
ar
X

iv
:2

10
7.

10
60

8v
1 

 [
m

at
h.

C
O

] 
 2

2 
Ju

l 2
02

1
A planar network proof for Hankel total positivity

of type B Narayana polynomials

Ethan Y.H. Li1, Grace M.X. Li2, Arthur L.B. Yang3 and Candice X.T. Zhang4

Center for Combinatorics, LPMC

Nankai University, Tianjin 300071, P. R. China

Email: 1yinhao li@mail.nankai.edu.cn, 2limengxing@mail.nankai.edu.cn,
3yang@nankai.edu.cn, 4zhang xutong@mail.nankai.edu.cn

Abstract. The Hankel matrix of type B Narayana polynomials was proved to be totally

positive by Wang and Zhu, and independently by Sokal. Pan and Zeng raised the problem

of giving a planar network proof of this result. In this paper, we present such a proof by

constructing a planar network allowing negative weights, applying the Lindström-Gessel-

Viennot lemma and establishing an involution on the set of nonintersecting families of

directed paths.
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1 Introduction

For any n ≥ 0, let

Wn(q) =
n
∑

k=0

(

n

k

)2

qk

denote the n-th Narayana polynomial of type B. Wang and Zhu [25], and Sokal [22]

independently proved that the Hankel matrix

H = (Wi+j(q))i,j≥0 (1.1)

is q-totally positive, namely, any minor of H is a polynomial in q with nonnegative coef-

ficients. The main objective of this paper is to give a combinatorial proof of the q-total

positivity of H , which solves a problem of Pan and Zeng [18].

The q-total positivity of the Hankel matrix H arose in the study of the q-log-convexity

of the polynomial sequence (Wn(q))n≥0. For the convenience of introducing related def-

initions and results, we make use of the notion of q-nonnegativity and the symbol ≥q.

A polynomial f(q) with real coefficients is called q-nonnegative, written f(q) ≥q 0, if all
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its coefficients are nonnegative. Accordingly, for two polynomials f(q) and g(q) we write

f(q) ≥q g(q) if f(q)− g(q) ≥q 0. Recall that a sequence α = (an(q))n≥0 of polynomials in

q is said to be q-log-convex if for any n ≥ 1 there holds an+1(q)an−1(q) ≥q a
2
n(q). Further-

more, if am+1(q)an−1(q) ≥q am(q)an(q) holds for any m ≥ n ≥ 1, then we call α a strongly

q-log-convex sequence. Conversely, we say that α is a q-log-concave sequence if for any

n ≥ 1 we have a2n(q) ≥q an+1(q)an−1(q), and it is a strongly q-log-concave sequence if

am(q)an(q) ≥q am+1(q)an−1(q) holds for any m ≥ n ≥ 1. The concept of q-log-concavity

was introduced by Stanley, and the notion of strong q-log-concavity was due to Sagan

[19]. Many polynomial sequences have been proved to be q-log-concave, or even strongly

q-log-concave, see Butler [2], Krattenthaler [10], Leroux [12], Sagan [19, 20], and Chen,

Wang and Yang [5]. However, q-log-convex sequences received very little attention until

the work of Liu and Wang [16], who first introduced the notion of q-log-convexity. Liu

and Wang established the q-log-convexity of many combinatorial polynomials, such as the

Eulerian polynomials. For further progress on q-log-convexity, see [4, 27] for instance.

The q-log-convexity of (Wn(q))n≥0 was conjectured by Liu and Wang [16], and was

proved later by Chen, Tang, Wang and Yang [3] by using the theory of symmetric func-

tions. Zhu [26] further established the strong q-log-convexity of (Wn(q))n≥0 by identifying

this polynomial sequence as the first column of the triangular array B = (bn,k(q))n,k≥0,

which is generated by

bn,0(q) = (1 + q) · bn−1,0(q) + 2q · bn−1,1(q);

bn,k(q) = bn−1,k−1(q) + (1 + q) · bn−1,k(q) + q · bn−1,k+1(q) (k ≥ 1, n ≥ 1)
(1.2)

with b0,0(q) = 1 and bn,k(q) = 0 for k > n. The triangular array B belongs to a wide class

of matrices, called q-recursive matrices in [25], or Catalan-Stieltjes matrices in [18, 13],

which we will recall below. Let γ = (rk(q))k≥0, σ = (sk(q))k≥0 and τ = (tk(q))k≥1 be

three sequences of polynomials in q. The Catalan-Stieltjes matrix with respect to γ, σ, τ ,

denoted by Cγ,σ,τ = (cn,k(q))n,k≥0, is generated by the following recursive relations:

cn,0(q) = s0(q)cn−1,0(q) + t1(q)cn−1,1(q);

cn,k(q) = rk−1(q)cn−1,k−1(q) + sk(q)cn−1,k(q) + tk+1(q)cn−1,k+1(q) (k ≥ 1, n ≥ 1),

where c0,0(q) = 1 and cn,k(q) = 0 unless n ≥ k ≥ 0. Actually, Zhu [26] gave a general

criterion for the strong q-log-convexity of (cn,0(q))n≥0 of Cγ,σ,τ . Further, Wang and Zhu

[25] proved that the Hankel matrix (ci+j,0(q))i,j≥0 is q-totally positive provided that the
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matrix

Lγ,σ,τ =

















1

s0(q) r0(q)

t1(q) s1(q) r1(q)

t2(q) s2(q) r2(q)
. . .

