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Abstract

For points (a, b) on an algebraic curve over a field K with height h, the asymp-
totic relation between h(a) and h(b) has been extensively studied in diophantine
geometry. When K = k(t) is the field of algebraic functions in t over a field k
of characteristic zero, Eremenko in 1998 proved the following quasi-equivalence
for an absolute logarithmic height h in K: Given P ∈ K[X,Y ] irreducible over
K and ǫ > 0, there is a constant C only depending on P and ǫ such that for
each (a, b) ∈ K2 with P (a, b) = 0,

(1 − ǫ) deg(P, Y )h(b)− C ≤ deg(P,X)h(a) ≤ (1 + ǫ) deg(P, Y )h(b) + C.

In this article, we shall give an explicit bound for the constant C in terms of
the total degree of P , the height of P and ǫ. This result is expected to have
applications in some other areas such as symbolic computation of differential
and difference equations.
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1. Introduction

In diophantine geometry, heights are often used to express the discrete-
ness of algebraic points on an algebraic variety. They play an important role
in diophantine geometry as well as other areas such as the theory of tran-
scendence numbers. The study of the functorial property of heights can be
tracked back to the date of Siegel, who gave the first asymptotic estimate of
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h(f(c)) in item of deg(f) when h(c) is large enough, where c is a point on
a projective algebraic curve and f is a nonconstant rational function on this
curve. Later, Siegel’s result was improved by many authors (see for example
Néron[15], Bombieri[4], Habegger[9], Abouzaid[2] and Bartolome[3]) who gave
error terms to the asymptotic estimates. For instance, in [15], Néron proved
the following quasi-equivalence of heights: Let P ∈ Q[X,Y ] be irreducible with
m = deg(P,X) ≥ 1 and n = deg(P, Y ) ≥ 1, then there is a constant c(P ) such

that if (a, b) ∈ Q
2
with P (a, b) = 0, the bound

∣
∣
∣
∣

h(a)

n
−

h(b)

m

∣
∣
∣
∣
≤ c(P )

√

max

{
h(a)

n
,
h(b)

m

}

.

An explicit estimate of the constant c(P ) is of particular interest in an effec-
tive version of Runge’s theorem on the integer solutions of certain diophantine
equations. In [10], Habegger gave an explicit bound for the constant c(P ) and
applied this bound to Runge’s theorem. Other related height estimates may
also be found in [2, 3].

The heights appearing in the above results are all defined in algebraic number
fields. As to an absolute logarithmic height defined in function fields (see Section
3 of Chapter 3 in [13] for definition), Eremenko in 1998 proved quasi-equivalence
of the following type.

Proposition 1.1 (Lemma 2 of [8]). Let P ∈ k(t)[X,Y ] be an irreducible polyno-
mial of degree m with respect to X and of degree n with respect to Y . Given ǫ > 0
there exists a constant C depending on P and ǫ such that for every a, b ∈ k(t)
satisfying P (a, b) = 0 we have

(1 − ǫ)nh(b)− C ≤ mh(a) ≤ (1 + ǫ)nh(b) + C.

One can see from Remark 2.6 that if a ∈ k(t) then h(a) defined in the above
proposition is exactly the degree of a, i.e. the maximum of the degrees of the
numerator and denominator of a. Eremenko applied the above result to show
that rational solutions of a first order algebraic ordinary differential equation
(AODE) F = 0 are of degree not greater than a constant only depending on
F . From the viewpoint of algorithms, an explicit estimate of the constant C
is usually necessary to guarantee the termination of algorithms for computing
rational solutions of AODEs. Meanwhile, such explicit estimate has potential
applications in the algorithmic aspect of computing rational points on an al-
gebraic variety over k(t). In this article, we shall give an explicit bound for
the constant C in terms of the total degree of P , the height of P and ǫ. We
obtain this explicit bound by computing the explicit expressions for constants
appearing at each step of the proof of the above proposition given by Ere-
menko. In particular, we give bounds for the heights of the coefficients of a
certain nonzero element in the Riemann-Roch space of a divisor. Precisely, sup-
pose that L = K(x, y) is an algebraic function field of one variable over a field
K, where x is transcendental over K and y is algebraic over K(x). Then each
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element A ∈ L can be presented as a polynomial in y with coefficients in K(x),

i.e. A = 1
q(x)

∑n−1
i=0

∑m
j=0 ai,jx

jyi with ai,j ∈ K, q ∈ K[X ] and n = [L : K(x)].

For a certain nonzero element A in the Riemann-Roch space of a divisor, we
give a bound for the height of the projective point a = (· · · : ai,j : · · · ) (see
Proposition 3.11) as well as a bound for the height of q(X). Note that Schmidt
in [16] presented a bound for m, a degree bound for q and a bound for the
absolute values of the coefficients of the Puiseux series expansion of A when K
is the field of algebraic numbers. Although it is possible to obtain a bound for
the height of a by the results (mainly Theorem C2) presented in [16], we do not
take this approach because the absolute logarithmic height under consideration
in this paper satisfies the triangle inequality, i.e. h(a+ b) ≤ h(a)+h(b), which is
not usually satisfied for absolute logarithmic heights defined in algebraic number
fields. The triangle inequality enables us to obtain a simpler expression for the
constant C. Finally, let us remark that the construction of the Riemann-Roch
space of a divisor is one of the fundamental problems in the theory of algebraic
function fields. Many algorithms have already been developed for this problem,
see for example [1, 6, 7, 11, 12, 14, 18].

The article is organized as follows. In Section 2, we introduce some ba-
sic concepts and notations about algebraic function fields of one variable and
heights used in the later sections. In Section 3, we estimate the heights of the
coefficients for a certain nonzero element in the Riemann-Roch space of a given
divisor. Finally, in Section 4, we present an explicit bound for the constant C.

As usual, for a polynomial P (X1, . . . , Xm), we use tdeg(P ) and deg(P,Xi) to
denote the total degree of P and the degree of P with respect to Xi respectively.
Pm(·) denotes the projective space of dimension m over a field and (a0 : · · · : am)
denotes a point in Pm(·) with coordinates ai.

2. Algebraic function fields of one variable and heights

In this section, we will introduce some basic concepts and notations of al-
gebraic function fields of one variable and heights. Readers are referred to
[5, 13, 17, 19] for details.

2.1. Algebraic function fields of one variable

Throughout this subsection, K always stands for an algebraically closed field
of characteristic zero. Let L be an algebraic function field of one variable over
K. Assume that L = K(x, y) where x is transcendental over K and y satisfies

P (x, y) = A0(x)y
n +A1(x)y

n−1 + · · ·+An(x) = 0, Ai ∈ K[X ],

where P ∈ K[X,Y ] is irreducible. Denote by K((z)) the quotient field of the
ring of formal power series in z. Let x(z) =

∑∞
i=r ciz

i ∈ K((z)) with r ∈ Z, ci ∈
K, cr 6= 0, then ordz(x(z)) is defined to be r. We call (x(z),y(z)) ∈ K((z))2 a
parametrization of P (X,Y ) = 0 provided P (x(z),y(z)) = 0 and x(z) or y(z)
does not belong to K. If there is an integer s ≥ 2 such that x(z),y(z) ∈
K((zs)) then the parametrization (x(z),y(z)) is said to be reducible, otherwise
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irreducible. Two parametrizations (x(z),y(z)) and (x̃(z), ỹ(z)) are said to be
equivalent if there is w(z) ∈ K((z)) with ordz(w(z)) = 1 such that

x(z) = x̃(w(z)) and y(z) = ỹ(w(z)).

Definition 2.1. An equivalent class of irreducible parametrizations is called a
place of P (X,Y ) = 0.

It was shown on page 95 of [19] that an irreducible parametrization of
P (X,Y ) = 0 is equivalent to the one of the type

(a+ zµ, zν(b0 + b1z
ℓ1 + · · · )) (1)

where a ∈ K, bi ∈ K \ {0}, µ ∈ Z \ {0}, ν, ℓi ∈ Z, 0 < ℓ1 < ℓ2 < · · · and
µ, ν, ν + ℓ1, ν + ℓ2, · · · have no common factor greater than 1, moreover if µ <
0 then a = 0. In the rest of this article, all irreducible parametrizations of
P (X,Y ) = 0 will be of the type (1). Let p be a place of the form (1). We say
that p lies above x − a if µ > 0, and lies above 1/x if µ < 0. The integer |µ|
is called the ramification index of p with respect to K(x), denoted by ep,K(x).
Suppose that f ∈ L \ {0}. The order of f at p, denoted by ordp(f), is defined
to be ordz(f(z

µ + a, zν(b0 + · · · ))). If ordp(f) > 0, p is called a zero of f
and if ordp(f) < 0, p is called a pole of f . It is well-known that a nonzero f
admits only finitely many zeros and poles. We make the convention to write
ordp(0) = ∞. For f, g ∈ L, one can verify that

ordp(fg) = ordp(f) + ordp(g), ordp(f + g) ≥ min{ordp(f), ordp(g)}

where the equality in the last formula holds if ordp(f) 6= ordp(g).
Denote V (p) = {f ∈ L | ordp(f) ≥ 0}. One can check that V (p) is a

discrete valuation ring of L. One can also check that for f ∈ V (p) there is a
unique cf ∈ K such that ordp(f − cf ) > 0. We define a map πp : V (p) → K
given by f 7→ cf . Then πp is a K-homomorphism. We make a convention with
πp(f) = ∞ if ordp(f) < 0. The point (πp(x), πp(y)) is called the center of p.

