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Abstract

For any graph G, the chromatic polynomial of G is the function P (G,m) which counts

the number of properm-colorings of G for each positive integer m. The DP color function

PDP (G,m) of G, introduced by Kaul and Mudrock in 2019, is a generalization of P (G,m)

with PDP (G,m) ≤ P (G,m) for each positive integer m. Let PDP (G) ≈ P (G) (resp.

PDP (G) < P (G)) denote the property that PDP (G,m) = P (G,m) (resp. PDP (G,m) <

P (G,m)) holds for sufficiently large integers m. It is an interesting problem of finding

graphs G for which PDP (G) ≈ P (G) (resp. PDP (G,m) < P (G,m)) holds. Kaul and

Mudrock showed that if G has an even girth, then PDP (G) < P (G) and Mudrock and

Thomason recently proved that PDP (G) ≈ P (G) holds for each graph G which has a

dominating vertex. We shall generalize their results in this article. For each edge e in

G, let ℓ(e) = ∞ if e is a bridge of G, and let ℓ(e) be the length of a shortest cycle in

G containing e otherwise. We first show that if ℓ(e) is even for some edge e in G, then

PDP (G) < P (G) holds. However, the converse statement of this conclusion fails with

infinitely many counterexamples. We then prove that PDP (G) ≈ P (G) holds for every

graph G that contains a spanning tree T such that for each e ∈ E(G) \E(T ), ℓ(e) is odd

and e is contained in a cycle C of length ℓ(e) with the property that ℓ(e′) < ℓ(e) for each

e′ ∈ E(C) \ (E(T ) ∪ {e}). Some open problems are proposed in this article.
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1 Introduction

In this article, we consider simple graphs only, unless otherwise stated. For any graph G, let

V (G) and E(G) be its vertex set and edge set respectively. For any nonempty subset S of

V (G), let G[S] be the subgraph of G induced by S, i.e., the subgraph with vertex set S and

edge set {uv ∈ E(G) : u, v ∈ S}, where uv denotes the edge joining u and v, and let G − S

be the subgraph G[V (G) \ S] when S 6= V (G). In particular, if S = {v} for v ∈ V (G), write

G− v for G− S. For A ⊆ E(G), let G〈A〉 denote the spanning subgraph of G with edge set

A, and let G− A be G〈E(G) \ A〉. In particular, for e ∈ E(G), G− {e} is written as G− e.

For two disjoint subsets S1 and S2 of V (G), let EG(S1, S2) (or simply E(S1, S2)) denote the

set {uv ∈ E(G) : u ∈ S1, v ∈ S2}. For any u ∈ V (G), let NG(u) (or simply N(u)) be the set

of neighbors of u in G and dG(u) (or simply d(u)) be the degree of u in G. The reader may

refer to [5] for other terminology and notation.

1.1 Proper coloring, list coloring and DP coloring

Let N denote the set of positive integers. For any n ∈ N, let JnK = {1, 2, · · · , n}. For any graph

G and k ∈ N, a proper k-coloring of G is a mapping of f : V (G) → JkK such that f(u) 6= f(v)

for each edge uv ∈ E(G). The chromatic polynomial P (G, k) of G, introduced by Birkhoff [3]

in 1912, is the function which counts the number of proper k-colorings of G for each k ∈ N.

Note that P (G, k) is indeed a polynomial in k for each k ∈ N (see [4, 8, 17, 23]). The chromatic

number of G, denoted by χ(G), is the minimum number k ∈ N such that G admits a proper

k-coloring. Obviously, χ(G) is the minimum number k ∈ N such that P (G, k) > 0. For more

details on chromatic polynomials, we refer the readers to [3, 4, 8, 9, 13, 17, 18, 19, 23].

List coloring was introduced by Vizing [21] and Erdős, Rubin and Taylor [11] independently.

A list coloring of G is associated with a list assignment L, where L(v) is a subset of N for

each v ∈ V (G). Given a list assignment L of G, a proper L-coloring of G is a mapping

f : V (G) → N such that f(v) ∈ L(v) for each v ∈ V (G) and f(u) 6= f(v) for each edge

uv ∈ E(G). If L(v) = JkK for each v ∈ V (G), then a proper L-coloring of G is a proper

k-coloring of G. If |L(v)| = m for each v ∈ V (G), then L is called an m-assignment . The

list chromatic number of G, denoted by χl(G), is the smallest m such that G has a proper

L-coloring for every m-assignment L of G. By definition, χ(G) ≤ χl(G). Due to Noel, Reed

and Wu [16], χ(G) = χl(G) holds whenever χ(G) ≥ (|V (G)| − 1)/2.

For each list-assignment L of G, let P (G,L) be the number of proper L-colorings. For each

m ∈ N, let Pl(G,m) be the minimum value of P (G,L) among all m-assignments L. We call
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Pl(G,m) the list color function of G. By definition, Pl(G,m) ≤ P (G,m) for each m ∈ N.

Wang, Qian and Yan [22] showed that Pl(G,m) = P (G,m) holds when G is connected and

m > (|E(G)| − 1)/ ln (1 +
√
2). The survey by Thomassen [20] provided some known results

and open questions on the list color function.

DP-coloring was introduced by Dvorák and Postle [10] for the purpose of proving that every

planar graph without cycles of lengths 4 to 8 is 3-choosable. DP-coloring is a generalization of

list coloring, and a formal definition is given below. For a graph G, a cover of G is an ordered

pair H = (L,H), where H is a graph and L is a mapping from V (G) to the power set of V (H)

satisfying the four conditions below:

(i). the sets {L(u) : u ∈ V (G)} is a partition of V (H) of size |V (G)|;

(ii). for every u ∈ V (G), H [L(u)] is a complete graph;

(iii). if u and v are non-adjacent vertices in G, then EH(L(u), L(v)) = ∅; and

(iv). for each edge uv ∈ E(G), EH(L(u), L(v)) is a matching.

An H-coloring of G is an independent set I of H with |I| = |V (G)|. Clearly, for each H-

coloring I of G, |I ∩ L(u)| = 1 holds for each u ∈ V (G). A cover H = (L,H) of G is called

an m-fold cover if |L(u)| = m for each u ∈ V (G). The DP -chromatic number of G, denoted

by χDP (G), is the minimum integer m such that G has a H-coloring for every m-fold cover

H = (L,H). By definition, χ(G) ≤ χl(G) ≤ χDP (G). Bernshteyn, Kostochka and Zhu [2]

showed that for any n ∈ N, if r(n) is the minimum number r ∈ N such that χ(G) = χDP (G)

holds for every n-vertex graph G with χ(G) ≥ r, then n− r(n) = Θ(
√
n).

For any cover H of G, let PDP (G,H) be the number of H-colorings of G. For each m ∈ N,

let PDP (G,m) be the minimum value of PDP (G,H) among all m-fold covers H of G. We call

PDP (G,m) the DP color function of G, which was introduced by Kaul and Mudrock [14]. For

anym-assignment L of G, P (G,L) = PDP (G,H) holds for them-fold cover H = (L′, H), where

L′(v) = {(v, j) : j ∈ L(v)} for each v ∈ V (G) and for each edge uv ∈ E(G), EH(L
′(u), L′(v)) =

{(u, j)(v, j) : j ∈ N, (u, j) ∈ L′(u), (v, j) ∈ L′(v)}. Thus, PDP (G,m) ≤ Pl(G,m) ≤ P (G,m)

holds for each m ∈ N.

1.2 Main results

For any graph G, by definition, PDP (G,m) ≤ P (G,m) holds for all integers m ∈ N . Thus,

exactly one of the following three properties holds:
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(i). there exists N ∈ N such that PDP (G,m) = P (G,m) for all integers m ≥ N ;

(ii). there exists N ∈ N such that PDP (G,m) < P (G,m) for all integers m ≥ N ; and

(iii). there exist two infinite sets {mi ∈ N : i ∈ N} and {ni ∈ N : i ∈ N} such that for all

i ∈ N, both PDP (G,mi) = P (G,mi) and PDP (G, ni) < P (G, ni) hold.