. . .
. . .

















,

called the coefficient matrix of Cγ,σ,τ , is q-totally positive. As a result, Wang and Zhu

obtained the q-total positivity of the Hankel matrix H = (Wi+j(q))i,j≥0, which was also

independently proved by Sokal [22] based on the continued fraction expression of the

generating function
∑

n≥0Wn(q)x
n.

We would like to note that the q-total positivity of the Hankel matrix (ci+j,0(q))i,j≥0 is

also closely related to that of Cγ,σ,τ , for details see [14] and [25]. Chen, Liang and Wang

[6] raised the problem of giving a combinatorial interpretation for the q-total positivity of

Cγ,σ,τ . An ideal tool to combinatorially proving the positivity of a matrix is the famous

Lindström-Gessel-Viennot lemma, see [15, 7, 8]. A natural strategy is to construct a planar

network with nonnegative weights for the target matrix, and then to apply the Lindström-

Gessel-Viennot lemma to interpret each minor of this matrix as the generating function of

nonintersecting families of directed paths, which are obviously nonnegative. In the spirit

of this method, Pan and Zeng [18] provided a general planar network construction for the

Catalan-Stieltjes matrices and their associated Hankel matrices, which enables them to

give combinatorial proofs of the q-total positivity for many such matrices, such as those

related to the Eulerian polynomials, Schröder polynomials, and Narayana polynomials

of type A. However, their approach did not work for Narayana polynomials of type B,

and they proposed it as an open problem to find a planar network proof of the q-total

positivity of H = (Wi+j(q))i,j≥0. It seems impossible to find a planar network with only

nonnegative weights for H .

In this paper, inspired by our recent work [13], we construct for H a suitable planar

network allowing negative weights and solve Pan and Zeng’s problem. In our construction,

the planar network for H can be naturally divided into serial segments which are essen-

tially subnetworks of the planar network for the coefficient matrix LB of B. By applying

the Lindström-Gessel-Viennot lemma and establishing a sign-reversing involution on the

nonintersecting families of each segment, we combinatorially prove the q-total positivity

of LB and H .

This paper is organized as follows. In Section 2, we will introduce the Lindström-

Gessel-Viennot lemma. In Section 3, we will present our planar network construction for

the coefficient matrix LB, as well as a combinatorial proof of its q-total positivity. In
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Section 4 we will make use of the results in Section 3 to obtain a planar network for H

and a combinatorial proof of its q-total positivity. We conclude this paper in Section 5

with a conjecture on the immanant positivity for H .

2 The Lindström-Gessel-Viennot lemma

The Lindström-Gessel-Viennot lemma was originally proved by Lindström [15] and further

developed by Gessel and Viennot [7, 8]. It has a broad range of applications, see [9, 11, 17,

24] for instance. In this section, we will give an overview of the Lindström-Gessel-Viennot

lemma, which plays a key role in our combinatorial proof of the q-total positivity of the

Hankel matrix of type B Narayana polynomials.

To state the Lindström-Gessel-Viennot lemma, we need some notations. Let D be a

directed graph, or digraph for short, with vertex set V (D) and arc set A(D). A digraph D

is said to be acyclic if it contains no directed cycles. Throughout this paper we may assume

that D is locally finite, namely, for any two vertices u, v ∈ V (D) the number of directed

paths from u to v is finite. We say two directed paths intersect if they have a vertex in

common. A sequence (p1, . . . , pn) of directed paths is called a nonintersecting family if pi

and pj do not intersect for any i 6= j. Let U = (u1, . . . , un) and V = (v1, . . . , vn) be two

sequences of vertices in D, and let ND(U,V) denote the set of nonintersecting families

(p1, . . . , pn) such that pi is a directed path from ui to vi for each 1 ≤ i ≤ n. If for any

permutation σ of {1, 2, . . . , n}, the set ND(U, σ(V)) = ND((u1, . . . , un), (vσ(1), . . . , vσ(n)))

is empty unless σ is the identity permutation, then U and V are said to be compatible.

A weight function wt of D is a map from A(D) to R, where R is a commutative ring

with identity. The weight of a directed path in D is the product of the weights of all

its arcs, and the weight of a nonintersecting family is defined to be the product of the

weights of all its components. Given two vertices u and v of D, let GFD(u, v) denote

the sum of the weights of all directed paths from u to v. For two sequences U and V

of vertices in D, let GF (ND(U,V)) denote the sum of the weights of all elements in

ND(U,V). For a matrix M , we denote by det[M ] the determinant of M . The celebrated

Lindström-Gessel-Viennot lemma is stated as follows.

Lemma 2.1 ([8, Corollary 2]) Let D be a locally finite and acyclic digraph with a

weight function, and let U = (u1, . . . , un), V = (v1, . . . , vn) be two sequences of vertices

in D. Then

det
[

(GFD(ui, vj))1≤i,j≤n

]

= GF (ND(U,V)).
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In this paper, we mainly apply the above lemma to a special class of digraphs, called

planar networks. Recall that a digraph D is said to be planar if it can be embedded in

the plane with edges meeting only at endpoints. We call D = (D,wtD) a planar network

if D is a locally finite, acyclic, and planar digraph, and wtD is a weight function of D.

