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BISPECTRAL JACOBI TYPE POLYNOMIALS

ANTONIO J. DURAN AND MANUEL D. DE LA IGLESIA

ABSTRACT. We study the bispectrality of Jacobi type polynomials, which are eigenfunctions of higher-order
differential operators and can be defined by taking suitable linear combinations of a fixed number of consecutive
Jacobi polynomials. Jacobi type polynomials include, as particular cases, the Krall-Jacobi polynomials. As the
main results we prove that the Jacobi type polynomials always satisfy higher-order recurrence relations (i.e.,
they are bispectral). We also prove that the Krall-Jacobi families are the only Jacobi type polynomials which
are orthogonal with respect to a measure on the real line.

1. INTRODUCTION AND RESULTS

Bispectrality in its continuous-continuous version is a subject that was started by H. Duistermaat and F.A.
Griinbaum in the 1980s [2]. In the context of orthogonal polynomials, we say that a sequence of polynomials
(gn(z))n is bispectral if there exist a difference operator, acting on the discrete variable n, of the form

T
(1.1) Dn:Z%msi, s<r, srel,
=8
where §; stands for the shift operator §;(f(n)) = f(n+1) and v, i = s,...,r, are sequences of numbers with

Vn,s: Yn,r 7 0, n > 0, and a differential operator acting on the continuous variable z, with respect to which the
polynomials (g (z)), are eigenfunctions (other type of operators acting on the continuous variable x can be
considered, but in this paper we restrict ourselves to differential operators).

It is easy to see that if Dy, (gn) = Q(x)¢, then @ is a polynomial of degree 7, and hence each operator D,, of
the form (L)) produces a higher-order recurrence relation for the polynomials (g, )n, i.e.

T
(12) Q(‘T)Qn(x) = Z’Yn,i‘]n-l—i(x); s<r.
i=s
For r = —s = 1, the recurrence relation (IZ) reduces to the usual three-term recurrence relation for orthogonal
polynomials with respect to a measure supported on the real line
(1.3) 2qn () = anGn+1(2) + bpgn () + cngn-1(z), n >0, ¢-1=0.

Hence the classical families of orthogonal polynomials, Hermite, Laguerre and Jacobi (and Bessel, if non-positive
measures are considered), are examples of bispectral polynomials.

Krall polynomials are other well-known examples of bispectral polynomials. Krall polynomials are eigenfunc-
tions of higher-order differential operators. They are called Krall polynomials because they were introduced
by H.L. Krall in 1940 [25]: Krall proved that the differential operators must have even order and classified the
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case of order four. Since the 1980’s, Krall polynomials associated with differential operators of any even order
have been constructed and intensively studied ([22, 211 23] 26], 27, 15| 17, [I8, 19, 20, 29]; the list is not ex-
haustive). There are two known classes of Krall polynomials: the Krall-Laguerre and the Krall-Jacobi families.
Krall-Laguerre polynomials are orthogonal with respect to measures of the form

m—1
¢ MeTT 4+ Z bhééh), x>0,
h=0
where a and m are positive integers with « > m and by, h = 0,...,m — 1, are certain real numbers with

bm—1 # 0. Krall-Jacobi polynomials are orthogonal with respect to any of the following measures

mg—l
(1.4) (1—z)*"™m2(1+2) + Z ch5§h), a € N,a>mg,
h=0
m1—1
(1.5) -2 +a) ™+ 3 end?), BeN,B>m,
h=0
m2—1 m1—1
(1.6) (1—a)* ™2 (1 +2)" 7™+ 3 ed + 3 dnd?), B eNa>ma, B >m.
h=0 h=0

Both, the Krall-Laguerre and Krall-Jacobi polynomials, are also eigenfunctions of a higher-order differential
operator.

Other examples of bispectral polynomials are the Krall-Sobolev polynomials (see [24 [T}, 9] [T0] ), the exceptional
polynomials (see [14, 4, [5 [6], [7, T3], and references therein) or the Griinbaum and Haine extension of Krall
polynomials ([16]; see also [19, [3]). In these cases, the associated operators (in the discrete and continuous
variable) have order greater than 2.

In [I1], we have studied Laguerre type polynomials. They are defined by taking suitable linear combinations
of a fixed number of consecutive Laguerre polynomials. These Laguerre type polynomials are eigenfunctions
of higher-order differential operators and include, as particular cases, the Krall-Laguerre polynomials. Among
other things, we have proved in [I1] that Laguerre type polynomials are also bispectral and that the Krall-
Laguerre families are the only Laguerre type polynomials which are orthogonal with respect to a measure on
the real line.

The purpose of this paper is to study Jacobi type polynomials. For «,8,a + 8 # —1,—2,... we use the
following renormalization of the Jacobi polynomials:

Tiie) = (_1)2:((211?): = sz% <n J; a> <th) (z—1)" I (z +1).

We denote by piq, g(z) the orthogonalizing weight for the Jacobi polynomials normalized so that [ yiq pg(x)dz =

ga+B+1 Fla+1)I(B+1)

NCETET Only when «, 8 > —1, pq p(z), —1 < x < 1, is positive, and then

(1.7) fap(r) =1 —-2)*1+2)°, —-1<z<l.

From the Jacobi polynomials (J$?),,, we can generate sequences of polynomials (g, ()),, which are eigenfunc-
tions of a higher-order differential operator (acting on the continuous variable z) in the following way. Consider
two finite sets G = {g1,...,9m,} and H = {hy,..., Ay, } of positive integers (written in increasing size) and
polynomials Ry, g € G, with deg Ry = g and Sy, h € H, with deg Sy, = h. The positive integers m; and my are
the number of elements of G and H, respectively, and let us call m = my + mo. Since the leading coefficients
of the polynomials R, and Sj, just produce a renormalization of the polynomials (g ), (see (II5) below), we
assume along the rest of this paper that R,(x) and Sy, (z) are monic polynomials.



We also denote by Z;,¢ = 1,...,m, the set of polynomials defined by

Zi(x)—{Rgi(I), fori=1,...,mq,

1.8
(18) Shi_, (7), fori=mi+1,...,m.

For o« —mg # —1,-2,...,and B — m1 # —1,—2,..., we write

(1.9) p= {(‘Umﬂ'r”‘“ (), fori=1,...,mi,
. 1)] —_—

a—m,B—j
1

, fori=m;+1,...,m,

where for a,b,c,d,z € R, we define

Nz+a+ 1) (z+b+1)

Fz+c+1)N(z+d+1)

We will always use pfw», with j = 0,...,m. Hence when « or 8 are nonnegative integers pfl)j, n € N, can be also

defined from (LI0) by using the standard properties of the Gamma function and taking 1/T'(—n) =0, n € N.
We associate to G and H the following m x m quasi-Casoratian determinant

(1.10) rog(z) =

Pr1Z1(0n-1)  pp2Zi(0n-2) - Py Z1(On—m)

Pr1Zm (en—l) P2 Zm (en—2) cee p?mzm(en—m)
1.11 Ag m(n) = 2% ’ : ,
- o) p(man)

where p and q are the following polynomials

mi—1
(1.12) p@) = [T (1™ @+ a—m+ Dy i@+ B — m1 + iy i
=1
m—1 h
(1.13) a(z) = (D& ] (H(2(w—m)+a+ﬁ+i+h)>,
h=1 =1

where (a)g =1, (a), = a(a+1) -+ - (a+n—1) denotes as usual the Pochhammer symbol and 8,, = n(n+a+£+1)
is the eigenvalue associated with the second-order differential operator for the Jacobi polynomials. Along this
paper we will assume that