Two questions proposed by Kaul and Mudrock [14] are closed related to property (iii), and

there would be no graphs having property (iii) if the answer to any one of them had been yes.

Question 7 in [14] asks if, for any graph G, there always exist an N ∈ N and a polynomial

p(m) such that PDP (G,m) = p(m) whenever m ≥ N . Halberg, Kaul, Liu, Mudrock, Shin and

Thomason [12] showed that this question has a positive answer for each graph G with a vertex

v such that G − v is acyclic. Question 15 in [14] asks if PDP (G,m0) = P (G,m0) for some

m0 ≥ χ(G) implies that PDP (G,m) = P (G,m) for all m ≥ m0. Unfortunately, Bui, Kaul,

Maxfield, Mudrock, Shin and Thomason [6] found graphs with negative answer to the second

question.

For any one of the above properties, it is an interesting problem of knowing which graphs have

this property. For convenience purposes, let PDP (G) ≈ P (G) (resp. PDP (G) < P (G)) denote

property (i) (resp. property (ii)) above for a graph G.

Problem 1. Is it true that for each graph G, either PDP (G) ≈ P (G) or PDP (G) < P (G)?

So far the comparison of DP color functions with chromatic polynomials focuses on following

problem.

Problem 2. Determine the set of graphs G such that PDP (G) ≈ P (G) holds and the set of

graphs G such that PDP (G) < P (G) holds.

Kaul and Mudrock [14] obtained some important results on the study of Problem 2. For exam-

ple, they showed that if there exists an edge e in G such that P (G−e,m) < mP (G,m)/(m−1),

then PDP (G,m) < P (G,m) holds (see Theorem 6).

For each edge e in G, if e is a bridge of G, let ℓG(e) = ∞; otherwise, let ℓG(e) be the length of

a shortest cycle containing e in G. Write ℓG(e) as ℓ(e) when G is clear from the context. Thus,

the girth g of G is the minimum value of ℓ(e) among all edges e in G. Kaul and Mudrock [14]

showed that if G has an even girth, then PDP (G) < P (G). We apply Theorem 6 to generalize

this result below.

Theorem 1. For any graph G, if ℓ(e) is even for some edge e in G, then PDP (G) < P (G).
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The converse statement of Theorem 1 fails, and counterexamples will be given in Section 3.

Theorem 2. There exist infinitely many graphs G such that PDP (G) < P (G) and ℓ(e) = 3

for each edge e in G.

For a disconnected graph G, if PDP (Gi) < P (Gi) for some component Gi of G, then PDP (G) <

P (G) obviously holds. This conclusion also holds for connected graphs.

Theorem 3. For a connected graph G, if PDP (Gi) < P (Gi) for some block Gi of G, then

PDP (G) < P (G) holds.

Some results on the study of graphs with the property PDP (G) ≈ P (G) have been obtained.

Kaul and Mudrock [14] showed that PDP (G) ≈ P (G) holds for the graph G obtained from any

two odd cycle graphs C2k+1 and C2r+1 by identifying one edge in C2k+1 with one edge in C2r+1.

For two vertex-disjoint graphs G and G′, let G∨G′ denote the join of G and G′, i.e., the graph

obtained from G and G′ by adding all edges in {uv : u ∈ V (G), v ∈ V (G′)}. Kaul and Mudrock

[14] asked that for every graph G, does there exist p ∈ N such that PDP (Kp∨G) ≈ P (Kp∨G),
where Kp is the complete graph with p vertices? Recently, Mudrock and Thomason [15]

showed that the problem has a positive answer for p = 1. Obviously, a graph is isomorphic

to K1 ∨ G for some graph G if and only if it has a dominating vertex (i.e., a vertex which is

adjacent to all other vertices in the graph).

For any graph G and any integer m > 0, there is a special m-fold cover of G which corresponds

to proper m-colorings. Let H0(G,m) denote the m-fold cover (L,H) of G, where L(u) =

{(u, i) : i ∈ JmK} for each u ∈ V (G) and EH(L(u), L(v)) = {(u, i)(v, i) : i ∈ JmK} for each

edge uv in G. The graph H in H0(G,m) = (L,H) is denoted by H0(G,m) (or simply H0(m)).

Obviously, PDP (G,H0(G,m)) = P (G,m) holds for each m ∈ N.

Let DP∗ denote the set of graphs G for which there exists M ∈ N such that for every m-fold

cover H = (L,H) of G, if H 6∼= H0(G,m), then PDP (G,H) > P (G,m) holds for all integers

m ≥M . By definition, PDP (G) ≈ P (G) holds for each graph G in DP∗. But it is unknown if

the converse statement is also true.

Problem 3. Is it true that if PDP (G) ≈ P (G), then G ∈ DP∗?

Our next result provides a sufficient condition for a graph G to be in DP∗ and therefore

PDP (G) ≈ P (G) holds.

Theorem 4. If a graph G contains a spanning tree T such that for each edge e in E(G)\E(T ),
ℓ(e) is odd and e is contained in a cycle C of length ℓ(e) with the property that ℓ(e′) < ℓ(e)

holds for each e′ ∈ E(C) \ (E(T ) ∪ {e}), then G ∈ DP∗ and hence PDP (G) ≈ P (G).

5



A vertex u in a graph G is called simplicial if either dG(u) = 0 or G[N(u)] is a complete

graph. A graph G is called chordal if for each cycle C in G, G[V (C)] contains 3-cycles. Due

to Dirac [7], a graph G is chordal if and only if there exists an ordering v1, v2, · · · , vn of its

vertices, called a perfect elimination ordering, such that each vi is simplicial in the subgraph

of G induced by {vj : j ∈ JiK}. Due to Kaul and Mudrock [14], for any chordal graph G,

PDP (G,m) = P (G,m) holds for all m ∈ N, and hence PDP (G) ≈ P (G) holds. We notice that

this conclusion does not follow from Theorem 4. But the next result is its generalization.

Theorem 5. For any graph G with a simplicial vertex u, if PDP (G − u) ≈ P (G − u), then

PDP (G) ≈ P (G); also, if G− u ∈ DP∗, then G ∈ DP∗.

Theorems 2 and 3 are proved in Section 3, while Theorems 1, 4 and 5 are proved in Sections 2,

4 and 5 respectively.

2 Proof of Theorem 1

The following result due to Kaul and Mudrock [14] will be applied to study graphs G with

the property PDP (G) < P (G).

Theorem 6 ([14]). Let G be a graph with an edge e. If m ≥ 2 and P (G−e,m) < m
m−1

P (G,m),

then PDP (G,m) < P (G,m).

In this section, we shall apply two fundamental properties of the chromatic polynomial P (G, x)

of G. The variable x in P (G, x) can be considered a real number. By the inclusion-exclusion

principle, it can be proved that

P (G, x) =
∑

A⊆E(G)

(−1)|A|xc(A), (1)

where cG(A) (or simply c(A)) is the number of components in the spanning subgraph G〈A〉
of G (see [23]). Note that (1) holds even if G has parallel edges or loops.

The deletion-contraction theorem of chromatic polynomials (see [8, 17, 18]) states that for

each edge e in a graph G,

P (G, x) = P (G− e, x)− P (G/e, x), (2)

where G/e is the graph obtained by contracting edge e (i.e., the graph obtained from G−e by
identifying the two ends of e). Clearly, G/e may have parallel edges. By (2), for any e ∈ E(G),

6



when x 6= 1,

P (G− e, x)− x

x− 1
P (G, x) = P (G− e, x)− x

x− 1
(P (G− e, x)− P (G/e, x))

=
1

x− 1
(xP (G/e, x)− P (G− e, x)) . (3)

For any edge e in G, let C(e) denote the set of cycles in G that contain e and are of length

ℓ(e). Obviously, C(e) 6= ∅ if e is not a bridge of G.

