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BISPECTRAL JACOBI TYPE POLYNOMIALS

ANTONIO J. DURÁN AND MANUEL D. DE LA IGLESIA

Abstract. We study the bispectrality of Jacobi type polynomials, which are eigenfunctions of higher-order
differential operators and can be defined by taking suitable linear combinations of a fixed number of consecutive
Jacobi polynomials. Jacobi type polynomials include, as particular cases, the Krall-Jacobi polynomials. As the
main results we prove that the Jacobi type polynomials always satisfy higher-order recurrence relations (i.e.,
they are bispectral). We also prove that the Krall-Jacobi families are the only Jacobi type polynomials which
are orthogonal with respect to a measure on the real line.

1. Introduction and results

Bispectrality in its continuous-continuous version is a subject that was started by H. Duistermaat and F.A.
Grünbaum in the 1980s [2]. In the context of orthogonal polynomials, we say that a sequence of polynomials
(qn(x))n is bispectral if there exist a difference operator, acting on the discrete variable n, of the form

(1.1) Dn =

r
∑

i=s

γn,isi, s ≤ r, s, r ∈ Z,

where sl stands for the shift operator sl(f(n)) = f(n+ l) and γn,i, i = s, . . . , r, are sequences of numbers with
γn,s, γn,r 6= 0, n ≥ 0, and a differential operator acting on the continuous variable x, with respect to which the
polynomials (qn(x))n are eigenfunctions (other type of operators acting on the continuous variable x can be
considered, but in this paper we restrict ourselves to differential operators).
It is easy to see that if Dn(qn) = Q(x)qn then Q is a polynomial of degree r, and hence each operator Dn of

the form (1.1) produces a higher-order recurrence relation for the polynomials (qn)n, i.e.

(1.2) Q(x)qn(x) =

r
∑

i=s

γn,iqn+i(x), s ≤ r.

For r = −s = 1, the recurrence relation (1.2) reduces to the usual three-term recurrence relation for orthogonal
polynomials with respect to a measure supported on the real line

(1.3) xqn(x) = anqn+1(x) + bnqn(x) + cnqn−1(x), n ≥ 0, q−1 = 0.

Hence the classical families of orthogonal polynomials, Hermite, Laguerre and Jacobi (and Bessel, if non-positive
measures are considered), are examples of bispectral polynomials.
Krall polynomials are other well-known examples of bispectral polynomials. Krall polynomials are eigenfunc-

tions of higher-order differential operators. They are called Krall polynomials because they were introduced
by H.L. Krall in 1940 [25]: Krall proved that the differential operators must have even order and classified the
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case of order four. Since the 1980’s, Krall polynomials associated with differential operators of any even order
have been constructed and intensively studied ([22, 21, 23, 26, 27, 15, 17, 18, 19, 20, 29]; the list is not ex-
haustive). There are two known classes of Krall polynomials: the Krall-Laguerre and the Krall-Jacobi families.
Krall-Laguerre polynomials are orthogonal with respect to measures of the form

xα−me−x +

m−1
∑

h=0

bhδ
(h)
0 , x ≥ 0,

where α and m are positive integers with α ≥ m and bh, h = 0, . . . ,m − 1, are certain real numbers with
bm−1 6= 0. Krall-Jacobi polynomials are orthogonal with respect to any of the following measures

(1 − x)α−m2(1 + x)β +

m2−1
∑

h=0

chδ
(h)
1 , α ∈ N, α ≥ m2,(1.4)

(1 − x)α(1 + x)β−m1 +

m1−1
∑

h=0

chδ
(h)
−1 , β ∈ N, β ≥ m1,(1.5)

(1 − x)α−m2(1 + x)β−m1 +

m2−1
∑

h=0

chδ
(h)
1 +

m1−1
∑

h=0

dhδ
(h)
−1 , α, β ∈ N, α ≥ m2, β ≥ m1.(1.6)

Both, the Krall-Laguerre and Krall-Jacobi polynomials, are also eigenfunctions of a higher-order differential
operator.
Other examples of bispectral polynomials are the Krall-Sobolev polynomials (see [24, 1, 9, 10]), the exceptional

polynomials (see [14, 4, 5, 6, 7, 13], and references therein) or the Grünbaum and Haine extension of Krall
polynomials ([16]; see also [19, 3]). In these cases, the associated operators (in the discrete and continuous
variable) have order greater than 2.
In [11], we have studied Laguerre type polynomials. They are defined by taking suitable linear combinations

of a fixed number of consecutive Laguerre polynomials. These Laguerre type polynomials are eigenfunctions
of higher-order differential operators and include, as particular cases, the Krall-Laguerre polynomials. Among
other things, we have proved in [11] that Laguerre type polynomials are also bispectral and that the Krall-
Laguerre families are the only Laguerre type polynomials which are orthogonal with respect to a measure on
the real line.
The purpose of this paper is to study Jacobi type polynomials. For α, β, α + β 6= −1,−2, . . . we use the

following renormalization of the Jacobi polynomials:

Jα,β
n (x) =

(−1)n(α+ β + 1)n
2n(β + 1)n

n
∑

j=0

(

n+ α

j

)(

n+ β

n− j

)

(x − 1)n−j(x+ 1)j .

We denote by µα,β(x) the orthogonalizing weight for the Jacobi polynomials normalized so that
∫

µα,β(x)dx =

2α+β+1 Γ(α+1)Γ(β+1)
Γ(α+β+2) . Only when α, β > −1, µα,β(x), −1 < x < 1, is positive, and then

(1.7) µα,β(x) = (1 − x)α(1 + x)β , −1 < x < 1.

From the Jacobi polynomials (Jα,β
n )n, we can generate sequences of polynomials (qn(x))n which are eigenfunc-

tions of a higher-order differential operator (acting on the continuous variable x) in the following way. Consider
two finite sets G = {g1, . . . , gm1

} and H = {h1, . . . , hm2
} of positive integers (written in increasing size) and

polynomials Rg, g ∈ G, with degRg = g and Sh, h ∈ H , with deg Sh = h. The positive integers m1 and m2 are
the number of elements of G and H , respectively, and let us call m = m1 +m2. Since the leading coefficients
of the polynomials Rg and Sh just produce a renormalization of the polynomials (qn)n (see (1.15) below), we
assume along the rest of this paper that Rg(x) and Sh(x) are monic polynomials.
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We also denote by Zi, i = 1, . . . ,m, the set of polynomials defined by

(1.8) Zi(x) =

{

Rgi(x), for i = 1, . . . ,m1,

Shi−m1
(x), for i = m1 + 1, . . . ,m.

For α−m2 6= −1,−2, . . . , and β −m1 6= −1,−2, . . . , we write

(1.9) ρix,j =

{

(−1)m−jΓα−j,β−1
α−m,β−j(x), for i = 1, . . . ,m1,

1, for i = m1 + 1, . . . ,m,

where for a, b, c, d, x ∈ R, we define

(1.10) Γa,b
c,d(x) =

Γ(x+ a+ 1)Γ(x+ b+ 1)

Γ(x+ c+ 1)Γ(x+ d+ 1)
.

We will always use ρix,j , with j = 0, . . . ,m. Hence when α or β are nonnegative integers ρin,j, n ∈ N, can be also

defined from (1.10) by using the standard properties of the Gamma function and taking 1/Γ(−n) = 0, n ∈ N.
We associate to G and H the following m×m quasi-Casoratian determinant

(1.11) ΛG,H(n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ1n,1Z1(θn−1) ρ1n,2Z1(θn−2) . . . ρ1n,mZ1(θn−m)
...

...
. . .

...

ρmn,1Zm(θn−1) ρmn,2Zm(θn−2) . . . ρmn,mZm(θn−m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

p(n)q(n)
,

where p and q are the following polynomials

p(x) =

m1−1
∏

i=1

(−1)m1−i(x+ α−m+ 1)m1−i(x + β −m1 + i)m1−i,(1.12)

q(x) = (−1)(
m

2 )
m−1
∏

h=1

(

h
∏

i=1

(2(x−m) + α+ β + i+ h)

)

,(1.13)

where (a)0 = 1, (a)n = a(a+1) · · · (a+n−1) denotes as usual the Pochhammer symbol and θn = n(n+α+β+1)
is the eigenvalue associated with the second-order differential operator for the Jacobi polynomials. Along this
paper we will assume that

(1.14) ΛG,H(n) 6= 0, n = 0, 1, 2, . . .

We then define the sequence of polynomials (qn)n by

(1.15) qn(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Jα,β
n (x) −Jα,β

n−1(x) . . . (−1)mJα,β
n−m(x)

ρ1n,0Z1(θn) ρ1n,1Z1(θn−1) . . . ρ1n,mZ1(θn−m)

...
...

. . .
...