Remark 2.2. In [5], a place is presented by the unique maximal ideal of a dis-
crete valuation ring of L over K. Precisely, let p be a place of P (X,Y ) = 0 and
let V (p) be as above. Set mp = {f ∈ L | ordp(f) > 0}. One sees that mp is the
unique maximal ideal of V (p), which is the “place” defined in [5] corresponding
to p. Conversely, given a discrete valuation ring V of L over K with m as its
unique maximal ideal, we can construct a unique place of P (X,Y ) = 0 corre-
sponding to V . Let z be a uniformizing variable at V . Expanding x, y as Puiseux
series in z yields an irreducible parametrization and thus a place of P (X,Y ) = 0.
Furthermore, different choices of uniformizing variable at V induce equivalent
irreducible parametrizations and so the same place. Additionally, the order of f
at mp defined in [5] is nothing else but ordp(f).

Definition 2.3. A divisor D of L is a finite sum of places of P (X,Y ) = 0
with integer coefficients, i.e. D =

∑

p dpp where dp ∈ Z and dp = 0 for all but
finitely many places p. Specially, D is called a zero divisor if all dp = 0.
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Suppose that D =
∑

p dpp is a divisor of L. We call
∑

p dp, denoted by
deg(D), the degree of D. The set of places p with dp 6= 0 is called the support
of D, denoted by supp(D). We call D an integral divisor if dp ≥ 0 for all p,
denoted by D ≥ 0. For a nonzero f ∈ L, denote

div(f) =
∑

p

ordp(f)p,

which is called the divisor of f . Each divisor D can be uniquely written as
D+ −D− where D+, D− are integral divisors and supp(D+) ∩ supp(D−) = ∅.
Given a divisor D, denote

LK(D) = {f ∈ L | div(f) +D ≥ 0} ∪ {0}.

We call LK(D) the Riemann-Roch space of D which is a K-vector space of
finite dimension, and we denote its dimension by ℓ(D). By the Riemann-Roch
theorem, ℓ(D) > 0 if deg(D) is not less than the genus of L over K.

2.2. Heights in an algebraic function field of one variable

Throughout this subsection, k(t) stands for the field of rational functions in
t with coefficients in an algebraically closed field k of characteristic zero, and
k(t) for the algebraic closure of k(t). Let L ⊂ k(t) be a finite extension of
k(t). Then L is an algebraic function field of one variable over k. Places in this
subsection will be presented by maximal ideals of discrete valuation rings of L
over k or equivalent classes of irreducible parameterizations of P (X,Y ) = 0,
where P (X,Y ) = 0 is an algebraic curve whose function field coincides with L.
Let us first define an absolute logarithmic height of a point in Pm(k(t)). Note
that ordp(0) = ∞.

Definition 2.4. Given a = (a0 : · · · : am) ∈ Pm(k(t)), let L be a finite extension
of k(t) containing all ai. The absolute logarithmic height (or simply height) of
a, denoted by h(a), is defined to be

∑

p maxmi=0{−ordp(ai)}

[L : k(t)]

where p ranges over all places of L over k.

From Section 3 of Chapter 3 in [13], h(·) is a logarithmic height function.
Actually it is an absolute logarithmic height function i.e. a logarithmic height
function independent of the choices of the field L. To see this, let L̃ be a finite
extension of L and suppose that p is a place of L over k. Then there are finitely
many places P of L̃ over k lying above p, i.e. P∩L = p. For brevity, denote by
P|p a place P lying above p. Note that the relative degree of Pi is 1 because
k is algebraically closed, and due to Theorem 1 on page 52 of [5], for a fixed p,
∑

P|p eP,L = [L̃ : L]. Moreover ordP(a) = eP,Lordp(a) for any a ∈ L and any
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P lying above p. These imply that for a fixed p,
∑

P|p

max
i

{−ordP(ai)} =
∑

P|p

max
i

{−eP,Lordp(ai)} =
∑

P|p

eP,L max
i

{−ordp(ai)}

= [L̃ : L] max
i

{−ordp(ai)}.

From this, one easily sees that h(·) is independent of the choices of L. Using
Definition 2.4, it is natural to define the height of an element in k(t) and a
polynomial in k(t)[X1, . . . , Xm] as follows.

Definition 2.5. 1. For a ∈ k(t), we define the height of a to be h((1 : a)),
denoted by h(a).

2. Let Q be a nonzero polynomial in k(t)[X1, . . . , Xm]. We define the height
of Q to be

h(Q) =

{

0 Q contains exactly one term

h(a) otherwise
,

where a is a point in some projective space whose coordinates are the
coefficients of Q.

In the following, we make a convention that a/0 = ∞ for any a ∈ k(t) \ {0}
and h(∞) = 0.

Remark 2.6. Assume that a = (a0 : · · · : am) ∈ Pm(k(t)).

1. Suppose that a0 = 1, then

h(a) =

∑

p max{0,−ordp(a1), . . . ,−ordp(am)}

[L : k(t)]
≥ 0.

2. Let a ∈ k(t) and L = k(t, a). Let Q(X,Y ) be a nonzero irreducible poly-
nomial over k such that Q(t, a) = 0. It is clear that h(a) = 0 if a ∈ k.
Now assume that a /∈ k and p1, . . . , ps are all distinct poles of a in L, then

h(a) =
−
∑s

i=1 ordpi
(a)

[L : k(t)]
=

[L : k(a)]

[L : k(t)]
=

deg(Q,X)

deg(Q, Y )
.

In particular, if a ∈ k(t) then h(a) = deg(a) which is defined to be the
maximum of the degrees of the denominator and numerator of a.

The height given in Definition 2.4 has the following properties.

Proposition 2.7. h(an) = h(a−n) = nh(a), a ∈ k(t) \ {0}, n ≥ 0.

Proof. Let L = k(t, a). For each place p of L over k,

max{0,−ordp(a
n)} = max{0,−nordp(a)} = nmax{0,−ordp(a)}.

By deifnition, h(an) = nh(a). For the first equality, it suffices to show that
h(a) = h(1/a). As (1 : a) = (1/a : 1), one sees that

h(a) = h((1 : a)) = h((1/a : 1)) = h(1/a).
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Suppose that Φ = (φ0 : · · · : φm) is a morphism, namely

Φ : Ps1(k(t))× · · · × Psr (k(t)) −→ Pm(k(t))

b 7−→ (φ0(b) : · · · : φm(b)),

where φi ∈ k(t)[X1,0, . . . , X1,s1 , . . . , Xr,0, . . . , Xr,sr ] is a nonzero polynomial ho-
mogeneous in Xj,0, . . . , Xj,sj of degree dj for all j = 1, . . . , r. Write φi =
∑s

j=1 ci,jmj , where ci,j ∈ k(t) and m1, . . . ,ms are all monomials in X1,0, . . . ,

X1,s1 , . . . , Xr,0, . . . , Xr,sr of total degree
∑r

j=1 dj .

Definition 2.8. We define the height of Φ, denoted by h(Φ), to be

h((c0,1 : · · · : ci,j : · · · : cm,s)).

The following proposition will play a key role in the rest of this paper.
Although it is a trivial generalization of an existing result (see Proposition on
page 15 of [17] or Lemma 1.6 on page 80 of [13] for the case with r = 1), we
reprove this result for completeness and give an explicit estimate of the error
term c in the case of heights in algebraic function fields of one variable.

Proposition 2.9. Let Φ = (φ0 : · · · : φm) be as above. Suppose (a1, . . . , ar) ∈
Ps1(k(t))× · · · × Psr (k(t)) is a point on which Φ is defined. Then

h(Φ(a1, . . . , ar)) ≤
r∑

i=1

dih(ai) + h(Φ).

Proof. Write ai = (ai,0 : · · · : ai,si), j = (j1,0, . . . , j1,s1 , . . . , jr,0, . . . , jr,sr ) and

φi =
∑

j

ci,jX
j1,0
1,0 · · ·X

jl,l′

l,l′ · · ·X
jr,sr
r,sr

with ci,j ∈ k(t) and
∑sl

l′=0 jl,l′ = dl. Let L be a finite extension of k(t) containing
all ai,j and all ci,j. For each place p of L over k, one has that

−ordp(ci,ja
j1,0
1,0 · · ·a

jl,l′

l,l′ · · · a
jr,sr
r,sr ) = −ordp(ci,j)−

r∑

l=1

sl∑

l′=0

jl,l′ordp(al,l′)

≤ −ordp(ci,j) +

r∑

l=1

sl∑

l′=0

jl,l′ max{−ordp(al,0), . . . ,−ordp(al,sl)}

≤ max
i,j

{−ordp(ci,j)}+
r∑

l=1

dl max{−ordp(al,0), . . . ,−ordp(al,sl)}.