Given an n × n matrix M , then D is called a planar network for M if there exist two

sequences (u1, . . . , un) and (v1, . . . , vn) of vertices in D such that

M = (GFD(ui, vj))1≤i,j≤n
.

In the remaining part of this paper, we usually specify the vertices and say that D =

(D,wtD, (u1, . . . , un), (v1, . . . , vn)) is a planar network for M .

3 The coefficient matrix LB

In this section we will establish the planar network for the coefficient matrix LB and prove

its q-total positivity. By (1.2), we have

LB = (li,j)i,j≥0 =























1

1 + q 1

2q 1 + q 1

q 1 + q 1

q 1 + q 1
. . .

. . .
. . .























.

Now we give the construction of the planar network for LB. Let DLB

be the infinite

planar digraph with vertex set

V (DLB

) = {Pi | i ≥ 0} ∪ {Qi | i ≥ 0} ∪ {P ′
i | i ≥ 0}

and arc set

A(DLB

) ={Pi → Qi | i ≥ 0} ∪ {Pi → Qi−1 | i ≥ 1}

∪ {Qi → P ′
i | i ≥ 0} ∪ {Qi → P ′

i−1 | i ≥ 2}

∪ {P1 → P ′
0, Q1

l
→ P ′

0, Q1
r
→ P ′

0},

where the coordinates of vertices are given by Pi = (0,−i), Qi = (1,−i) and P ′
i = (2,−i),

and Q1
l
→ P ′

0, Q1
r
→ P ′

0 are multiple arcs from Q1 to P ′
0 with one drawn on the left and
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the other on the right, respectively, as shown in Figure 3.1. The weight function wt
DLB

is defined by

wt
DLB (P1 → P ′

0) = −1, wt
DLB (Pi → Qi−1) = q for i ≥ 1,

and wt
DLB (a) = 1 for the other arcs a in A(DLB

). Then we have the following result.

Lemma 3.1 Let DLB

and wt
DLB be defined as above. Then

LB = (DLB

,wt
DLB , (P0, P1, . . .), (P

′
0, P

′
1, . . .))

is a planar network for LB, or equivalently,

LB =
(

GF
DLB (Pi, P

′
j)
)

i,j≥0
.

Proof. By the definitions in Section 2 and the above construction, it is straightforward to

verify that

li,j = GF
DLB (Pi, P

′
j)

for i, j ≥ 0. Then the proof follows.

Figure 3.1 provides an illustration of the planar network LB, where we only label the

weights not equal to 1.

P0 Q0 P ′

0

P1 Q1 P ′

1

P2 Q2 P ′

2

P3 Q3 P ′

3

q −1

q

q

...
...

...

Figure 3.1: The planar network LB

The remaining part of this section is devoted to giving a combinatorial proof of the q-

total positivity of LB by using the planar network LB. To this end, we define the following

three properties of nonintersecting families p = (p1, . . . , pk):
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(P1) p1 = P1 → P ′
0;

(P2) p1 = P1 → Q1
l
→ P ′

0;

(P3) there exists l (l ≥ 2) such that pm = Pm → Qm−1 → P ′
m−1 for 1 ≤ m ≤ l − 1 and

pl = Pl → Ql → P ′
l−1.

Given a positive integer k and two sequences

I = (i1, . . . , ik), where 0 ≤ i1 < · · · < ik,

J = (j1, . . . , jk), where 0 ≤ j1 < · · · < jk,
(3.1)

let

PI = (Pi1 , . . . , Pik), P′
J = (P ′

j1
, . . . , P ′

jk
), (3.2)

and let

SI,J = {p ∈ N
DLB (PI ,P

′
J) | p satisfies none of (P1), (P2), (P3)}. (3.3)

It is clear that each nonintersecting family in SI,J has a q-nonnegative weight. By virtue of

this, the following result provides a combinatorial interpretation for the q-total positivity

of LB.

Theorem 3.2 Let I, J,PI ,P
′
J , SI,J be as given in (3.1), (3.2) and (3.3) respectively, and

let LB
I,J denote the submatrix of LB whose rows are indexed by I and columns indexed by

J . Then we have

det
[

LB
I,J

]

= GF (SI,J), (3.4)

where GF (SI,J) denotes the sum of weights of all elements in SI,J . In particular, det
[

LB
I,J

]

is q-nonnegative.

Proof. By Lemma 3.1 and Lemma 2.1, we have

det
[

LB
I,J

]

= GF (N (PI,P
′
J)),

where we use N (PI ,P
′
J) to stand for N

DLB (PI ,P
′
J) for convenience. In the following we

may assume that N (PI ,P
′
J) 6= ∅, otherwise, SI,J = ∅, det

[

LB
I,J

]

= 0, and (3.4) holds

trivially. For i = 1, 2, 3, let

Ni = {p ∈ N (PI,P
′
J) | p satisfies (Pi)}.
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Clearly, N (PI ,P
′
J) is the disjoint union of N1,N2,N3 and SI,J . Now it suffices to give an

involution φ on N (PI ,P
′
J) such that any nonintersecting family p ∈ N1 ∪ N2 ∪ N3 and

its image φ(p) have opposite weights, and the restriction of φ to SI,J is the identity map.

Thus, we only need to define the action of φ on N1 ∪ N2 ∪ N3.