ρmn,0Zm(θn) ρmn,1Zm(θn−1) . . . ρmn,mZm(θn−m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p(n)q(n)

(see the Remark 2.1 for a discussion of how to define ΛG,H and qn when α and β are nonnegative integers). The
assumption (1.14) says that the determinant on the right-hand side of (1.15) defines a polynomial of degree n,
n ≥ 0. Expanding the determinant by its first row, we see that each qn, n ≥ m, is a linear combination of m
consecutive Jacobi polynomials.
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Using the D-operator method, it is proved in [10] (see Theorem 3.1 and the beginning of Section 4 of that
paper) that the polynomials (qn)n are eigenfunctions of a higher-order differential operator (acting on the

continuous variable x) of the form Dx =
∑r

l=0 hl(x)
(

d
dx

)l
, where hl(x) are polynomials and r is a positive even

integer greater than 2. This differential operator can, in fact, be explicitly constructed. For a different approach
of the polynomials (1.15) using discrete Darboux transformations see [18, 19].
The most interesting case corresponds with the different families of Krall-Jacobi polynomials, orthogonal with

respect to any of the measures (1.4), (1.5) or (1.6). Indeed, let uλj (x) be the following polynomials

(1.16) uλj (x) = (x+ α− λ+ 1)j(x+ β + λ− j + 1)j = Γα−λ+j,β+λ
α−λ,β+λ−j(x).

We have that uλj (x) ∈ R[θx], where θx = x(x + α + β + 1) (see [10, p. 216]). Take now α and β two positive
integers with m2 ≤ α ≤ maxH , m1 ≤ β ≤ maxG,

G = {β, β + 1, . . . , β +m1 − 1}, H = {α, α+ 1, . . . , α+m2 − 1},

and

Rgk(θx) = uαβ+k−1(x) +
k−1
∑

l=0

(β + k − l)l
(

k−1
l

)

ak−l−1

(−1)l(β − l)l
uαl (x), k = 1, . . . ,m1,(1.17)

Shk
(θx) = uαα+k−1(x) +

k−1
∑

l=0

(α+ k − l)l
(

k−1
l

)

bk−l−1

(−1)l(α− l)l
uαl (x), k = 1, . . . ,m2,(1.18)

where ak, k = 0, . . . ,m1 − 1, bk, k = 0, . . . ,m2 − 1, are real numbers with a0, b0 6= 0. Then the polynomials
(1.15) are orthogonal with respect to the Krall-Jacobi weight (1.6) (for certain parameters ck, k = 0, . . . ,m2−1,
dk, k = 0, . . . ,m1 − 1). In [10, (1.13) and Example 4.1, 1, p. 217], we represent (qn)n with a different set of
polynomials (Zl)

m
l=1 (1.8) from where the representation {Rg}g∈G, {Sh}h∈H can be easily obtained.

As the main results of this paper, we first prove that for any set of polynomials Rg, g ∈ G, with degRg = g,
and Sh, h ∈ H , with degSh = h, satisfying (1.14), the polynomials (qn)n (1.15) are bispectral. And second, we
also prove that the only sequences (qn)n (1.15) satisfying a three-term recurrence relation (and therefore they
are orthogonal with respect to a measure) are essentially the Krall-Jacobi polynomials orthogonal with respect
to the any of the measures (1.4), (1.5) or (1.6).

The content of the paper is as follows. After some preliminaries in Section 2, in Section 3 we find some
orthogonality properties for the polynomials (qn)n with respect to a certain bilinear form. When α−maxG 6=
0,−1,−2, . . . and β −maxH 6= 0,−1,−2, . . ., we get this bilinear form by modifying the Jacobi weight with a
nonsymmetric perturbation (which strongly depends on the polynomials Rg and Sh). When 1 ≤ α ≤ maxG
and/or 1 ≤ β ≤ maxH (which includes the Krall-Jacobi polynomials orthogonal with respect to (1.4), (1.5)
or (1.6)), in order to get orthogonality properties, we have to transform a portion of that perturbation into a
discrete Sobolev part.
These orthogonality properties allow us to prove in Section 4 that the sequence (qn)n satisfies some recurrence

relations of the form (1.2) where s = −r. On the other hand, the orthogonality properties constrain the number
of terms of these recurrence relations: in particular, we prove in Section 4 that when α−maxG 6= 0,−1,−2, . . .
and β−maxH 6= 0,−1,−2, . . ., the sequence (qn)n can never satisfy a three-term recurrence relation of the form
(1.3). When 1 ≤ α ≤ maxG and/or 1 ≤ β ≤ maxH , we prove that the sequence (qn)n satisfies a three-term
recurrence relation of the form (1.3) only when they correspond with the Krall-Jacobi cases (1.4), (1.5) or (1.6).
We also prove some results for the algebra of operators Dn, defined as follows. We denote by An the algebra

formed by all higher-order difference operators (acting on the variable n) of the form (1.1). Then we define

Dn = {Dn ∈ An : Dn(qn) = Q(x)qn, Q ∈ R[x]},
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where R[x] denotes the linear space of real polynomials in the unknown x. This algebra is actually characterized
by the algebra of polynomials defined from the corresponding eigenvalues

D̃n = {Q ∈ R[x] : there exists Dn ∈ Dn such that Dn(qn) = Q(x)qn}.

In Section 4 we prove that when α−maxG 6= 0,−1,−2, . . . and β−maxH 6= 0,−1,−2, . . . and G is a segment,
i.e. its elements are consecutive positive integers, the algebra D̃n has a simple estructure:

D̃n = {Q ∈ R[x] : (1 + x)maxG(1 − x)maxH divides Q′}.

For a characterization of the corresponding algebra for the Charlier and Meixner type polynomials see [8, 12].
We also give some examples showing that, in general, this algebra can have a more complicated structure.
The structure of the Jacobi case is technically more involved than that of the Laguerre case studied in [11].

On one hand, we have to use a more complicated basis (bs)s≥1 in the linear space of polynomials (see (2.9)
below). On the other hand, we have to work with a pair of finite sets of positive integers instead of only one
set, and more parameters (in any case we will omit those proofs which are too similar to the corresponding ones
in [11] for the Laguerre type polynomials).

2. Preliminaries

Consider two finite sets G = {g1, . . . , gm1
} and H = {h1, . . . , hm2

} of positive integers (written in increasing
size) and polynomials Rg, g ∈ G, with degRg = g and Sh, h ∈ H , with degSh = h. We associate to G
and H the sequence of polynomials (qn)n defined by (1.15). Along this paper we will always assume that
ΛG,H(n) 6= 0, n ≥ 0.

Remark 2.1. When α and β are integers, p(n)q(n) can vanish for some n = 0, . . . ,m− 1, where p and q are the
polynomials defined by (1.12) and (1.13), respectively. However, even if for some n = 0, . . . ,m−1, p(n)q(n) = 0,
the ratio ΛG,H (1.11) and the polynomial qn (1.15) are well-defined (and hence qn has degree n if and only if
ΛG,H(n) 6= 0, n ≥ 0). This can be proved as for the Jacobi-Sobolev polynomials studied in [10, p. 205].

We will use the following alternative definition of the polynomials (qn)n in (1.15). For j = 0, 1, . . . ,m, let us
define the sequences (βn,j)n by

(2.1) βn,j =
1

p(n)q(n)
det
(

ρln,iZl(θn−i)
)

l=1,...,m,
i=0,...,m,i6=j

.

By expanding the determinant (1.15) by its first row (writing Jα,β
u (x) = 0 for u < 0) we get the expansion

(2.2) qn(x) =

m∧n
∑

j=0

βn,jJ
α,β
n−j(x).

A straightforward computation, using (1.11), (1.12), (1.13), (2.1) and (1.14), shows that

(2.3) βn,m = (−1)m1

(

n+ α−m+ 1

n+ β

)m1 p(n+ 1)q(n+ 1)

p(n)q(n)
ΛG,H(n+ 1),

where the polynomials p and q are defined by (1.12) and (1.13), respectively.
On the other hand, substituting the first row in (1.15) by any other row in that determinant, we get the

trivial identity

(2.4)

m
∑

j=0

(−1)jβn,jρ
l
n,jZl(θn−j) = 0, l = 1, . . . ,m.
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Remark 2.2. We stress that if we substitute the polynomials Rg and Sh in the determinant (1.15) by any linear
combination Rg and Sh of the form

Rg = Rg +
∑

g̃∈G;g̃<g

ζg,g̃Rg̃, Sh = Sh +
∑

h̃∈H;h̃<h

χh,h̃Sh̃,

then the polynomials (qn)n remain invariant. Notice that degRg = degRg = g, degSh = deg Sh = h and Rg

and Sh are again monic polynomials.

Given polynomials Yi, i = 0, . . . ,m, with deg Yi = ui, we write

(2.5) WY
a (x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ1x,0Y0(θx) ρ1x,1Y0(θx−1) · · · ρ1x,mY0(θx−m)

ρ1x,0Y1(θx) ρ1x,1Y1(θx−1) · · · ρ1x,mY1(θx−m)
...

...
. . .

...

ρmx,0Ym(θx) ρmx,1Ym(θx−1) · · · ρmx,mYm(θx−m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p(x)q(x)
.

Using Lemma A.1 of [10], it follows easily that when ui 6= uj, 0 ≤ i, j ≤ m1, i 6= j, and m1 + 1 ≤ i, j ≤ m,
i 6= j, then WY

a (x) is a polynomial in x of degree

(2.6) d = 2

[

m
∑

i=0

ui −

(

m1 + 1

2

)

−

(

m2

2

)

]

.