Proposition 7. Let G be a simple graph and e be an edge in G with ℓ(e) < ∞. Then, the

leading term in the polynomial xP (G/e, x)− P (G− e, x) is (−1)ℓ(e)−1|C(e)|xn−ℓ(e)+2.

Proof. Note that G− e and G/e have the same edge set, i.e., E(G) \ {e}, and when ℓ(e) = 3,

G/e has parallel edges. Applying (1) to both G− e and G/e, we have

P (G− e, x) =
∑

A⊆E(G)\{e}

(−1)|A|xcG(A) (4)

and

P (G/e, x) =
∑

A⊆E(G)\{e}

(−1)|A|xcG/e(A). (5)

Let u, v be the two ends of e, and let Ee be the set of subsets A of E(G) \ {e}, such that u

and v are in the same component of the spanning subgraph G〈A〉 of G. Let E ′
e be the set of

subsets A of E(G) \ {e} with A /∈ Ee. If A ∈ Ee, then cG(A) = cG/e(A); and if A ∈ E ′
e, then

cG(A) = cG/e(A) + 1. Thus, (4) and (5) imply that

xP (G/e, x)− P (G− e, x) =
∑

A∈Ee

(−1)|A|xcG(A)(x− 1). (6)

For each A ∈ Ee, let GA denote the component of G〈A〉 that contains both vertices u and v.

Then GA has a (u, v)-path P , implying that |V (GA)| ≥ |V (P )| ≥ ℓ(e). If |V (GA)| = ℓ(e),

then V (GA) = V (P ) and P must be a path C− e for some cycle C ∈ C(e). As each cycle in G

containing e must be of length at least ℓ(e), |V (GA)| = ℓ(e) implies that GA is a path C − e

for some cycle C ∈ C(e).

Consequently, for each A ∈ Ee, cG(A) ≤ n − ℓ(e) + 1 holds, and cG(A) = n − ℓ(e) + 1 if and

only if A ∪ {e} is the edge set of some cycle C in C(e). Thus, cG(A) = n− ℓ(e) + 1 holds for

exactly |C(e)| subsets A ∈ Ee, and for each of them, |A| = ℓ(e)− 1.

By (6) and the above conclusions, xP (G/e, x)−P (G−e, x) is a polynomial of degree n−ℓ(e)+2

and the coefficient of its leading term is (−1)ℓ(e)−1|C(e)|.
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Hence the result holds. ✷

We are now going to prove Theorem 1.

Proof of Theorem 1: Let e be an edge in G such that ℓ(e) is even. By the equality of (3)

and Proposition 7, there exists M ∈ N such that P (G − e,m) < m
m−1

P (G,m) for all integer

m ≥M . The result then follows from Theorem 6. ✷

3 Proof of Theorems 2 and 3

Let ω(G) denote the clique number of a graph G. For any vertex-disjoint graphs G1 and G2

and k ∈ N with k ≤ min{ω(Gi) : i = 1, 2}, let G (G1 ∪k G2) denote the set of graphs obtained

from G1 and G2 by identifying a k-clique in G1 with a k-clique in G2. Due to Zykov [24], the

following identity on chromatic polynomials holds for any G ∈ G (G1 ∪k G2) and all m ≥ k:

P (G,m) =
P (G1, m)P (G2, m)

m(m− 1) · · · (m− k + 1)
. (7)

If u is a simplicial vertex of a graph G, the following identity on chromatic polynomials follows

from (7) (also see [8, 18]):

P (G,m) = (m− dG(u))P (G− u,m), ∀m ∈ N. (8)

It is natural to ask if (8) holds for the DP color function.

Problem 4. If u is a simplicial vertex of G, is it true that for all integers m ≥ d(u),

PDP (G,m) = (m− d(u))PDP (G− u,m)? (9)

As PDP (G,m) ≥ (m−d(u))PDP (G−u,m) by definition, to prove the equality of (9), it suffices

to show that PDP (G,m) ≤ (m−d(u))PDP (G−u,m) for all integers m ≥ d(u). It is trivial that

Problem 4 has a positive answer when d(u) = 0, and due to Theorem 10, it also has a positive

answer when d(u) = 1. In this section, we show that it has a positive answer for d(u) = 2.

Applying this conclusion, we are able to prove that the converse statement of Theorem 1 fails.

Proposition 8. If u is a simplicial vertex of G with d(u) = 2, then for each integer m ≥ 2,

PDP (G,m) = (m− 2)PDP (G− u,m). (10)
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Proof. Let m ≥ 2. If m < χDP (G − u), then m < χDP (G − u) ≤ χDP (G), implying that

PDP (G− u,m) = PDP (G,m) = 0. It follows that (10) holds in this case.

As u is a simplicial vertex of G with degree 2, χDP (G) ≥ χ(G) ≥ 3, implying that PDP (G, 2) =

0. Thus (10) also holds when m = 2.

Now let m ≥ max{3, χDP (G − u)} and let H′ = (L′, H ′) be an m-fold cover of G − u such

that PDP (G− u,H′) = PDP (G− u,m) and |E(H ′)| has the maximum value. It is clear that

EH′(L′(v1), L
′(v2)) is a matching in H ′ of size m for each pair of adjacent vertices v1 and v2

in G− u.

Let NG(u) = {u1, u2}. Assume that (u1, j) and (u2, π(j)) are adjacent in H
′ for each j ∈ JmK,

where π is a bijection from JmK to JmK.

Let H be the graph obtained from H ′ and a complete graph with vertex set {(u, j) : j ∈ JmK}
by adding edges joining (u, j) to both (u1, j) and (u2, π(j)) for each j ∈ JmK. LetH = (L,H) be

them-fold cover ofG, where L(u) = {(u, j) : j ∈ JmK} and L(v) = L′(v) for all v ∈ V (G)−{u}.

Let I be any member in I(H ′). Assume that (u1, j1) ∈ I ∩ L(u1) and (u2, π(j2)) ∈ I ∩ L(u2).
As (u1, j1) and (u2, π(j1)) are adjacent in H , j1 6= j2. Then, I can be extended to exactly

(m− 2) independent sets of H of the form I ∪ {(u, j)}, where j ∈ JmK \ {j1, j2}. Thus,

PDP (G,H) = (m− 2)PDP (G− u,H′) = (m− 2)PDP (G− u,m), (11)

by which PDP (G,m) ≤ (m − 2)PDP (G − u,m). On the other hand, it is obvious that

PDP (G,m) ≥ (m− 2)PDP (G− u,m). Thus, the result follows. ✷

For any graph Q with at least one edge, let Φ(Q) be the family of graphs defined below:

(i). Q ∈ Φ(Q); and

(ii). if Q′ ∈ Φ(Q), then G (Q′ ∪2 K3) ⊆ Φ(Q).

For example, G1 ∈ Φ(C4) and G2 ∈ Φ(C6), where Ck is the cycle graph of length k, and G1

and G2 are graphs in Figure 1.

By (8) and Proposition 8, for any graph G ∈ Φ(Q) and any integer m ≥ 2,

P (G,m) = (m− 2)|V (G)|−|V (Q)|P (Q,m), PDP (G,m) = (m− 2)|V (G)|−|V (Q)|PDP (Q,m). (12)

By (12), we have the following observation.
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(a) G1 (b) G2

Figure 1: G1 ∈ Φ(C4) and G2 ∈ Φ(C6)

Proposition 9. For any graph Q with at least one edge and any G ∈ Φ(Q), if PDP (Q) ≈ P (Q),

then PDP (G) ≈ P (G); also, if PDP (Q) < P (Q), then PDP (G) < P (G).

We can now easily prove Theorem 2.