Let us first consider the case k = 1, for which we have N3 = ∅. If i1 = 1, j1 = 0, then

we have

N1 = {P1 → P ′
0}, N2 = {P1 → Q1

l
→ P ′

0}.

Define φ to be the map which sends P1 → P ′
0 and P1 → Q1

l
→ P ′

0 to each other. Note that

the weight of P1 → P ′
0 is −1, while the weight of P1 → Q1

l
→ P ′

0 is 1. This establishes the

desired involution. If i1 6= 1 or j1 6= 0, then N1 = N2 = ∅ and hence N (PI,P
′
J) = SI,J ;

for this subcase, we simply take φ to be the identity map.

We proceed to define φ for k ≥ 2. In this case we divide N1 into the following two

subsets:

N1,1 = {p ∈ N1 | p2 = P2 → Q1 → P ′
1}, N1,2 = N1 \ N1,1.

In the following, we will define a sign-reversing involution φ on N1 ∪ N2 ∪ N3 such that

φ(N1,1) = N3, φ(N1,2) = N2.

There are several subcases to consider.

(i) If i1 = 0, i1 ≥ 2, or i1 = j1 = 1, then N1,1 = N1,2 = N2 = N3 = ∅. For these three

situations, take φ to be the identity map.

(ii) If i1 = 1, j1 = 0, and moreover i2 ≥ 3 or j2 ≥ 2, then N1,1 = N3 = ∅ and N1,2 = N1.

For these situations, we take φ to be the map which sends

(P1 → P ′
0, p2, . . . , pk) ∈ N1,2 and (P1 → Q1

l
→ P ′

0, p2, . . . , pk) ∈ N2

to each other. It is clear that (P1 → P ′
0, p2, . . . , pk) and (P1 → Q1

l
→ P ′

0, p2, . . . , pk)

have opposite weights.

(iii) If i1 = 1, j1 = 0 and i2 = 2, j2 = 1, then

N1,1 = {p ∈ N (PI , P
′
J) | p1 = P1 → P ′

0, p2 = P2 → Q1 → P ′
1},

N1,2 = {p ∈ N (PI , P
′
J) | p1 = P1 → P ′

0, p2 = P2 → Q2 → P ′
1},

N2 = {p ∈ N (PI , P
′
J) | p1 = P1 → Q1

l
→ P ′

0, p2 = P2 → Q2 → P ′
1},
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N3 =











p ∈ N (PI , P
′
J)

∣

∣

∣

∣

∣

∣

∣

p1 = P1 → Q0 → P ′
0,

∃ l ≥ 2 such that pl = Pl → Ql → P ′
l−1,

pm = Pm → Qm−1 → P ′
m−1, ∀ 2 ≤ m ≤ l − 1











.

Now we are going to define the map φ on N1 ∪ N2 ∪ N3.

If p ∈ N1,1, say p = (P1 → P ′
0, p2, . . . , pk), then we take l to be the largest number

such that pm = Pm → Qm−1 → P ′
m−1 for 2 ≤ m ≤ l, and let

φ(p) = (P1 → Q0 → P ′
0, p2, . . . , pl−1, Pl → Ql → P ′

l−1, pl+1, . . . , pk).

Thus, φ(p) ∈ N3.

If p ∈ N3, namely, there exists l ≥ 2 such that p = (P1 → Q0 → P ′
0, p2, . . . , pk)

with pl = Pl → Ql → P ′
l−1 and pm = Pm → Qm−1 → P ′

m−1 for any 2 ≤ m ≤ l − 1,

then let

φ(p) = (P1 → P ′
0, p2, . . . , pl−1, Pl → Ql−1 → P ′

l−1, pl+1, . . . , pk).

Here the map φ is well-defined since the number l exists then it must be unique by

the definition of (P3). It is also clear that φ(p) ∈ N1,1.

If p ∈ N1,2, say p = (P1 → P ′
0, p2, . . . , pk), then let

φ(p) = (P1 → Q1
l
→ P ′

0, p2, . . . , pk).

Hence, we have φ(p) ∈ N2.

If p ∈ N2, say p = (P1 → Q1
l
→ P ′

0, p2, . . . , pk), then let

φ(p) = (P1 → P ′
0, p2, . . . , pk).

It is obvious that φ(p) ∈ N1,2.

Figure 3.2 gives an illustration of φ for this subcase.

With the above definition of φ, it is straightforward to verify that φ is a sign-reversing

involution on N1 ∪N2 ∪N3, as desired.

4 The Hankel matrix H

The aim of this section is to give a combinatorial proof of the q-total positivity of the

Hankel matrix H of Narayana polynomials of type B. It suffices to combinatorially prove

9



P1

P ′

0

P2

Q1

P ′

1
...

Pl−1

Ql−2

P ′

l−2

Pl

Ql−1

P ′

l−1

N1,1

φ
↔

P1

Q0

P ′

0

P2

Q1

P ′

1
...

Pl−1

Ql−2

P ′

l−2

Pl Ql

P ′

l−1

N3

P1

P ′

0

P2 Q2

P ′

1

...
...

...

N1,2

φ
↔

P1 Q1

P ′

0

P2 Q2

P ′

1

...
...

...

N2

Figure 3.2: An illustration of φ for subcase (iii)

the q-total positivity of each leading principal submatrix of H . To this end, let us first

establish the planar networks for its leading principal submatrices.

