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On the number of k-powers in a finite word
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Abstract. This note is an attempt to attack a conjecture of Fraenkel
and Simpson stated in 1998 concerning the number of distinct squares
in a finite word. By counting the number of (right-)special factors, we
give an upper bound of the number of k-powers in a finite word for any
integer k ≥ 3. By k-power, we mean a word of the form uu...u

︸ ︷︷ ︸

k times

.

1 Introduction and notation

Given a finite word, the problem of counting the number of distinct squares was
introduced by Fraenkel and Simpson. In [4] they conjectured that the number
of distinct squares in a finite word w is bounded by its length |w| and they
proved that this number is bounded by 2|w|. After that Ilie [5] strengthened
this bound to 2|w| −Θ(n); Lam [6] improved this result to 95

48 |w|; Deza, Franek
and Thierry [2] achieved a bound of 11

6 |w|; Thierry [7] refined this bound to
3
2n. A basic fact about the square-counting problem is that no more than two
squares can have their last occurrence starting at the same position, this fact
is proved in [4] using the three squares lemma of Crochemore and Rytter [1].
After that, the ideas of improving the bound of distinct squares in a finite word
are about counting the number of positions at which there exist two different
squares having their last occurrence starting. In this article, instead of studying
the same motif, we propose to consider the number of special factors. The idea
is from the fact that (almost) every occurrent factor can be associated with a
(right-)special factor. Even though we can not achieve an injection from the set
of squares to the set of special factors in the finite word. This correspondence
leads an upper bound of the number of k-powers in the given word. The main
result of this note is announced as follows:

Theorem 1 Let k be an integer larger than 2. For any finite word w, let Nk(w)
denote the number of its distinct non-empty factors of the form uu...u

︸ ︷︷ ︸

k times

, let |w|

denote the length of w and let |Alph(w)| denote the number of distinct letters in
w. We then have

Nk(w) ≤
|w| − |Alph(w)|

k − 2
.
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2 Preliminaries

Let us recall the basic terminology about words. By word we mean a finite
concatenation of symbols w = w1w2 · · ·wn, with n ∈ N. The length of w, denoted
|w|, is n and we say that the symbol wi is at position i. The set Alph(w) =
{wi|1 ≤ i ≤ n} is called the alphabet of w and its elements are called letters. Let
|Alph(w)| denote the cardinality of Alph(w). A word of length 0 is called the
empty word and it is denoted by ε. For any word u, we have u = εu = uε. Let
u, v be two different words, we say a is shorter (resp. longer) than b if |a| < |b|
(resp. |a| > |b|).

A word u is called a factor of w if w = pus for some words p, s. When p = ε

(resp. s = ε) u is called a prefix (resp. suffix) of w. The set of all factors (resp.
prefixes, resp. suffixes) of w is denoted by Fac(w) (resp. Pref(w), resp. Suff(w)).
For any integer i satisfying 1 ≤ i ≤ |w|, let Cw(i) denote the number of distinct
factors of length i in w.

A factor u of w is called right-special if there exist two different letters a, b ∈
Alph(w) such that ua and ub are both factors of w. ua, ub are called right-
extensions of u.

For any natural number k, the k-th power of a finite word u is denoted by
uk = uu · · ·u and consists of the concatenation of k copies of u. A finite word
w is said to be primitive if it is not a power of another word, that is if w = uk

implies k = 1. Let Prim(w) denote the set of all primitive factors of w. A k-power
is a word w satisfying w = uu...u

︸ ︷︷ ︸

k tilmes

for a certain u ∈ Fac(w) and for a k ≥ 2. Let

Nk(w) denote the number of its distinct non-empty k-powers. For a given word
w and two positive integers a, b satisfying a ≤ b = |w|, let us define w

a

b to be the
prefix of w of length a. Now we can define the rational power a word: let w be
a finite word and let a

b
∈ Q+ be a positive rational number, w

a

b is well defined
only if b = |w|, and in this case, there is a couple of non-negative integers (c, d)

satisfying a = c|w| + d, we define w
a

b to be wcw
d

b . For a given word w and a
given integer k, we say that w is of period k if there exists a word u of length k

such that w = u
|w|
k .