Proof of Theorem 2: Let Q be any graph with PDP (Q) < P (Q). Clearly, Q contains edges. By

Proposition 9, PDP (G) < P (G) holds for every G ∈ Φ(Q). By the definition of Φ(Q), there

are infinitely many graphs G ∈ Φ(Q) such that ℓG(e) = 3 for each edge e in G. For example,

for graph G1 in Figure 1 (a), if G is a graph in Φ(G1), then PDP (G) < P (G) and ℓG(e) = 3

holds for each edge e in G.

Theorem 2 holds. ✷

Theorem 3 will be proved directly by applying the following result due to Becker, Hewitt,

Kaul, Maxfield, Mudrock, Spivey, Thomason and Wagstrom [1].

Theorem 10 ([1]). For any connected graph G with blocks G1, G2, · · · , Gr, where r ≥ 2,

PDP (G,m) ≤ 1

mr−1

r
∏

i=1

PDP (Gi, m). (13)

Proof of Theorem 3: Let G1, G2, · · · , Gr be the blocks of G. By identity (7) and Theorem 10,

we have

PDP (G,m) ≤ 1

mr−1

r
∏

i=1

PDP (Gi, m) ≤ 1

mr−1

r
∏

i=1

P (Gi, m) = P (G,m). (14)

By (14), if PDP (Gi) < P (Gi) for some i, then PDP (G) < P (G) holds. ✷

It is natural to ask the following problem.

Problem 5. For a connected graph G, if PDP (Gi) ≈ P (Gi) holds for each block Gi of G, is it

true that PDP (G) ≈ P (G)?
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4 Proof of Theorem 4

4.1 A set of ordered pairs (G, T ), where T is a spanning tree of G

Let GT be the set of ordered pairs (G, T ), where G is a connected graph and T is a spanning

tree of G such that for each edge e in E(G)\E(T ), ℓG(e) is odd and e is contained in a cycle C

of length ℓG(e) with the property that ℓG(e
′) < ℓG(e) holds for each e

′ ∈ E(C) \ (E(T )∪ {e}).

Note that GT contains a subfamily GT 0 of ordered pairs (G, T ), where T is a spanning tree

of G such that for each e ∈ E(G) \ E(T ), ℓ(e) is odd and the fundamental cycle CT (e) of e

with respect to T is of length ℓ(e).

Let G (resp. G0) be the set of graphs G such that (G, T ) ∈ GT (resp. (G, T ) ∈ GT 0) for some

spanning tree T of G. For example, for i = 1, 2, Gi ∈ G0, where G1 and G2 (i.e., the Petersen

graph) are the graphs in Figure 2 (a) and (b) respectively. It is also obvious that G0 contains

every graph that has a dominating vertex. But, it can be verified that G3 in Figure 2 (c)

belongs to G \ G0.

(a) G1 (b) G2 (c) G3

Figure 2: Gi ∈ G0 ⊂ G for i = 1, 2 and G3 ∈ G \ G0

Let (G, T ) ∈ GT . By definition, ℓG(e) is odd for each e ∈ E(G) \ E(T ). But, it does not

guarantee directly that ℓG(e) is not even for any e ∈ E(T ). By Theorem 1, if ℓG(e) is even

for some e ∈ E(T ), then Theorem 4 fails. Thus, before proving Theorem 4, it is necessary to

show that ℓG(e) is not even for every e ∈ E(T ).

For (G, T ) ∈ GT , if E(G) = E(T ), let ℓ(G, T ) = ∞; otherwise, let ℓ(G, T ) = max
e∈E(G)\E(T )

ℓG(e).

Proposition 11. Let (G, T ) ∈ GT . For each edge e ∈ E(T ), if e is not a bridge of G, then

ℓG(e) is odd and ℓG(e) ≤ ℓ(G, T ).

Proof. We prove the result by induction on |E(G)|. Note that |E(G)| ≥ |E(T )|. The result

is obvious when |E(G)| ≤ |E(T )| + 1. Now assume that |E(G)| ≥ |E(T )| + 2 and the result

holds for every ordered pair (G′, T ′) ∈ GT with |E(G′)| ≤ |E(G)| − 1.

11



Choose an edge e1 in E(G) \ E(T ) such that ℓG(e1) = ℓ(G, T ) <∞. Clearly, T is a spanning

tree of G− e1. We first show that (G− e1, T ) ∈ GT .

Let G′ denote G−e1 and let e be any edge in E(G′)\E(T ). As e ∈ E(G)\E(T ), by definition,

ℓG(e) is odd and e is contained in a cycle C in G of length ℓG(e) such that ℓG(e
′) < ℓG(e) for

each e′ ∈ E(C) \ (E(T ) ∪ {e}). By the choice of e1, ℓG(e1) ≥ ℓG(e), implying that e1 /∈ E(C).

Thus, C is in G′ and ℓG(e) = ℓG′(e).

Hence, by definition, (G′, T ) ∈ GT and ℓG′(e) = ℓG(e) for each e ∈ E(G′) \ E(T ), implying

that ℓ(G′, T ) ≤ ℓ(G, T ).

By inductive assumption, the conclusion holds for (G′, T ) ∈ GT . Now suppose e0 ∈ E(T ) and

e0 is not a bridge in G. Then, either e0 is a bridge of G′ or ℓG′(e0) is odd. Furthermore, if e0

is not a bridge of G′, then ℓG′(e0) ≤ ℓ(G′, T ) ≤ ℓ(G, T ) = ℓG(e1). We shall show that ℓG(e0)

is odd and ℓG(e0) ≤ ℓ(G, T ).

Case 1: e0 is a bridge of G′ (i.e., G− e1).

In this case, for each cycle C in G, either E(C) ∩ {e0, e1} = ∅ or {e0, e1} ⊆ E(C), implying

that ℓG(e0) = ℓG(e1) = ℓ(G, T ) is odd.

Case 2: ℓG′(e0) is odd.

In this case, ℓG′(e0) ≤ ℓ(G′, T ) ≤ ℓ(G, T ) = ℓG(e1). If ℓG(e0) < ℓG′(e0), then e0 is contained

in a cycle C in G with |E(C)| = ℓG(e0). Since |E(C)| = ℓG(e0) < ℓG′(e0), C is not in G′ and

thus e1 ∈ E(C), implying that ℓG(e1) ≤ |E(C)|. Hence

ℓG(e1) ≤ |E(C)| = ℓG(e0) < ℓG′(e0) ≤ ℓ(G′, T ) ≤ ℓG(e1),

a contradiction. Hence ℓG(e0) = ℓG′(e0) is odd. Obviously, ℓG(e0) = ℓG′(e0) ≤ ℓ(G′, T ) ≤
ℓ(G, T ).

Hence the result holds. ✷

Remark: From the proof of Proposition 11, for any (G, T ) ∈ GT , G can be obtained from

T by adding a sequence of edges. Actually, G is the last graph Gk in a sequence of graphs

G0, G1, G2, · · · , Gk, where k = |E(G)| − |V (G)| + 1, G0 = T and each graph Gi+1, where

0 ≤ i ≤ k−1, can be obtained from Gi by adding a new edge joining two nonadjacent vertices

u and v in Gi in which there is a shortest (u, v)-path P such that |E(P )| ≥ ℓGi
(e)− 1 for each

e ∈ E(Gi) \ E(T ) and |E(P )| > ℓGi
(e)− 1 for each e ∈ E(P ) \ E(T ).
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4.2 Proof of Theorem 4

We are now going to prove Theorem 4.

Proof of Theorem 4: Let G ∈ G and n = |V (G)|. The result is trivial for n = 1. Now

assume that n ≥ 2. By definition, (G, T ) ∈ GT for some spanning tree T of G. Thus, for

each e ∈ E(G) \ E(T ), ℓG(e) is odd and e is contained in a cycle C of length ℓG(e) with the

property that ℓG(e
′) < ℓG(e) holds for each e

′ ∈ E(C) \ (E(T ) ∪ {e}).