Let LB
n = (li,j(q))0≤i,j≤n+1, Bn = (bi,j(q))0≤i,j≤n and Hn = (bi+j,0(q))0≤i,j≤n. By (1.2)

it is evident that

Bn+1 = B̄nL
B
n , where B̄n =

(

1 O

O Bn

)

. (4.1)

Aigner [1] proved that

Hn = BnTnB
t
n, (4.2)

where

Tn =

















1

2q

2q2

. . .

2qn

















(n+1)×(n+1)

,

and Bt
n denotes the transpose of Bn.

These two formulas allow us to recursively construct the planar network for Hn. Pre-

cisely, we mainly make use of the following lemma, which provides a way to build a

network for a product of matrices. Recall that in a digraph, a vertex v is called a source

(resp. sink) if there is no arcs point in (resp. out of) it. The following result could

be considered as a corollary of the transfer-matrix method (see [23, Theorem 4.7.1] for

instance), but for self-containedness we will give a detailed proof.

Lemma 4.1 Given k square matrices M1, M2, . . . , Mk of order n, for each 1 ≤ i ≤ k

assume that Mi = (DMi,wtDMi , (ui,1, . . . , ui,n), (vi,1, . . . , vi,n)) is a planar network for Mi
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with ui,j being a source and vi,j being a sink for all 1 ≤ j ≤ n. Let DM be the digraph

obtained by placing DM1, DM2, . . . , DMk in succession and identifying vi,j with ui+1,j for

each 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n, and let wtDM be the weight function inherited from

wtDM1 , . . . ,wtDMk in an obvious way. Then

M = (DM ,wtDM , (u1,1, . . . , u1,n), (vk,1, . . . , vk,n))

is a planar network for the product M1 · · ·Mk.

Proof. The proof is by induction on k. Let us first prove the base case k = 2. The

construction tells that for any 1 ≤ i, j ≤ n, each directed path from u1,i to v2,j must pass

through exactly one vertex v1,l (= u2,l) for some 1 ≤ l ≤ n, and hence

GFDM (u1,i, v2,j) =

n
∑

l=1

GFDM1 (u1,i, v1,l)GFDM2 (u2,l, v2,j),

as desired. Assume the assertion for k (k ≥ 2). By applying the preceding proof to

M1 · · ·Mk and Mk+1, we find that the assertion also holds for k + 1. This completes the

proof.

Now we present the construction for the planar network Hn for Hn, which is essentially

based on LB. At first, we give the planar network for LB
n , which is actually obtained by

cutting off the part of LB below y = −n − 1. Precisely, let DLB
n be the subgraph of

DLB

induced by the vertices P0, . . . , Pn+1, Q0, . . . , Qn+1, P
′
0, . . . , P

′
n+1, and let wt

DLB
n

be

the restriction of wt
DLB to DLB

n . Then (DLB
n ,wt

DLB
n
, (P0, . . . , Pn+1), (P

′
0, . . . , P

′
n+1)) is a

planar network for LB
n . Unfortunately, this labeling is not convenient for introducing the

recursive construction of Hn. In the rest of this paper, we will label the vertex Pi by

P
(n)
n+1−i, Qi by Q

(n)
n+1−i, P

′
i by P

(n+1)
n+1−i for 0 ≤ i ≤ n+ 1 in the digraph DLB

n . Moreover, we

may shift the digraphs DLB
n in the plane such that P

(i)
j = (2i, j) and Q

(i)
j = (2i+ 1, j) for

all i, j ≥ 0. Then

LB
n = (DLB

n ,wt
DLB

n
, (P

(n)
n+1, . . . , P

(n)
0 ), (P

(n+1)
n+1 , . . . , P

(n+1)
0 ))

is a planar network for LB
n , and

LB
n =

(

GF
DLB

n
(P

(n)
n+1−i, P

(n+1)
n+1−j)

)

0≤i,j≤n+1
.

Figure 4.1 shows the planar network LB
2 .

Using the planar networks LB
0 ,L

B
1 , . . . ,L

B
n , we can construct the planar network Bn+1

for Bn+1.
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P
(2)
3 Q

(2)
3 P

(3)
3

P
(2)
2 Q

(2)
2 P

(3)
2

P
(2)
1 Q

(2)
1 P

(3)
1

P
(2)
0 Q

(2)
0 P

(3)
0

q
−1

q

q

Figure 4.1: Planar network LB
2

• For n = 0, we take B1 to be the planar network LB
0 since B1 = LB

0 .

• Assuming that Bn has been constructed for some n ≥ 1, we continue to construct

Bn+1. Let DB̄n be the digraph with V (DB̄n) = V (DBn) ∪ {P (0)
n+1, P

(1)
n+1, . . . , P

(n)
n+1}

and A(DB̄n) = A(DBn) ∪ {P (i)
n+1 → P

(i+1)
n+1 | 0 ≤ i ≤ n − 1}, and let wtDB̄n (a) be

equal to wtDBn (a) for a ∈ A(DBn) and equal to 1 for the other arcs. Then

B̄n = (DB̄n,wtDB̄n , (P
(0)
n+1, P

(0)
n , . . . , P

(0)
0 ), (P

(n)
n+1, P

(n)
n , . . . , P

(n)
0 ))

is a planar network for B̄n. By (4.1) and Lemma 4.1, we obtain that

Bn+1 = (DBn+1 ,wtDBn+1 , (P
(0)
n+1, P

(0)
n , . . . , P

(0)
0 ), (P

(n+1)
n+1 , P (n+1)

n , . . . , P
(n+1)
0 ))

is a planar network for Bn+1, where DBn+1 and wtDBn+1 are defined in the way as

described in Lemma 4.1. See Figure 4.2 for an illustration of DB3 .