(1.14) Ag.u(n) #0, n=0,1,2,...
We then define the sequence of polynomials (g, ). by

Jef@)  —Teh@) o ()T ()
Pflz,ozl (0n) p}l,lzl (On-1) ... p’}?,,mzl (Or—m)
pﬁOZm(Hn) pﬁlzm(en—l) e pnm,mzm(en—m)
(1.15) () =
p(n)a(n)

(see the Remark 2] for a discussion of how to define Ag g and ¢, when o and § are nonnegative integers). The
assumption ([CI4) says that the determinant on the right-hand side of (IIH) defines a polynomial of degree n,
n > 0. Expanding the determinant by its first row, we see that each ¢,, n > m, is a linear combination of m
consecutive Jacobi polynomials.
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Using the D-operator method, it is proved in [I0] (see Theorem 3.1 and the beginning of Section 4 of that

paper) that the polynomials (g,), are eigenfunctions of a higher-order differential operator (acting on the

continuous variable z) of the form D, = >7;_ hi(z) (%)l, where hi(x) are polynomials and r is a positive even

integer greater than 2. This differential operator can, in fact, be explicitly constructed. For a different approach
of the polynomials (I.TH]) using discrete Darboux transformations see [I8], [19)].

The most interesting case corresponds with the different families of Krall-Jacobi polynomials, orthogonal with
respect to any of the measures (L4, (I5) or (L6). Indeed, let uj‘ (x) be the following polynomials

(1.16) uMa) = (@+a— A+ 1)@+ B+A—j+1); =T 35 ().

We have that uj‘(x) € R[0,], where 0, = z(x + a+ S+ 1) (see [10, p. 216]). Take now « and 8 two positive
integers with me < @ < max H, m; < < maxG,

G={8,p8+1,....,804+m —1}, H={a,a+1,...,a+mg—1},

and

k—1 k—1

B+k—01("]") ar—i—1

1.17 Ry, (02) =uG,,._{(x)+ L u(x), k=1,...,mq,
( ) gk( ) B+k 1( ) ; (—l)l(ﬂ—l)l l( ) 1

k—1 k—1

o a+k—1) br_1— o

(118) th(ew) = ’U,a+k71(.’l/') + ( 1 3 ( : ; 1ul (:E)? k= 17 cee, M2,

2 i1y
where ag, Kk =0,...,m; — 1, by, k = 0,...,ma — 1, are real numbers with ag,by # 0. Then the polynomials

(LIE) are orthogonal with respect to the Krall-Jacobi weight (L)) (for certain parameters cx, k =0,...,ma—1,
di, k=0,...,m; —1). In [10, (1.13) and Example 4.1, 1, p. 217], we represent (¢,), with a different set of
polynomials (Z;)7%, (L8)) from where the representation {9} sec, {Sn}trer can be easily obtained.

As the main results of this paper, we first prove that for any set of polynomials Ry, g € G, with degR, = g,
and Sp, h € H, with deg Sy, = h, satisfying (I.I4), the polynomials (g,),, ([IH) are bispectral. And second, we
also prove that the only sequences (g,,), ([IH) satisfying a three-term recurrence relation (and therefore they
are orthogonal with respect to a measure) are essentially the Krall-Jacobi polynomials orthogonal with respect

to the any of the measures (L4), (I5) or (L4).

The content of the paper is as follows. After some preliminaries in Section 2, in Section 3 we find some
orthogonality properties for the polynomials (gy,), with respect to a certain bilinear form. When o — max G #
0,—1,—2,...and f —max H # 0,—1,—2,..., we get this bilinear form by modifying the Jacobi weight with a
nonsymmetric perturbation (which strongly depends on the polynomials R, and Sp). When 1 < o« < maxG
and/or 1 < 8 < max H (which includes the Krall-Jacobi polynomials orthogonal with respect to ([4), (LI
or (L)), in order to get orthogonality properties, we have to transform a portion of that perturbation into a
discrete Sobolev part.

These orthogonality properties allow us to prove in Section 4 that the sequence (gy,), satisfies some recurrence
relations of the form (2]) where s = —r. On the other hand, the orthogonality properties constrain the number
of terms of these recurrence relations: in particular, we prove in Section 4 that when a — maxG # 0, —1, -2, ...
and B—max H # 0,—1,—2, ..., the sequence (g, ), can never satisfy a three-term recurrence relation of the form
(@C3). When 1 < a < maxG and/or 1 < 8 < max H, we prove that the sequence (g, ), satisfies a three-term
recurrence relation of the form ([3]) only when they correspond with the Krall-Jacobi cases (I4), (LT) or (6.

We also prove some results for the algebra of operators ®,,, defined as follows. We denote by A,, the algebra
formed by all higher-order difference operators (acting on the variable n) of the form (II]). Then we define

D, = {Dn € Ay Dn(gn) = Q(‘T)qnv Qe R[‘T]}v
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where R[z] denotes the linear space of real polynomials in the unknown x. This algebra is actually characterized
by the algebra of polynomials defined from the corresponding eigenvalues

9, = {Q € R[z] : there exists D,, € D,, such that D,,(¢,) = Q(x)gn}.

In Section 4 we prove that when o —maxG # 0,—1,-2,... and 8 —max H #0,—1,-2,... and G is a segment,
i.e. its elements are consecutive positive integers, the algebra ©,, has a simple estructure:

D, ={Q € Rlz] : (1 + z)™>C(1 — z)">H divides Q'}.

For a characterization of the corresponding algebra for the Charlier and Meixner type polynomials see [8] [12].
We also give some examples showing that, in general, this algebra can have a more complicated structure.

The structure of the Jacobi case is technically more involved than that of the Laguerre case studied in [I1].
On one hand, we have to use a more complicated basis (bs)s>1 in the linear space of polynomials (see (23]
below). On the other hand, we have to work with a pair of finite sets of positive integers instead of only one
set, and more parameters (in any case we will omit those proofs which are too similar to the corresponding ones
in [I1] for the Laguerre type polynomials).

2. PRELIMINARIES

Consider two finite sets G = {g1,...,9m, } and H = {hy, ..., hm, } of positive integers (written in increasing
size) and polynomials Ry, g € G, with degRy, = g and S, h € H, with degS, = h. We associate to G
and H the sequence of polynomials (gy), defined by ([IH). Along this paper we will always assume that
AgﬁH(n) # 0,n Z 0.

Remark 2.1. When « and § are integers, p(n)q(n) can vanish for some n = 0,...,m — 1, where p and q are the
polynomials defined by (IL.12) and (LI3)), respectively. However, even if for some n = 0,...,m—1, p(n)q(n) = 0,
the ratio Ag gy (LII) and the polynomial ¢, ([LI5) are well-defined (and hence ¢, has degree n if and only if
Ag m(n) #0,n > 0). This can be proved as for the Jacobi-Sobolev polynomials studied in [I0, p. 205].