Otherwise, WY
a (x) is a polynomial in x of degree strictly less than d.

Analogously, given polynomials Yi, i = 1, . . . ,m+ 1, with deg Yi = ui, the function

(2.7) WY
b (x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ1x,0Y1(θx) ρ1x,1Y1(θx−1) · · · ρ1x,mY1(θx−m)
...

...
. . .

...

ρmx,0Ym(θx) ρmx,1Ym(θx−1) · · · ρmx,mYm(θx−m)

ρmx,0Ym+1(θx) ρmx,1Ym+1(θx−1) · · · ρmx,mYm+1(θx−m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p(x)q(x)
,

is a polynomial in x of degree

d = 2

[

m+1
∑

i=1

ui −

(

m1

2

)

−

(

m2 + 1

2

)

]

,

if and only if ui 6= uj , 1 ≤ i, j ≤ m1, i 6= j, and m1+1 ≤ i, j ≤ m+1, i 6= j. Otherwise, WY
b (x) is a polynomial

in x of degree strictly less than d.
We will also need the following combinatorial formula: if α, β, s, k, u are nonnegative integers with s ≥ β+ k,

then

(2.8)

s−β
∑

j=0

(

s− β − k

j − k

)(

u+ α+ β − k + j

β − k + j

)(

u+ α+ β − s+ k

α+ β − s+ j

)

=

(

u+ α+ β

α

)(

u+ s− k

s− k

)

.

Part of the difficulties in the Jacobi case (compared with the Laguerre case) comes from the fact that we
have to work with the following basis of the linear space of polynomials R[x] (instead of the usual basis of
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monomials):

(2.9) bs(x) =











(1 + x)s−1(1 − x)m2 , for s = 1, . . . ,m1,

(1 + x)m1(1 − x)s−m1−1, for s = m1 + 1, . . . ,m,

(1 + x)m1(1 − x)m2xs−m−1, for s = m+ 1, . . .

Let us write γis as the coefficients of the change of basis (bs(x))s → (xs−1)s−1, s ≥ 1:

(2.10) xi =

(i+1)∨m
∑

s=1

γisbs(x), i ≥ 0.

Lemma 2.3. The coefficients γis can be recursively obtained from the following relations:

l
∑

h=1

(−2)h−l

(

m2

l − h

)

γih =
(−1)i+l+1

2m2

(

i

l − 1

)

, l = 1, . . . ,m1,

l
∑

h=1

(−2)h−l

(

m1

l − h

)

γim1+h =
(−1)l+1

2m1

(

i

l− 1

)

, l = 1, . . . ,m2.

Proof. It is a matter of computation, by taking derivatives in the expansion (2.10), evaluating at x = 1,−1,
and using the following formulas: for s = 1, . . . ,m1,

(2.11) (bs)
(l)

(−1) =







l!2m2(−2)s−l−1

(

m2

l − s+ 1

)

for l = s− 1, . . . , [m1 ∧ (s+m2)]− 1,

0, for l = 0, . . . , s− 2, or l = s+m2, . . . ,m1 − 1,

while for s ≥ m1 + 1 we have (bs)
(l)

(−1) = 0 for l = 0, . . . ,m1 − 1.
And, similarly, for s = m1 + 1, . . . ,m, we have

(bs)
(l)

(1) =







l!(−1)s−m1−12s−l−1

(

m1

s− l − 1

)

for l = s−m1 − 1, . . . , [s ∧m2]− 1,

0, for l = 0, . . . , s−m1 − 2, or l = s, . . . ,m2 − 1,

while for s = 1, . . . ,m1, or s ≥ m + 1 we have (bs)
(l)

(1) = 0 for l = 0, . . .m2 − 1 (see proof of Lemma 2.1 in
[10]). �

We also need the following technical lemma.

Lemma 2.4. For s = 0, 1, . . . ,m1 − 1, and t = 0, 1, . . . ,m2 − 1, define the rational functions

φs(x) =

m1−s−1
∑

u=0

asu(1 + x)−u−1, ψt(x) =

m1−t−1
∑

u=0

ctu(1− x)−u−1.

Then there exist numbers asu and ctu (uniquely determined) such that for i = 1, . . . ,m1, we have

(2.12)

[m1∧(i+m2)]−1
∑

l=i−1

(−2)i−l−1

(

m2

l− i+ 1

)

φl(x) = −(1 + x)i−m1−1,

and for i = m1 + 1, . . . ,m, we have

[m2∧i]−1
∑

l=i−m1−1

(−2)i−l−1

(

m1

i− l − 1

)

ψl(x) = −(1− x)i−m−1.
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Proof. The rational functions φs(x) can be recursively computed starting from i = m1 in which case we have
φm1−1(x) = −(1− x)−1. From here we can compute φm1−2(x), . . . , φ0(x) recursively. The same can be applied
to ψt(x). �

As we wrote in the Introduction, the most interesting case corresponds with the different families of Krall-
Jacobi polynomials, orthogonal with respect to any of the measures (1.4), (1.5) or (1.6). In any of these cases
we have m2 ≤ α ≤ maxH or/and m1 ≤ β ≤ maxG. For instance, the orthogonal polynomials with respect to
the measure (1.6) are the polynomials (qn)n (1.15), where m2 ≤ α ≤ maxH , m1 ≤ β ≤ maxG,

G = {β, β + 1, . . . , β +m1 − 1}, H = {α, α+ 1, . . . , α+m2 − 1},

and the polynomials Rg, g ∈ G, Sh, h ∈ H , are defined by (1.17) and (1.18), respectively.
If 1 ≤ α ≤ m2 − 1 and/or 1 ≤ β ≤ m1 − 1 and if we take

Rgk(θx) = uαβ+k−1(x) +

k+β−m1−1
∑

l=0

(β + k − l)l
(

k−1
l

)

ãk−l−1

(−1)l(β − l)l
uαl (x), k = 1, . . . ,m1,

Shk
(θx) = uαα+k−1(x) +

k+α−m2+1
∑

l=0

(α+ k − l)l
(

k−1
l

)

b̃k−l−1

(−1)l(α− l)l
uαl (x), k = 1, . . . ,m2,

then the polynomials (qn)n satisfies also three-term recurrence relations (if u > v we always take
∑v

l=u ρl = 0).
But these polynomials (qn)n, as in the case of Laguerre type polynomials (see [11]), are somehow degenerated.
Indeed, since we have (after a combination of formulas (3.94), (3.100) and (3.107) of [28], see also [10, p. 203])

(

(1 + x)kJα,β
n

)(j)
(−1) =

(−1)j+kj!

2j−k
(

α+β
β

)

(

n+ α+ β

α

)(

n+ β

n− j + k

)(

n+ α+ β + j − k

j − k

)

,(2.13)

(

(1− x)kJα,β
n

)(j)
(1) =

(−1)n+kj!

2j−k
(

α+β
β

)

(

n+ α+ β

α

)(

n+ α

n− j + k

)(

n+ α+ β + j − k

j − k

)

,

it is not difficult to see that

q(j)n (1) = 0, j = 0, 1, . . . ,m2 − α− 1, n ≥ m− α− β,

q(j)n (−1) = 0, j = 0, 1, . . . ,m1 − β − 1, n ≥ m− α− β.

Moreover, it turns out that the polynomials
(

qn+m−α−β(x)

(1− x)m2−α(1 + x)m1−β

)

n≥0

,

are particular examples of the cases (1.17) and (1.18) for certain choice of the parameters involved.

3. Orthogonality properties

In this section we will establish some orthogonality properties for the polynomials (qn)n in (1.15). We start
with the case α−maxH 6= 0,−1,−2, . . . , and β −maxG 6= 0,−1,−2, . . .. Using the polynomials uλj (x) (1.16),
we can always write

(3.1) Rg(θx) =

g
∑

s=0

νgsu
α
s (x), Sh(θx) =

h
∑

s=0

ωh
s u

α
s (x),

for certain numbers νgs , s = 0, 1, . . . , g, and ωh
s , s = 0, 1, . . . , h, (νgg = 1, ωh

h = 1), which are uniquely determined
from the polynomials Rg and Sh.
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For each l = 0, 1, . . .m1 − 1, we introduce the rational function Ul defined by

(3.2) Ul(x) = φl(x) +
κl

Γ(β)

gl+1
∑

s=0

(β − s)s2
ss!ν

gl+1

s

(1 + x)s+1
,

where the rational functions φl(x), l = 0, 1, . . .m1 − 1, are defined in Lemma 2.4 and κl, l = 0, . . . ,m1 − 1, are
real numbers.
Similarly, for each l = 0, 1, . . .m2 − 1, the rational function Vl is defined by

(3.3) Vl(x) = ψl(x) +
τl

Γ(α)

hl+1
∑

s=0

(α− s)s2
ss!ω

hl+1

s

(1− x)s+1
,

where the rational functions ψl(x), l = 0, 1, . . .m2 − 1, are defined in Lemma 2.4 and τl, l = 0, . . . ,m2 − 1, are
real numbers.
Let us consider now the following bilinear form, with respect to which the polynomials (qn)n≥m in (1.15) will be

(left) orthogonal. For real numbers α and β such that α−maxH 6= 0,−1,−2, . . . , and β−maxG 6= 0,−1,−2, . . . ,
we consider

(3.4) 〈p, q〉 = 〈p, q〉1 + 〈p, q〉2 + 〈p, q〉3,

where

〈p, q〉1 =

∫ 1

−1

p(x)q(x)µα−m2 ,β−m1
(x)dx,

and µα,β is the Jacobi weight given by (1.7),

(3.5) 〈p, q〉2 =

m1−1
∑

l=0

q(l)(−1)

2m2 l!