This implies that for each i,

−ordp(φi(a1, . . . , ar)) ≤ max
j

{−ordp(ci,ja
j1,0
1,0 . . . a

jl,l′

l,l′ . . . a
jr,sr
r,sr )}

≤ max
i,j

{−ordp(ci,j)} +
r∑

l=1

dl max{−ordp(al,0), . . . ,−ordp(al,sl)}.

By definition, one sees that h(Φ(a1, . . . , ar)) ≤
∑r

l=1 dlh(al) + h(Φ).
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The above proposition has the following corollaries.

Corollary 2.10. 1. Suppose that Q is a polynomial in Q[X1, . . . , Xm] with
degree di in Xi for all i. Let b1, . . . , bm ∈ k(t). Then

h(Q(b1, . . . , bm) ≤
m∑

i=1

dih(bi).

Especially, h(a+ b), h(ab) ≤ h(a) + h(b) for any a, b ∈ k(t).

2. Suppose that c1, c2, c3, c4 ∈ k satisfy that c1c4 − c2c3 6= 0. Then

h

(
c1a+ c2
c3a+ c4

)

= h(a)

for any a ∈ k(t).

Proof. 1. Homogenizing Q, we obtain Q̄ ∈ Q[X1,0, X1,1, . . . , Xm,0, Xm,1] \ {0}
homogenous in Xi,0, Xi,1 of degree di for all i such that

Q̄(b1, . . . ,bm) = Q(b1, . . . , bm)

where bi = (1 : bi). In Proposition 2.9, if we take φ0 =
∏m

i=1 X
di

i,0, φ1 = Q̄, ai =
bi then we have that

h(Q(b1, . . . , bm)) = h(Q̄(b1, . . . ,bm)) ≤
m∑

i=1

dih(bi) =
m∑

i=1

dih(bi).

2. If c3a + c4 = 0, then c1a + c2 6= 0 since c1c4 − c2c3 6= 0. One sees that
h((c1a+c2)/(c3a+c4)) = h(∞) = 0 and h(a) = h(−c4/c3) = 0, then the desired
equality holds. Now assume c3a+ c4 6= 0, we take r = 1, s1 = 1 and

Φ = (c3X1,1 + c4X1,0, c1X1,1 + c2X1,0), a1 = (1 : a)

in Proposition 2.9. Then one has that

h

(
c1a+ c2
c3a+ c4

)

= h

((

1 :
c1a+ c2
c3a+ c4

))

= h(Φ(a1)) ≤ h(a).

Conversely, let b = (c1a + c2)/(c3a + c4). Then a = (c4b − c2)/(c1 − c3b). A
similar argument implies that h(a) ≤ h(b). Thus h(a) = h(b).

Corollary 2.11. 1. Let bi = (bi,0 : · · · : bi,ni
) ∈ Pni(k(t)) for i = 1, 2.

Suppose that b1,0 = b2,0 = 1 and set

c = (b1,0 : · · · : b1,n1 : b2,0 : · · · : b2,n2) ∈ Pn1+n2+1(k(t)).

Then h(c) ≤ h(b1) + h(b2).

2. Suppose that b = (b0 : · · · : bn) ∈ Pn(k(t)). Then h(b) ≤
∑n

i=0 h(bi).
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Proof. 1. We take r = 2, s1 = n1, s2 = n2, Φ = (φ0 : · · · : φn1+n2+1) with

φi =

{

X1,iX2,0 i = 0, . . . , n1

X1,0X2,i−n1−1 i = n1 + 1, . . . , n1 + n2 + 1

and a1 = b1, a2 = b2. Then Φ(a1, a2) = c and h(c) ≤ h(b1) + h(b2) because of
Proposition 2.9.

2. In Proposition 2.9, take r = n+ 1, s1 = · · · = sn+1 = 1, Φ = (φ0, . . . , φn)

with φi = Xi+1,1

∏n+1
j=1,j 6=i+1 Xj,0, ai = (1 : bi−1) for all i = 1, . . . , n+ 1.

Corollary 2.12. Assume that P1, P2 ∈ k(t)[X1, . . . , Xm, Y ]. Then

h(resY (P1, P2)) ≤ deg(P2, Y )h(P1) + deg(P1, Y )h(P2)

where resY (P1, P2) is the resultant of P1 and P2 with respect to Y .

Proof. The assertion is clear if resY (P1, P2) = 0. In the following, suppose that

resY (P1, P2) 6= 0. Assume deg(Pi, Y ) = ni, i = 1, 2. Denote ~X = (X1, . . . , Xm)

and ~Xd =
∏m

i=1 X
di

i for d = (d1, . . . , dm) ∈ Zm. Write

P1 =

n1∑

i=0

ai( ~X)Y i, P2 =

n2∑

i=0

bi( ~X)Y i

where ai( ~X), bj( ~X) ∈ k(t)[ ~X ]. Then

resY (P1, P2) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

an1 an1−1 · · · a0
. . .

. . .
. . .

an1 an1−1 · · · a0
bn2 bn2−1 · · · b0

. . .
. . .

. . .

bn2 bn2−1 · · · b0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Denote by C1, C2 the points in Ps(k(t)) whose coordinates are the coefficients

in ~X, Y of P1 and P2 respectively, where s is the maximum of the numbers of
terms of P1 and P2. By the definitions of determinant, we can write

resY (P1, P2) =
∑

d





ℓd∑

j=1

βd,jmd,jnd,j



 ~Xd

where βd,j , ℓd ∈ Z, ℓd ≥ 0, md,j is a monomial in the coordinates of C1 of total
degree n2 and nd,j is a monomial in the coordinates of C2 of total degree n1.

Viewing
∑ℓd

j=1 βd,jmd,jnd,j as a polynomial homogeneous in the coordinates of
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C1 of degree n2 and homogeneous in the coordinates of C2 of degree n1 with
coefficients in Z, by Proposition 2.9, one has that

h(resY (P1, P2)) = h







· · · :
ℓd∑

j=1

βd,jmd,jnd,j : · · ·









≤ n2h(C1) + n1h(C2) = n2h(P1) + n1h(P2).

Corollary 2.13. Suppose that P ∈ k(t)[X,Y ] and a, b ∈ k(t). Then

h(P (X + a, Y + b)) ≤ h(P ) + deg(P,X)h(a) + deg(P, Y )h(b).

Proof. Denote d1 = deg(P,X) and d2 = deg(P, Y ) and write

P =

d1∑

i=0

d2∑

j=0

ci,jX
iY j , ci,j ∈ k(t).

An easy calculation yields that

P (X + a, Y + b) =

d1∑

l1=0

d2∑

l2=0





d1∑

i=l1

d2∑

j=l2

(
i

l1

)(
j

l2

)

ci,ja
i−l1bj−l2



X l1Y l2 .

Note that
∑d1

i=l1

∑d2

j=l2

(
i
l1

)(
j
l2

)
ci,ja

i−l1bj−l2 is homogeneous in ci,j of degree 1,
homogeneous in 1, a of degree d1 and homogeneous in 1, b of degree d2 with
coefficients in Z. By Proposition 2.9,

h(P (X + a, Y + b)) = h







· · · :
d1∑

i=l1

d2∑

j=l2

(
i

l1

)(
j

l2

)

ci,ja
i−l1bj−l2 : · · ·









≤ h(P ) + d1h(a) + d2h(b).

When h is an absolutely logarithmic height defined in an algebraic number
field, the results in Corollaries 2.12 and 2.13 with error terms have already been
proved in [2].

Corollary 2.14. Suppose that M = (ai,j) is an l ×m matrix with ai,j ∈ k(t)
and h(ai,j) ≤ κ. Assume that the linear system Mx = 0 has a nonzero solution.
Then Mx = 0 has a nonzero solution a with h(a) ≤ r2(r + 1)κ, where a is
viewed as a point in Pm−1(k(t)) and r = rank(M).

Proof. The assertion is clear in the case M = 0. Suppose that M 6= 0 and
r = rank(M). Without loss of generality, assume that the first r-rows of M
are linearly independent over k(t) and denote by M̃ the r ×m matrix formed
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by those rows. Then M and M̃ have the same solution space and thus there is
no harm to replace M by M̃ . Since M̃x = 0 has a nonzero solution, r < m.
Without loss of generality, we further assume that the matrix M1 formed by
the first r-columns of M̃ is invertible. Denote by b the (r + 1)-th column of
M̃ . Using Cramel’s rule, (D1/ det(M1), . . . , Dr/ det(M1))

t is the solution of
M1x = −b, where Di is the determinant of the matrix obtained by replacing
the i-th column of M1 by −b, and (·)t denotes the transpose of a vector. Set

a = (D1, . . . , Dr, det(M1), 0, . . . , 0
︸ ︷︷ ︸

m−r−1

)t.

