∈ V (M(K)), as an argument similar to that in
Proposition 14 verifies that (g(σ), g(τ)) is primitive. Hence, f∗V

((g(σ), g(τ))) =
(f ◦ g(σ), f ◦ g(τ)) = (σ, τ). Therefore, f∗V

is surjective. Since V (M(K)) is
finite, this implies f∗V

is bijective.

We can then show that the induced map respects composition.

Lemma 18. Let f, g : K → K be simplicial automorphisms with induced au-
tomorphisms f∗, g∗ : M(K) → M(K), respectively. Then (f ◦ g)∗ = f∗ ◦ g∗.

7



Proof. It suffices to show that (f ◦ g)∗V
= (f∗ ◦ g∗)V . Consider any (σ, τ) ∈

M(K). We have

(f ◦ g)∗V
((σ, τ)) = (f ◦ g(σ), f ◦ g(τ))

= f∗V
(g(σ), g(τ))

= (f∗V
◦ g∗V

)((σ, τ)).

Hence, (f ◦g)∗V
= f∗V

◦g∗V
. By Lemma 3, we know that f∗V

◦g∗V
= (f∗ ◦g∗)V ,

so (f ◦ g)∗V
= (f∗ ◦ g∗)V .

Because automorphisms of K induce automorphisms of M(K), we next show
that we are able to obtain not only elements of Aut(M(K)), but that Aut(K)
actually corresponds to a subgroup of Aut(M(K)).

Proposition 19. The group Aut(K) is isomorphic to a subgroup of Aut(M(K)).
In particular, there is an injective homomorphism φ : Aut(K) → Aut(M(K)).

Proof. Consider the function φ : Aut(K) → Aut(M(K)) that sends each sim-
plicial automorphism f ∈ Aut(K) to its induced simplicial automorphism f∗ ∈
Aut(M(K)). We first show that φ is a homomorphism. Consider any f, g ∈
Aut(K), and an arbitrary σ =

∏m

i=0(σi, τi) ∈ M(K) where each (σi, τi) is a ver-
tex of σ. Since f, g ∈ Aut(K), f ◦ g ∈ Aut(K). This induces (f ◦ g)∗ : M(K) →
M(K). Notice that

φ(f ◦ g)(σ) = (f ◦ g)∗(σ)

=

m∏

i=0

(f ◦ g)∗V
((σi, τi))

=
m∏

i=0

((f ◦ g)(σi), (f ◦ g)(τi)).

On the other hand, we have

(φ(f) ◦ φ(g))(σ) = (f∗ ◦ g∗)(σ)

= f∗

(
m∏

i=0

g∗V
((σi, τi))

)

= f∗

(
m∏

i=0

(g(σi), g(τi))

)

=

m∏

i=0

((f ◦ g)(σi), (f ◦ g)(τi))
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Thus φ(f ◦ g) = φ(f) ◦ φ(g).

We now need to show that φ is injective. Consider any f ∈ Ker(φ). We
claim that f = idK . Again, consider an arbitrary σ =

∏m

i=0(σi, τi) ∈ M(K).
Notice f induces a simplicial map f∗ : M(K) → M(K). Since f ∈ Ker(φ), we
have

φ(f)(σ) = σ

f∗(σ) = σ

m∏

i=0

f∗V
((σi, τi)) =

m∏

i=0

(σi, τi)

m∏

i=0

(f(σi), f(τi)) =
m∏

i=0

(σi, τi).

As this holds for any choice of σ, we conclude that f = idK . Since Ker(φ) is
trivial, it follows that φ is injective.

Proposition 19 guarantees that Aut(K) ≤ Aut(M(K)) by inducing an auto-
morphism of M(K) from an automorphism of K. Thus if every automorphism
of M(K) is induced by an automorphism of K, then Aut(M(K)) = Aut(K).
We will first show that this is indeed the case for K 6= Cn, ∂∆

n.

Proposition 20. If K is a simplicial complex other than Cn or ∂∆n, then
Aut(M(K)) ∼= Aut(K) .

Proof. As in Proposition 19, define a function φ : Aut(K) → Aut(M(K)) that
sends each simplicial automorphism f ∈ Aut(K) to its induced simplicial auto-
morphism f∗ ∈ Aut(M(K)). We know that φ is an injective homomorphism by
Proposition 19.