∫ 1

−1

p(x)Ul(x)µα,β(x)dx,

where Ul is defined by (3.2), and

(3.6) 〈p, q〉3 =

m2−1
∑

l=0

q(l)(1)

(−1)m1+ll!

∫ 1

−1

p(x)Vl(x)µα,β(x)dx.

where Vl is defined by (3.3).
The following lemma will be the key for most of our results.

Lemma 3.1. Let k, n ≥ 0, j = 0, 1, . . . , n and n− j ≥ k. For i = 1, . . . ,m1, we have

〈(1 + x)kJα,β
n−j, bi〉 =

cn,iρ
i
n,j

(−1)j





[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l+1

gl+1
∑

s=k

2kνgl+1

s (β − s)k(s− k + 1)ku
α
s−k(n− j)



 ,

where cn,i = (−1)m+i2α+β+iΓ(β + 1)Γ(n + α − m + 1)/(Γ(α + β + 1)Γ(n + β)) and ρix,j is defined by (1.9).
Similarly, for i = m1 + 1, . . . ,m, we have

〈(1− x)kJα,β
n−j , bi〉 =

dn,i
(−1)j





[m2∧i]−1
∑

l=i−m1−1

τl
(

m1

i−l−1

)

(−2)l+1

hl+1
∑

s=k

2kωhl+1

s (α− s)k(s− k + 1)ku
α
s−k(n− j)



 ,

where dn,i = (−1)n+i2α+β+iΓ(β + 1)/Γ(α+ β + 1).

Proof. We will need the following formula, which can be found in [10, p. 203]: for l = 1, . . . ,m1, we have

(3.7)

∫ 1

−1

Jα,β
n (x)µα,β−l(x)dx =

Γ(β + 1)Γ(β − l + 1)

2l−α−β−1Γ(α+ β + 1)

(

n+ l − 1

l − 1

)

Γα,α+β
β,α+β−l+1(n).
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Now, for i = 1, . . . ,m1, we have, using (2.11), that 〈(1 + x)kJα,β
n−j , bi〉3 = 0. Using the definition of bi(x) and Ul

in (2.9) and (3.2), respectively, and (2.11) again, we have

〈(1 + x)kJα,β
n−j , bi〉 =

∫ 1

−1

Jα,β
n−jµα,β+k+i−m1−1dx

+

[m1∧(m2+i)]−1
∑

l=i−1

(

m2

l−i+1

)

(−2)l−i+1

∫ 1

−1

Jα,β
n−j

(

φl(x) +
κl

Γ(β)

gl+1
∑

s=0

(β − s)s2
ss!ν

gl+1

s

(1 + x)s+1

)

µα,β+kdx

=

[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l−i+1Γ(β)

gl+1
∑

s=0

(β − s)s2
ss!νgl+1

s

∫ 1

−1

Jα,β
n−jµα,β+k−s−1dx

=

[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l−i+1Γ(β)
×

×

gl+1
∑

s=0

(β − s)s2
ss!νgl+1

s

[

Γ(β + 1)Γ(β − s+ k)

2s−k−α−βΓ(α+ β + 1)

(

n+ s− k

s− k

)

Γα,α+β
β,α+β−s+k(n− j)

]

= cn,i(−1)jρin,j





[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l+1

gl+1
∑

s=k

2kνgl+1

s (β − s)k(s− k + 1)ku
α
s−k(n− j)



 .

The second step follows as a consequence of Lemma 2.4 (see (2.12)), while the third step follows from (3.7) and
the definition of ρin,j in (1.9) (see also (1.10)) and the definition of uλj (x) in (1.16). The second identity can be
proved in a similar way. �

Remark 3.2. Observe that for k = 0 we have, using (3.1), the simplified formulas

〈Jα,β
n−j , bi〉 = cn,i(−1)jρin,j

[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l+1
Rgl+1

(θn−j),

for i = 1, . . . ,m1, and

〈Jα,β
n−j , bi〉 = dn,i(−1)j

[m2∧i]−1
∑

l=i−m1−1

τl
(

m1

i−l−1

)

(−2)l+1
Shl+1

(θn−j),

for i = m1 + 1, . . . ,m, using the notation in Lemma 3.1.

We are now ready to prove the orthogonality properties for the polynomials (qn)n.

Theorem 3.3. Let α and β be real numbers with α−maxH 6= 0,−1,−2, . . . , and β −maxG 6= 0,−1,−2, . . ..
Assume that conditions (1.14) hold. Then for n ≥ m, the polynomials (qn)n defined by (1.15) satisfy the
following orthogonality properties with respect to the bilinear from (3.4):

〈qn, qi〉 = 0, i = 0, 1, . . . , n− 1,

〈qn, qn〉 6= 0.
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Proof. For n ≥ m, let qn be written as in (2.2) and xi as in (2.10). Then, using Lemma 3.1 for k = 0 (see
Remark 3.2), we have

〈qn, x
i〉 =

m∧n
∑

j=0

βn,j

(i+1)∨m
∑

s=1

γis〈J
α,β
n−j , bs〉

=
m∧n
∑

j=0

βn,j





m1
∑

s=1

γiscn,s(−1)jρsn,j





[m1∧(m2+s)]−1
∑

l=s−1

κl
(

m2

l−s+1

)

(−2)l+1
Rgl+1

(θn−j)





+

m
∑

s=m1+1

γisdn,s(−1)j





[m2∧s]−1
∑

l=s−m1−1

τl
(

m1

s−l−1

)

(−2)l+1
Shl+1

(θn−j)





+

(i+1)∨m
∑

s=m+1

γis

∫ 1

−1

Jα,β
n−j(x)x

s−m−1µα,βdx





=

m1
∑

s=1

γiscn,s

[m1∧(m2+s)]−1
∑

l=s−1

κl
(

m2

l−s+1

)

(−2)l+1





m∧n
∑

j=0

βn,j(−1)jρsn,jRgl+1
(θn−j)





+

m
∑

s=m1+1

γisdn,s

[m2∧s]−1
∑

l=s−m1−1

τl
(

m1

s−l−1

)

(−2)l+1





m∧n
∑

j=0

βn,j(−1)jShl+1
(θn−j)





+

m∧n
∑

j=0

βn,j

(i+1)∨m
∑

s=m+1

γis

∫ 1

−1

Jα,β
n−j(x)x

s−m−1µα,βdx.

Assume first that m ≤ i ≤ n − 1. In this case the third addend in the previous formula vanishes because of
the orthogonality of the Jacobi polynomials. Indeed, the power of xs−m−1 goes from 0 to i −m (since i ≥ m)
and we always have in this situation that i−m < n− j for j = 0, . . . ,m ∧ n = m. The other two addends also
vanish as a consequence of (2.4), since in this case we have m ∧ n = m. For i = n ≥ m we have 〈qn, x

n〉 6= 0 as
a consequence of the orthogonality properties for the Jacobi polynomials and that βm,m 6= 0 (see (2.3)).
Let us now assume that 0 ≤ i ≤ m− 1. In this case there is no third addend in the previous formula (since

(i + 1) ∨m < m+ 1). Therefore we have

〈qn, x
i〉 =

m1
∑

s=1

γiscn,s

[m1∧(m2+s)]−1
∑

l=s−1

κl
(

m2

l−s+1

)

(−2)l+1





m∧n
∑

j=0

βn,j(−1)jρsn,jRgl+1
(θn−j)





+

m
∑

s=m1+1

γisdn,s

[m2∧s]−1
∑

l=s−m1−1

τl
(

m1

s−l−1

)

(−2)l+1





m∧n
∑

j=0

βn,j(−1)jShl+1
(θn−j)



 .(3.8)

For n ≥ m we have m ∧ n = m and, as before, the two first addends vanish as a consequence of (2.4). �

Notice that, we have not assumed any constrain on the real numbers κl, l = 0, . . . ,m1 − 1, and τl, l =
0, . . . ,m2−1. In general, the orthogonality properties in Theorem 3.3 can not be extended for n = 0, . . . ,m−1.
This fact would imply some problems to prove the bispectrality of the polynomials (qn)n. We will avoid those
problems by using the following lemma.
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Lemma 3.4. Let α and β be real numbers with α −maxH 6= 0,−1,−2, . . . , and β −maxG 6= 0,−1,−2, . . ..
Assume that conditions (1.14) hold and that κl = 1, l = 0, . . . ,m1 − 1 and τl = 1, l = 0, . . . ,m2 − 1. Then the
matrix A with entries Ai,j = 〈qj , x

i〉, i, j = 0, . . . ,m− 1, is nonsingular.

Proof. We will prove that detA 6= 0. First we will find an explicit expression for 〈qj , x
i〉, i, j = 0, . . . ,m − 1.