Then a is a solution of M̃x = 0. Note that Di and det(M1) are homogeneous in
a1,1, . . . , ar,r+1 of degree r. By Proposition 2.9, h(a) ≤ rh((a1,1 : · · · : ar,r+1)).
By Corollary 2.11,

h((a1,1 : · · · : ar,r+1)) ≤
∑

i,j

h(ai,j) ≤ r(r + 1)κ.

So h(a) ≤ r2(r + 1)κ.

Note that all valuations constructed by places of L over k are non-archimedean
(see page 62 of [13] for the construction). By Proposition 2.4 on page 57 in [13]
with s = 0, one sees that if G and H are polynomials in k(t)[X1, . . . , Xm], then

h(GH) = h(G) + h(H),

from which we have the following proposition.

Proposition 2.15. 1. Suppose that G,H ∈ k(t)[X1, . . . , Xm] and G divides
H. Then h(G) ≤ h(H).

2. Suppose that H is a nonzero polynomial in k(t)[X ] and a is a zero of H
in k(t). Then h(a) ≤ h(H).

Proof. The first assertion is clear. The second one follows from the facts that
X − a divides H and h(X − a) = h(a).

The following result is claimed on page 13 of [17]. We present a proof here
for completeness.

Proposition 2.16. Suppose that a = (a0 : · · · : an) ∈ Pn(k(t)). Let b be a

point in P(
d+n
n )−1(k(t)) with all monomials in a0, . . . , an of total degree d as

coordinates. Then h(b) = dh(a).

Proof. Due to Proposition 2.9, one sees that h(b) ≤ dh(a). It remains to prove
the converse. Let L = k(t, a0, . . . , an). For each place p of L over k, one has
that

max{−ordp(a
s0
0 . . . asnn ) | si ≥ 0, s0 + · · ·+ sn = d} ≥

n
max
i=0

{−ordp(a
d
i )}

= d
n

max
i=0

{−ordp(ai)}.

By definition, h(b) ≥ dh(a). So h(b) = dh(a).

11



3. The Riemann-Roch spaces

Throughout this section, let K be an algebraically closed field of charac-
teristic zero with an absolute logarithmic height h which satisfies the following
conditions:

(A1) Propositions 2.7 and 2.9 hold for h. Consequently, Corollaries 2.10,2.11,2.12,
2.13 and 2.14 hold for h.

(A2) Propositions 2.15 and 2.16 hold for h.

Remark 3.1. Under the assumption that Corollary 2.10 holds for the height h,
one has that h(a) = 0 for all a ∈ Q. To see this, we first have that h(m) = 0
for all m ∈ Z. Then for m1,m2 ∈ Z \ {0},

h (m1/m2) ≤ h(m1) + h(1/m2) = h(m1) + h(m2) = 0.

So h(a) = 0 for all a ∈ Q.

Let L be an algebraic function field of one variable over K and D a divisor
of L. Suppose that LK(D) 6= {0}. In this section, we are going to give bounds
for the degrees and height of a certain nonzero element in LK(D). Let us start
with two lemmas.

Lemma 3.2. Let fi =
∑

s≥0 ai,sz
s ∈ K[[z]] for i = 1, . . . , r. Suppose that

h(ai,0) ≤ h(ai,1) ≤ · · · for all i. Write
∏r

i=1 fi =
∑

s≥0 csz
s with cs ∈ K. Then

h(cs) ≤
r∑

i=1

(s+ 1)h(ai,s).

Proof. One can easily check that

cs =
∑

0≤l1,...,lr≤s,
l1+···+lr=s

a1,l1 · · ·ar,lr .

By Corollary 2.10, one has that

h(cs) ≤
r∑

i=1

s∑

j=0

h(ai,j) ≤
r∑

i=1

(s+ 1)h(ai,s).

Lemma 3.3. Suppose that Q ∈ K[z, Y ] and f =
∑

i≥0 aiz
i ∈ K[[z]] with

Q(z, f) = 0. Then for i ≥ 0,

h(ai) ≤ (deg(Q, Y ) + 1)ih(Q).
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Proof. Denote n = deg(Q, Y ). Dividing Q by some power of z if necessary,
we may assume that z ∤ Q. Note that this operation does not change the
height of Q. It is easy to verify that h(Q(0, Y )) ≤ h(Q). Since Q(0, Y ) 6= 0
and Q(0, a0) = 0, by Proposition 2.15, h(a0) ≤ h(Q(0, Y )) ≤ h(Q). Now set
Q1 = Q(z, a0 + zY ). Then by Corollary 2.13,

h(Q1) = h(Q(z, a0 + Y )) ≤ h(Q) + nh(a0) ≤ h(Q) + nh(Q) ≤ (n+ 1)h(Q).

Again, we may assume that z ∤ Q1. One sees that a1 + a2z + · · · is a solution
of Q1(z, Y ) = 0. Using a similar argument, one has that h(a1) ≤ h(Q1) ≤
(n+1)h(Q). Set Qi+1 = Qi(z, ai+ zY ) for i = 1, 2, . . . . Repeating the previous
process yields that h(ai) ≤ (n+ 1)ih(Q).

Now suppose that L = K(x, y) where x is transcendental over K and [L :
K(x)] < ∞. Furthermore, assume that P ∈ K[X,Y ] is a nonzero irreducible
polynomial such that P (x, y) = 0. Let us first adapt a result given in [16] on
the degree bound for a basis of a Riemann-Roch space. For this, we need to
recall some notations introduced in [16]. Write

P (X,Y ) = A0(X)Y n +A1(X)Y n−1 + · · ·+An(X), (2)

where Ai ∈ K[X ], A0 6= 0 and deg(P, Y ) = n. Set

y1 = 1, y2 = A0(x)y, . . . , yn = A0(x)y
n−1 + · · ·+An−2(x)y.

Then the yi’s are integral over K[x]. To see this, note that yi is integral over
K[x] if and only if yi has no pole lying above x− c for any c ∈ K. Suppose that
p is a pole of some yi lying above x − c for some c ∈ K. Then p is a pole of y
and thus a zero of y−1. On the other hand,

yi = A0(x)y
i−1 + · · ·+Ai−2(x)y = −Ai−1(x)−Ai(x)y

−1 − · · · −An(x)y
−n+i−1

which implies that p is not a pole of yi, a contradiction. Let d(X) be the
discriminant of P with respect to Y . Let D =

∑

p dpp be a divisor of L. It
is clear that LK(D) = K if D is a zero divisor. Assume that D is not a zero
divisor in the rest of this article. In what follows, we agree with the following
notations.

Notation 3.4.

δD =
∑

p

|dp|,

ρ = tdeg(P ),

qD(X) = d(X)ρ(ρ+δD)
∏

p∈supp(D),
ordp(x)≥0

(X − πp(x))
ρ(ρ+δD ),

U = supp(div(x)−) ∪ supp(div(y)−) ∪ supp(div(qD(x))),

h(D) = max{h(P ),max{h(πp(x)) | ∀ p ∈ U}}.
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Remark 3.5. Note that supp(D) ⊂ U . To see this, for p ∈ supp(D) with
ordp(x) ≥ 0, p is a zero of x − πp(x) and thus a zero of qD(x). So p ∈
supp(div(qD(x))) ⊂ U . For p ∈ supp(D) with ordp(x) < 0, p ∈ supp(div(x)−)
which is obvious in U .

In [16], when K = C, Schmidt gave a degree bound for a basis of the
Riemann-Roch space LC(D) of a divisor D. Moreover, he proved that if P
has coefficients in a subfield k of C and D is defined over k then there is a basis
of LC(D) whose elements are in k(x, y). After small modifications of Schmidt’s
results, we are able to prove that Schmidts’s result on degree bound is also valid
for the algebraically closed field K. Suppose that k ⊂ K is an algebraically
closed subfield such that P (X,Y ) ∈ k[X,Y ]. By Definition 2.3, one sees that
each divisor of k(x, y) is also a divisor of K(x, y). Suppose that f ∈ k(x, y)\{0}.
To avoid confusion, we denote by divk(f) the divisor of f viewed as an element
in k(x, y) and by divK(f) the divisor of f viewed as an element in K(x, y).

Lemma 3.6. Suppose that k ⊂ K is an algebraically closed subfield such that
P (X,Y ) ∈ k[X,Y ]. Then for every f ∈ k(x, y) \ {0}, divk(f) = divK(f).