We will use the following alternative definition of the polynomials (g, ), in (II5). For j =0,1,...,m, let us
define the sequences (8, ;)n by

(2.1) Bn.j = det (p}, ;Z1(0n—:))i=1,....m,

p(n)q(n) i=0,...,m,i#j '
By expanding the determinant (LI5) by its first row (writing J#(z) = 0 for u < 0) we get the expansion
mAn
(22) Qn(x) = Z ﬂn,jt],?f;(x)
§=0

A straightforward computation, using (ILI1)), (L12), (TI3), @) and (I4), shows that
e (A a—m+1\" p(n+1)q(n+1
(2.3) B = (—1)™ ( ) p(n+Da(n+1)

i s Py e

where the polynomials p and q are defined by (IL.I2]) and (LI3)), respectively.
On the other hand, substituting the first row in (IL.I5) by any other row in that determinant, we get the
trivial identity

m

(2.4) > (1Y Buipl jZi(0n—j) =0, 1=1,...,m.
j=0
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Remark 2.2. We stress that if we substitute the polynomials R4 and Sy, in the determinant (I.I5]) by any linear
combination R, and S} of the form

Ry =Ry + Z Co.5Rg, Sh=35n+ Z Xn, i Shs
G€G;g<g heH;h<h

then the polynomials (g, ), remain invariant. Notice that deg R, = deg Ry = g, deg S, = deg Sy, = h and R,
and S, are again monic polynomials.

Given polynomials Y;, ¢ =0, ..., m, with deg¥; = u;, we write
pals,OYO(ew) palc,lyb(ew—l) T palc,myb(ew—m)
palc,oyl (9:5) palv,lyl(ew—l) T palv,myl (ew—m)
ProYm(0z) Py Ym(Os-1) - pgpYm(0o—m)
(2.5) WY (z) = 220 = ’ .
p(z)q(x)

Using Lemma A.1 of [I0], it follows easily that when wu; # u;, 0 < 4,5 < mq, i # j, and m1 +1 < i,5 < m,
i # j, then WY (z) is a polynomial in z of degree

(2.6) d=2 [ZE w; — (ml; 1) - (”2L2>] .

Otherwise, WY () is a polynomial in x of degree strictly less than d.
Analogously, given polynomials Y;, i =1,...,m+ 1, with degY; = u;, the function

Palc,oyl (02) palv,lyl(ozfl) T palc,myl (Oz—m)
P%Ym(%) p;’?lym(ew—l) T P;’TmYm(%—m)
p;n Yin1(0s p;n Y41 (0z—1 p;nmym 1(0z—m
. g 100 Va0 Yo Be)|
p(x)q(x)

is a polynomial in x of degree

m+1
mq mo + 1
d=2 i - )
lg ‘ < 2 ) < 2 )
if and only if u; # uj, 1 <i,5 <mq,i#j,andmi+1<i,j5 <m+1,i+#j. Otherwise, W} (z) is a polynomial
in x of degree strictly less than d.
We will also need the following combinatorial formula: if «, 8, s, k, u are nonnegative integers with s > 5+ k,
then
2.8) Siﬁ <s—ﬂ—k) <u+a—|—[3—k+j> <u—|—o¢—|—ﬂ—s—|—k) B <u—|—o¢—|—ﬂ) (u—l—s—k)
’ ji—k B—k+j a+B—s+j] o s—k )

J=0

Part of the difficulties in the Jacobi case (compared with the Laguerre case) comes from the fact that we
have to work with the following basis of the linear space of polynomials R[z] (instead of the usual basis of



monomials):
(14 z)*~ 11 — )™, fors=1,...,my,
(2.9) bs(z) = ¢ (1 +a)™ (1 —x)s—m-1 fors=mi+1,...,m,
(1+2)™ (1 —x)m™2zs~m" 1 fors=m+1,...
Let us write 7 as the coefficients of the change of basis (bs(z))s — (2°71)s—1, s > 1:

. (i+1)vm .
(2.10) o= Y lb(z), i>0.

s=1
Lemma 2.3. The coefficients v can be recursively obtained from the following relations:

l iHl+1 .
Z h—t[ T2 i (=1 ? _
(_2) (l—h)vh_ gma -1 ) l_17"'7m17

h=1
! 1/
=t M1\ (-1) i
Z(_2) (l_h>7m1+h:W 1-1) I=1,...,ma.
h=1

Proof. Tt is a matter of computation, by taking derivatives in the expansion (ZI0), evaluating at = = 1, —1,
and using the following formulas: for s =1,...,my,

fgms(—2)s-t=t( for l=s5—1,...,[miA -1,
(2.11) (b)) (1) = =2 (l—s—|—1 or=e [ma A (s +ma)]

0, for/=0,...,s—2,orl=s+mg,...,m; — 1,
while for s > m; + 1 we have (bs)(l) (=1)=0forl=0,...,my — 1.

And, similarly, for s = mq + 1,...,m, we have
s—mi—1lgs—I—1 mi _
(bs)(l)(l)z (=1)s—m~12 (s—l—l) forl=s—my—1,...,[s Amo] — 1,
0, forl=0,...,s—m; —2,0orl=s,...,mg— 1,

while for s = 1,...,m1, or s > m + 1 we have (bs)(l) (1) =0forl =0,...my — 1 (see proof of Lemma 2.1 in
[10]). O

We also need the following technical lemma.

Lemma 2.4. For s=0,1,...,my —1, andt =0,1,...,mgo — 1, define the rational functions
mi—s—1 my—t—1
os(@)= D ai(l+a) 7 (@)= Y (l-a)h
u=0 u=0
Then there exist numbers af and c!, (uniquely determined) such that for i =1,...,my, we have

[ml/\(ier2)]fl

(2.12) z§1 (—2) <l _ 22_'_ 1> dr(x) = —(1 + )™t

and for i =my +1,...,m, we have

[7TL2 /\i] —1

2. (2 ( o 1)1/11(90) = (1 -y,

l:i7m171
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Proof. The rational functions ¢,(z) can be recursively computed starting from ¢ = m; in which case we have
Gm,—1(z) = —(1 — )L, From here we can compute ¢,,, —2(),. .., ¢o(z) recursively. The same can be applied

to (). |

As we wrote in the Introduction, the most interesting case corresponds with the different families of Krall-
Jacobi polynomials, orthogonal with respect to any of the measures (L4), (LH) or (LG). In any of these cases
we have mo < o < max H or/and m; < 8 < maxG. For instance, the orthogonal polynomials with respect to
the measure (LG) are the polynomials (gy), (LIH), where ms < @ < max H, m; < 8 < maxG,

G={8,8+1,....86+mi—1}, H={a,a+1,...,a+mg—1},
and the polynomials Ry, g € G, &, h € H, are defined by (LI7) and (18], respectively.
Ifl<a<ms—1land/or1 <8 <m;—1and if we take
IS B4k =D (T Y Ak
= G-
kta—matl (OZ + k- l)l(kjl)i)k,lfl

Sh () = ug g1 (z) + ; (—1)ia —1); bt

then the polynomials (g, ), satisfies also three-term recurrence relations (if u > v we always take >_,_ p; = 0).
But these polynomials (g, )n, as in the case of Laguerre type polynomials (see [I1]), are somehow degenerated.
Indeed, since we have (after a combination of formulas (3.94), (3.100) and (3.107) of [28], see also [I0, p. 203))

(2.13) ((Hx)kjs,ﬁ)(j) (_1)w<n+a+ﬂ>< n+p ><n+a+[3+j—k>7

Ry, (02) = uGyyq(x) +

_Qj*k(o“gﬁ) ! n—j+k ji—k
j 1)k 4+ a+ B n+a n+a+p+j—k
1 — ) gasy@ gy —

it is not difficult to see that
q,(zj)(l):O, i=01,....my—a—-1, n>m—a-—p,
q,g])(—l)zo, ]:Oalvvml_ﬁ_l’ TLZm—OA—ﬂ

Moreover, it turns out that the polynomials

(s )

are particular examples of the cases (ILIT) and (LI8) for certain choice of the parameters involved.