Let H = (L,H) be any m-fold cover of G such that H 6∼= H0(G,m). As T is a spanning tree of

G, by Proposition 21 in [14], we may assume that L(v) = {(v, j) : j ∈ JmK} for each v ∈ V (G)

and EH(L(u), L(v)) ⊆ {(u, j)(v, j) : j ∈ JmK} for each uv ∈ E(T ). Note that relabeling

vertices in L(u) for any u ∈ V (G) does not affect the condition that H 6∼= H0(G,m).

If EH(L(u), L(v)) ⊆ {(u, j)(v, j) : j ∈ JmK} holds for each uv ∈ E(G) \ E(T ), then H 6∼=
H0(G,m) implies that H is a proper spanning subgraph of H0(G,m). Without loss of general-

ity, assume that (u, 1)(v, 1) /∈ EH(L(u), L(v)) for some edge uv ∈ E(G). Then, for m ≥ n− 2,

PDP (G,H)− P (G,m) ≥ PDP (G− {u, v},H′) > 0,

where H′ = (L′, H ′) is the (m − 1)-fold cover of G − {u, v}, L′(w) = L(w) \ {(w, 1)} for all

w ∈ V (G) \ {u, v} and H ′ = H [∪w∈V (G)\{u,v}L
′(w)]. Thus, the result holds in this case.

Now assume that EH(L(u), L(v)) 6⊆ {(u, j)(v, j) : j ∈ JmK} for some uv ∈ E(G) \ E(T ). By

definition, adding any possible edge to H does not increase the value of PDP (G,H). Thus,

we can assume that |EH(L(u), L(v))| = m for each edge uv ∈ E(G), and in particular,

EH(L(u), L(v)) = {(u, j)(v, j) : j ∈ JmK} for each uv ∈ E(T ).

For each e = uv ∈ E(G), letXe = EH(L(u), L(v))\{(u, j)(v, j) : j ∈ JmK}. As |EH(L(u), L(v))| =
m, Xe = ∅ if and only if EH(L(u), L(v)) = {(u, j)(v, j) : j ∈ JmK}. By the assumption above,

Xe = ∅ for each e ∈ E(T ), but Xe 6= ∅ for some edge e ∈ E(G) \ E(T ). For s ≥ 3, let

Xs =
⋃

e∈E(G)\E(T )
ℓG(e)=s

Xe. (15)

By the given condition, ℓG(e) ≥ 3 is odd for each e ∈ E(G) \E(T ), implying that Xs = ∅ for

each even s ≥ 4. Now assume that r is the minimum integer such that Xr 6= ∅. So r ≥ 3 and

r is odd. We will prove Theorem 4 by an approach similar to the proof of Theorem 7 in [15].

We first find an expression for PDP (G,H) which is similar to (1) for P (G,m). Let S be the

set of subsets S of V (H) with |S∩L(v)| = 1 for each v ∈ V (G). For each edge e = uv ∈ E(G),
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let Se be the set of S ∈ S such that the two vertices in S ∩ (L(u)∪L(v)) are adjacent in H .

For each A ⊆ E(G), let

SA =
⋂

e∈A

Se. (16)

As PDP (G,H) = |S | − | ∪e∈E(G) Se|, by the inclusion-exclusion principle, we have

PDP (G,H) =
∑

A⊆E(G)

(−1)|A||SA|. (17)

For each U ⊆ V (G), let S |U be the set of subsets S of V (H) such that |S ∩L(v)| = 1 for each

v ∈ U and S ∩ L(v) = ∅ for each v ∈ V (G) \ U . For any subgraph G0 of G and S ∈ S |V (G0),

let H [S]|G0 denote the spanning subgraph of H [S] with edge set {(u, j1)(v, j2) ∈ E(H) : uv ∈
E(G0), u, v ∈ V (G0), (u, j1), (v, j2) ∈ S}. Equivalently, H [S]|G0 can be obtained from H [S]

by deleting all those edges (u, j1)(v, j2) in H [S] with uv /∈ E(G0). Clearly, H [S]|G0 is H [S]

when G0 is a subgraph of G induced by V (G0). For any S ∈ S |V (G0), |E(H [S]|G0)| ≤ |E(G0)|
holds, and the following statements are equivalent:

(a) H [S]|G0
∼= G0;

(b) |E(H [S]|G0)| = |E(G0)|; and

(c) for each uv ∈ E(G0), the two vertices in S ∩ (L(u) ∪ L(v)) are adjacent in H .

Let H (G0) be the set of subgraphs H [S]|G0 ofH , where S ∈ S |V (G0), such thatH [S]|G0
∼= G0.

Recall that for A ⊆ E(G), G〈A〉 is the spanning subgraph of G with edge set A, and c(A) is

the number of components of G〈A〉. By the definition of SA, the following claim holds.

Claim 1. For any A ⊆ E(G), if G1, G2, · · · , Gc(A) are the components of G〈A〉, then

|SA| =
c(A)
∏

i=1

|H (Gi)|.

Claim 2. Let G0 be a connected subgraph of G. If H [S1]|G0 , H [S2]|G0 ∈ H (G0), where

S1, S2 ∈ S |V (G0), then either S1 = S2 or S1∩S2 = ∅. Hence |H (G0)| ≤ m, where the equality

holds if Xe = ∅ holds for each edge e ∈ E(G0).

Proof. Suppose that H [S1]|G0, H [S2]|G0 ∈ H (G0). Then, H [S1]|G0
∼= H [S2]|G0

∼= G0, implying

that whenever uv ∈ E(G0), the two vertices in Si∩(L(u)∪L(v)) are adjacent in H for i = 1, 2.

Let uv be any edge in G0. As EH(L(u), L(v)) is a matching of H of size m, each vertex in

L(u) is only adjacent to one vertex in L(v). If H [S1]|G0 and H [S2]|G0 have a common vertex
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in L(u), then H [S1]|G0 and H [S2]|G0 must have a common vertex in L(v). As G0 is connected,

we conclude that either S1 ∩ S2 = ∅ or S1 = S2. Thus, |H (G0)| ≤ m holds.

If Xe = ∅ holds for each edge e ∈ E(G0), then H [Sj]|G0 ∈ H (G0) for each j ∈ JmK, where

Sj = {(u, j) : u ∈ V (G0)}. Thus, |H (G0)| = m and Claim 2 holds. ♮

Claim 3. Let G0 be a connected subgraph of G. If Xe = ∅ holds for each e ∈ E(G0) that is

not a bridge of G0, then |H (G0)| = m.

Proof. Assume that Xe = ∅ holds for each e ∈ E(G0) that is not a bridge of G0. Let B be

any block of G0. If B is trivial (i.e., it consists of a bridge e = uv of G0 only), then, it is clear

that H (B) has exactly m members which correspond to the m edges in EH(L(u), L(v)). If

B is an non-trivial block of G0, we have Xe = ∅ for each e ∈ E(B), and H (B) has exactly m

members H [Sj]|B for j ∈ JmK, where Sj = {(v, j) : v ∈ V (B)}. Thus, |H (G0)| = m if G0 has

only one block.

Suppose that G0 has at least two blocks and B0 is a block of G0 which has only one vertex u

shared by other blocks of G0. Let G′ denote G0 − (V (B0) \ {u}). Assume that both H (G′)

and H (B0) have exactly m members. Each member H [S ′]|G′ of H (G′) can be extended

to exactly one member of H (G0) by combining H [S ′]|G′ with the member in H (B0) which

shares a vertex in L(u) with H [S ′]|G′ . Hence |H (G0)| = m.

Claim 3 holds. ♮

The next claim follows from Claims 1, 2 and 3 directly.

Claim 4. For each A ⊆ E(G), |SA| ≤ mc(A) holds. If Xe = ∅ holds for each e ∈ A that is

not a bridge of G〈A〉, then |SA| = mc(A).

By Claim 4, the next claim follows.