We now show that there is a surjection onto Aut(M(K)). If so, since M(K)
and K are finite, this implies that φ is an isomorphism. Let F ∈ Aut(M(K)).
If K is a 1-dimensional simplicial complex (i.e., a graph) other than Cn, then
F is induced by a simplicial isomorphism f : K → K by [2, Theorem 3.5]. Thus
the result for K a graph other than Cn.

Now suppose that K 6= ∂∆n is a simplicial complex of dimension greater
than or equal to 2, and let F ∈ Aut(M(K)). In the proof of Theorem A [2],
Capitelli and Minian construct a simplicial isomorphism f : K → K that induces
the given F : M(K) → M(K). Their construction of f relies on a condition that
is not satisfied for K = ∂∆n according to the contrapositive of [2, Theorem 4.2].
Thus the result for K 6= ∂∆n a simplicial complex of dimension greater than
2.

3.2 The Morse complex of the Hasse diagram

In this section, we will show that computing the automorphism group of M(K)
is equivalent to computing the automorphism group of H(K). We will then

9



immediately be able to compute the Morse complex of Cn, one of the two cases
excluded in Proposition 20. Section 3.3 is then devoted to computing the Morse
complex of our final special case, K = ∂∆n. We briefly recall here the definition
of the Hasse diagram.

Definition 21. The Hasse diagram of K, denoted HK or H, is defined as the
partially ordered set of simplices of K ordered by the face relations. We view
H as a graph.

We adopt the convention that if σ(p) < τ (p+1) are two nodes of the Hasse
diagram, the edge joining them is denoted στ .

Proposition 22. For any simplicial complex K, Aut(M(K)) ∼= Aut(H(K)).

Proof. We will construct an isomorphism φ : Aut(H(K)) → Aut(M(K)). Con-
sider an arbitrary automorphism f ∈ Aut(H(K)). Define a function
m : E(H(K)) → V (M(K)) by m(στ) = (σ, τ), where σ is a codimension 1
face of τ . Notice that m has an inverse m−1 : V (M(K)) → E(H(K)) given
by m−1(σ, τ) = στ . Define a function gV : V (M(K)) → V (M(K)) by gV :=
m ◦ f ◦ m−1. Clearly gV ((σ, τ)) is another vertex of V (M(K)). Since f is a
simplicial isomorphism, it has an inverse f−1 : H(K) → H(K). It is then clear
that gV has an inverse g−1

V := m−1 ◦ f−1 ◦m. Hence gV is a bijection.
We now show that g is simplicial. Consider any σ := (σ1, τ1)(σ2, τ2) · · · (σk, τk) ∈
M(K). Observe that

g(σ) = (m ◦ f ◦m−1)(σ)

= (m ◦ f)

(
k∏

i=1

σiτi

)

= m

(
k∏

i=1

fV (σi)fV (τi)

)

=

k∏

i=1

m(fV (σi)fV (τi)).

Suppose that
∏k

i=1 m(fV (σi)fV (τi)) =
∏k

i=1(fV (σi), fV (τi)) as the case
∏k

i=1 m(fV (σi)fV (τi)) =
∏k

i=1(fV (τi), fV (σi)) is identical. We claim that each
(fV (σi), fV (τi)) is a primitive vector in M(K). Since σiτi ∈ H(K), by the
construction of H(K), we know that either σi is a codimension 1 face of τi, or
vice versa, and since f is an automorphism, fV (σi)fV (τi) ∈ H(K). Again, by
construction of H(K), we know that either fV (σi) is a codimension 1 face of
fV (τi), or vice versa. Thus, applying m to fV (σi)fV (τi) will form a primitive
vector (fV (σi)fV (τi)) ∈ M(K).

We now must show that all primitive vectors in g(σ) =
∏k

i=1(fV (σi), fV (τi))
are compatible. Suppose for the sake of contradiction they are not all com-
patible. The first possibility is that there are two compatible primitive vectors
(σk, τk), (σℓ, τℓ) ∈ V (M(K)) such that
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(fV (σk), fV (τk))(fV (σℓ), fV (τℓ)) 6∈ M(K).