3. ORTHOGONALITY PROPERTIES

In this section we will establish some orthogonality properties for the polynomials (g, ), in (ILI5). We start
with the case « —max H #0,—1,—2,..., and § — maxG # 0,—1,—2,.... Using the polynomials uj‘(x) TIg),
we can always write

g h
(3.1) Ry(:) =Y viug(z), Su(0s) = wlul(a),
s=0 5=0

for certain numbers v9,5 = 0,1,...,g, and w?, s =0,1,...,h, (v§ =1, wh = 1), which are uniquely determined
from the polynomials R, and Sp,.



For each [ =0,1,...m; — 1, we introduce the rational function U; defined by

9141 8 oly, 9141
Ky (B — s)s2°slvg
3.2 U, = + ,
(32) ((e) = 6ue) + g g Tt o)
where the rational functions ¢;(z),l = 0,1,...m; — 1, are defined in Lemma 24 and «;, [ =0, ...
real numbers.
Similarly, for each [ = 0,1,...mo — 1, the rational function V; is defined by

,mi; — 1, are

T fate (o —5)s 28 slwhi+!
3.3 \% =
(33) {(e) = vil@) + 7 g (=
where the rational functions ¢;(x),l = 0,1,...mq — 1, are defined in Lemma 2 and 7, [ =0,...,ms — 1, are

real numbers.

Let us consider now the following bilinear form, with respect to which the polynomials (gy )n>m in (ILI5) will be
(left) orthogonal. For real numbers o and 8 such that e—max H # 0,—1,—-2,...,and f—max G # 0,—1,—2, ..
we consider

(3.4) (p,q) = 0,1+ (p, 02 + (0, Q)3,

where

)

<p7 Q>1 :/ p(I)Q(‘T),U'afmmﬁfml (I)dI,

1

and fiq,8 is the Jacobi weight given by (L7,

il gy gl
(3.5) pg)2=Y q2,,52“1)/1p(:v)Uz(:v)ua,B(:v)d:v,

=0

where U is defined by (82), and

ma—1 ) 1 1
=Y i [ Vi@ s(o)d

=0

(3.6) (p.q)s

where V] is defined by (B3).
The following lemma will be the key for most of our results.
Lemma 3.1. Let k,n>0,5=0,1,...,n andn—j > k. Fori=1,...,m1, we have

[miA(ma+i)]— mao gl+1

a cn,ipiz,' l7, o .
(Qratilhn) = | X :Sl ZWZ“ — $)k(s = K+ Dgu_y(n— )|
l=i—1

where ¢y = (—1)"H20HFHD(B 4 D)D(n + o —m + 1)/(D(a + B+ 1)D(n + B)) and pi; is defined by ().
Similarly, for i =mq +1,...,m, we have

B dnz et l(jllil) R k h
(=) L0 = 555 | 2 Cgmr 2 2wst e = ols — k4 Do w(n =) |,
s=k

where dy, ; = (—1)" 7208 +1) /T (a4 S 4 1).

l:i7m171

Proof. We will need the following formula, which can be found in [I0, p. 203]: for [ = 1,...,m, we have

! r NrB-1+1 e A N
(37) [ @ pateris = IO (M ey o)
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Now, for i = 1,...,m, we have, using [Z1II)), that ((1+ z)kJ! 6J, bi)s = 0. Using the definition of b;(x) and U,
in (29) and [B.2)), respectively, and ([ZTI1]) again, we have

1
(1 + )T by = / TP 4t -1
1

[miA(ma+i)]—1 ( mo )

gi+1
i e ﬁ B 525 ! gl+l
o2 lz)lH”l/ T (W )+ r?é) 2)( (1SJ)r x)ffl )” ks

l=i—1

[miA(ma+i)]—1 Iil( mo ) gi+1

1
l—i+1 s o8
= —E — 5)2%slygit TP _ed
2 g /,1 nmgtleptme 1t

l=i—1 s=0
[ml/\(mz-'ri)]—l mo
K (l 1+1)

L (2 HTE)

gi+1
% Z(B _ S)S2SS!U§l+1 |: F(B + 1)I‘(ﬁ — S+ k) (n + s ; k) e o+ S+k(n _ ])
s=0

25—k—a—ﬁr(a + B8+ 1) s — B,0+B—
[m1A(ma+i)]— ma gl+1
P l i3 a .
=iV | D :Sl 2 2 (B = )l — o+ Dy =)
l=i—1

The second step follows as a consequence of Lemma 2] (see (Z12))), while the third step follows from 371) and
the definition of p, ; in (LJ) (see also (LIT)) and the definition of u} () in (LIG). The second identity can be
proved in a similar way. ([

Remark 3.2. Observe that for k = 0 we have, using (3], the simplified formulas

[m1 /\(7TL2 +Z)] —1

a, i 4 I{l(lfnilz )
<Jn 6]7 b; > = Cn,i(_l)]pn,j 7+1Rgz+1 (en—j)7

_9)l+1
ernt U G
fori=1,...,my, and
[mg/\i]—l m1
o j n(. )
<Jn7ﬂj7 bi > - dn,’t(_l)J Z Wshl+1 (9"*3)5
l:ifmlfl
for i = my +1,...,m, using the notation in Lemma [3.1}

We are now ready to prove the orthogonality properties for the polynomials (g ).

Theorem 3.3. Let « and § be real numbers with « — max H #0,—1,—-2,..., and § — maxG # 0, — 2,.
Assume that conditions ([LI4)) hold. Then for n > m, the polynomzals (Gn)n defined by m satzsfy the
following orthogonality properties with respect to the bilinear from B.4]):

(Gn,qi) =0, 1=0,1,...,n—1,
(Gns qn) # 0.
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Proof. For n > m, let g, be written as in (Z2) and z* as in ([2I0). Then, using Lemma Bl for k = 0 (see
Remark B.2)), we have

mAn (i+1)vm
an Zﬁny Z 75<J3€,b>
s=1
mAn [miA(ma+s)]-1 K (l ma 1)
— Z ﬂn J Z’Yscn s pn)j Z ﬁ,}zgﬂrl (9n,j)
l=s—1
m [maAns]—1 mi
4 j Tl (s—l—l)
+ Z Van,s(—1)7 Z W8h1+1(9n_j)
s=mi1+1 l=s—m1—1
(i+1)Vm
+ Z 75/ JQB 25"y pdx
s=m-+1
m [miA(mats)]— n l 1 mAn
= Z’Y;Cn,s Z Slil Z an] pn] qz+1(9ﬂ—j)
s=1 l=s—1

[mans]—1 ( mAn
s— l 1

+ Y Al > Tyt Zﬁw Y Shyss (O ;)

s=mi+1 l=s—m—1
mAn (i+1)vm
5~ m—1
+ § Bn.j § 'Ys/ P, pd.
s=m-+1

Assume first that m < ¢ < n — 1. In this case the third addend in the previous formula vanishes because of
the orthogonality of the Jacobi polynomials. Indeed, the power of z5~™~1 goes from 0 to i — m (since i > m)
and we always have in this situation that i —m <n —j for j =0,...,m An = m. The other two addends also
vanish as a consequence of (2.4, since in this case we have m An = m. For i = n > m we have (g,,2") # 0 as
a consequence of the orthogonality properties for the Jacobi polynomials and that S, # 0 (see (23)).