Here we recall a basic lemma concerning the repetitions:

Lemma 2 (Fine and Wilf [3]) Let w be a word having k and l for periods. If
|w| ≥ k + l − gcd(k, l) then gcd(k, l) is also a period of w.

3 Number of right-special factors

Let w be a finite word. In this section, we consider the word w∗ obtained by
concatenating a special letter ∗ at the end of w, with the condition that ∗ 6∈
Alph(w).

For any u ∈ Fac(w), let us define mw(u) = max
{
i|ui ∈ Fac(w), i ∈ Q+

}
, and

similarly, let us define mw∗(u) = max
{
i|ui ∈ Fac(w∗), i ∈ Q+

}
. There are the

following facts between mw(u) and mw∗(u):
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1) For any factor u ∈ Fac(w), mw(u) = mw∗(u) ≥ 1;
2) If u ∈ Fac(w∗) but u 6∈ Fac(w), mw∗(u) = 1.
For any factor u ∈ Fac(w), let us define m(u) = mw(u) = mw∗(u). For any

integer i satisfying 1 ≤ i ≤ m(u), let us define u(i) to be the shortest suffix of
um(u) containing ui as a prefix.

Example 3 Let us consider the following word

w = abababacababa.

For u = ab,m(u) = 7
2 , thus u(1), u(2), u(3) are all well-defined, we have u(1) =

aba, u(2) = ababa and u(3) = abababa. For v = abab, we then have m(v) = 7
4 ,

thus only v(1) is well-defined, we have v(1) = ababa.

Lemma 4 Let w be a finite word and let u ∈ Fac(w), if m(u) ≥ 2, then, for any
integer i satisfying 1 ≤ i ≤ m(u)− 1, the factor u(i) is a right-special factor in
w∗.

Proof. Let w = w1w2...w|w| and let w∗ = w∗
1w

∗
2 ...w

∗
|w|+1, with wi = w∗

i for all

i satisfying 1 ≤ i ≤ |w| and w|w|+1 = ∗. As um(u) ∈ Fac(w), there exists an

integer k satisfying 1 ≤ k ≤ |w| such that um(u) = wkwk+1...wk+m(u)|u|−1. For

any integer i satisfying 1 ≤ i ≤ m(u)− 1, u(i) occurs at least twice in um(u) as
respectively a prefix and a suffix of um(u). If we suppose that |u(i)| = l, then

u(i) = wkwk+1...wk+l−1 = wk+m(u)|u|−l−1wk+m(u)|u|−l...wk+m(u)|u|−1.

Now let us prove that u(i) is a right-special factor of w∗. As um(u) ∈ Fac(w),
w∗

kw
∗
k+1...w

∗
k+m(u)|u|−1w

∗
k+m(u)|u| is well-defined and it is a factor of w∗. We claim

that w∗
k+l 6= w∗

k+m(u)|u|. In fact, if k+m(u)|u| = |w|+1, then w∗
k+m(u)|u| = ∗ 6=

w∗
k+l; if k +m(u)|u| < |w|+ 1,

w∗
kw

∗
k+1...w

∗
k+m(u)|u|−1w

∗
k+m(u)|u| = wkwk+1...wk+m(u)|u|−1wk+m(u)|u| ∈ Fac(w),

in this case if wk+l−1 = wk+m(u)|u|, then wkwk+1...wk+m(u)|u|−1wk+m(u)|u| =

u
m(u)+ 1

|u| , this contradicts the maximality of m(u). As a consequence, w∗
k+l−1 6=

w∗
k+m(u)|u| in both cases, thus

w∗
kw

∗
k+1...w

∗
k+l 6= w∗

k+m(u)|u|−l−1w
∗
k+m(u)|u|−l...w

∗
k+m(u)|u|.

Hence, u(i) is a right-special factor in w∗.

Example 5 Let us consider the word given in the previous example:

w = abababacababa.

w∗ is to be
w∗ = abababacababa ∗ .