Claim 5. For any A ⊆ E(G), if |A| is odd, (−1)|A|
(

|SA| −mc(A)
)

= mc(A) − |SA| ≥ 0.

Let E be the set of subsets A of E(G) such that Xe 6= ∅ holds for some e ∈ A that is not a

bridge of G〈A〉. Note that such an edge e may be not unique. By (1), (17) and Claim 4, we

have

PDP (G,H)− P (G,m) =
∑

A∈E

(−1)|A|
Ä

|SA| −mc(A)
ä

. (18)

The following claim presents some properties of members in E .

Claim 6. For each A ∈ E , G〈A〉 has a component G1 and an edge e in some cycle of G1

with Xe 6= ∅. Furthermore, |V (G1)| ≥ r and c(A) ≤ n − r + 1, and |A| = r whenever

c(A) = n− r + 1.
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Proof. As A ∈ E , G〈A〉 has an edge e that is not a bridge of G〈A〉 such that Xe 6= ∅. Let G1

be the component of G〈A〉 containing e. As Xe 6= ∅, we have ℓG(e) ≥ r. Thus, each cycle in

G1 containing e has at least r edges, implying that |V (G1)| ≥ r, and hence c(A) ≤ n− r + 1.

Assume that c(A) = n − r + 1. Then |V (G1)| ≥ r implies that |V (G1)| = r and all other

components of G〈A〉 are isolated vertices. As e is in a cycle C of length r in G1 and each cycle

containing e is of length at least r, |V (G1)| = r implies that G1
∼= C and |A| = r.

Claim 6 holds. ♮

Assume that {e1, e2, · · · , es} is the set of edges in E(G) \E(T ) with ℓG(ei) = r. By the given

condition, for each i ∈ JsK, ei is contained in a cycle, denoted by Ci, such that |V (Ci)| = r

and ℓG(e
′) < r for each e′ ∈ E(Ci) \ (E(T ) ∪ {ei}). Thus, E(Ci) ∩ {ej : j ∈ JsK} = {ei} for

each i ∈ JsK, implying that C1, C2, · · · , Cs are pairwise distinct.

Claim 7. For each i ∈ JsK, |H (Ci)| = m− |Xei|.

Proof. Without loss of generality, let V (Ci) = {v1, v2, · · · , vr} and let v1v2 · · · vr be the path

Ci − ei in G. Obviously, ei is the edge v1vr. By the definition of r, Xe′ = ∅ holds for

each e′ ∈ E(G) \ E(T ) with ℓG(e
′) < r. By the given condition on Ci, Xe′ = ∅ holds for

each edge e′ in the path v1v2 · · · vr, implying that the subgraph obtained from H [S], where

S = {(vq, j) : q ∈ [r], j ∈ JmK}, by removing all edges in EH(L(v1), L(vr)), consists of m

disjoint paths (v1, j)(v2, j) · · · (vr, j) for j = 1, 2, · · · , m. Assume that

EH(L(v1), L(vr)) \Xei = {(v1, j)(vr, j) : 1 ≤ j ≤ m− |Xei|}. (19)

Then (v1, j)(vr, j) /∈ E(H) for each j with m− |Xei| < j ≤ m. Let Sj = {(vq, j) : q ∈ [r]} for

each j ∈ JmK. Clearly, H [Sj]|Ci
∼= Ci if and only if 1 ≤ j ≤ m− |Xei|. On the other hand, for

any S ′ ∈ S |V (Ci), if H [S ′]|Ci
∼= Ci, then H [S ′]|Ci

must contain a path (v1, j)(v2, j) · · · (vr, j)
for some j ∈ JmK, implying that S ′ = Sj for some j ∈ JmK. Thus, |H (Ci)| = m− |Xei|. ♮

Now we are going to apply Claims 5 and 6 to prove the next claim.

Claim 8. The following result holds:

∑

A∈E

c(A)=n−r+1

(−1)|A|
Ä

|SA| −mc(A)
ä

≥ |Xr|mn−r. (20)

Proof. By Claim 6, |A| = r for each A ∈ E with c(A) = n − r + 1. As r is odd, by Claim 5,
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for any E0 ⊆ {A ∈ E : c(A) = n− r + 1}, we have

∑

A∈E

c(A)=n−r+1

(−1)|A|
Ä

|SA| −mc(A)
ä

≥
∑

A∈E0

(

mn−r+1 − |SA|
)

. (21)

For each i ∈ JsK, G〈E(Ci)〉 consists of exactly n− r+1 components, i.e., Ci and n− r isolated
vertices in V (G) \ V (Ci). By Claim 7, |H (Ci)| = m− |Xei|. Thus, by Claim 1,

|SE(Ci)| = |H (Ci)|mn−r = (m− |Xei|)mn−r = mn−r+1 − |Xei|mn−r. (22)

Let E0 = {E(Ci) : i ∈ JsK}. By (21) and (22),

∑

A∈E

c(A)=n−r+1

(−1)|A|
Ä

|SA| −mc(A)
ä

≥
s

∑

i=1

(

mn−r+1 − |SE(Ci)|
)

=

s
∑

i=1

|Xei|mn−r = |Xr|mn−r.

(23)

Claim 8 holds. ♮

Claim 9. For any subgraph G1 of G, if ℓG(e) ≤ r for each edge e ∈ E(G1), then |H (G1)| ≥
m− 2|Xr|.

Proof. For each j ∈ JmK, let Sj = {(u, j) : u ∈ V (G1)} and Qj = H [Sj]|G1 . By the definition

of H [Sj]|G1 , Qj ∈ H (G1) if and only if (u, j)(v, j) ∈ E(H) for each uv ∈ E(G1).

Let S = ∪j∈JmKSj, and let ψ : S → {0, 1} be the mapping defined below:

ψ((u, j)) =

®

1, if (u, j)(v, j′) ∈ E(H) for some v ∈ NG1(u) and j
′ 6= j;

0, otherwise.
(24)

If ψ((u, j)) = 1, by definition, (u, j) is one end of some edge (u, j)(v, j′) of Xe, where e = uv ∈
E(G1). Thus,

∑

(u,j)∈S

ψ((u, j)) ≤
∑

e∈E(G1)

∑

(u,j)(v,j′)∈Xe

(ψ((u, j)) + ψ((v, j′)))

= 2
∑

e∈E(G1)

|Xe|

≤ 2|Xr|, (25)

where the last inequality follows from the facts that for each e ∈ E(G1), ℓG(e) ≤ r holds, and

ℓG(e) < r implies that Xe = ∅.
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By the definition of ψ, Qj 6∼= G1 if and only if ψ((u, j)) = 1 for some u ∈ V (G1). Then, by

(25), there are at most 2|Xr| numbers j ∈ JmK such that Qj 6∼= G1, implying that

|H (G1)| ≥ m− 2|Xr|. (26)

Thus, Claim 9 holds. ♮

Claim 10. For any A ∈ E with c(A) = n− r, we have |SA| ≥ (m− 2|Xr|)mm−r−1.

Proof. Let A ∈ E with c(A) = n− r. By Claim 6, G〈A〉 has a component G1 with |V (G1)| ≥
r. Let G2, · · · , Gn−r be the components of G〈A〉 different from G1 with |V (G2)| ≥ · · · ≥
|V (Gn−r)|. As c(A) = n− r, one of the two cases below happens:

(i). |V (G1)| = r, |V (G2)| = 2 and |V (Gi)| = 1 for all 3 ≤ i ≤ n− r, or

(ii). |V (G1)| = r + 1 and |V (Gi)| = 1 for all 2 ≤ i ≤ n− r.

In both Cases (i) and (ii) above, by Claim 3, |H (Gi)| = m holds for all i = 2, 3, · · · , n − r.

By Claim 1, it remains to show that |H (G1)| ≥ m− 2|Xr|.