Let us now assume that 0 < i < m — 1. In this case there is no third addend in the previous formula (since
(i +1)Vm < m+1). Therefore we have

[miA(ma+s)]— H mAn
l +1
qn7 Z Vscn s Z SH_l Z ﬂn \J pn ,J gl+1 (9’”«*])
l=s—1
m [mans]—1 7_( m1 mAn
; l 1
38) + 3 e 3 T | 20 a1 S On)
s=mi+1 l=s—mi1—1
For n > m we have m An = m and, as before, the two first addends vanish as a consequence of ([2.4]). (]
Notice that, we have not assumed any constrain on the real numbers x;, I = 0,...,m; — 1, and 7y, | =

0,...,mo—1. In general, the orthogonality properties in Theorem [3.3]can not be extended for n =0,...,m—1.
This fact would imply some problems to prove the bispectrality of the polynomials (g, ),. We will avoid those
problems by using the following lemma.
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Lemma 3.4. Let o and 8 be real numbers with « — max H # 0,—1,—2,..., and § — maxG # 0,—1,—2,
Assume that conditions (LI4) hold and that ki =1,1=0,...,m;1 —1 and 7 =1,1=0,...,ma — 1. Then the

matriz A with entries A; j = (gj,2'), i, =0,...,m — 1, is nonsingular.
Proof. We will prove that det A # 0. First we will find an explicit expression for (g;,z"), 7,7 = 0,...,m — 1.

For 0 < j <m — 1, using 24), we can write

9
J m

S 0 BiupiZ(0,) = = > (=1)'Bjup512:(0-1)

1=0 I=j+1

m—=j
=- Z(_1)]+lﬁj,j+lpij+lzs(6‘_1).
=

Substituting this expression in formula (B.8)), using that m A j = j and the hypothesis that x; = 1, [
0,....my—1,and 3 =1,1=0,...,mg — 1, we get

[min(ma+s)]—1 ( ma

qu Z”YSCJ s Z L S:;j_l <Z ﬂ]l p;,lep+l (9j1)>

p=s—1
m . [maAns]—1 ( . 7
c 3 S (Tas,.0)
s=mi1+1 p=s—mi—1
mi [min(ma+s)]—1 ( mo
i s+1
St S R (S s 0-0)
s=1 p=s—1 =1
m [maAns]—1 ( mi m—j
i S +1 s
- 3 e S (T 000
s=mi+1 p=s—mi—1 =1
m—j mi [miA(ma+s)]—1 ( mil)
j+1 i .8 —s
== B | Do iesacis > &QWRM (0-1)
=1 s=1 p=s—1
m [maAs]—1 ( my )
i s—p—1
+ Y mdis Y ( 213p+15hp+1(9—z)
s=mi+1 p=s—mi—1

_ 27D (B +1) gy I+1
= Tararn 2 e

=1

m [miA(ma+s)]—1 ma
(D) (a—14+1) <& (,72)
rB-1+1) Z% Z (—2)p—s+1Rgp+1(971)

s=1 p=s—1

m _ [mans]—1 ( 7m171)
+ > > (_2)}'%5%“(94)
s=mi+l  p=s—mi—1

()T (a—j+1) 4

In the last step we have used that p}, | cns = NGRSy

n,s- INOW write
[min(ma+s)]—1 ( ma )

. DI (a—14+1) <& oot
=G0y = ¢ P)(B(—l+1) DIEEDS ot R (01

s=1 p=s—1




[maAs]—1 ( mi )

(3.9) + > Y (_‘;)%sw(e,l).

s=mi1+1l p=s—mi—1

so that

) 9a+B ﬁ-i-l m—j l
3.10 ; = g a=(i, ).
( ) <q]7$> O[—i-ﬂ—Fl ; ﬁ]d-i—l (7’7 )

Let us write (8.9) in a more convenient way. Call ¢;; and 7;,; the following expressions

[miA(ma+s)]—1 ( mo )

mi
i —s+1
6i,l = E Vs § (_;D2)p75+1Rgp+1 (9—1)7
s=1

p=s—1
[mans]—1 ( mi )

Z "Yé Z (_;}%Sh;ﬁ+l( 1)

s=mi1+1  p=s—mi—1

151

1
so that Z(i,1) = %(&J + ;1. 0;; and 7;; can be written in matrix form as

mM1 o Mmg Ry, (0-1)
6= (v i)

and
Mma+lmi+l 0 Thma+lm Sp, (0-1)
nig = (=2)" (%inlﬂ, e ,an) : : ;
Tm,m Shp, (0-1)
where
mij = (—2)"7 (jﬂizz), i,j=1,...,m,
and

Nmatisma+s = (—2)"77 (j _

Using Lemma we have that

m1 - M,m.q

)| [F S (L).

Nmy,m,

13
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and

mi+1,ma+1 " Nma+1lm
(_2)m1 ('7:n1+17 T 7’7}11)

Therefore we can rewrite (3.9) in the form

o (CDH T 14 Y i
o e B DI ()
iAN(ma—1) i
(3.11) NC D SINC () ERNON!
s=0

Write now B for the m x m matrix whose entries are given by
B;; =E(i,m—j) i,j=0,...,m—1

Since o — maxH # 0,—1,-2,..., and f — maxG # 0,—1,-2,..., the identity [23) shows that 3;,, # 0.
Combining columns, it is easy to see from ([BI0) that

m+1 m—1
(—1)(" ) FmomiatAP(g 4 1)m
12 det A = | | im | det B.

Using ([BI1]), it follows easily that the matrix B is in turn the product of the matrices C' and D defined as
follows

_1i+s .

(2”)12 (l, s=0,...,m; — 1,
Cis= y ; i=0,....,m—1,

(—1)mats ), s=my,...,m—1,

S—ma
(=)™ Il (a—m+3j+1)
Ry, (0iim), s=0,....,mi—1, |

D, = T(B—m+j+1) gor1 Oj=m), s m j=0,...,m—1.

Shairm, Oi—m), s=my,...,m—1,

On the one hand, it is not difficult to prove that det C' = (—1)(77;2>. The determinant of the matrix D can be

computed, using (L), (LII), (LI2) and (LI3) for n =0 to get

p(0)a(O)C (e = m + 1)™

(3.13) det D = o By

AG,H(O)7
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where the polynomials p and q are defined by (II2) and ([[I3]), respectively. Combining BI2) and BI3)), and
using (2.3]), we finally get

det A =

Ac,u(0)

det(C)2m@+AT(3 4 1)™ “ﬁ 5| POEOT(@—m+ ™
Tla+ 5+ 1) =2 BN O

(3.14) _ pm)a(m2 e IL(E + " a+ ) ﬁ Ae() | s
=0

(—1)(P)T(a + B+ 1)mT(B 4 m)m

from where it follows that det A # 0, since we are assuming Ag g(n) # 0,n > 0 (see (LI4)) and o — max H #

0,—1,-2,...,and g —maxG #0,—1,—-2,.... O
The case when o = 1,...,max H or/and 8 = 1,...,maxG is specially interesting because it includes the

Krall-Jacobi polynomials orthogonal with respect to the measures (I4), (T3] or (L6). We only work out here

the case when o = my, ..., max H and § = mq,...,maxG. The other cases can be studied in a similar way.

We next show that we have to change the bilinear forms [B.5) and (B.6) by transforming a portion of the
integral into a discrete Sobolev inner product. First of all, notice that for g;41 € G, hyy1 € H, gi41 > 5 and
hit1 > a, the rational functions U; (B2)) and V; 3] reduce to

B-1 s gi+1
Ky (8 — s8)s2°slvg
3.15 U, =
(3.15) (@) = )+ g Ty e
a—1 h
Tl (o — 8)s25slws' ™
V =
I(I) 1/’1(1?) + F(Oé) ~ (1 _ $)5+1
Since o = ma,...,max H and = mq,...,max G, there exist indices k1 and ko, 1 < k1 < my and 1 < ky < mo,

such that g; > g for [ > ky and h; > « for [ > ko.