However, this implies that {fV (σk), fV (τk)} ∩ {fV (σℓ), fV (τℓ)} 6= ∅. Since fV
is bijective, this implies that {σk, τk} ∩ {σℓ, τℓ} 6= ∅, so that (σk, τk), (σℓ, τℓ)
are not compatible, which is a contradiction. The second possibility is that
g(σ) contains a nontrivial closed V -path. In a similar manner to the first case,
this nontrivial closed V -path in the image of g can be pulled back to obtain a
nontrivial closed V -path in σ, a contradiction. We conclude that g(σ) ∈ M(K)
so that g is a simplicial map.

Since gV is a bijection and g is simplicial, it follows that g is a simpli-
cial automorphism on M(K). Define φ(f) := g. We first show that φ is a
homomorphism. Suppose we have a, b ∈ Aut(H(K)). We seek to show that
φ(a ◦ b) = φ(a) ◦ φ(b). By the definition of a simplicial map, it suffices to show
that φ(a ◦ b)V = (φ(a) ◦ φ(b))V . We have

φ(a ◦ b)V = m ◦ a ◦ b ◦m−1

= (m ◦ a ◦m−1) ◦ (m ◦ b ◦m−1)

= φ(a)V ◦ φ(b)V .

By Lemma 3, we know that φ(a◦b)V = φ(a)V ◦φ(b)V = (φ(a)◦φ(b))V , as desired.

To see that φ is injective, suppose that φ(a) = φ(b). Then we have m ◦ a ◦
m−1 = m ◦ b ◦m−1 which implies that a = b.

Finally, we show that φ is surjective. For any g ∈ Aut(M(K)), g must be
induced by some gV : V (M(K)) → V (M(K)). Then construct an f : H(K) →
H(K) defined by f = m−1◦g◦m. We see that φ(f) = m◦(m−1◦g◦m)◦m−1 = g,
as desired. Therefore, we conclude that Aut(H(K)) ∼= Aut(M(K)).

We now are able to easily compute the automorphism group of Cn.

Proposition 23. If K = Cn, then then Aut(M(Cn)) ∼= Aut(C2n).

Proof. It suffices to show Aut(H(Cn)) ∼= Aut(C2n). We construct the Hasse
diagram of Cn:

. . .

. . .

. . .

a1 a2 a3 an−1 an

a1a2

a1an

a2a3 a3a4 an−1an

11



It is clear that this Hasse Diagram can be redrawn as:

. . .
. . .

a1

a1an

an

an−1an

an−1

a2

a3

a1a2

a2a3

a3a4

which is C2n. Therefore, Aut(H(Cn)) ∼= Aut(C2n).

Remark 24. Let Dn be the dihedral group of order n. It is well known that
D2n

∼= Dn × Z2 for n odd. Since Aut(Cn) ∼= D2n, we have Aut(M(Cn)) ∼=
Aut(C2n) ∼= Aut(Cn)×Z2 whenever n is odd, yielding the same formula as the
automorphism group of ∂∆n that we show in Section 3.3.

3.3 The Morse complex of ∂∆n

We now investigate the case where K = ∂∆n. In this case, as in the K = Cn

case, there are automorphisms of the Morse complex which are not induced
by an automorphism of the original complex. While these automorphisms of
the Morse complex are not induced by simplicial maps, we will show below
that they are induced by what we are calling the reflection map. This is not a
simplicial map, but rather a “cosimplicial map," a term we define in Definition
27. The automorphisms induced by the simplicial maps and those induced by
this cosimplicial map will then be shown to generate all possible automorphisms
of the Morse complex, allowing us to compute and Aut(M(∂∆n) in Theorem
32. To illustrate, we first look at an example.

Example 25. Let K = ∂∆1 = C3, and recall that we computed the Morse
complex of K in Example 10. For reference, we give the Morse complex here,
noting again the convention that ab is shorthand for the primitive vector (a, ab).

12



ab

bcca

cb

acba

We see that Aut(∂∆1) is the symmetries of a triangle, and has six automor-
phisms. Meanwhile, Aut(M(∂∆1)) has twelve automorphisms. Six of the auto-
morphisms of M(∂∆1) arise from automorphisms of ∂∆n, but the other six do
not. For example, define F : M(∂∆1) → M(∂∆1) by

F (ab) = cb

F (ba) = ca

F (ca) = ba

F (cb) = ab

F (ac) = bc

F (bc) = ac.