Based on (4.2) and Lemma 4.1, we proceed to build the planar network forHn from Bn.

Firstly, we construct a planar network for Bt
n. We take DBt

n to be the digraph obtained

by reflecting DBn about the vertical line x = 2n + 1/2 and reversing the direction of all

arcs. We also label the image of P
(i)
j (resp. Q

(i)
j ) by P̄

(i)
j (resp. Q̄

(i)
j ). We also let wt

DBt
n

be the function which assigns to each arc of DBt
n the weight of its preimage. Then it is

easy to verify that

Bt
n = (DBt

n ,wt
DBt

n
, (P̄ (n)

n , . . . , P̄
(n)
0 ), (P̄ (0)

n , . . . , P̄
(0)
0 ))

is a planar network for Bt
n. Next, we define DTn to be the digraph whose vertex set is

{P (n)
i | 0 ≤ i ≤ n} ∪ {P̄ (n)

j | 0 ≤ j ≤ n} and arc set is {P (n)
i → P̄

(n)
i | 0 ≤ i ≤ n}, and let
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P
(0)
3 P

(1)
3 P

(2)
3 Q

(2)
3 P

(3)
3

P
(0)
2 P

(1)
2 Q

(1)
2 P

(2)
2 Q

(2)
2 P

(3)
2

P
(0)
1 Q

(0)
1 P

(1)
1 Q

(1)
1 P

(2)
1 Q

(2)
1 P

(3)
1

P
(0)
0 Q

(0)
0 P

(1)
0 Q

(1)
0 P

(2)
0 Q

(2)
0 P

(3)
0

Figure 4.2: Digraph DB3

wtDTn (P
(n)
i → P̄

(n)
i ) = (Tn)i,i for 0 ≤ i ≤ n. Then

Tn = (DTn ,wtDTn , (P (n)
n , . . . , P

(n)
0 ), (P̄ (n)

n , . . . , P̄
(n)
0 ))

is a planar network for Tn. Finally, we combine Bn, Tn and B̄t
n to get the following planar

network for Hn:

Hn = (DHn ,wtDHn , (P (0)
n , . . . , P

(0)
0 ), (P̄ (0)

n , . . . , P̄
(0)
0 )), (4.3)

where DHn and wtDHn are defined in the way as described in Lemma 4.1. Figure 4.3

shows the digraph DH3.

P
(0)
3 P

(1)
3 P

(2)
3 Q

(2)
3 P

(3)
3 P̄

(3)
3

Q̄
(2)
3 P̄

(2)
3 P̄

(1)
3 P̄

(0)
3

P
(0)
2 P

(1)
2 Q

(1)
2 P

(2)
2 Q

(2)
2 P

(3)
2 P̄

(3)
2 Q̄

(2)
2 P̄

(2)
2

Q̄
(1)
2 P̄

(1)
2 P̄

(0)
2

P
(0)
1 Q

(0)
1 P

(1)
1 Q

(1)
1 P

(2)
1 Q

(2)
1 P

(3)
1 P̄

(3)
1 Q̄

(2)
1 P̄

(2)
1 Q̄

(1)
1 P̄

(1)
1

Q̄
(0)
1 P̄

(0)
1

Q
(0)
0P

(0)
0 P

(1)
0 Q

(1)
0 P

(2)
0 Q

(2)
0 P

(3)
0 P̄

(3)
0 Q̄

(2)
0 P̄

(2)
0 Q̄

(1)
0 P̄

(1)
0 Q̄

(0)
0 P̄

(0)
0

Figure 4.3: Digraph DH3

We are now in a position to give a combinatorial proof of the q-total positivity of

Hn for any nonnegative integer n. Given a positive integer k and two sequences I =

(i1, . . . , ik), J = (j1, . . . , jk) of indices such that 0 ≤ i1 < · · · < ik ≤ n and 0 ≤ j1 < · · · <

jk ≤ n, let

PI = (P
(0)
n−i1

, . . . , P
(0)
n−ik

), P̄J = (P̄
(0)
n−j1

, . . . , P̄
(0)
n−jk

). (4.4)
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Let HI,J denote the submatrix of Hn whose rows are indexed by I and columns indexed

by J . By Lemma 2.1 and (4.3), we have

det [HI,J ] = GF (NDHn (PI , P̄J)). (4.5)

We further need to find a subset of NDHn (PI , P̄J), say SHn

I,J , which will play the same role

as SI,J in Theorem 3.2.