Take now &, 3 ¢ Z and p,q € P, and denote (p, q)5 the bilinear form (B3] defined by & and 3. Using the
definition of U; (B.2)), we can see that (p, ¢)s is formed by certain summands depending on l, 1 =0,...,my — 1,
of the form

1
(3.16) [ p)one)dug 5

-1

and certain summands depending on [ and s, =0,...,m; — 1, s =0,...¢g;+1, of the form
k(B — 8)s25sWwi gD (=1) [t plx
2m2 (11 (3) 1 (1+2)

Notice that when & and B tend to a and f, respectively, each of the summands (3I6) has a limit (since
8 =ma,...,maxG). This also happens for the summands BI7) when! =0, ...,k —1 (and hence g;41 < —1),
orl=ky,...,m —1land s =0,...,8— 1. Moreover, taking into account (3:2) and BI%]), the sum formed by
these summands converges to (p, q)2.

Consider now one of the summands ([BI7) corresponding to I = ki,...,m; — 1 (and hence g1 > §) and
s=0,...,91+1. Since

1 1
p(z)
7(1 . 5 = d ~ >
/1 (1 + )1 Has /,1p($) Hap—s—1’
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we can not take limit when B tends to 8 because f —s — 1 < —1 and we will have divergent integrals. To avoid
this problem, we split up p in the form

gi+1—PB G)(_ 4 gi+1—B G)(_ ‘ gi+1—B G)(_
p(z) = p(z) — Z %(14—90)] + Z %(14—3@)] =r(z) + Z %1)(1—1—90)
j=0 ' j=0 : =0 :

On the one hand, we have

1 1
r(z)
/_1 T(x)d'udﬁfsfl = /_1 (1 +$)gl+1*5+1 d'u&,gLﬂ*SJrl;*ﬁ'
Since r(z)/(1 + )9+ ~#+1 is still a polynomial and g;41 — s > 0, the above integral has a finite limit when j
tends to B. That integral is multiplied by the factor (8 — s)s (see (BIT)), which goes to zero as 8 tends to 3
(since s > ).

On the other hand, for j =0,...,9 — 3, we have

1 1
/ (1+ I)Jd,u&ygfsfl :/ dpg, el = 2a+5+J s

—1

D(a+1)D(3 —s+j)
Da+B—s+j+1)

Multiplying T'(5 — s + ) by (8 — s)s, we get

(B—35)L(B—s+3)=(8-13),I(B),

which tends to (8 — s);T'(8) as 3 tends to f.
Hence, we have proved that

b (8- g‘ﬂ gart B+ —sp(4) (— —8)
lim /wdu&ﬁ: (a+1)0 +B+i=spl) (~1) (B—1s);

M

a—afopto1 (L+x)5H! J:0 Dla+B—s+j+1)
This gives the discrete Sobolev bilinear form
my— (l)(—l) gi+1—P 2] (]) gi+1 ) ol
— 9o+ 1 g gi41
<p7 > (O[—|— Z Rl omaz]| Jgo S;— Fa‘i‘ﬁ—s—f—j—i-l)us

Proceeding in the same way with the bilinear form ([B.6]), we get the discrete Sobolev bilinear form

( _ 90 tBT(B 4 1 L g "R 2Jp(”> o« (o —s);s! his
P)ss = 6+ );Tl(—l)mlw! ; (=1)ij :Z Ta+B—s+j+1)°
We then define the bilinear form

(3.18) (P @)s = (P, 1 + (P, @)2 + (P, @25 + (P, q)3 + (P, D)3s

It turns out that Lemma [B.I]is still true for this inner product.
Lemma 3.5. Letk,n>0,5=0,1,...,nandn—35>k. Fort=1,...,my, we have
[maA(ma+i)]— mo gl+1

o cn,ipiz,' l7, o .
(@ratifobs =t | X :Sl ZWZ“ — $)k(s — b+ Dgud_y(n— )|
l=i—1



17

where ¢y = (—1)"H20FFHD(B + D)D(n + o —m + 1)/(D(a + B+ 1)D(n + B)) and pi; is defined by ([3).
Similarly, fori=mq +1,...,m, we have

B dn,i e Tl(‘nzl 1) R k, h
(L= a) T bi)s = (—i)j Z WZQ wiH (o = s)k(s — k+ D)eug_p(n—J)|
l=i—my—1 s=k

where dy; = (=1)"20HHT(B 4+ 1)/T(a+ B+ 1),
Proof. Callv=n—j. Fori=1,...,my, we have that ((1+2)*J%? b;)3 = (1 +z)*J%P, b;)3s = 0. Therefore
(14 2)RT97 biys = (1 + )"0, bs) + (1 + 2)"T3P  bi)as,

where the inner product (-,-) is defined by (34). Following the same steps as in the proof of Lemma B.1] we
have that

i [miA(ma+i)]— ma
Co+5,iPy+j,j 7 «@
(1 +z)FJeP b)) = w Z (l 1111 Z 2RI+ (B — §)p(s — k + 1)pul_4(v)
I=i—1
[mll\(m2+i)] mo
20t (B+ DP(v+a+ 1 m ;
Sr ey | i) z (B = hls — b+ Dyt )

Ma+pB+1)I'(v+5+1) Bt

On the other hand we have, using (Z11)), I3), (II0), (CI0) and (&8)) that

[miA(ma+i)]—1 ma \ Gi+1—B itk
a I{l( —1i ) (_1>J+k]!
(1 +2)8 T bi)as = 27 T (a + 1) > (_;)l—t-l'rl > o—k (a+B
I=i—1 j=0 ( 8 )
X<v+a+ﬂ>< v+ )<U+O‘+ﬂ+]— > gli JS' i+
e v—j+k j—k I‘a+6—s+g+1)s

2TPT(B+ 1) (v+a+1)
C Tla+B+1)I(v+B+1) 8

rranCuadol=t g (™2 ) gliﬁ (=)D (a+ Dl(w+ B+ DT (v +a+B+j—k+1)

X

S T(ut+a+)(u—j+k+)0(B+j—k+ 1) —k+1)
X gl+1
=Pt Oz+ﬂ—s+j+1)
C29TPT(B+ 1) (v+a+1) y
N F(a+ﬁ+1)r(v+ﬁ+1)
[miA(ma+i)]— ( mo Ji+1
x l le_-li-l Z gt x
l=i—1
) s—B (=17 D(a+1)L(v+ B+ 1)l (v+a+ B+ j—k+1)(8—s);s!

—T(u+a+D(u—j+k+ DB+ —k+ DI —k+ ) (a+B—s+j+1)

2a+3r(ﬁ +1)l(v+a+1)

Fla+8+1)(v+8+1)
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) [mlA<§+i>1 m(,,) Wi?k”ql“ (B—s)k(s—k+14T(w+s—k+DQw+a+8+1)
: (—2)—itt Fv+)l'v+a+B—-s+k+1)
l=i—1
[maA(ma+i)]— m git1
20t (B+ NDIN(v+a+ 1 "” 1)
_ B+ DI ) Z - 2 J;lu Z 209 (B — 8)k(s — k+ 1)gud . (v)

Fla+8+1)(v+8+1) ot
In the third step we have interchanged the order of summation and in the fourth step we have used (2.)
written in terms of Gamma functions. Therefore adding the previous expression to ((1 4+ x)*J%8 b;) we get
(1 +2)kJ2B b;)s. The second identity can be proved in a similar way.