Then it is easy to see that F is a simplicial automorphism. However, it is not
induced by any automorphism of ∂∆1. Furthermore, composition of F with any
automorphism induced by an automorphism of ∂∆1 yields a new automorphism
of M(∂∆1) that is not induced by an automorphism of ∂∆1. For example, if
f : ∂∆1 → ∂∆1 is given by f(a) = a, f(b) = c, and f(c) = b, then F ◦ f∗ is
an automorphism of M(∂∆1) which is not equal to any automorphism induced
from ∂∆1.

The map F in Example 25 is what in general we call π∗, the induced map
of the reflection map πn : ∂∆

n → ∂∆n given below in Definition 26. We will
show in Lemma 30 that π∗ is a simplicial automorphism of M(∂∆n) and that
it generates all the “missing" automorphisms of M(∂∆n) in Theorem 32.

Definition 26. Let ∂∆n be the boundary of the n-simplex on the vertices
{v0, v1, . . . , vn} and write δ := v0v1 · · · vn. Define the reflection map πn =
π : ∂∆n → ∂∆n by π(σ) := δ − σ.

The reflection map is a cosimplicial map in the following sense:

13



Definition 27. Let K be a simplicial complex, f : K → K a function such that
if σ is a simplex in K, f(σ) is a simplex of K. Then f is called a cosimplicial

map if whenever τ ⊆ σ, then f(τ) ⊇ f(σ). If in addition f is a bijection on the
simplices of K, we say that f is a cosimplicial automorphism.

Example 28. We now illustrate how the reflection map K = ∂∆2 gives rise to
an automorphism on the Hasse diagram of ∂∆2.

a b c d

ab adac bc bd cd

abc bcdacdabd

Observe that ∂∆2 demonstrates rotational symmetry about the center of
the diagram. (Notice that K = Cn also demonstrates rotational symmetry,
as can be seen in the Hasse diagram in Proposition 23.) An automorphism
of ∂∆1 induces an automorphism of the Hasse diagram which permutes the
0−simplices, but the rotational symmetry of the Hasse diagram arises from the
reflection map. For instance, the map induced by the reflection map sends
a ↔ bcd, b ↔ acd, and so on, which visually rotates the Hasse Diagram upside
down. For simplicial complexes other than K = ∂∆n and Cn, the Hasse diagram
does not exhibit this rotational symmetry. Hence all automorphisms of the
Hasse diagrams correspond to permutations of the 0−simplices, which in turn
correspond to automorphisms on the original K. (This follows from Proposition
20.)

We now give several basic properties of the reflection map.

Lemma 29. The reflection map is a cosimplicial automorphism that commutes
with all members of Aut(K).

Proof. Clearly if σ is a simplex in ∂∆n, then δ − σ is a simplex in ∂∆n since
∂∆n by definition is made up of all proper, nonempty subsets of δ. If σ ⊆ τ ,
then π(σ) = δ − σ ⊇ δ − τ = π(τ). Hence π is a cosimplicial map. Next notice
that we have π(π(σ)) = σ, so π is its own right and left inverse. It follows that
π is a cosimplicial automorphism.

To see that π commutes with all simplicial automorphisms of ∂∆n, let f ∈
Aut(∂∆n). Then f is induced by a bijection fV : V (K) → V (K). Consider any
simplex σ ∈ K. We seek to show that π(f(σ)) = f(π(σ)). It thus suffice to show
that δ− f(σ) = f(δ− σ). We proceed by subset inclusion. Consider any vertex
v ∈ δ − f(σ). Since f is an automorphism, we can express v = f(w) for some
vertex w. Then we have f(w) 6∈ f(σ), so w 6∈ σ. Thus, w ∈ δ − σ, so it follows
that v = f(w) ∈ f(δ − σ). Hence δ − f(σ) ⊆ f(δ − σ). For the other direction,
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consider any v ∈ f(δ − σ). Again, we can express v = f(w) for some vertex
w, hence w ∈ δ − σ. Then w 6∈ σ, so f(w) 6∈ f(σ). So v = f(w) ∈ δ − f(σ).
Therefore, f(δ − σ) ⊆ δ − f(σ). We conclude that δ − f(σ) = f(δ − σ) so that
the reflection map commutes with all of Aut(∂∆n).

As in Proposition 15, the reflection map induces a function on the Morse
complex π∗V

: V (M(∂∆n)) → V (M(∂∆n)) defined by π∗V
((σ, τ)) = (π(τ), π(σ)).