In both cases above, by Claim 6, there is an edge e with Xe 6= ∅ which is in some cycle of

G1. Such an edge may be not unique. As Xe 6= ∅, we have ℓG(e) ≥ r. Thus, each cycle in G1

containing e must be of length at least r. In Case (i), G1 can only be a cycle of length r. In

Case (ii), it can be verified that G1 is one of the graphs in Figure 3.

vr−1

...

v3

v1 v2

vrvr+1

(e)
vr−1

...

v3

v1 v2

vrvr+1

(d)
vr−1

...

v3

v1 v2

vr
vr+1

(c)
vr−1

...

v3

v1 v2

vr

vr+1

(b)
vr−1

...

v3

v1 v2

vr
vr+1

(a)

Figure 3: Possible structures of G1 when |V (G1)| = r + 1

As each cycle in G1 is of length at most r + 1, for each edge e′ in cycles of G1, we have

ℓG(e
′) ≤ r+ 1. As ℓG(e

′) is odd, we have ℓG(e
′) ≤ r for such edges e′. Thus, if G1 contains an

edge e′ with ℓG(e
′) ≥ r + 2, then e′ must be a bridge of G1.

If G1 has no bridge, then ℓG(e) ≤ r for each e ∈ E(G1). By Claim 9, H (G1) ≥ m− 2|Xr|.
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If G1 has bridges, then G1 is the graph in Figure 3 (a), where G1−vr+1 is a cycle. By Claim 9

again, H (G1 − vr+1) ≥ m− 2|Xr|. Clearly, each member of H (G1 − vr+1) can be extended

to a member of H (G1), even when Xvrvr+1 6= ∅. Thus, Claim 10 also holds in this case.

Claim 10 is proved. ♮

For any k ∈ Jn − rK, let φk be the number of elements A of E such that c(A) = k and |A| is
even.

Claim 11. The following inequality holds:

∑

A∈E

c(A)=n−r

(−1)|A|
Ä

|SA| −mc(A)
ä

≥ −2φn−r|Xr|mn−r−1. (27)

Proof. By Claim 5,

∑

A∈E

c(A)=n−r

(−1)|A|
Ä

|SA| −mc(A)
ä

≥
∑

A∈E ,c(A)=n−r

|A| is even

Ä

|SA| −mc(A)
ä

. (28)

For each A ∈ E with c(A) = n− r, by Claim 10,

|SA| −mc(A) ≥ (m− 2|Xr|)mn−r−1 −mn−r = −2|Xr|mn−r−1. (29)

Then Claim 11 follows from the definition of φn−r. ♮

Claim 12. For each k ∈ Jn− r − 1K, we have

∑

A∈E

c(A)=k

(−1)|A|
Ä

|SA| −mc(A)
ä

≥ −φkm
k. (30)

Proof. For each A ∈ E with c(A) = k, if |A| is even,

(−1)|A|
Ä

|SA| −mc(A)
ä

= |SA| −mc(A) ≥ −mk. (31)

Thus Claim 12 follows from Claim 5 and the definition of φk. ♮

Let φ′
k be the number of subsets A ⊆ E(G) such that c(A) = k, G〈A〉 is not a forest and |A|

is even. Obviously, φ′
k ≥ φk. By the expression of (18) and Claims 6, 8, 11 and 12,

PDP (G,H)− P (G,m) ≥ |Xr|mn−r − 2φn−r|Xr|mn−r−1 −
n−r−1
∑

k=1

φkm
k
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≥ mn−r − 2φn−rm
n−r−1 −

n−r−1
∑

k=1

φkm
k

≥ mn−r − 2φ′
n−rm

n−r−1 −
n−r−1
∑

k=1

φ′
km

k, (32)

where the second inequality holds when m ≥ 2φn−r. As φ′
k is independent of the value of m,

by (32), there must be a number Mr ∈ N such that PDP (G,H)−P (G,m) > 0 for all m ≥Mr.

Let M = max{Mr : 3 ≤ r ≤ n, r is odd}. Then, we conclude that for any m ≥ M and any

m-fold cover H = (L,H) of G, if H 6∼= H0(G,m), then PDP (G,H)− P (G,m) > 0 holds.

Hence Theorem 4 holds. ✷

We end this section with an application of Theorem 4 to the generalized θ-graphs. For any

k numbers a1, a2, · · · , ak ∈ N, where k ≥ 2, let G = Θa1,a2,··· ,ak denote the generalized θ-

graph obtained by connecting two distinct vertices with k internally disjoint paths of lengths

a1, a2, · · · , ak respectively.

Assume that a1 ≤ a2 ≤ · · · ≤ ak and a1 + a2 ≥ 3. Halberg, Kaul, Liu, Mudrock, Shin

and Thomason [12] showed that PDP (Θa1,a2,··· ,ak) ≈ P (Θa1,a2,··· ,ak) if a1 + ai is odd for each

i ∈ JkK \ {1}, and PDP (Θa1,a2,··· ,ak) < P (Θa1,a2,··· ,ak) otherwise.

In the case that a1 + ai is odd for each i ∈ JkK \ {1}, Θa1,a2,··· ,ak belongs to the set G0, and

thus Θa1,a2,··· ,ak ∈ DP∗ by Theorem 4, implying that PDP (Θa1,a2,··· ,ak) ≈ P (Θa1,a2,··· ,ak).

5 Proof of Theorem 5

For a chordal graph G, PDP (G,m) = P (G,m) for all m ∈ N (see [14]), and thus, PDP (G) ≈
P (G) holds. In the following, we first generalize this conclusion to some non-chordal graphs

containing simplicial vertices.

Proposition 12. Let u be a simplicial vertex of G. For each m ∈ N with m ≥ d(u) + 1, if

PDP (G− u,m) = P (G− u,m), then PDP (G,m) = P (G,m).

Proof. Assume that PDP (G− u,m) = P (G− u,m). For any m-fold cover H = (L,H) of G,

PDP (G,H) ≥ (m−d(u))PDP (G−u,H′
u) ≥ (m−d(u))PDP (G−u,m) = (m−d(u))P (G−u,m),

(33)

where H′
u = (L′, H ′) is the m-fold cover of G− u with L′(w) = L(w) for each w ∈ V (G) \ {u}
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and H ′ = H − L(u). Thus, PDP (G,m) ≥ (m − d(u))P (G− u,m) = P (G,m) by (8). On the

other hand, PDP (G,m) ≤ P (G,m). Thus, the result follows. ✷

The first part of Theorem 5 follows from Proposition 12 directly. In order to prove the second

part of Theorem 5, we need to introduce some preliminary results.

For any cover H = (L,H) of G, let I(H) denote the set of independent sets I in H with

|I| = |V (G)|. Thus, PDP (G,H) = |I(H)|. The coloring number of G, denoted by col(G), is

the smallest integer d for which there exists an ordering, v1, v2, · · · , vn of the elements in V (G),

where n = |V (G)|, such that |NG(vi) ∩ {v1, v2, · · · , vi−1}| < d for each i ∈ JnK. Obviously,

χDP (G) ≤ col(G) ≤ n. If |L(v)| ≥ col(G) for all v ∈ V (G), then I(H) 6= ∅.

The following fundamental property is important for the study of DP coloring.

Proposition 13. Let H = (L,H) be a cover of G with |L(v)| ≥ |V (G)| for each v ∈ V (G).

Then, each independent set A of H is a subset of some set I in I(H).

Proof. If A = ∅, then the conclusion follows from the the fact that |V (G)| ≥ col(G).

Now assume that A = {(vi, πi) : i ∈ JkK}, where k ≥ 1. Clearly, v1, v2, · · · , vk are pairwise

distinct. Let H′ = (L′, H ′) be the cover of the subgraph G′ = G−{vi : i ∈ JkK}, where L′(v) =

L(v) \NH(A) for each v ∈ V (G′) and H ′ is the subgraph of H induced by
⋃

v∈V (G′) L
′(v).