For 0 ≤ j ≤ m− 1, using (2.4), we can write

j
∑

l=0

(−1)lβj,lρ
s
j,lZs(θj−l) = −

m
∑

l=j+1

(−1)lβj,lρ
s
j,lZs(θj−l)

= −

m−j
∑

l=1

(−1)j+lβj,j+lρ
s
j,j+lZs(θ−l).

Substituting this expression in formula (3.8), using that m ∧ j = j and the hypothesis that κl = 1, l =
0, . . . ,m1 − 1, and τl = 1, l = 0, . . . ,m2 − 1, we get

〈qj , x
i〉 =

m1
∑

s=1

γiscj,s

[m1∧(m2+s)]−1
∑

p=s−1

(

m2

p−s+1

)

(−2)p+1

(

j
∑

l=0

βj,l(−1)lρsj,lRgp+1
(θj−l)

)

+

m
∑

s=m1+1

γisdj,s

[m2∧s]−1
∑

p=s−m1−1

(

m1

s−p−1

)

(−2)p+1

(

j
∑

l=0

βj,l(−1)lShp+1
(θj−l)

)

= −

m1
∑

s=1

γiscj,s

[m1∧(m2+s)]−1
∑

p=s−1

(

m2

p−s+1

)

(−2)p+1

(

m−j
∑

l=1

(−1)j+lβj,j+lρ
s
j,j+lRgp+1

(θ−l)

)

−

m
∑

s=m1+1

γisdj,s

[m2∧s]−1
∑

p=s−m1−1

(

m1

s−p−1

)

(−2)p+1

(

m−j
∑

l=1

(−1)j+lβj,j+lρ
s
j,j+lShp+1

(θ−l)

)

= −

m−j
∑

l=1

(−1)j+lβj,j+l





m1
∑

s=1

γisρ
s
j,j+lcj,s

[m1∧(m2+s)]−1
∑

p=s−1

(

m2

p−s+1

)

(−2)p+1
Rgp+1

(θ−l)

+

m
∑

s=m1+1

γisdj,s

[m2∧s]−1
∑

p=s−m1−1

(

m1

s−p−1

)

(−2)p+1
Shp+1

(θ−l)





=
2α+βΓ(β + 1)

Γ(α+ β + 1)

m−j
∑

l=1

(−1)l+1βj,j+l×

×





(−1)lΓ(α− l + 1)

Γ(β − l + 1)

m1
∑

s=1

γis

[m1∧(m2+s)]−1
∑

p=s−1

(

m2

p−s+1

)

(−2)p−s+1
Rgp+1

(θ−l)

+

m
∑

s=m1+1

γis

[m2∧s]−1
∑

p=s−m1−1

(

m1

s−p−1

)

(−2)p−s+1
Shp+1

(θ−l)



 .

In the last step we have used that ρsn,n+jcn,s =
(−1)jΓ(α−j+1)

Γ(β−j+1) dn,s. Now write

Ξ(i, l) =
(−1)lΓ(α− l + 1)

Γ(β − l + 1)

m1
∑

s=1

γis

[m1∧(m2+s)]−1
∑

p=s−1

(

m2

p−s+1

)

(−2)p−s+1
Rgp+1

(θ−l)
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+

m
∑

s=m1+1

γis

[m2∧s]−1
∑

p=s−m1−1

(

m1

s−p−1

)

(−2)p−s+1
Shp+1

(θ−l).(3.9)

so that

(3.10) 〈qj , x
i〉 =

2α+βΓ(β + 1)

Γ(α+ β + 1)

m−j
∑

l=1

(−1)l+1βj,j+lΞ(i, l).

Let us write (3.9) in a more convenient way. Call δi,l and ηi,l the following expressions

δi,l =

m1
∑

s=1

γis

[m1∧(m2+s)]−1
∑

p=s−1

(

m2

p−s+1

)

(−2)p−s+1
Rgp+1

(θ−l),

ηi,l =

m
∑

s=m1+1

γis

[m2∧s]−1
∑

p=s−m1−1

(

m1

s−p−1

)

(−2)p−s+1
Shp+1

(θ−l),

so that Ξ(i, l) = (−1)lΓ(α−l+1)
Γ(β−l+1) δi,l + ηi,l. δi,l and ηi,l can be written in matrix form as

δi,l =
(

γi1, · · · , γ
i
m1

)











η11 · · · η1,m1

. . .
...

ηm1,m1





















Rg1(θ−l)

...

Rgm1
(θ−l)











and

ηi,l = (−2)m1

(

γim1+1, · · · , γ
i
m

)











ηm1+1,m1+1 · · · ηm1+1,m

. . .
...

ηm,m





















Sh1
(θ−l)
...

Shm2
(θ−l)











,

where

ηi,j = (−2)i−j

(

m2

j − i

)

, i, j = 1, . . . ,m1,

and

ηm1+i,m1+j = (−2)i−j

(

m1

j − i

)

, i, j = 1, . . . ,m2.

Using Lemma 2.3 we have that

(

γi1, · · · , γ
i
m1

)











η11 · · · η1,m1

. . .
...

ηm1,m1











=
(−1)i

2m2

((

i

0

)

,−

(

i

1

)

, · · · , (−1)m1−1

(

i

m1 − 1

))

,
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and

(−2)m1

(

γim1+1, · · · , γ
i
m

)











ηm1+1,m1+1 · · · ηm1+1,m

. . .
...

ηm,m











= (−1)m1

((

i

0

)

,−

(

i

1

)

, · · · , (−1)m2−1

(

i

m2 − 1

))

.

Therefore we can rewrite (3.9) in the form

Ξ(i, l) =
(−1)i+l

2m2

Γ(α− l + 1)

Γ(β − l + 1)

i∧(m1−1)
∑

s=0

(−1)s
(

i

s

)

Rgs+1
(θ−l)

+ (−1)m1

i∧(m2−1)
∑

s=0

(−1)s
(

i

s

)

Shs+1
(θ−l).(3.11)

Write now B for the m×m matrix whose entries are given by

Bi,j = Ξ(i,m− j) i, j = 0, . . . ,m− 1.

Since α − maxH 6= 0,−1,−2, . . . , and β − maxG 6= 0,−1,−2, . . . , the identity (2.3) shows that βi,m 6= 0.
Combining columns, it is easy to see from (3.10) that

(3.12) detA =
(−1)(

m+1

2 )+m2m(α+β)Γ(β + 1)m

Γ(α+ β + 1)m





m−1
∏

j=0

βj,m



detB.

Using (3.11), it follows easily that the matrix B is in turn the product of the matrices C and D defined as
follows

Ci,s =















(−1)i+s

2m2

(

i

s

)

, s = 0, . . . ,m1 − 1,

(−1)m1+s

(

i

s−m1

)

, s = m1, . . . ,m− 1,
i = 0, . . . ,m− 1,

Ds,j =







(−1)m−jΓ(α−m+ j + 1)

Γ(β −m+ j + 1)
Rgs+1

(θj−m), s = 0, . . . ,m1 − 1,

Shs+1−m1
(θj−m), s = m1, . . . ,m− 1,

j = 0, . . . ,m− 1.

On the one hand, it is not difficult to prove that detC = (−1)(
m2
2 ). The determinant of the matrix D can be

computed, using (1.9), (1.11), (1.12) and (1.13) for n = 0 to get

(3.13) detD =
p(0)q(0)Γ(α−m+ 1)m1

(−1)m1m+(m2 )Γ(β)m1

ΛG,H(0),
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where the polynomials p and q are defined by (1.12) and (1.13), respectively. Combining (3.12) and (3.13), and
using (2.3), we finally get

detA =
det(C)2m(α+β)Γ(β + 1)m

Γ(α+ β + 1)m





m−1
∏

j=0

βj,m





p(0)q(0)Γ(α−m+ 1)m1

(−1)m1mΓ(β)m1
ΛG,H(0)

=
p(m)q(m)2m(α+β)Γ(β + 1)mΓ(α+ 1)m1

(−1)(
m2
2 )Γ(α+ β + 1)mΓ(β +m)m1





m
∏

j=0

ΛG,H(j)



 ,(3.14)

from where it follows that detA 6= 0, since we are assuming ΛG,H(n) 6= 0, n ≥ 0 (see (1.14)) and α−maxH 6=
0,−1,−2, . . . , and β −maxG 6= 0,−1,−2, . . .. �

The case when α = 1, . . . ,maxH or/and β = 1, . . . ,maxG is specially interesting because it includes the
Krall-Jacobi polynomials orthogonal with respect to the measures (1.4), (1.5) or (1.6). We only work out here
the case when α = m2, . . . ,maxH and β = m1, . . . ,maxG. The other cases can be studied in a similar way.
We next show that we have to change the bilinear forms (3.5) and (3.6) by transforming a portion of the

integral into a discrete Sobolev inner product. First of all, notice that for gl+1 ∈ G, hl+1 ∈ H , gl+1 ≥ β and
hl+1 ≥ α, the rational functions Ul (3.2) and Vl (3.3) reduce to

Ul(x) = φl(x) +
κl

Γ(β)

β−1
∑

s=0

(β − s)s2
ss!ν

gl+1

s

(1 + x)s+1
,(3.15)

Vl(x) = ψl(x) +
τl

Γ(α)

α−1
∑

s=0

(α− s)s2
ss!ω

hl+1

s

(1− x)s+1
.