Even though π is not a simplicial map, the induced map is a map on the vertex
set of M(∂∆n) which induces a simplicial map on M(∂∆n). The following
lemma shows that this induced map on the Morse complex behaves in a similar
way to the cosimplicial automorphism on ∂∆n.

Lemma 30. Let πn = π : ∂∆n → ∂∆n be the reflection map, and π∗V
: V (M(∂∆n)) →

V (M(∂∆n)) the induced function on the Morse complex. Then π∗V
is a bijec-

tion that commutes with all bijections g∗V
: V (M(∂∆n)) → V (M(∂∆n)) that

are induced by some g ∈ Aut(∂∆n) . Moreover, the induced function π∗ is a
simplicial map that commutes with all members of Aut(M(∂∆n)).

Proof. That π∗V
is a bijection follows from the fact that π∗V

is its own inverse;
that is,

π∗V
◦ π∗V

((σ, τ)) = π∗V
((π(τ), π(σ))) = (π(π(σ)), π(π(τ))) = (σ, τ).

To see that π∗V
commutes with any induced bijection g∗V

observe that

π∗V
◦ g∗V

((σ, τ)) = π∗V
((g(σ), g(τ))

= (π ◦ g(τ), π ◦ g(σ))

= (g ◦ π(τ), g ◦ π(σ))

= g∗V
(π(τ), π(σ))

= g∗V
◦ π((σ, τ))

where Lemma 29 justifies the fact that π and g commute.
Since π∗V

◦ g∗V
= g∗V

◦π∗V
, they induce the same function on M(K). Then

π∗V
◦ g∗V

induces π∗ ◦ g∗, and g∗V
◦ π∗V

induces g∗ ◦ π∗, thus π∗ ◦ g∗ = g∗ ◦ π∗.

It remains to verify that this is a simplicial map. Consider any σ =
∏k

i=0(αi, βi) ∈
M(K). We seek to show that π∗(σ) ∈ M(K). As we already know that π∗V

is a bijection, it remains to show that if π∗(σ) contains incompatible primitive
vectors, so does σ.

Case 1: There exists two primitive vectors π∗((αi, βi)) = (π(βi), π(αi)) and
π∗((αj , βj)) = (π(βj), π(αj)) of π∗(σ) that are not compatible. Then, {π(βi), π(αi)}∩
{π(βj), π(αj)} 6= ∅. As π is bijective, it follows that {βi, αi} ∩ {βj, αj} 6= ∅, so
(αi, βi) and (αj , βj) are not compatible.

Case 2: There exists a nontrivial V -path

(π(βi0 ), π(αi0 )), (π(βi1 ), π(αi1 )), (π(βi2 ), π(αi2 )), . . . , (π(βim), π(αim ))
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where each π(βij ) is a codimension 1 face of π(αij−1
) for each 1 ≤ j ≤ m, and

π(βi0) is a codimension 1 face of π(αim). However, since π is a cosimplicial
automorphism, we must have that each αij−1

is a codimension 1 face of βij for
1 ≤ j ≤ m, and αim . is a codimension 1 face of βi0 . However, this would imply
that (αim , βim), (αim−1

, βim−1
), (αim−2

, βim−2
), . . . , (αi0 , βi0) ∈ σ is a nontrivial

closed V-path, and are therefore not compatible.
Thus π∗ is a simplicial map, and we therefore conclude that π∗ ∈ Aut(M(K)).

We will refer to the simplicial automorphism π∗ ∈ Aut(M(K)) induced by
π∗V

(and in general, any automorphism of M(∂∆n) that is not induced by a
simplicial automorphism of ∂∆n) as a ghost automorphism on M(∂∆n). In
the proof of Theorem 32, we will see that this ghost automorphism generates
all the other ghost automorphisms of M(∂∆n).

Next we will compute the cardinality of Aut(M(∂∆n)). We first fix some no-
tation and terminology. Let Hi denote the set of nodes of the Hasse diagram that
correspond to simplices in ∂∆n of dimension i, and let H = {H0,H1, . . . ,Hn−1}.
We also define H−1 = Hn = ∅ for convenience. Call Hi the ith layer of the

Hasse diagram of ∂∆n. Observe that |Hi| =

(
n+ 1

i + 1

)

for indices 0 ≤ i ≤ n− 1.