Proof. If f ∈ k then there is nothing to prove. Suppose that f /∈ k. Since a zero
(resp. pole) of f in k(x, y) is also a zero (resp. pole) of f in K(x, y), f /∈ K.
Due to Theorem 4 on page 18 of [5],

deg(divk(f)
+) = deg(divk(f)

−) = [k(x, y) : k(f)].

Similarly, one has that

deg(divK(f)+) = deg(divK(f)−) = [K(x, y) : K(f)].

As k is algebraically closed, [k(x, y) : k(f)] = [K(x, y) : K(f)]. This implies
that deg(divk(f)

+) = deg(divK(f)+) and deg(divk(f)
−) = deg(divK(f)−). On

the other hand, one has that divk(f)
+, divk(f)

− are divisors of K(x, y) and
divk(f)

+ ≤ divK(f)+, divk(f)
− ≤ divK(f)−. Therefore divk(f)

+ = divK(f)+

and divk(f)
− = divK(f)−. Consequently, divk(f) = divK(f).

Proposition 3.7. Let ρ, δD,qD be as in Notation 3.4. Then there are integers
π1, . . . , πn, and a monic factor q of qD with deg(q) < ρ(ρ + δD), Bi,j ∈ K[X ]
with deg(Bi,j) < 2ρ(ρ+ 2δD) such that LK(D) has a basis of the type

xl





n∑

j=1

Bi,j(x)

q(x)
yj



 (3)

where i runs over all integers s ∈ {1, 2, . . . , n} satisfying πs ≥ 0 and l runs over
all integers in {0, 1, . . . , πi}.

Proof. If LK(D) = {0}, we take all πi < 0 for i = 1, . . . , n and the asser-
tion is obvious. Now assume LK(D) 6= {0} and a1, . . . , am ∈ L is a basis
of LK(D) over K. Let k ⊂ K be a field finitely generated over Q such that
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P ∈ k[X,Y ], a1, . . . , am ∈ k(x, y) and the center of p has coordinates in k∪{∞}
for every place p in supp(D). Then the irreducible parametrization correspond-
ing to p has coordinates in k̄((z)) for any p ∈ supp(D), where k̄ is the algebraic
closure of k. We embed k̄ into C and view P as a polynomial in C[X,Y ].
Then P is irreducible over C because P is irreducible over k̄. Denote by L̃
the field of fractions of C[X,Y ]/(P ), where (P ) stands for the ideal in C[X,Y ]
generated by P . Then k̄(x, y) can be viewed as a subfield of L̃. Note that
D is still a divisor of both k̄(x, y) and L̃. By Lemma 3.6, Lk̄(D) ⊂ LC(D).
Since D is defined over k̄, by Theorems A2 and B2 of [16], LC(D) has a
basis of the type (3) with Bi,j ∈ k̄[X ], deg(q) ≤ deg(P, Y )δD + deg(d)/2
and deg(Bi,j) ≤ deg(P, Y )(deg(P,X) + 3δD) + deg(q). Note that deg(d) ≤
(2 deg(P, Y ) − 1) deg(P,X) < 2ρ2. One sees that deg(q) < ρ(ρ + δD) and
deg(Bi,j) < 2ρ(ρ + 2δD). Due to Theorem 1 on page 90 of [5], the vector
spaces Lk̄(D) and LC(D) have the same dimension and then Lk̄(D) has a basis
of the type (3) with Bi,j ∈ k̄[X ]. Since Lk̄(D) ⊂ LK(D) by Lemma 3.6 and
a1, . . . , am ∈ k(x, y), Lk̄(D) and LK(D) have the same dimension by Theorem
1 on page 90 of [5]. These imply that LK(D) has a basis of the type (3) with
Bi,j ∈ k̄[X ] ⊂ K[X ].

Corollary 3.8. Let ρ, δD, q be as in Proposition 3.7 and D̃ = D − div(q(x)).
Suppose that LK(D̃) 6= {0}. Then LK(D̃) contains a nonzero element of the
type

n−1∑

j=0

B̃j(x)y
j

where B̃j ∈ K[X ] with deg(B̃j) < 4ρ(ρ+ δD).

Proof. By Proposition 3.7, there are integers π1, . . . , πn, and Bi,j ∈ K[X ] with
deg(Bi,j) < 2ρ(ρ+ 2δD) such that LK(D) has a basis of the type

xl





n∑

j=1

Bi,j(x)

q(x)
yj



 (4)

where i runs over all integers s ∈ {1, 2, . . . , n} satisfying πs ≥ 0 and l runs
over all integers in {0, 1, . . . , πi}. Note that LK(D) = 1

q(x)LK(D̃). Thus

LK(D) 6= {0} which implies that not all πi are negative. Suppose that πi0 ≥ 0.

Setting l = 0 in (4) yields that
∑n

j=1
Bi0,j(x)

q(x) yj is an element in LK(D). Write
∑n

j=1 Bi0,j(x)yj =
∑n−1

j=0 B̃j(x)y
j where B̃j ∈ K[X ]. Note that y1 = 1 and

yj =
∑j−1

s=1 Aj−1−s(x)y
s for j > 1. One has that

n−1∑

s=0

B̃s(x)y
s = Bi0,1(x) +

n∑

j=2

j−1
∑

s=1

Aj−1−s(x)Bi0,j(x)y
s

= Bi0,1(x) +

n−1∑

s=1





n∑

j=s+1

Aj−1−s(x)Bi0,j(x)



 ys.
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Therefore B̃0(x) = Bi0,1(x) and B̃s(x) =
∑n

j=s+1 Aj−1−s(x)Bi0,j(x) for s ≥ 1
and so

deg(B̃s) ≤ max
j

deg(Bi0,j) + max
j

deg(Aj) ≤ 2ρ(ρ+ 2δD) + ρ < 4ρ(ρ+ δD).

The corollary then follows from the fact that LK(D) = 1
q(x)LK(D̃).

In the rest of this section, let us estimate the heights of the coefficients of
B̃j . We first estimate the heights of the coefficients of a place represented by
an irreducible parametrization of P (X,Y ) = 0.

Proposition 3.9. Let ρ = tdeg(P ). Suppose that (zµ+a, zν(c0+ cℓ1z
ℓ1 + · · · ))

is a place of P (X,Y ) = 0. Then

h(ci) ≤ (ρ+ 1)i+1 max{h(P ), h(a)}

where ci = 0 if i 6= ℓj for all j ≥ 1 and i 6= 0.

Proof. We first consider the case µ > 0. Set P̄ (z, Y ) = zdP (zµ + a, zνY ) where
d is the integer such that P̄ ∈ K[z, Y ] and z ∤ P̄ . By Corollary 2.13, one can
verity that

h(P̄ ) ≤ h(P ) + deg(P,X)h(a) ≤ (ρ+ 1)max{h(P ), h(a)}.

As c0 + cℓ1z
ℓ1 + · · · is a solution of P̄ (z, Y ) = 0 and deg(P, Y ) = deg(P̄ , Y ), by

Lemma 3.3, one sees that

h(ci) ≤ (deg(P̄ , Y ) + 1)ih(P̄ ) ≤ (ρ+ 1)i+1 max{h(P ), h(a)}.

Suppose that µ < 0. Similarly, set P̄ (z, Y ) = zdP (zµ, zνY ) where d is the
integer such that P̄ ∈ K[z, Y ] and z ∤ P̄ . Then h(P ) = h(P̄ ) and deg(P, Y ) =
deg(P̄ , Y ). Since c0 + cℓ1z

ℓ1 + · · · is a solution of P̄ (z, Y ) = 0, by Lemma 3.3,
h(ci) ≤ (ρ+ 1)i+1h(P ).

For a place p = (zµ + a, zν(c0 + c1z + · · ·)) of P (X,Y ) = 0, the series
(zµ + a)l(zν(c0 + c1z + · · ·))j is called the expansion of xlyj at p, denoted by
xlyj|(x,y)=p for brevity.

Lemma 3.10. Let ρ = tdeg(P ). For l ≥ 0, j ∈ {0, . . . , n − 1} and a place p,
xlyj has an expansion at p of the type

xlyj
∣
∣
(x,y)=p

= zdp,l,j

∞∑

s=0

βp,l,j,sz
s

where dp,l,j is an integer greater than −lρ− ρ2 and βp,l,j,s ∈ K with

h(βp,l,j,s) ≤ ((s+ 1)2(ρ+ 1)s+2 + l)max{h(P ), h(πp(x))}.

16



Proof. Suppose that

p = (x(z),y(z)) = (zµ + a, zν(c0 + cℓ1z
ℓ1 + · · · )).

Then h(πp(x)) = h(a). To see this, if µ > 0 then πp(x) = a and we are done,
if µ < 0 then πp(x) = ∞ and a = 0 and thus h(πp(x)) = 0 = h(a). By
Proposition 3.9, for i ≥ 0,

h(ci) ≤ (ρ+ 1)i+1 max{h(P ), h(a)}

where ci = 0 if i 6= lj for all j ≥ 1 and i 6= 0. Write y(z)j = zjν
∑

s≥0 bj,sz
s.