Since α = m2, . . . ,maxH and β = m1, . . . ,maxG, there exist indices k1 and k2, 1 ≤ k1 ≤ m1 and 1 ≤ k2 ≤ m2,
such that gl ≥ β for l > k1 and hl ≥ α for l > k2.
Take now α̃, β̃ 6∈ Z and p, q ∈ P, and denote 〈p, q〉2̃ the bilinear form (3.5) defined by α̃ and β̃. Using the

definition of Ul (3.2), we can see that 〈p, q〉2̃ is formed by certain summands depending on l, l = 0, . . . ,m1 − 1,
of the form

(3.16)

∫ 1

−1

p(x)φl(x)dµα̃,β̃ ,

and certain summands depending on l and s, l = 0, . . . ,m1 − 1, s = 0, . . . gl+1, of the form

(3.17)
κl(β̃ − s)s2

ss!ν
gl+1

s q(l)(−1)

2m2 l!Γ(β̃)

∫ 1

−1

p(x)

(1 + x)s+1
dµα̃,β̃ .

Notice that when α̃ and β̃ tend to α and β, respectively, each of the summands (3.16) has a limit (since
β = m1, . . . ,maxG). This also happens for the summands (3.17) when l = 0, . . . , k1−1 (and hence gl+1 ≤ β−1),
or l = k1, . . . ,m1 − 1 and s = 0, . . . , β − 1. Moreover, taking into account (3.2) and (3.15), the sum formed by
these summands converges to 〈p, q〉2.
Consider now one of the summands (3.17) corresponding to l = k1, . . . ,m1 − 1 (and hence gl+1 ≥ β) and

s = β, . . . , gl+1. Since
∫ 1

−1

p(x)

(1 + x)s+1
dµα̃,β̃ =

∫ 1

−1

p(x)dµα̃,β̃−s−1,
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we can not take limit when β̃ tends to β because β − s− 1 ≤ −1 and we will have divergent integrals. To avoid
this problem, we split up p in the form

p(x) = p(x)−

gl+1−β
∑

j=0

p(j)(−1)

j!
(1 + x)j +

gl+1−β
∑

j=0

p(j)(−1)

j!
(1 + x)j = r(x) +

gl+1−β
∑

j=0

p(j)(−1)

j!
(1 + x)j .

On the one hand, we have

∫ 1

−1

r(x)dµα̃,β̃−s−1 =

∫ 1

−1

r(x)

(1 + x)gl+1−β+1
dµα̃,gl+1−s+β̃−β.

Since r(x)/(1 + x)gl+1−β+1 is still a polynomial and gl+1 − s ≥ 0, the above integral has a finite limit when β̃

tends to β. That integral is multiplied by the factor (β̃ − s)s (see (3.17)), which goes to zero as β̃ tends to β
(since s ≥ β).
On the other hand, for j = 0, . . . , g − β, we have

∫ 1

−1

(1 + x)jdµα̃,β̃−s−1 =

∫ 1

−1

dµα̃,β̃+j−s−1 = 2α̃+β̃+j−sΓ(α̃+ 1)Γ(β̃ − s+ j)

Γ(α̃ + β̃ − s+ j + 1)
.

Multiplying Γ(β̃ − s+ j) by (β̃ − s)s, we get

(β̃ − s)sΓ(β̃ − s+ j) = (β̃ − s)jΓ(β̃),

which tends to (β − s)jΓ(β) as β̃ tends to β.
Hence, we have proved that

lim
α̃→α,β̃→β

∫ 1

−1

(β̃ − s)sp(x)

(1 + x)s+1
dµα̃,β̃ = Γ(α+ 1)Γ(β)

g−β
∑

j=0

2α+β+j−sp(j)(−1)

j!

(β − s)j
Γ(α+ β − s+ j + 1)

.

This gives the discrete Sobolev bilinear form

〈p, q〉2S = 2α+βΓ(α+ 1)

m1−1
∑

l=0

κl
q(l)(−1)

2m2 l!

gl+1−β
∑

j=0

2jp(j)(−1)

j!

gl+1
∑

s=β+j

(β − s)js!

Γ(α+ β − s+ j + 1)
νgl+1

s .

Proceeding in the same way with the bilinear form (3.6), we get the discrete Sobolev bilinear form

〈p, q〉3S = 2α+βΓ(β + 1)

m2−1
∑

l=0

τl
q(l)(1)

(−1)m1+ll!

hl+1−α
∑

j=0

2jp(j)(1)

(−1)jj!

hl+1
∑

s=α+j

(α− s)js!

Γ(α+ β − s+ j + 1)
ωhl+1

s .

We then define the bilinear form

(3.18) 〈p, q〉S = 〈p, q〉1 + 〈p, q〉2 + 〈p, q〉2S + 〈p, q〉3 + 〈p, q〉3S .

It turns out that Lemma 3.1 is still true for this inner product.

Lemma 3.5. Let k, n ≥ 0, j = 0, 1, . . . , n and n− j ≥ k. For i = 1, . . . ,m1, we have

〈(1 + x)kJα,β
n−j , bi〉S =

cn,iρ
i
n,j

(−1)j





[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l+1

gl+1
∑

s=k

2kνgl+1

s (β − s)k(s− k + 1)ku
α
s−k(n− j)



 ,
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where cn,i = (−1)m+i2α+β+iΓ(β + 1)Γ(n + α − m + 1)/(Γ(α + β + 1)Γ(n + β)) and ρix,j is defined by (1.9).
Similarly, for i = m1 + 1, . . . ,m, we have

〈(1− x)kJα,β
n−j , bi〉S =

dn,i
(−1)j





[m2∧i]−1
∑

l=i−m1−1

τl
(

m1

i−l−1

)

(−2)l+1

hl+1
∑

s=k

2kωhl+1

s (α− s)k(s− k + 1)ku
α
s−k(n− j)



 ,

where dn,i = (−1)n+i2α+β+iΓ(β + 1)/Γ(α+ β + 1).

Proof. Call v = n− j. For i = 1, . . . ,m1, we have that 〈(1 + x)kJα,β
v , bi〉3 = 〈(1 + x)kJα,β

v , bi〉3S = 0. Therefore

〈(1 + x)kJα,β
v , bi〉S = 〈(1 + x)kJα,β

v , bi〉+ 〈(1 + x)kJα,β
v , bi〉2S ,

where the inner product 〈·, ·〉 is defined by (3.4). Following the same steps as in the proof of Lemma 3.1 we
have that

〈(1 + x)kJα,β
v , bi〉 =

cv+j,iρ
i
v+j,j

(−1)j





[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l+1

β−1
∑

s=k

2kνgl+1

s (β − s)k(s− k + 1)ku
α
s−k(v)





=
2α+βΓ(β + 1)Γ(v + α+ 1)

Γ(α+ β + 1)Γ(v + β + 1)





[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l−i+1

β−1
∑

s=k

2kνgl+1

s (β − s)k(s− k + 1)ku
α
s−k(v)



 .

On the other hand we have, using (2.11), (2.13), (1.16), (1.10) and (2.8) that

〈(1 + x)kJα,β
n−j , bi〉2S = 2α+βΓ(α+ 1)

[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l−i+1

gl+1−β
∑

j=0

(−1)j+kj!

2−k
(

α+β
β

)×

×

(

v + α+ β

α

)(

v + β

v − j + k

)(

v + α+ β + j − k

j − k

) gl+1
∑

s=β+j

(β − s)js!

Γ(α+ β − s+ j + 1)
νgl+1

s

=
2α+βΓ(β + 1)Γ(v + α+ 1)

Γ(α+ β + 1)Γ(v + β + 1)
×

×





[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l−i+1

gl+1−β
∑

j=0

(−1)j+k2kΓ(α+ 1)Γ(v + β + 1)Γ(v + α+ β + j − k + 1)

Γ(u+ α+ 1)Γ(u− j + k + 1)Γ(β + j − k + 1)Γ(j − k + 1)
×

×

gl+1
∑

s=β+j

(β − s)js!

Γ(α+ β − s+ j + 1)
νgl+1

s





=
2α+βΓ(β + 1)Γ(v + α+ 1)

Γ(α+ β + 1)Γ(v + β + 1)
×

×





[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l−i+1

gl+1
∑

s=β

2kνgl+1

s ×

×

s−β
∑

j=0

(−1)j+kΓ(α+ 1)Γ(v + β + 1)Γ(v + α+ β + j − k + 1)(β − s)js!

Γ(u+ α+ 1)Γ(u− j + k + 1)Γ(β + j − k + 1)Γ(j − k + 1)Γ(α+ β − s+ j + 1)





=
2α+βΓ(β + 1)Γ(v + α+ 1)

Γ(α+ β + 1)Γ(v + β + 1)
×
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×





[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l−i+1

gl+1
∑

s=β

2kνgl+1

s

(β − s)k(s− k + 1)kΓ(v + s− k + 1)Γ(v + α+ β + 1)

Γ(v + 1)Γ(v + α+ β − s+ k + 1)





=
2α+βΓ(β + 1)Γ(v + α+ 1)

Γ(α+ β + 1)Γ(v + β + 1)





[m1∧(m2+i)]−1
∑

l=i−1

κl
(

m2

l−i+1

)

(−2)l−i+1

gl+1
∑

s=β

2kνgl+1

s (β − s)k(s− k + 1)ku
α
s−k(v)



 .