Abusing language, we will use simplex to mean both a simplex of ∂∆n and
the corresponding vertex of H(∂∆n). We also define the degree of layer Hi,
denoted as Deg Hi, as Deg σ where σ ∈ Hi. Note that this is well-defined since
for ∂∆n, it is clear that if σ, τ ∈ Hi, then Deg σ = Deg τ . We say that two
layers Hi,Hj are connected if there exist σ ∈ Hi, τ ∈ Hj that are connected in
H(∂∆n). It is clear by the construction of the Hasse diagram that two layers are
connected if and only if i and j are consecutive. It is also clear that connectivity
of layers is preserved under automorphisms of H(K).

Lemma 31. |Aut(M(∂∆n))| = 2|Aut(∂∆n)|.

Proof. By Proposition 22, it suffices to show that |Aut(H(∂∆n))| = 2|Aut(∂∆n)|.
Consider an arbitrary automorphism f ∈ Aut(H(∂∆n)). We claim that the im-
age of any Hi under f will either be Hi or Hn−i−1. We first establish that f

takes H0 to H0 or Hn−1, and then proceed by induction on n. To that end,
observe that if σ ∈ H0 or Hn−1, then Deg σ = n. If σ ∈ Hj for 1 ≤ j ≤ n− 2,
then σ has j + 1 faces of dimension (j − 1) and (n + 1) − (j + 1) cofaces of
dimension j + 1. Hence Deg σ = (j + 1) + (n+ 1)− (j + 1) = n+ 1. Therefore,
the only layer with the same degree as H0 is Hn−1, so that any automorphism
must send a node of H0 into either H0 or Hn−1.

Next we establish that f(H0) = H0 or Hn−1. Let ab be a 1-simplex of ∂∆n

and suppose for the sake of contradiction that f sends a, b ∈ H0 to two different
layers, say f(a) ∈ H0 and f(b) ∈ Hn−1. Now ab is connected to both a and
b, and since f is an automorphism, f(ab) must be connected to both f(a) and
f(b). Since f(a) ∈ H0 and f(ab) is connected to f(a), it follows that f(ab) ∈ H1.
Similarly, since f(b) and f(ab) are connected, f(ab) ∈ Hn−2. Thus, Hn−2 = H1,
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so we must have n = 3. But it is easily seen by inspection of the n = 3 case
that such an automorphism is impossible. Thus f(H0) = H0 or Hn−1.

Having established that f(H0) = H0 or Hn−1 for any automorphism f , we
now show by induction that f(Hi) = Hi or Hn−i−1 for all 1 ≤ i ≤ n − 1. For
the first case, suppose that f(H0) = H0, and suppose the inductive hypothesis
that for some integer 0 < k < n − 1, we have f(Hj) = Hj for all integers
0 ≤ j ≤ k. We seek to show that f(Hk+1) = Hk+1. Notice that Hk+1 is
connected to Hk. Thus, f(Hk+1) is connected to f(Hk). Additionally, the only
layers connected to Hk are Hk−1 and Hk+1. Since f(Hk) = Hk by the inductive
hypothesis, we know f(Hk+1) ⊆ Hk−1 ∪ Hk+1. However, by the inductive
hypothesis, we know that f(Hk−1) = Hk−1. Since f is an isomorphism, this
means we cannot send any simplices of Hk+1 to Hk−1 under f . Therefore,
f(Hk+1) ⊆ Hk+1 =⇒ f(Hk+1) = Hk+1.

The case where f(H0) = Hn−1 is similar. Suppose that for some integer
0 < k < n − 1, we have f(Hj) = Hn−j−1 for all integers 0 ≤ j ≤ k. We seek
to show that f(Hk+1) = Hn−k−2. Since Hk+1 is connected to Hk, f(Hk+1)
is connected to f(Hk) = Hn−k−1. The only layers connected to Hn−k−1 are
Hn−k−2,Hn−k, so f(Hk+1) ⊆ Hn−k−2 ∪ Hn−k. By the inductive hypothesis,
f(Hk−1) = Hn−k. Since f is injective, we cannot send any simplices of Hk+1 to
Hn−k. Thus, f(Hk+1) ⊆ Hn−k−2. We know that

|f(Hk+1)| = |Hk+1|

=

(
n+ 1

k + 2

)

=

(
n+ 1

n− k − 1

)

= |Hn−k−2|.