Observe that by the recursive construction of DHn, it can be naturally divided into

2n + 1 parts: DHn

1 , . . . , DHn
n , DTn, D̄Hn

n , . . . , D̄Hn

1 , where for each 1 ≤ i ≤ n the graph

DHn

i is the subgraph of DHn induced by the vertices P
(i−1)
n , . . . , P

(i−1)
0 , Q

(i−1)
n , . . . , Q

(i−1)
0 ,

P
(i)
n , . . . , P

(i)
0 , and D̄Hn

i is the subgraph of DHn induced by the vertices P̄
(i)
n , . . . , P̄

(i)
0 ,

Q̄
(i−1)
n , . . . , Q̄

(i−1)
0 , P̄

(i−1)
n , . . . , P̄

(i−1)
0 . Graphically, DHn is divided into 2n+ 1 parts by 2n

lines parallel to the y-axis. Thus, each member p = (p1, . . . , pk) ∈ NDHn (PI , P̄J) is also

divided into 2n+1 nonintersecting families p1, . . . ,pn,pT , p̄n, . . . , p̄1 by these lines, where

pi (resp. p̄i) is the restriction of p to DHn

i (resp. D̄Hn

i ) for each 1 ≤ i ≤ n, and pT is the

restriction of p to DTn. For this reason, we may adopt the notation

p = (p1, . . . ,pn,pT , p̄n, . . . , p̄1)

to represent a nonintersecting family of NDHn (PI , P̄J).

Note that DHn

i (1 ≤ i ≤ n) can be regarded as the digraph obtained by adding n− i

parallel arcs (namely, P
(i−1)
n → P

(i)
n , . . . , P

(i−1)
i+1 → P

(i)
i+1) to DLB

i−1 . By simply mimicking

the definitions of (P1), (P2) and (P3) as given immediately before (3.2), we may define

the following properties on nonintersecting families pi in DHn

i :

(P(i)
1 ) There exists 1 ≤ j ≤ k such that the j-th component of pi is the directed path

P
(i−1)
i−1 → P

(i)
i ;

(P(i)
2 ) There exists 1 ≤ j ≤ k such that the j-th component of pi is the directed path

P
(i−1)
i−1 → Q

(i−1)
i−1

l
→ P

(i)
i ;

(P(i)
3 ) There exist 1 ≤ j ≤ k and l ≥ 2 such that the (j + l − 1)-th component of pi

is P
(i−1)
i−l → Q

(i−1)
i−l → P

(i)
i−l+1 and the m-th component is P

(i−1)
i−1−(m−j) → Q

(i−1)
i−(m−j) →

P
(i)
i−(m−j) for each j ≤ m ≤ j + l − 2.

For p̄i in D̄Hn

i , if its preimage with respect to the reflection satisfies (P(i)
1 ), (P(i)

2 ), or

(P(i)
3 ), we say that p̄i satisfies Property (P̄(i)

1 ), (P̄(i)
2 ), or (P̄(i)

3 ), respectively. Then we

take

SHn

I,J =











p ∈ NDHn (PI , P̄J)

∣

∣

∣

∣

∣

∣

∣

pi satisfies none of (P(i)
1 ), (P(i)

2 ), (P(i)
3 ) and

p̄i satisfies none of (P̄(i)
1 ), (P̄(i)

2 ), (P̄(i)
3 )

for each 1 ≤ i ≤ n











. (4.6)
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It is clear that each p ∈ SHn

I,J has a q-nonnegative weight.

We would like to point out that the involution φ defined in the proof of Theorem

3.2 can also be mimicked to define a sign-reversing involution φi on nonintersecting

families pi in DHn

i . Suppose that pi = (pi,1, . . . , pi,k) and pi,1, . . . , pi,m are those par-

allel arcs out of DLB
i−1. Then (pi,m+1, . . . , pi,k) is a nonintersecting family in DLB

i−1. If

φ((pi,m+1, . . . , pi,k)) = (p′i,m+1, . . . , p
′
i,k), then define

φi(pi) = (pi,1, . . . , pi,m, p
′
i,m+1, . . . , p

′
i,k). (4.7)

Similarly, we can define a sign-reversing involution φ̄i on nonintersecting families p̄i in

D̄Hn

i . Note that if pi satisfies Property (P(i)
1 ), (P(i)

2 ), or (P(i)
3 ), then (p′i,m+1, . . . , p

′
i,k)

satisfies Property (P1), (P2), or (P3) (with a change of labeling), respectively, and hence

φ((pi,m+1, . . . , pi,k)) 6= (pi,m+1, . . . , pi,k) and φi(pi) 6= pi. An analogous result holds for p̄i

and φ̄i.

The main result of this section is as follows, which provides a combinatorial proof of

the q-total positivity of H .

Theorem 4.2 Given a nonnegative integer n and two sequences I = (i1, . . . , ik), J =

(j1, . . . , jk) of indices such that 0 ≤ i1 < · · · < ik ≤ n and 0 ≤ j1 < · · · < jk ≤ n, let HI,J

denote the submatrix of Hn whose rows are indexed by I and columns indexed by J , let

PI , P̄J be as given by (4.4), and let SHn

I,J be as given by (4.6). Then we have

det [HI,J ] = GF (SHn

I,J ), (4.8)

where GF (SHn

I,J ) denotes the sum of weights of all elements in SHn

I,J . In particular, H is

q-totally positive.

Proof. By (4.5), it suffices to give a sign-reversing involution, say φHn , on NDHn (PI , P̄J)

with SHn

I,J being the set of all fixed points. We proceed to define φHn by using the afore-

mentioned involutions φi and φ̄i, see (4.7). Given p = (p1, . . . ,pn,pT , p̄n, . . . , p̄1) ∈

NDHn (PI , P̄J), if p ∈ SHn

I,J , then let φHn(p) = p.