For u = ab,m(u) = 7
2 , thus u(1), u(2) are right-special factors in w∗. In fact,

(ab)iab, (ab)iac and (ab)ia∗ are all factors of w∗ for i = 1, 2. For v = abab,
m(v) = 7

4 . v(1) is also a right-special factor of w∗ because v(1) = ababa = u(2).
However, it is not counted in the lemma, because m(v)− 1 < 1.
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Lemma 6 For any couple of different primitive factors (u, v) ∈ Fac(w)2 satis-
fying m(u),m(v) ≥ 3, we have

{u(i)|2 ≤ i ≤ m(u)− 1} ∩ {v(i)|2 ≤ i ≤ m(v)− 1} = ∅

.

Proof. If there exist two different primitive factors u, v and two integers i, j such
that u(i) = v(j) then uiu′ = vjv′ with u′, v′ respectively a prefix of u and v.
From the hypothesis that i ≥ 2, j ≥ 2 and Lemma 2, there exists a factor p such
that u, v are both a power of p, this fact contradicts the primitivities of u, v.

Corollary 7 Let w be a finite word and let M(w∗) denote the number of right-
special factors in w∗, then we have

∑

u∈Prim(w)

(m(u)− 2) ≤ M(w∗).

Proof. Let us consider the set of factors of w:

s = {u(i)|u ∈ Prim(w), 2 ≤ i ≤ m(u)− 1, u(i) ∈ Fac(w)} .

From Lemma 4, the elements in s are all right-special factors in w∗ and from
Lemma 6, the cardinality of s is exactly

∑

u∈Prim(w)(m(u)− 2).

4 Proof of the main theorem

Proof ( of Theorem 1).

Let k be an integer larger than 2, we have

Nk(w) =
∑

u∈Prim(w)

⌊
m(u)

k
⌋,

where ⌊x⌋ represents the largest integer smaller than or equal to x. On the other

hand, for any primitive u satisfying m(u) ≥ k, we have m(u)
k

≤ m(u)−2
k−2 . Hence,
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Nk(w) =
∑

u∈Prim(w)

⌊
m(u)

k
⌋

=
∑

u∈Prim(w)
m(u)≥k

⌊
m(u)

k
⌋

≤
∑

u∈Prim(w)
m(u)≥k

m(u)− 2

k − 2

≤
∑

u∈Prim(w)

m(u)− 2

k − 2

≤
M(w∗)

k − 2
,

where M(w∗) denote the number of right-special factors in w∗.
Now let us give an upper bound ofM(w∗). First, we claim that if u ∈ Fac(w∗)

is a right-special factor, then u ∈ Fac(w). Otherwise, u is a suffix of w∗ and it
does not have any right-extensions. Now, for any right-special factor of w∗ of
length i, it has at least two right-extensions, and the suffix of w∗ of length i

is not right-special. Thus, if we let s(w∗)(i) denote the number of right-special
factors of w∗ of length i, we then have s(w∗)(i) ≤ Cw∗(i+1)−Cw∗(i)+1, where
Cw∗(i) is the number of distinct factors of length i in w∗ defined in the section
Preliminaries. Hence,

M(w∗) =

|w∗|
∑

i=1

s(w∗)(i)

≤

|w∗|
∑

i=1

Cw∗(i + 1)− Cw∗(i) + 1

≤ |w|+ 1 + Cw∗(|w∗|+ 1)− Cw∗(1)

≤ |w| − |Alph(w)|.

Thus,

Nk(w) ≤
|w| − |Alph(w)|

k − 2
.

5 Concluding Remarks

The result obtained in the main theorem is not sharp. Let us consider the word
w = aaa, it is easy to check that N3(w) = 1 while the bound given in Theorem 1
is 2. The author believes that the problem is from the way we count the number
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of right-special factors. From Lemme 4 we prove that for a given primitive u,
all u(i) are right-special if 1 ≤ i ≤ m(u) − 1. However, in Lemma 6 we count
just the u(i) for 2 ≤ i ≤ m(u)− 1. In fact, we can only prove that the words of
the form u(i) are pairwisely different when i ≥ 2. Meanwhile, we can have two
different primitives u, v such that u(1) = v(i) for some positive integer i. Thus,
further work to to be done to investigate that

∑

u∈Prim(w)

(m(u)− 2) ≤ M(w∗).

If the previous inequality holds, we may expect to prove

Nk(w) ≤
|w| − |Alph(w)|

k − 1
.
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