Hence f(Hk+1) = Hn−k−2, as desired.
Having established the behaviour of each layer under automorphism, we

now establish a group action to count |Aut(H(∂∆n))|. Define an action of
Aut(H(∂∆n)) on H = {H0,H1, . . . ,Hn−1} by

(g,Hi) 7→ gHi := {g(σ) : σ ∈ Hi}.

We verify this is indeed a group action by noting that, idH(∂∆n)(Hi) = Hi

for all Hi, and that if g, h ∈ Aut(H(∂∆n)), we have

(gh)(Hi) = {(g ◦ h)(σ) : σ ∈ Hi}

= g({h(σ) : σ ∈ Hi})

= g(h(Hi)).

By the Orbit Stabilizer theorem, we have |Aut(H(∂∆n))| = |Orb(H0)||Stab(H0)|.
Suppose f ∈ |Aut(H(∂∆n))| fixes H0. Then, f is bijective on the set of vertices
of ∂∆n so that it corresponds with an automorphism of ∂∆n. Likewise, any
automorphism of ∂∆n is induced by a bijective map V (∂∆n) → V (∂∆n), so
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must correspond with an automorphism on H(∂∆n) that fixes H0. Therefore,
|Stab(H0)| = |Aut(∂∆n)|. We also know that Orb(H0) = 2 since automor-
phisms of the Hasse Diagram send H0 to either H0 or Hn−1, as we showed
earlier in this proof. We conclude that |Aut(H(∂∆n))| = 2|Aut(∂∆n)|, as de-
sired.

We are now able to compute the automorphism group of the Morse complex
in the case where K = ∂∆n.

Theorem 32. If K = ∂∆n, with n ≥ 2, then Aut(M(∂∆n)) ∼= Aut(∂∆n)×Z2.

Proof. For any function f , write fn := f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n f ’s

. We construct an isomor-

phism φ : Aut(∂∆n) × Z2 → Aut(M(∂∆n)). For each (f, i) ∈ Aut(K) × Z2,
i = 0, 1, define φ((f, i)) := f∗ ◦ πi

∗, where f∗ is the automorphism of M(∂∆n)
induced by f , and π∗ is the ghost automorphism induced by the reflection map.

We first show that φ is a homomorphism. Suppose we have (f, i), (g, j) ∈
Aut(∂∆n) × Z2. By Lemma 18 and the fact that π∗ commutes with all f∗, we
have

φ((f, i)(g, j)) = φ((f ◦ g, i+ j))

= (f ◦ g)∗ ◦ π
i+j
∗

= f∗ ◦ g∗ ◦ π
i
∗ ◦ π

j
∗

= (f∗ ◦ π
i
∗) ◦ (g∗ ◦ π

j
∗)

= φ((f, i))φ((g, j)),

as desired.
Next, we will show that φ is a bijection. We first show that φ is injective.

Suppose we have φ((f, i)) = φ((g, j)) for some (f, i), (g, j) ∈ Aut(∂∆n) × Z2.
Then, we have f∗ ◦ πi

∗ = g∗ ◦ π
j
∗. If i = j, then, we have f∗ = g∗, so f = g by

Proposition 19. We claim that i 6= j is impossible. Suppose by contradiction
that i = 0, j = 1, so that f∗ = g∗◦π∗. However, this implies that g∗◦π∗ is induced
by some simplicial automorphism on ∂∆n. Consider any (σ, τ) ∈ V (M(∂∆n))
with dimσ = 0. We have f∗((σ, τ)) = (f(σ), f(τ)). We know that dim σ =
dim f(σ) = 0. However, g∗ ◦ π∗((σ, τ)) = g∗(π(τ), π(σ)) = (g(π(τ)), g(π(σ))).
We know that dimπ(τ) = n−dim τ = n− 1. Then, dim g(π(τ)) = n− 1 > 0, so
dim f(σ) 6= dim(g(π(τ))), a contradiction. Thus, i 6= j is not possible. Hence φ

is injective.
Finally, by Proposition 22 and Lemma 31, we see that |Aut(M(∂∆n))| =

|Aut(H(∂∆n))| = 2|Aut(∂∆n)| = |Aut(∂∆n) × Z2|. Since these groups are
finite, φ is a bijection. We conclude that φ is an isomorphism.

Combining Propositions 20, 23, and Theorem 32 thus yields Theorem 1 as
promised.
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