O

Theorem 3.6. Let o and 8 be positive integers satisfying o = ma,...,maxH and 8 = mq,...,maxG and
assume that conditions ([LI4)) hold. Then, for n > m, the polynomials (qn)n defined by ([[IH) satisfy the
following orthogonality properties with respect to the bilinear from ([BI8]):

(Gn,qi)s =0, i=0,1,...,n—1,

<Qna Qn>S 7£ 0.
Moreover, if we assume that Ky =1,1=0,....m;i — 1 and 7 =1,1=0,...,ms — 1, then the matriz A with
entries A; ; = (g;,x")s, 1,§ =0,...,m — 1, is nonsingular.

Proof. The proof of the first part is similar to that of Theorem B3] but using now Lemma [3.5linstead of Lemma
BI The second part can be proved by passing to the limit in Lemma 3.4l Indeed, take &, ¢ 7 and write A
for the corresponding matrix associated to &, B We have that A tends to A4 as &, B tends to «, 3, respectively.
According to (814) we have

gmlatfp T D™ [ {5
roq g PLm)a(m) CERVNCEViN (S S
()P + B+ 0B +mym
where the polynomials p and q are defined by ([LI2]) and ([[I3]), respectively. From here it follows that det A # 0,

since we are assuming Ag g(n) # 0,n > 0 (see (ILI4)) and for a = mg,...,max H and 8 = my,...,max G, we
have p(m)q(m) # 0. O

4. RECURRENCE RELATIONS

In the next theorem we prove that the Jacobi-type polynomials (ILI5) are bispectral. We first consider the
case « —max H #0,—1,—-2,...,and f§ —maxG #0,—1,—-2,....

Theorem 4.1. Let « and 8 be real numbers with « —max H #0,—1,-2,..., and § —maxG #0,—1,—-2,....

Let Q € R[z] be a polynomial of degree s satisfying that (1 4+ 2)™* (1 — x)m*H diyides Q'. Then the sequence
(Gn)n in (LIH) satisfies the recurrence relation

(4-1) Q(x)Qn(x) = Z ”Yn,anJrj(fE)a Yn,ss Yn,—s # 0.

j=—s
Proof. Let us take k;, =1,1=0,...,m; —1l,and 7 =1,1=0,...,m2 — 1 (see (32) and (B3))). We proceed in
five steps.

First step. Forn > m+s and i = 1,...,n— s, we have that (Qg¢y,b;) = 0 and (Qqy, bp— S+1> # 0, where (b;); is
the basis defined by (2.3)). Indeed, from the hypothesis we have that (Q(x)—Q(1))(1—z)~!,j =0,..., max H,
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and (Q(z) — Q(—=1))(1 +2)~771, j =0,...,max G, are always polynomials. For i = 1,...,m1, we have
(Qan, bi) = (Q(z) — Q(—1))an, bi) + Q(—1){qn, bi)
= (L + )" () gn, bi) + Q(=1)(gn, bi),
for some polynomial r of degree s — max G — 1 with r(—1) # 0. The result then holds following the same steps
as in the proof of Theorem The rest of cases are similar.
Second step. For n > m+ s and i =0,...,n — s — 1, we have that (Qq,,q;) = 0 and (Qqn, gn—s) # 0. Indeed,

it follows from the first step, taking into account that ¢; = Z;n:vl(pri) &,;b;, and hence, for n > m + s and

i=0,...,n—s—1,wehavethat 1 <j<n-—sforj=1,...mV(1+1).

Third step. The recurrence formula ([@1]) holds for n > m + s. Since deg ¢, = n, we can always write

(4.2) Q(z)gn(x) = Z Tn,jdn+j>

j=—n

with v, s # 0, n > 0. Take now n > m+ s and ¢ < m — 1. Using the orthogonality conditions of Theorem [B.3]
we get from (2]

s m—n—1
<Q(‘T)Qn (‘T)v $Z> = Z Tn,j <qn+j (LL'), z') = Tn,j <qn+j (,T), $Z>
j=—n Jj=—n
m—1
=D Injnltj(@), 7).
§=0
The second step then gives (Q(z)g, (), z%) = 0, and therefore
m—1
0=> mjnlg@),z), i=0,...,m—1
§=0
For each n > m+ s, this can be seen as a linear system of m homogeneous equations in the m unknowns vy, j_n,
j=0,...,m—1. Lemma 34 gives that the coefficient matrix A = ({g;(x), $i>)zlj_:10 is nonsingular, and hence
we deduce vy, j—n =0, for j =0,...,m —1, and n > m + s. Using this, the recurrence relation (@2]) reduces to

Qz)qn(z) = Z Yn,jqn+j-

j=—n+m

Using again the second step and the orthogonality conditions of Theorem [B.3] for i = m, we get

0= <QQna Qm> = FYn,mfn<Qma Im>-

Since (gm,z™) # 0 (see Theorem [B.3)), we deduce that v, m—n = 0. In the same way, we can prove that 7, ; =0
forj=—-n+m+1,...,—s—1, and 7,,_s # 0. Hence, the polynomials ¢,, n > m + s, satisfy the recurrence
relation (A1) for n > m + s.

Fourth step. Let P be a polynomial of degree s and write

S
(4.3) P(z)qn(z) = Z Yn,jGn+5 ().
j=—n
Then for fixed j < s, the recurrence coefficients ~,_ ; are rational functions of n for n > max{0, —j}. Indeed,
since the sequences 3, ; (2.I)) are rational functions of n and the recurrence coefficients of the Jacobi polynomials
are also rational functions of n, the result can be proved in a similar way as in [8, Lemma 2.5].
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Fifth step. The recurrence formula ([@T]) holds for n > 0. Since @ has degree s, we always have a representation
of Q(z)gn(z) like in (£3). For a fixed j < —s — 1, from the third step, we deduce that ~, ; =0 for n > m +s.
Since 7, ; is a rational function of n for n > s 41, it follows that ~, ; = 0 for n > s+ 1 as well. Then the
recurrence formula (@) holds for n > s+ 1. For n =0, ..., s, the recurrence formula (£1]) always holds.

O

The orthogonality properties proved in Section [3]impose some constrains on the recurrence relations satisfied
by the polynomials (IIH) (the proofs of the following results are similar to that of Theorem 4.2 and Corollaries
4.3 and 4.4 in [I1], hence we only include here the proof of the Theorem F.2]).

Theorem 4.2. Let «, 3 be real numbers with « — maxH # 0,—1,-2,..., and § — maxG # 0,—1,—-2,.. .,
and assume that conditions ([I.17) hold. Let Q be the polynomial Q(x) = >, _, or(1 + 2)*, with u < v and
Ou, 0y # 0. If there exists § € G such § —u & G and g —u > 0 then the polynomials (¢,)n n (LIH) do not
satisfy a recurrence relation of the form (IL2). Analogously, let Q be the polynomial Q(x) = >, _. 6k(1 — x)*,
with w < v and &y, 8, # 0. If there exists heH such h—w ¢ H and h—w >0 then the polynomials (qn)n do
not satisfy a recurrence relation of the form (L2).