By Lemma 3.2 with fi =
∑

s≥0 csz
s, one sees that

h(bj,s) ≤

j
∑

i=1

(s+ 1)h(cs) ≤ j(s+ 1)h(cs) ≤ (s+ 1)(ρ+ 1)s+2 max{h(P ), h(a)}.

The last inequality holds because j ≤ n− 1 < ρ+ 1.
We first consider the case µ > 0. Note that (zµ + a)l =

∑l
s=0

(
l
s

)
al−szsµ.

This implies that (zµ+a)ly(z)j has an expansion of the type zel,j
∑

s≥0 βp,l,j,sz
s

at z = 0, where el,j = jν and

βp,l,j,s =
l∑

i=0

bj,s−iµ

(
l

i

)

al−i

with bj,i = 0 if i < 0. Therefore by Corollary 2.10,

h(βp,l,j,s) ≤
s∑

i=0

h(bj,i) + lh(a) ≤ ((s+ 1)2(ρ+ 1)s+2 + l)max{h(P ), h(a)}.

Set dp,l,j = jν. Then we has the required expansion for xlyj at p. Finally, as
|ν| ≤ |ordp(y)| ≤ ρ, one has that dp,l,j > −ρ2 ≥ −ρl− ρ2.

Now suppose that µ < 0. In this case, one easily sees that dp,l,j = jν + lµ
and βp,l,j,s = bj,s. As |µ| ≤ |ordp(x)| ≤ ρ, one has that dp,l,j > −lρ− ρ2.

Let c = (. . . , cl,j , . . . ) be a vector with indeterminate coordinates and set

g(c) =

n−1∑

j=0

4ρ(ρ+δD)−1
∑

l=0

cl,jx
lyj .

Proposition 3.11. Let ρ, δD, h(D) be as in Notation 3.4. Let D̃ be as in
Corollary 3.8. Suppose that LK(D̃) 6= {0}. Then LK(D̃) contains a nonzero
element of the type

g(a) =

n−1∑

j=0

4ρ(ρ+δD)−1
∑

l=0

al,jx
lyj (5)

with
h(a) ≤ 1600(ρ+ δD)6(ρ+ 1)5(ρ+δD)3−11h(D),

where al,j ∈ K, at least one of al,j equals 1 and a is viewed as a projective point.
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Proof. Let U be as in Notation 3.4. By Lemma 3.10, for each place p, j =
0, . . . , n− 1 and l ≥ 0, xlyj has an expansion at p of the type

xlyj
∣
∣
(x,y)=p

= zdp,l,j

∞∑

s=0

βp,l,j,sz
s

where dp,l,j is an integer greater than −lρ− ρ2 and βp,l,j,s ∈ K with

h(βp,l,j,s) ≤ ((s+ 1)2(ρ+ 1)s+2 + l)max{h(P ), h(πp(x))}.

Set o = minp,l,j{dp,l,j} and write

xlyj|(x,y)=p = zo
∞∑

s=0

αp,l,j,sz
s

One can easily see that αp,l,j,s = 0 if s < dp,l,j − o and αp,l,j,s = βp,l,j,s+o−dp,l,j

if s ≥ dp,l,j − o. Therefore for s ≥ 0,

h(αp,l,j,s) ≤ h(βp,l,j,s) ≤ ((s+ 1)2(ρ+ 1)s+2 + l)max{h(P ), h(πp(x))}.

Then for each place p, g(c) has an expansion at p of the type

g(c)|(x,y)=p = zo
∑

s≥0




∑

l,j

cl,jαp,l,j,s



 zs.

Suppose that c̄ = (· · · : c̄l,j : · · · ) where c̄l,j ∈ K. Note that a pole of g(c̄)
is either a pole of x or a pole of y and so all poles of g(c̄) are in U . Write
D̃ =

∑

p mpp. Then g(c̄) ∈ LK(D̃) if and only if ordp(g(c̄)) ≥ −mp for every p ∈

supp(D̃) and ordp(g(c̄)) ≥ 0 for every p ∈ U \ supp(D̃), i.e. ordz(g(c̄)|(x,y)=p) ≥

−mp for every p ∈ supp(D̃) and ordz(g(c̄)|(x,y)=p) ≥ 0 for every p ∈ U\supp(D̃).

Equivalently, g(c̄) ∈ LK(D̃) if and only if c̄ is a solution of the following linear
system

⋃

p∈supp(D̃)







∑

l,j

cl,jαp,l,j,s = 0 | s = 0, . . . ,−mp − o− 1







⋃

⋃

p∈U\supp(D̃)







∑

l,j

cl,jαp,l,j,s = 0 | s = 0, . . . ,−o− 1






.

(6)

Note that D̃ = D−div(q(x)). By Remark 3.5, supp(D) ⊂ U and thus supp(D̃) ⊂
U . By definition, h(πp(x)) ≤ h(D) for all p ∈ U . So for l ≤ 4ρ(ρ+ δD)− 1 and
p ∈ U ,

h(αp,l,j,s) ≤ ((s+ 1)2(ρ+ 1)s+2 + l)h(D)

≤ (ρ+ δD)(s+ 1)2(ρ+ 1)s+3h(D).
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The second inequality holds because (s+1)2(ρ+1)s+3−4ρ ≥ (s+1)2(ρ+1)s+2.
In what follows, we shall estimate −mp when mp < 0. Note that

deg(div(q(x))+) = deg(q) deg(div(x)+) = deg(q)n ≤ ρ2(ρ+ δD).

Hence |mp| ≤ δD +deg(div(q(x))+) < (ρ+1)2(ρ+ δD). Since o > −ρl− ρ2 and
l ≤ 4ρ(ρ+ δD)− 1, one has that

−mp − o− 1 < (ρ+ 1)2(ρ+ δD) + ρl + ρ2

≤ 5ρ2(ρ+ δD) + 2ρ(ρ+ δD) + ρ2 + δD

= 5(ρ+ 1)2(ρ+ δD)− 7ρ2 − 8ρδD − 5ρ− 4δD

≤ 5(ρ+ 1)2(ρ+ δD)− 24.

Therefore the heights of the coefficients of the system (6) are not greater than

T , (ρ+ δD)(5(ρ+ 1)2(ρ+ δD)− 23)2(ρ+ 1)5(ρ+1)2(ρ+δD)−21h(D)

≤ 25(ρ+ δD)3(ρ+ 1)5(ρ+δD)3−17h(D).

The system (6) contains 4nρ(ρ+ δD) ≤ 4ρ2(ρ+ δD) variables and thus the rank
of the system (6) is not greater than 4ρ2(ρ+ δD). By Corollary 2.14, the system
(6) has a nonzero solution c̄ with

h(c̄) ≤ (4ρ2(ρ+δD))
2(4ρ2(ρ+δD)+1)T ≤ 1600(ρ+δD)

6(ρ+1)5(ρ+δD)3−11h(D).

Let λ be a nonzero coordinate of c̄ and set a = c̄/λ. Then g(a) is the desired
element.

Proposition 3.12. Let a be as in Proposition 3.11 and let ρ, δD, h(D) be as in
Notation 3.4. Suppose that Q1 ∈ K[X,Z], Q2 ∈ K[Y, Z] are nonzero irreducible
polynomials such that Q1(x, g(a)/q(x)) = 0 and Q2(y, g(a)/q(x)) = 0. Then

h(Q1), h(Q2) ≤ 1600(ρ+ δD)6(ρ+ 1)5(ρ+δD)3−9h(D).

Proof. Suppose that a = (. . . , al,j , . . . ). Set

G(X,Y, Z) = q(X)Z −
n−1∑

j=0

4ρ(ρ+δD)−1
∑

l=0

al,jX
lY j .

Then deg(G,X) ≤ 4ρ(ρ+ δD)− 1 and g(a)/q(x) is a solution of G(x, y, Z) = 0.
Denote R = resY (P,G). Since P (X,Y ) is irreducible and it does not divide
G(X,Y, Z), R is nonzero. Furthermore R(x, g(a)/q(x)) = 0 and then Q1 divides
R. Now let us estimate the height of q(X). Suppose that b1, . . . , bd are all roots
of q(X) = 0 where d = deg(q). Then bi is either a zero of d(X) or πp(x) for
some p ∈ supp(D). In the first case, h(bi) ≤ (2ρ − 1)h(P ) by Corollary 2.12
and in the second case h(bi) ≤ h(D). Therefore h(bi) ≤ (2ρ − 1)h(D). Each
coefficient of q(X) is a homogeneous polynomial in 1, b1, . . . , bd of degree d.
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By Proposition 2.9, h(q(X)) ≤ dh((1 : b1 : · · · : bd)). Due to Corollary 2.11,

h((1 : b1 : · · · : bd)) ≤
∑d

i=1 h(bi). Since d = deg(q) ≤ ρ(ρ+ δD),

h(q(X)) ≤ d

d∑

i=1

h(bi) ≤ d2(2ρ− 1)h(D) ≤ (ρ+ δD)2(2ρ3 − ρ2)h(D).