Next, we consider the case p ∈ NDHn (PI , P̄J) \ S
Hn

I,J . If there exists some i such that

pi satisfies Property (P(i)
1 ), (P(i)

2 ) or (P(i)
3 ), or equivalently, φi(pi) 6= pi, then let l be the

smallest such index and

φHn((p1, . . . ,pn,pT , p̄n, . . . , p̄1)) = (p1, . . . , φl(pl), . . . ,pn,pT , p̄n, . . . , p̄1).

Otherwise, if such an index does not exist, then there must exist some i such that p̄i

satisfies Property (P̄(i)
1 ), (P̄(i)

2 ) or (P̄(i)
3 ), or equivalently, φ̄i(p̄i) 6= p̄i. In this subcase, we

let l be the largest such index and define

φHn((p1, . . . ,pn,pT , p̄n, . . . , p̄1)) = (p1, . . . ,pn,pT , p̄n, . . . , φ̄l(p̄l), . . . , p̄1).
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By the construction of the involutions φi and φ̄i for 1 ≤ i ≤ n, it is easy to verify that

φHn is a sign-reversing involution on nonintersecting families in DHn . Hence φHn induces

the q-total positivity of Hn in the same way that φ induces the q-total positivity of LB
n .

Further, the q-total positivity of Hn implies the q-total positivity of H since each minor

of H is a minor of Hn for some n. The proof is complete.

By applying the same kind of reasoning of the proof of Theorem 4.2, we can give a

combinatorial proof of the q-total positivity of the triangular array B = (bn,k(q))n,k≥0 as

defined by (1.2). We leave the details to the reader. It is interesting to note that similar

reasoning can be used to establish the following result.

Theorem 4.3 Let C = (cn,k(q))n,k≥0 be the Catalan-Stieltjes matrix generated by one of

the following two recurrences:

(1) We have

cn,0(q) = [(f − e) + eq)] · cn−1,0(q) + fq · cn−1,1(q);

cn,k(q) = cn−1,k−1(q) + (1 + q) · cn−1,k(q) + q · cn−1,k+1(q), (k ≥ 1, n ≥ 1)

for some f ≥ e ≥ 0.

(2) We have

cn,0(q) = [(f − 1) + eq)] · cn−1,0(q) + efq · cn−1,1(q);

cn,k(q) = cn−1,k−1(q) + (1 + eq) · cn−1,k(q) + eq · cn−1,k+1(q), (k ≥ 1, n ≥ 1)

for some e, f ≥ 1.

Then the Hankel matrix (ci+j,0)i,j≥0 is q-totally positive.

Proof. Note that, for either case, we can construct a planar network for the leading

principal submatrix (ci+j,0)0≤i,j≤n by using the same underlying graph DHn of the planar

network for Hn, but with a different weight function. Since the weight function of Hn

is naturally inherited from that of LB, it is sufficient to assign a new weight function to

DLB

.

For the first case, we let

wt
DLB (P1 → Q0) = eq, wt

DLB (Pi → Qi−1) = q for i ≥ 2,

wt
DLB (P1 → P ′

0) = −e, wt
DLB (Q1

l
→ P ′

0) = e,

wt
DLB (Q1

r
→ P ′

0) = f − e,
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and wt
DLB (a) = 1 for the other arcs a in DLB

.

For the second case, we let

wt
DLB (Pi → Qi−1) = eq for i ≥ 1, wt

DLB (P1 → P ′
0) = −1,

wt
DLB (Q1

l
→ P ′

0) = 1, wt
DLB (Q1

r
→ P ′

0) = f − 1,

and wt
DLB (a) = 1 for the other arcs a in DLB

.

With these new weights, it is straightforward to verify that the involution φHn con-

structed in the proof of Theorem 4.2 is still a sign-reversing involution on nonintersecting

families of DHn. As a result, we obtain the q-total positivity of (ci+j,0)i,j≥0.

5 A conjecture on immanant positivity

Let M = (mi,j) be a square matrix of order n, Sn be the symmetric group of order n, λ

be a partition of n, and χλ be the irreducible character of Sn associated with λ. Recall

that the immanant of M with respect to λ is defined by

Imm λ M =
∑

σ∈Sn

χλ(σ)m1,σ(1) · · ·mn,σ(n).

When λ = (1n), the immanant Imm λM specializes to det[M ]. In [13] we proved the

immanant positivity for a large family of Catalan-Stieltjes matrices and their associated

Hankel matrices. This motivates us to study the the immanant positivity for the Hankel

matrix H defined as in (1.1). We have the following conjecture.

Conjecture 5.1 Let k ≥ 1 and I = (i1, . . . , ik), J = (j1, . . . , jk) be two sequences of

indices with 0 ≤ i1 < · · · < ik and 0 ≤ j1 < · · · < jk. Let HI,J be the submatrix of H

whose rows are indexed by I and columns are indexed by J . Then

Immλ HI,J ≥q 0

for any partition λ of k.

We have verified the immanant positivity of all square submatrices of Hn for n ≤ 6 by

Sage [21]. Note that, our method in [13] does not apply to H directly, since there exist

some arcs weighted by −1 in our planar network for H .
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