In the third step we have interchanged the order of summation and in the fourth step we have used (2.8)
written in terms of Gamma functions. Therefore adding the previous expression to 〈(1 + x)kJα,β

v , bi〉 we get
〈(1 + x)kJα,β

v , bi〉S . The second identity can be proved in a similar way.
�

Theorem 3.6. Let α and β be positive integers satisfying α = m2, . . . ,maxH and β = m1, . . . ,maxG and
assume that conditions (1.14) hold. Then, for n ≥ m, the polynomials (qn)n defined by (1.15) satisfy the
following orthogonality properties with respect to the bilinear from (3.18):

〈qn, qi〉S = 0, i = 0, 1, . . . , n− 1,

〈qn, qn〉S 6= 0.

Moreover, if we assume that κl = 1, l = 0, . . . ,m1 − 1 and τl = 1, l = 0, . . . ,m2 − 1, then the matrix A with
entries Ai,j = 〈qj , x

i〉S , i, j = 0, . . . ,m− 1, is nonsingular.

Proof. The proof of the first part is similar to that of Theorem 3.3, but using now Lemma 3.5 instead of Lemma
3.1. The second part can be proved by passing to the limit in Lemma 3.4. Indeed, take α̃, β̃ 6∈ Z and write Ã
for the corresponding matrix associated to α̃, β̃. We have that Ã tends to A as α̃, β̃ tends to α, β, respectively.
According to (3.14) we have

detA =
p(m)q(m)2m(α+β)Γ(β + 1)mΓ(α+ 1)m1

(−1)(
m2
2 )Γ(α+ β + 1)mΓ(β +m)m1





m
∏

j=0

ΛG,H(j)



 ,

where the polynomials p and q are defined by (1.12) and (1.13), respectively. From here it follows that detA 6= 0,
since we are assuming ΛG,H(n) 6= 0, n ≥ 0 (see (1.14)) and for α = m2, . . . ,maxH and β = m1, . . . ,maxG, we
have p(m)q(m) 6= 0. �

4. Recurrence relations

In the next theorem we prove that the Jacobi-type polynomials (1.15) are bispectral. We first consider the
case α−maxH 6= 0,−1,−2, . . . , and β −maxG 6= 0,−1,−2, . . ..

Theorem 4.1. Let α and β be real numbers with α−maxH 6= 0,−1,−2, . . . , and β −maxG 6= 0,−1,−2, . . ..
Let Q ∈ R[x] be a polynomial of degree s satisfying that (1 + x)maxG(1− x)maxH divides Q′. Then the sequence
(qn)n in (1.15) satisfies the recurrence relation

(4.1) Q(x)qn(x) =

s
∑

j=−s

γn,jqn+j(x), γn,s, γn,−s 6= 0.

Proof. Let us take κl = 1, l = 0, . . . ,m1 − 1, and τl = 1, l = 0, . . . ,m2 − 1 (see (3.2) and (3.3)). We proceed in
five steps.

First step. For n ≥ m+ s and i = 1, . . . , n− s, we have that 〈Qqn, bi〉 = 0 and 〈Qqn, bn−s+1〉 6= 0, where (bi)i is
the basis defined by (2.9). Indeed, from the hypothesis we have that (Q(x)−Q(1))(1−x)−j−1, j = 0, . . . ,maxH ,
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and (Q(x)−Q(−1))(1 + x)−j−1, j = 0, . . . ,maxG, are always polynomials. For i = 1, . . . ,m1, we have

〈Qqn, bi〉 = 〈(Q(x) −Q(−1))qn, bi〉+Q(−1)〈qn, bi〉

= 〈(1 + x)maxG+1r(x)qn, bi〉+Q(−1)〈qn, bi〉,

for some polynomial r of degree s−maxG− 1 with r(−1) 6= 0. The result then holds following the same steps
as in the proof of Theorem 3.3. The rest of cases are similar.

Second step. For n ≥ m+ s and i = 0, . . . , n− s− 1, we have that 〈Qqn, qi〉 = 0 and 〈Qqn, qn−s〉 6= 0. Indeed,

it follows from the first step, taking into account that qi =
∑m∨(1+i)

j=1 ξi,jbj , and hence, for n ≥ m + s and

i = 0, . . . , n− s− 1, we have that 1 ≤ j ≤ n− s for j = 1, . . .m ∨ (1 + i).

Third step. The recurrence formula (4.1) holds for n ≥ m+ s. Since deg qn = n, we can always write

(4.2) Q(x)qn(x) =

s
∑

j=−n

γn,jqn+j ,

with γn,s 6= 0, n ≥ 0. Take now n ≥ m+ s and i ≤ m− 1. Using the orthogonality conditions of Theorem 3.3,
we get from (4.2)

〈Q(x)qn(x), x
i〉 =

s
∑

j=−n

γn,j〈qn+j(x), x
i〉 =

m−n−1
∑

j=−n

γn,j〈qn+j(x), x
i〉

=

m−1
∑

j=0

γn,j−n〈qj(x), x
i〉.

The second step then gives 〈Q(x)qn(x), x
i〉 = 0, and therefore

0 =

m−1
∑

j=0

γn,j−n〈qj(x), x
i〉, i = 0, . . . ,m− 1.

For each n ≥ m+s, this can be seen as a linear system of m homogeneous equations in the m unknowns γn,j−n,

j = 0, . . . ,m − 1. Lemma 3.4 gives that the coefficient matrix A = (〈qj(x), x
i〉)m−1

i,j=0 is nonsingular, and hence

we deduce γn,j−n = 0, for j = 0, . . . ,m− 1, and n ≥ m+ s. Using this, the recurrence relation (4.2) reduces to

Q(x)qn(x) =

s
∑

j=−n+m

γn,jqn+j .

Using again the second step and the orthogonality conditions of Theorem 3.3 for i = m, we get

0 = 〈Qqn, qm〉 = γn,m−n〈qm, x
m〉.

Since 〈qm, x
m〉 6= 0 (see Theorem 3.3), we deduce that γn,m−n = 0. In the same way, we can prove that γn,j = 0

for j = −n+m+ 1, . . . ,−s− 1, and γn,−s 6= 0. Hence, the polynomials qn, n ≥ m + s, satisfy the recurrence
relation (4.1) for n ≥ m+ s.

Fourth step. Let P be a polynomial of degree s and write

(4.3) P (x)qn(x) =

s
∑

j=−n

γn,jqn+j(x).

Then for fixed j ≤ s, the recurrence coefficients γn,j are rational functions of n for n ≥ max{0,−j}. Indeed,
since the sequences βn,j (2.1) are rational functions of n and the recurrence coefficients of the Jacobi polynomials
are also rational functions of n, the result can be proved in a similar way as in [8, Lemma 2.5].
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Fifth step. The recurrence formula (4.1) holds for n ≥ 0. Since Q has degree s, we always have a representation
of Q(x)qn(x) like in (4.3). For a fixed j ≤ −s− 1, from the third step, we deduce that γn,j = 0 for n ≥ m+ s.
Since γn,j is a rational function of n for n ≥ s + 1, it follows that γn,j = 0 for n ≥ s + 1 as well. Then the
recurrence formula (4.1) holds for n ≥ s+ 1. For n = 0, . . . , s, the recurrence formula (4.1) always holds.

�

The orthogonality properties proved in Section 3 impose some constrains on the recurrence relations satisfied
by the polynomials (1.15) (the proofs of the following results are similar to that of Theorem 4.2 and Corollaries
4.3 and 4.4 in [11], hence we only include here the proof of the Theorem 4.2).

Theorem 4.2. Let α, β be real numbers with α − maxH 6= 0,−1,−2, . . . , and β − maxG 6= 0,−1,−2, . . .,
and assume that conditions (1.14) hold. Let Q be the polynomial Q(x) =

∑v
k=u σk(1 + x)k, with u ≤ v and

σu, σv 6= 0. If there exists ĝ ∈ G such ĝ − u 6∈ G and ĝ − u ≥ 0 then the polynomials (qn)n in (1.15) do not
satisfy a recurrence relation of the form (1.2). Analogously, let Q be the polynomial Q(x) =

∑v

k=w σ̃k(1 − x)k,

with w ≤ v and σ̃w, σ̃v 6= 0. If there exists ĥ ∈ H such ĥ−w 6∈ H and ĥ−w ≥ 0 then the polynomials (qn)n do
not satisfy a recurrence relation of the form (1.2).