Proof. We proceed by reductio ad absurdum. Assume that the sequence (g ), satisfies the recurrence relation
([L2). Write 0 <1 < my — 1 for the index such that g = g; ;. Using Theorem [B.3] we get 0 = (Q(x)gn, b
n big enough. Using now Lemma [B.T] we can write

0 = (Q(x)qn by, ,) MHZBW ) phH Y (n - ),

[+1>, for

where Y is the polynomial

[maA(ma+i+1)]—1 91

T(x) = Z l+1 Z Z2k B = k(s — k+ Dpul_y (),
s=k

1=l =u

Taking x; = 1 and x; = 0 for | # I, we get that deg Y = 2(§ — u). Since each uf(z) is actually a polynomial
in 0., there exists a polynomial P such that Y(z) = P(f,). On the other hand, the degree of u®(z) is 2i, and
since Uu2“u‘g(6 — 3)u(g —u+ 1), #0, we conclude that P is a polynomial of degree § — u satisfying

0= Buj(=1Y L P(0._;).
j=0

If we set Yp(z) = P(x), Yi(z) = Ry, (z), I =1,...,mq, and Y5, 1i(x) = Sk, (), I =1,...,ma, we get from (2.5])
that

= Zﬂz,j(_l)jpl;:jlp(emfj) =0,
=0

which it is a contradiction because since deg P = § — u € G, then W) is a polynomial of degree

d=2|g-u+ g+ > h- <m1+1) (”;2) > 0.

geG heH

The second part is similar but now starting with an index 0 < [ < my — 1 such that h = h; using that

i1
0 = (Q(x)gn, bm1+[+1> for n big enough, using the second part of Lemma B.1] taking 7; = 1 and 7, = 0 for [ # 1
and finishing with (2.1).

O
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Corollary 4.3. Let a, 8 be real numbers satisfying « —max H #0,—1,—-2,..., and § —maxG #0,—1,-2,.. .,
and assume that conditions (I.14]) hold. Then the polynomials (gn)n never satisfy a three-term recurrence
relation and hence they are not orthogonal with respect to any measure.

Using Theorem we can also characterize the algebra of operators ©,, when G and H are segments.

Corollary 4.4. Let o, 8 be real numbers satisfying « —max H # 0,—1,—2,..., and S —maxG #0,—-1,-2,...,
and assume that conditions (I.14) hold. If G and H are segments then

9, = {Q e Rlz] : (1 + 2)™*C(1 — )™ H divides Q'}.

If G or H are not segments the algebra D,, can have a more complicated structure, as the following example
shows.

Example 4.5. Take G = {1,3}, H ={1}, a =1/2,58=1/3, and
Ri(z) =x+1, Rsz(z)=2a>+2%/3+22/3+1, Si(x) =x+1/2.

Using Maple one can see that the polynomials (g, ), satisfy recurrence relations of the form (2] for Qo(z) =
2= (1352° + 2442% — 2702 — 732), and Qf is not divisible by (1+2)3(1 — ). Computational evidence suggests
that

D, = {Q(x) + coQo(x) : (1 4+ 2)3(1 — ) divides Q" and ¢y € R}.

The case when a = 1,...,max H, or/and § = 1,...,max G, is specially interesting because it includes the
Krall-Jacobi polynomials orthogonal with respect to the measures (L), (LX) or (L6). As in the previous
section, we only work out here the case @« = mg,...,max H, and 8 = my,..., maxG (the other cases can be
studied in a similar way). The orthogonality conditions in Theorem [B.6] lead us to an improvement of Theorem
1] (the proof is similar to that of Theorem [£1] and it is omitted).

Corollary 4.6. Let o, 8 be positive integers satisfying o = ma, ..., max H, and f = my, ..., max G, and assume
that conditions (LI4) hold. Write py = max{maxG —S+1,8} and p2 = max{max H —a+1,a}. Let Q € R[x]
be a polynomial of degree s satisfying that (1 4+ z)P* (1 — x)P? divides QQ'. Then the sequence (¢n)n in (LIH)
satisfies the recurrence relation of the form (L.2).

Theorem also allows us to prove that the only Jacobi type polynomials which are orthogonal with respect
a measure on the real line are the Krall-Jacobi polynomials (the proof is similar to that of Theorem 5.5 in [IT]).

Theorem 4.7. Let a, B be two positive integers satisfying o = ma, ..., maxH, and f = my,..., maxG, and
assume that conditions (LI4)) hold. Then the sequence (qn)n only satisfies a three-term recurrence relation as
in (I3) when the polynomials Ry (z) and Sy (x) have the form (I.17) and (LI8), respectively.

Proof. We proceed by reductio ad absurdum. Assume that the sequence (g, ), satisfies the three-term recurrence
relation of the form (L3]). Theorem BBl gives 0 = ((14 )¢y, b1), for n > m+1. Using LemmaB.Hl (for k =i =1)
we have

0 :<(1 + ‘T)Qn; b1>

[miA(ma+1)]-1 o (mg gi+1

. ; l o .
TP BN D SR €8 SPRTPR )
=0 =0 (=2) s=1

For g € G, write 0 < [ < my — 1, for the index such that g =gj,,- Taking k; =1 and r; =0 for [ # [, we get

m

(4.4) 0="> (=1 Bn;ph 7a(n - j),

=0
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where 74 is the polynomial

x) = 22 VI(B — s)su®_(x).
s=1

Since u(z) is a polynomial in 0, there exists a polynomial R; such that Ry(0,) = r3(z). If we set Yo(z) =
R;(z), Yi(z) =Ry, (x), I =1,...,mq and Yy, 1i(x) = &y, (z), I =1,...,mq, we get from (23] and (£4) that

Zﬁw,j pm] (91 ]) 0.

Consider now § = g1 = minG. If § # g1, the polynormal Rj has degree g1 —1 ¢ G and so 0 = W)Y (z) is a contra-
diction because W) is a polynomial of degree (see (2.6])) 2 (g — 1+ a9+ D henh— (") — (7752)) > 0.

Hence 8 = ¢g1. In a similar way we can deduce that I/lg =0,l=1,...91 — 1, and therefore r5 = 0. This gives
for R, the form

(4.5) Ry, (0z) = uz(z) + ao,
for certain real number ag.

Take now § = g2, the second element of G. Since 8 # g2, the polynomial R; has degree go — 1 and
so go — 1 ¢ G, otherwise 0 = WY (z) is a contradiction because WY would be a polynomial of degree

2 (92 =143 ,cq9+ 2 henh— (M) — (”;2)) > 0 (see (2.8)). Hence, we conclude that go — 1 € G and

so go = B+ 1. Proceeding as before, we can then conclude that
a ao (ﬂ + 1)
Ry, (0z) = UB+1(517) - ﬂ

for certain real number a;. We can now proceed in the same way to get (LI).

Similarly, for the polynomials &(6) in (LIS), we start with 0 = ((1 — 2)gn, bm,+1), for n big enough and for
h € H we write 0 < [ < my — 1, for the index such that h = hi, . Taking 7; = 1 and 7, = 0 for | # [ we proceed
then in the same way as before but using « instead of 5 and (2.7) instead of [2.3]). O

uf (z) + as,

If a =1,...,max H, or/and § = 1,...,max G, Theorem 2] is no longer true. Even Corollary [44] also fails
in this case, as the following example shows.

Example 4.8. Take G = {1}, H = {2}, a =2, =1, and
Ri(z) =z +1, So(x) = 2% +22/3 4+ 1/2.

Using Maple one can see that the polynomials (g, ), satisfy recurrence relations of the form (2] for

Qo(z) = 2(z —2), Qi(x) = %(235 -3).

However Q)(r) = —2(1 — x) and Q)(z) = —3x(1 — x) are not divisible by (1 + z)(1 — z)?. Computational
evidence suggests that

D = {Q(x) + c0Qo(z) + c1Q1(z) : (1 + z)(1 — z)? divides Q" and co, ¢; € R}.
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