Let c be a point in some projective space with the coefficients of q(X) and all
al,j as coordinates. By Corollary 2.11,

h(c) ≤ h(q) + h(a)

≤ (ρ+ δD)2(2ρ3 − ρ2)h(D) + 1600(ρ+ δD)6(ρ+ 1)5(ρ+δD)3−11h(D)

≤ 1600(ρ+ δD)6(ρ+ 1)5(ρ+δD)3−10h(D).

Equivalently, h(G) ≤ 1600(ρ + δD)6(ρ + 1)5(ρ+δD)3−10h(D). Due to Proposi-
tion 2.15 and Corollary 2.12, one has that

h(Q1) ≤ h(R) ≤ deg(G, Y )h(P ) + deg(P, Y )h(G)

≤ (ρ− 1)h(D) + 1600ρ(ρ+ δD)6(ρ+ 1)5(ρ+δD)3−10h(D)

≤ 1600(ρ+ δD)6(ρ+ 1)5(ρ+δD)3−9h(D).

Using a similar argument, one has that

h(Q2) ≤ deg(G,X)h(P ) + deg(P,X)h(G)

which is also less than 1600(ρ+ δD)6(ρ+ 1)5(ρ+δD)3−9h(D).

4. Main result

Throughout this section, let K, h be as in Section 3 and L stands for an
algebraic function field of one variable over K, i.e. L = K(x, y) where x is
transcendental over K and [L : K(x)] < ∞. Suppose that p is a place of L over
K. Let πp be defined as in Section 2.1. We start with a height inequality for
points on an algebraic curve of special type. This inequality is an easy corollary
of Proposition on page 14 of [17]. For completeness, we present a detailed proof
and estimate the constant term.

Proposition 4.1. Suppose that Q is a nonzero polynomial in K[X,Y ] satisfying
deg(Q, Y ) = tdeg(Q). Then for each (α, β) ∈ K2 with Q(α, β) = 0,

h(β) ≤ h(α) + h(Q).

Proof. Suppose that n = tdeg(Q). Let m0, . . . ,mℓ be all monomials in X,Y
of total degrees not greater than n. Without loss of generality, we assume
that m0 = 1 and mℓ = Y n. Write Q = cY n +

∑ℓ−1
i=0 bimi where c, bi ∈ K

and c 6= 0. In Proposition 2.9, we take r = 1, s1 = ℓ − 1,Φ = (X1,0 : · · · :
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X1,ℓ−1 : − 1
c

∑ℓ−1
i=0 biX1,i) and a = (1 : m1(α, β) : · · · : mℓ−1(α, β)). Then

Φ(a) = (m0(α, β) : · · · : mℓ(α, β)) and by Propositions 2.16 and 2.9, one has
that

nh((1 : α : β)) = h(Φ(a)) ≤ h(a) + h(Φ) = h(a) + h(Q). (7)

Let n0, . . . ,nm be all monomials in X,Y of total degrees not greater than n−1.
One can check that there are nd1 , . . . ,ndn

such that Xndi
6= nj for any i, j and

{mi | i = 0, . . . , ℓ− 1} = {ni | i = 0, . . . ,m} ∪ {Xndi
| i = 1, . . . , n},

where ℓ = m + n + 1. In Proposition 2.9, we take r = 2, s1 = 1, s2 = m,
Φ = (φ0 : · · · : φℓ−1) with φi = X1,0X2,i for i = 0, . . . ,m and φi = X1,1X2,di−m

for i = m + 1, . . . , ℓ − 1, a1 = (1 : α) and a2 = (n0(α, β) : · · · : nm(α, β)).
Reordering the subscripts if necessary, we may assume that

(m0, . . . ,mm+n) = (n0, . . . ,nm, Xnd1, . . . , Xndn
).

We then have that Φ(a1, a2) = a and

h(a) = h(Φ(a1, a2)) ≤ h(a1) + h(a2) = h(α) + h(a2). (8)

By Proposition 2.16 again, h(a2) = (n− 1)h((1 : α : β)). This together with (7)
and (8) yields that

h((1 : α : β)) ≤ h(α) + h(Q).

The proposition then follows from the fact that h(β) ≤ h((1 : α : β)).

As a corollary, we have the following quasi-equivalence of heights for points
on an algebraic curve of special type.

Corollary 4.2. Suppose that Q =
∑m

i=0

∑n
j=0 ai,jX

iY j with ai,j ∈ K, m =
deg(Q,X) and n = deg(Q, Y ). Assume that for all 0 ≤ i ≤ m and 0 ≤ j ≤ n if
ai,j 6= 0 then mj + ni ≤ mn. Then for each (α, β) ∈ K2 with Q(α, β) = 0,

nh(β)−mnh(Q) ≤ mh(α) ≤ nh(β) +mnh(Q).

Proof. Set Q̃ =
∑m

i=0

∑n
j=0 ai,jX

niY mj . Then deg(Q̃, Y ) = deg(Q̃,X) =

tdeg(Q̃) and h(Q̃) = h(Q). Suppose that (α, β) ∈ K2 satisfies Q(α, β) = 0.
Then Q̃(α1/n, β1/m) = 0. By Proposition 4.1, h(β1/m) ≤ h(α1/n) + h(Q̃). By
Proposition 2.7, one has that nh(β) ≤ mh(α)+mnh(Q). Similarly, one has that
mh(α) ≤ nh(β) +mnh(Q).

The polynomial Q usually does not satisfy the assumption of Proposition 4.1,
i.e. deg(Q, Y ) = tdeg(Q). In order to apply Proposition 4.1, Eremenko proved
in [8] that if div(y)− ≤ div(x)− then the irreducible polynomialQ withQ(x, y) =
0 satisfies deg(Q, Y ) = tdeg(Q). The following lemma is a generalization of
Lemma 1 in [8].
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Lemma 4.3. Assume that Q ∈ K[X,Y ] is a nonzero polynomial irreducible
over K and α, β ∈ L \K satisfying Q(α, β) = 0. Suppose that

m1div (τ1(α))
− ≤ m2div (τ2(β))

−

where m1,m2 are positive integers and τ1, τ2 are two linear fractional transfor-
mations with coefficients in Q. Then for every place p of L over K,

m1h(πp(α)) ≤ m2h(πp(β)) +m1m2h(Q).

Proof. Write τ1(X) = a1X+b1
c1X+d1

, τ2(Y ) = a2Y+b2
c2Y +d2

with ai, bi, ci, di ∈ Q and aidi −

bici 6= 0. Denote ᾱ = τ1(α)
m1 and β̄ = τ2(β)

m2 . Let Q̄ ∈ K[Z1, Z2] be a
nonzero irreducible polynomial such that Q̄(ᾱ, β̄) = 0. Set

H1 = (c1X + d1)
m1Z1 − (a1X + b1)

m1 ,

H2 = (c2Y + d2)
m2Z2 − (a2Y + b2)

m2 ,

R1(Z1, Y ) = resX(H1, Q(X,Y )), R2(Z1, Z2) = resY (H2, R1(Z1, Y )).

As Q does not divide H1, R1 6= 0. Similarly, R2 6= 0. Moreover, one can
easily check that R2(ᾱ, β̄) = 0. Hence Q̄ divides R2. By Proposition 2.15 and
Corollary 2.12, one has that

h(Q̄) ≤ h(R2) ≤ deg(R1, Y )h(H2) + deg(H2, Y )h(R1)

≤ deg(H2, Y )(deg(H1, X)h(Q) + deg(Q,X)h(H1))

= deg(H2, Y ) deg(H1, X)h(Q) = m1m2h(Q).

Since div(ᾱ)− ≤ div(β̄)−, deg(Q̄,X) = tdeg(Q̄) by the Proposition 2 in [8]. If
a place p is not a pole of β̄ then it is not a pole of ᾱ too. For such places,
the lemma follows from Propositions 4.1, 2.7 and Corollary 2.10. It remains to
show that the case that p is a pole of β̄. Suppose that p is a pole of β̄. If p
is also a pole of α then h(πp(α)) = 0 and there is nothing to prove. Assume

that p is not a pole of α. If p is a pole of β then πp(α) is a zero of Q̃(X, 0),

where Q̃ = Y rQ(X, 1/Y ) and r is the smallest integer such that Q̃ ∈ K[X,Y ],
and thus h(πp(α)) ≤ h(Q̃) = h(Q) and we are done. Now suppose that p is
not a pole of β. Since p is a pole of β̄, c2πp(β) + d2 = 0, i.e. πp(β) = −d2/c2.
Applying πp to Q(α, β) = 0 yields that πp(α) is a solution of Q(X,−d2/c2) = 0.