Proof. We proceed by reductio ad absurdum. Assume that the sequence (qn)n satisfies the recurrence relation

(1.2). Write 0 ≤ l̂ ≤ m1 − 1 for the index such that ĝ = g
l̂+1. Using Theorem 3.3 we get 0 = 〈Q(x)qn, bl̂+1〉, for

n big enough. Using now Lemma 3.1 we can write

0 = 〈Q(x)qn, bl̂+1〉 = c
n,l̂+1

m
∑

j=0

βn,j(−1)jρl̂+1
n,j Υ(n− j),

where Υ is the polynomial

Υ(x) =

[m1∧(m2+l̂+1)]−1
∑

l=l̂

κl
(m2

l−l̂

)

(−2)l+1

v
∑

k=u

σk

g
l̂+1
∑

s=k

2kν
g
l̂+1

s (β − s)k(s− k + 1)ku
α
s−k(x).

Taking κ
l̂
= 1 and κl = 0 for l 6= l̂, we get that degΥ = 2(ĝ − u). Since each uαi (x) is actually a polynomial

in θx, there exists a polynomial P such that Υ(x) = P (θx). On the other hand, the degree of uαi (x) is 2i, and

since σu2
uν ĝĝ (β − ĝ)u(ĝ − u+ 1)u 6= 0, we conclude that P is a polynomial of degree ĝ − u satisfying

0 =

m
∑

j=0

βn,j(−1)jρl̂+1
n,j P (θn−j).

If we set Y0(x) = P (x), Yl(x) = Rgl(x), l = 1, . . . ,m1, and Ym1+l(x) = Shl
(x), l = 1, . . . ,m2, we get from (2.5)

that

WY
a (x) =

m
∑

j=0

βx,j(−1)jρl̂+1
x,j P (θx−j) = 0,

which it is a contradiction because since degP = ĝ − u 6∈ G, then WY
a is a polynomial of degree

d = 2



ĝ − u+
∑

g∈G

g +
∑

h∈H

h−

(

m1 + 1

2

)

−

(

m2

2

)



 > 0.

The second part is similar but now starting with an index 0 ≤ l̂ ≤ m2 − 1 such that ĥ = h
l̂+1, using that

0 = 〈Q(x)qn, bm1+l̂+1〉 for n big enough, using the second part of Lemma 3.1, taking τ
l̂
= 1 and τl = 0 for l 6= l̂

and finishing with (2.7).
�
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Corollary 4.3. Let α, β be real numbers satisfying α−maxH 6= 0,−1,−2, . . . , and β−maxG 6= 0,−1,−2, . . .,
and assume that conditions (1.14) hold. Then the polynomials (qn)n never satisfy a three-term recurrence
relation and hence they are not orthogonal with respect to any measure.

Using Theorem 4.2 we can also characterize the algebra of operators Dn when G and H are segments.

Corollary 4.4. Let α, β be real numbers satisfying α−maxH 6= 0,−1,−2, . . . , and β−maxG 6= 0,−1,−2, . . .,
and assume that conditions (1.14) hold. If G and H are segments then

D̃n = {Q ∈ R[x] : (1 + x)maxG(1− x)maxH divides Q′}.

If G or H are not segments the algebra D̃n can have a more complicated structure, as the following example
shows.

Example 4.5. Take G = {1, 3}, H = {1}, α = 1/2, β = 1/3, and

R1(x) = x+ 1, R3(x) = x3 + x2/3 + 2x/3 + 1, S1(x) = x+ 1/2.

Using Maple one can see that the polynomials (qn)n satisfy recurrence relations of the form (1.2) for Q0(x) =
x

135 (135x
3 + 244x2 − 270x− 732), and Q′

0 is not divisible by (1 + x)3(1− x). Computational evidence suggests
that

D̃n = {Q(x) + c0Q0(x) : (1 + x)3(1− x) divides Q′ and c0 ∈ R}.

The case when α = 1, . . . ,maxH, or/and β = 1, . . . ,maxG, is specially interesting because it includes the
Krall-Jacobi polynomials orthogonal with respect to the measures (1.4), (1.5) or (1.6). As in the previous
section, we only work out here the case α = m2, . . . ,maxH, and β = m1, . . . ,maxG (the other cases can be
studied in a similar way). The orthogonality conditions in Theorem 3.6 lead us to an improvement of Theorem
4.1 (the proof is similar to that of Theorem 4.1 and it is omitted).

Corollary 4.6. Let α, β be positive integers satisfying α = m2, . . . ,maxH, and β = m1, . . . ,maxG, and assume
that conditions (1.14) hold. Write ρ1 = max{maxG−β+1, β} and ρ2 = max{maxH−α+1, α}. Let Q ∈ R[x]
be a polynomial of degree s satisfying that (1 + x)ρ1 (1 − x)ρ2 divides Q′. Then the sequence (qn)n in (1.15)
satisfies the recurrence relation of the form (1.2).

Theorem 3.6 also allows us to prove that the only Jacobi type polynomials which are orthogonal with respect
a measure on the real line are the Krall-Jacobi polynomials (the proof is similar to that of Theorem 5.5 in [11]).

Theorem 4.7. Let α, β be two positive integers satisfying α = m2, . . . ,maxH, and β = m1, . . . ,maxG, and
assume that conditions (1.14) hold. Then the sequence (qn)n only satisfies a three-term recurrence relation as
in (1.3) when the polynomials Rg(x) and Sh(x) have the form (1.17) and (1.18), respectively.

Proof. We proceed by reductio ad absurdum. Assume that the sequence (qn)n satisfies the three-term recurrence
relation of the form (1.3). Theorem 3.6 gives 0 = 〈(1+x)qn, b1〉, for n ≥ m+1. Using Lemma 3.5 (for k = i = 1)
we have

0 =〈(1 + x)qn, b1〉

= cn,1

m
∑

j=0

(−1)jβn,jρ
1
n,j





[m1∧(m2+1)]−1
∑

l=0

κl
(

m2

l

)

(−2)l+1

gl+1
∑

s=1

2νgl+1

s (β − s)suαs−1(n− j)



 .

For ĝ ∈ G, write 0 ≤ l̂ ≤ m1 − 1, for the index such that ĝ = g
l̂+1. Taking κl̂ = 1 and κl = 0 for l 6= l̂, we get

(4.4) 0 =

m
∑

j=0

(−1)jβn,jρ
1
n,jrĝ(n− j),
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where rĝ is the polynomial

rĝ(x) = 2

ĝ
∑

s=1

ν ĝs (β − s)suαs−1(x).

Since uαi (x) is a polynomial in θx, there exists a polynomial Rĝ such that Rĝ(θx) = rĝ(x). If we set Y0(x) =
Rĝ(x), Yl(x) = Rgl(x), l = 1, . . . ,m1 and Ym1+l(x) = Shl

(x), l = 1, . . . ,m2, we get from (2.5) and (4.4) that

WY
a (x) =

m
∑

j=0

βx,j(−1)jρix,jRĝ(θx−j) = 0.

Consider now ĝ = g1 = minG. If β 6= g1, the polynomial Rĝ has degree g1−1 6∈ G and so 0 =WY
a (x) is a contra-

diction because WY
a is a polynomial of degree (see (2.6)) 2

(

ĝ − 1 +
∑

g∈G g +
∑

h∈H h−
(

m1+1
2

)

−
(

m2

2

)

)

≥ 0.

Hence β = g1. In a similar way we can deduce that ν ĝl = 0, l = 1, . . . g1 − 1, and therefore rĝ = 0. This gives
for Rg1 the form

(4.5) Rg1(θx) = uαβ(x) + a0,

for certain real number a0.
Take now ĝ = g2, the second element of G. Since β 6= g2, the polynomial Rĝ has degree g2 − 1 and

so g2 − 1 6∈ G, otherwise 0 = WY
a (x) is a contradiction because WY

a would be a polynomial of degree

2
(

g2 − 1 +
∑

g∈G g +
∑

h∈H h−
(

m1+1
2

)

−
(

m2

2

)

)

> 0 (see (2.6)). Hence, we conclude that g2 − 1 ∈ G and

so g2 = β + 1. Proceeding as before, we can then conclude that

Rg2(θx) = uαβ+1(x) −
a0(β + 1)

β − 1
uα1 (x) + a1,

for certain real number a1. We can now proceed in the same way to get (1.17).
Similarly, for the polynomials S(θx) in (1.18), we start with 0 = 〈(1− x)qn, bm1+1〉, for n big enough and for

ĥ ∈ H we write 0 ≤ l̂ ≤ m2 − 1, for the index such that ĥ = h
l̂+1. Taking τl̂ = 1 and τl = 0 for l 6= l̂ we proceed

then in the same way as before but using α instead of β and (2.7) instead of (2.5). �

If α = 1, . . . ,maxH, or/and β = 1, . . . ,maxG, Theorem 4.2 is no longer true. Even Corollary 4.4 also fails
in this case, as the following example shows.

Example 4.8. Take G = {1}, H = {2}, α = 2, β = 1, and

R1(x) = x+ 1, S2(x) = x2 + 2x/3 + 1/2.

Using Maple one can see that the polynomials (qn)n satisfy recurrence relations of the form (1.2) for

Q0(x) = x(x− 2), Q1(x) =
x2

2
(2x− 3).

However Q′
0(x) = −2(1 − x) and Q′

1(x) = −3x(1 − x) are not divisible by (1 + x)(1 − x)2. Computational
evidence suggests that

D̃n = {Q(x) + c0Q0(x) + c1Q1(x) : (1 + x)(1 − x)2 divides Q′ and c0, c1 ∈ R}.
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