Observe that |L′(v)| ≥ |L(v)| − k ≥ |V (G′)| for each v ∈ V (G′). By the conclusion for A = ∅,
there exists I ′ ∈ I(H ′), implying that I = A ∪ I ′ ∈ I(H). ✷

By Proposition 13, the following corollary is obtained.

Corollary 14. For any cover H = (L,H) of G with |L(v)| ≥ |V (G)| for each v ∈ V (G), if

H′ = (L,H ′) is a cover of G, where H ′ is obtained from H by removing any edge in some set

EH(L(v1), L(v2)), where v1 6= v2, then PDP (G,H′) > PDP (G,H).

For any u ∈ V (G) and an m-fold cover H = (L,H) of G, let H′
u = (L′, H ′) be the cover of

G− u, where H ′ = H − L(u) and L′(v) = L(v) for each v ∈ V (G) \ {u}. For any I ′ ∈ I(H ′),

let

IH(I
′) = {I ′ ∪ {(u, i)} ∈ I(H) : (u, i) ∈ L(u)}.

Obviously, for m ≥ d(u) and I ′ ∈ I(H ′), |IH(I
′)| ≥ (m − d(u)) holds, implying that for

m > d(u),

PDP (G,H) = |I(H)| =
∑

I′∈I(H′)

|IH(I
′)| ≥

∑

I′∈I(H′)

(m− d(u))

= (m− d(u))|I(H ′)| = (m− d(u))PDP (G− u,H′
u), (34)
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where PDP (G,H) > (m− d(u))PDP (G− u,H′
u) if |IH(I

′)| > m− d(u) for some I ′ ∈ I(H ′).

Proposition 15. Let H = (L,H) be an m-fold cover of G, where m ≥ |V (G)|, and u ∈ V (G).

Then PDP (G,H) ≥ (m − d(u))PDP (G − u,H′
u), where the inequality is strict under each of

the following conditions:

(i). |EH(L(u), L(v))| ≤ m− 1 for some v ∈ NG(u); or

(ii). NH((u, i)) \ L(u) is not a clique of H for some vertex (u, i) ∈ L(u).

Proof. By (34), PDP (G,H) ≥ (m − d(u))PDP (G − u,H′
u) holds. We need to prove that

PDP (G,H) > (m− d(u))PDP (G− u,H′
u) if either condition (i) or (ii) is satisfied.

Assume that condition (i) holds, i.e., |EH(L(u), L(v))| ≤ m − 1 for some v ∈ NG(u). Then,

there exists a m-fold cover H∗ = (L,H∗) of G, where H∗ is obtained from H by adding a new

edge joining some vertex in L(u) to some vertex in L(v). By Corollary 14,

PDP (G,H) > PDP (G,H∗) ≥ (m− d(u))PDP (G− u,H′
u). (35)

Now assume that condition (ii) holds. Without loss of generality, assume that NH((u, 1))\L(u)
is not a clique of H . Let (v1, i1) and (v2, i2) be non-adjacent vertices in NH((u, 1)) \ L(u).
Clearly, v1 6= v2.

As H′
u = (L′, H ′) is an m-fold cover of G− u and m ≥ |V (G)|, by Proposition 13, there exists

I ′ ∈ I(H ′) such that {(v1, i1), (v2, i2)} ⊆ I ′.

Note that |I ′ ∩L(v)| = 1 for each v ∈ NG(u) and {(v1, i1), (v2, i2)} ⊆ I ′ ∩NH((u, 1)). Assume

that NG(u) = {v1, v2, · · · , vr}, where r = d(u), and I ′∩L(vj) = {(vj , πj)} for all j ∈ [r]. Then

∣

∣

∣

∣

∣

∣

L(u) ∩
⋃

j∈[r]

NH((vj, πj))

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

L(u) ∩
⋃

j∈J2K

NH((vj, πj))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

L(u) ∩
⋃

3≤j≤r

NH((vj, πj))

∣

∣

∣

∣

∣

∣

≤ |{(u, 1)}|+ (r − 2) = d(u)− 1, (36)

implying that

|IH(I
′)| = m−

∣

∣

∣

∣

∣

∣

L(u) ∩
⋃

j∈[r]

NH((vj, πj))

∣

∣

∣

∣

∣

∣

≥ m− d(u) + 1.

By (34), PDP (G,H) > (m− d(u))PDP (G− u,H′
u) holds. The result is proven. ✷
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We are now ready to prove Theorem 5 by applying (8) and Propositions 12 and 15.

Proof of Theorem 5: If PDP (G−u) ≈ P (G− u), then PDP (G) ≈ P (G) due to Proposition 12.

Now assume that G − u ∈ DP∗. Then, there exists M ∈ N such that PDP (G − u,H′) >

P (G − u,m) for each integer m ≥ M and every m-fold cover H′ = (L′, H ′) of G − u with

H ′ 6∼= H0(G− u,m).

Let H = (L,H) be any m-fold cover of G such that H 6∼= H0(G,m). We may assume that

L(v) = {(v, i) : i ∈ JmK} for each v ∈ V (G). If |EH(L(v1), L(v2))| < m for some edge

v1v2 ∈ E(G), then, by Corollary 14, PDP (G,H) > PDP (G,H∗) for m ≥ |V (G)|, where H∗

is the m-fold cover (L,H∗) obtained from H by adding a new edge joining a vertex in L(v1)

to a vertex in L(v2). Therefore, we can assume that |EH(L(v1), L(v2))| = m for each edge

v1v2 ∈ E(G) and H 6∼= H0(G,m).

Consider the m-fold cover H′
u = (L′, H ′) of G− u.

Case 1: H ′ 6∼= H0(G− u,m).

By the assumption in the beginning of the proof, PDP (G − u,H′
u) > P (G − u,m) for each

integer m ≥ M . By (8) and Proposition 15, for m ≥ max{M, |V (G)|},

PDP (G,H) ≥ (m− d(u))PDP (G− u,H′) > (m− d(u))P (G− u,m) = P (G,m). (37)

Case 2: H ′ ∼= H0(G− u,m).

We can assume that H ′ = H0(G − u,m). Since H 6∼= H0(G,m), there must be some vertex

(u, i) ∈ L(u) that is adjacent to two vertices (v1, i1) and (v2, i2) with v1 6= v2 and i1 6= i2.

Since H ′ = H0(G − u,m) and i1 6= i2, (v1, i1) and (v2, i2) are not adjacent in H , implying

that NH((u, i)) \ L(u) is not a clique of H . By Proposition 15 again, PDP (G,H) > (m −
d(u))P (G,m) for m ≥ |V (G)|.

Thus Theorem 5 holds. ✷

By Theorem 5, we have the following consequence, which generalizes the known conclusion

that PDP (G) ≈ P (G) holds for every chordal graph G.

Corollary 16. Let G1 and G2 be vertex-disjoint graphs and k ∈ N, where k ≤ min{ω(Gi) :

i = 1, 2}. Assume that G1 is chordal and G ∈ G (G1 ∪k G2). If PDP (G2) ≈ P (G2), then

PDP (G) ≈ P (G); also, if G2 ∈ DP∗, then G ∈ DP∗.

Proof. As G1 is chordal, there must be an ordering v1, v2, · · · , vr of vertices in V (G) \ V (G2),

where r = |V (G1)| − k, such that vi is a simplicial vertex in G − {vj : j ∈ Ji − 1K} for each
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i ∈ JrK. Then, the result follows from Theorem 5. ✷

We wonder if Corollary 16 holds without the condition that G1 is chordal.

Problem 6. For any vertex-disjoint graphs G1 and G2 and k ∈ N, where k ≤ min{ω(Gi) :

i = 1, 2}, is it true that if PDP (Gi) ≈ P (Gi) for i = 1, 2, then PDP (G) ≈ P (G) for every graph

G ∈ G (G1 ∪k G2); also, if G1, G2 ∈ DP∗, then G (G1 ∪k G2) ⊆ DP∗?
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