Write Q =
∑ℓ

i=0 Ai(Y )X i where Ai(Y ) =
∑s

j=0 ai,jY
j ∈ K[Y ]. Note that

Ai(−d2/c2) viewed as a polynomial in the ai,j is either 0 or homogeneous in the
ai,j of degree 1 with coefficients in Q. By Proposition 2.9,

h(Q(X,−d2/c2)) = h((A0(−d2/c2) : · · · : Aℓ(−d2/c2)))

≤ h((· · · : ai,j : · · · )) = h(Q).

Hence h(πp(α)) ≤ h(Q(X,−d2/c2)) ≤ h(Q) and the lemma holds.

Lemma 4.4. Assume S is a finite set of places of L over K and α ∈ L. Then
there are c1, c2 ∈ Q with c2 6= 0 such that

supp

(

div

(
α

c1α+ c2

)−
)

∩ S = ∅.
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Proof. Set
M = {πp(α) | ∀ p ∈ S with ordp(α) ≥ 0} .

ThenM is a finite subset ofK. Let c1, c2 ∈ Q satisfy that c2 6= 0 and c1a+c2 6= 0
for all a ∈ M . For p ∈ S with ordp(α) ≥ 0, one has that

πp(c1α+ c2) = c1πp(α) + c2 6= 0, i.e. ordp(c1α+ c2) = 0.

This implies that ordp(α/(c1α+c2)) = ordp(α) ≥ 0 for all p ∈ S with ordp(α) ≥
0. On the other hand, for p ∈ S with ordp(α) < 0, one has that

ordp(α/(c1α+ c2)) = ordp(α)− ordp(c1α+ c2) = ordp(α) − ordp(α) = 0.

In either case, p is not a pole of α/(c1α + c2). Thus c1, c2 have the desired
property.

Lemma 4.5. Suppose that P is a nonzero irreducible polynomial of total degree
ρ in K[X,Y ] satisfying P (x, y) = 0 and d(X) is the discriminant of P with
respect to Y . Let x̄ = x/(c1x+ c2) where c1, c2 ∈ Q with c2 6= 0. Then

h(πp(x)) ≤ 2ρh(P )

for each p ∈ supp(div(x)−)∪ supp(div(x̄)−)∪ supp(div(y)−)∪ supp(div(d(x))).

Proof. Suppose that πp(x) = ∞. Then h(πp(x)) = 0 and the lemma is clear. In
the following suppose that πp(x) 6= ∞. Suppose that p ∈ supp(div(x̄)−). Then
πp(c1x+c2) = c1πp(x)+c2 = 0 and so πp(x) = −c2/c1. Hence h(πp(x)) = 0 and
thus the lemma holds. Suppose that p ∈ supp(div(y)−). Then πp(y) = ∞ and
(πp(x), 0) is a zero of P̄ = Y rP (X, 1/Y ) where r is the smallest integer such
that Y rP (X, 1/Y ) ∈ K[X,Y ]. In other word, πp(x) is a zero of P̄ (X, 0). Note
that h(P̄ ) = h(P ). Hence h(πp(x)) ≤ h(P̄ (X, 0)) ≤ h(P ) ≤ 2ρh(P ). Finally,
suppose that supp(div(d(x))) 6= ∅, i.e. d(x) /∈ K and p ∈ supp(div(d(x))). If p
is a pole of d(x) then it is a pole of x and we are already done. Suppose that p
is a zero of d(x). Then πp(d(x)) = 0 which implies that d(πp(x)) = 0. Hence
h(πp(x)) ≤ h(d(X)) ≤ 2ρh(P ).

Now we are ready to prove the main result of this paper.

Theorem 4.6. Let P be an irreducible polynomial in K[X,Y ] of degree m with
respect to X and of degree n with respect to Y . Suppose that ρ = tdeg(P ) and
0 < ǫ < 1. Then for every a, b ∈ K with P (a, b) = 0, one has that

(1− ǫ)nh(b)− C ≤ mh(a) ≤ (1 + ǫ)nh(b) + C

where

C = 75 · 213 · (1/ǫ)6(ρ+ 1)
40(ρ+1)9

ǫ3 h(P ).

23



Proof. Let L be the field of fractions of K[X,Y ]/(P ). Then L is an algebraic
function field of one variable over K. Set x = X + (P ) and y = Y + (P ). Then
P (x, y) = 0. Choose c1, c2 ∈ Q with c2 6= 0 such that

supp(div(x/(c1x+ c2))
−) ∩ supp(div(y)−) = ∅.

Such c1, c2 exist because of Lemma 4.4. Let λ2 be the smallest integer not
less than ρ

2ǫ and let λ1 be the largest integer not greater than λ2 + ρ/2. Then
ρ
2ǫ ≤ λ2 < ρ

2ǫ + 1 and λ2 + ρ/2− 1 < λ1 ≤ λ2 + ρ/2. These imply that

λ1 − λ2 ≥
ρ

2
− 1,

λ1

λ2
≤ 1 + ǫ, λ1 + λ2 ≤

2(ρ+ 1)

ǫ
. (9)

Set x̄ = x/(c1x+ c2) and

D = λ1ndiv(y)
− − λ2mdiv(x̄)−.

Note that deg(div(y)−) = [L : K(y)] = m and deg(div(x̄)−) = [L : K(x̄)] = n.
One sees that

deg(D) = λ1nm− λ2nm = (λ1 − λ2)nm.

As nm ≥ n+m− 1 ≥ ρ− 1 and λ1 − λ2 ≥ ρ/2− 1, deg(D) ≥ (ρ− 1)(ρ− 2)/2
is not less than the genus of P (X,Y ) = 0. Consequently, LK(D) 6= {0}. Let
δD, h(D) be as in Notation 3.4. Then h(D) ≤ 2ρh(P ) by Lemma 4.5 and by
(9), δD = (λ1 + λ2)nm < 2(1 + ρ)ρ2/ǫ.

Due to Proposition 3.11, LK(D) contains a nonzero element z = g(a)/q(x),
i.e. div(z) + D ≥ 0, where g(a) is of the form (5). As supp(div(x̄)−) ∩
supp(div(y)−) = ∅, one sees that

div(z)− ≤ λ1ndiv(y)
−, λ2mdiv(x̄)− ≤ div(z)+ = div(1/z)−.

Suppose that Q1 ∈ K[X,Z], Q2 ∈ K[Y, Z] are nonzero irreducible polynomials
such that Q1(x, z) = 0 and Q2(y, z) = 0. By Proposition 3.12, one has that

h(Q1), h(Q2) ≤ 1600(ρ+ δD)6(ρ+ 1)5(ρ+δD)3−9h(D) , T.

Let p be a place of L over K such that πp(x) = a and πp(y) = b. By Lemma 4.3,

h(πp(z)) ≤ λ1nh(b) + λ1nh(Q2),

λ2mh(a) ≤ h(πp(z)) + λ2mh(Q1).

The above two inequalities imply that

λ2mh(a) ≤ λ1nh(b) + λ1nh(Q2) + λ2mh(Q1).

In other words, mh(a) ≤ (λ1/λ2)nh(b) + (m + nλ1/λ2)T. Note that by (9)
λ1/λ2 ≤ 1 + ǫ ≤ 2. One has that

mh(a) ≤ (1 + ǫ)nh(b) + 3ρT. (10)
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Note that ρ+ δD ≤ ρ+ 2(ρ+ 1)ρ2/ǫ < 2(ρ+ 1)3/ǫ. One sees that

3ρT = 3ρ× 1600(ρ+ δD)6(ρ+ 1)5(ρ+δD)3−9h(D)

≤ 9600ρ2(2(ρ+ 1)3/ǫ)6(ρ+ 1)5(ρ+2(ρ+1)ρ2/ǫ)3−9h(P )

≤ 9600 · 26 · (1/ǫ)6(ρ+ 1)5(ρ+2(ρ+1)ρ2/ǫ)3+11h(P )

≤ 75 · 213 · (1/ǫ)6(ρ+ 1)
40(ρ+1)9

ǫ3 h(P ) , C.

The last inequality holds because

5(ρ+ 2(ρ+ 1)ρ2/ǫ)3 + 11 < 5(ρ+ 2(ρ+ 1)ρ2/ǫ+ 2)3 < 40(ρ+ 1)9(1/ǫ)3.

Set D̃ = λ2mdiv(x̄)− − (2λ2 − λ1)ndiv(y)
−. Then

λ2 − (2λ2 − λ1) = λ1 − λ2 ≥
ρ

2
− 1,

2λ2 − λ1

λ2
= 2−

λ1

λ2
≥ 1− ǫ,

λ2 + 2λ2 − λ1 = 3λ2 − λ1 ≤ 2λ2 −
ρ

2
+ 1 <

2(ρ+ 1)

ǫ
.

Using a similar argument, one has that

(1 − ǫ)nh(b) ≤ mh(a) + C. (11)

Combining (11) with (10) yields the conclusion.
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