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MARTINGALES AND DESCENT STATISTICS

ALPEREN ÖZDEMIR

Abstract. This paper develops techniques to study the number of descents in random
permutations via martingales. We relax an assumption in the Berry-Esseen theorem of
Bolthausen (1982) to extend the theorem’s scope to martingale differences of time-dependent
variances. This extension leads to a new proof of the fact that the number of descents in
random permutations is asymptotically normal with an error bound of order 1/

√

n. The same
techniques are shown to be applicable to other descent and descent-related statistics as they
satisfy certain recurrence relation conditions. These statistics include inversions, descents in
signed permutations, descents in Stirling permutations, the length of the longest alternating
subsequences, descents in matchings and two-sided Eulerian numbers.

1. Introduction

Let Sn be the symmetric group defined over n elements. A permutation π ∈ Sn is said to
have a descent at position i if π(i) > π(i + 1). Let Dn be the random variable counting the
number of descents of a random permutation in Sn.

The procedure which leads to a martingale is as follows. Given a permutation π in one-line
notation (i.e., π = π(1)π(2) · · · π(n)), inserting (n + 1) in a random position yields a descent
except the terminal position. Yet if it is inserted right next to a position where π has a
descent, the descent is broken up. Therefore, after inserting (n+1), there are exactly Dn +1
positions that the number of descents stays the same, otherwise it increases by 1. Then for
the sigma field Fn = σ(D1, · · · ,Dn), we have

E(Dn+1|Fn) = Dn
Dn + 1

n+ 1
+ (Dn + 1)

n −Dn

n+ 1

=
n

n+ 1
Dn +

n

n+ 1
.

The mean of Dn is n−1
2 by symmetry. Subtracting the mean followed by a proper scaling

gives the martingale below.

Zn := n

(

Dn − n− 1

2

)

.

Observe that E(Zn) = 0 and E(Zn|Fm) = Zm for n > m. Therefore, {Zn,Fn} is a zero-mean
martingale for n ≥ 1. We want to show

Theorem 1.1. Let Dn be the number of descents in a uniformly chosen permutation from

Sn. Then

sup
x∈R

∣

∣

∣

∣

∣

∣

P





Dn − n−1
2

√

n+1
12

≤ x



− Φ(x)

∣

∣

∣

∣

∣

∣

≤ C√
n
,

where Φ is the standard normal distribution and C is a constant independent of n.

2020 Mathematics Subject Classification. 60C05, 60F05, 60G42.
Key words and phrases. descents in random permutations, discrete-time martingales, rate of convergence

in the central limit theorem, recurrence relations, vector martingales.

1

http://arxiv.org/abs/1901.01719v4
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The asymptotic normality, not necessarily the order of convergence, in the theorem has
been proved by various different methods. We recall that the number of permutations in
Sn with k descents is the Eulerian number An,k. The fact that the Eulerian polynomial

An(t) =
∑

k An,kt
k has only real roots, which was known to Frobenius [Fro10], gives asymp-

totic normality by Harper’s approach [Har67]. A proof by the method of moments is given
in [DB62]. Bender [Ben73] expanded the generating function for Eulerian numbers around
its singularities to approximate the characteristic function of the distribution of number of
descents. Indeed, the explicit formula for A(n, k) matches with the distribution function of n
uniform random variables whose sum is between k and (k + 1), which was shown by Tanny
[Tan73]. Fulman [Ful04] used Stein’s method of exchangable pairs to prove the theorem. Also
central limit theorems involving locally dependent random variables can be employed to show
the result, see Corollary 2 of [BR89]. In this paper, we use martingale limit theorems to prove
the asymptotic normality and the order of convergence, then apply it to other combinatorial
statistics. The paper consists of two parts.

In the first part, we study the moments of Dn in Section 2, and then show the asymptotic
normality by a classical result in Section 3. Section 4 is about the rate of convergence in the
central limit theorem, and contains the proof of Theorem 1.1. We argue that a central limit
theorem in [Bol82] that gives an order of convergence of 1/

√
n can be applied to our case

after relaxing one of its assumptions. The assumption is that the variance of the martingale
differences is asymptotically constant, which holds true for stationary martingale differences
but leaves out non-stationary examples of increasing variance as in our case. We give a proof
at the end of the paper, Section 7, that the polynomial growth of the variance of the martingale
differences is sufficient to obtain an error bound of order 1/

√
n.

In the second part, we abstract the martingale formulation from the initial idea by means
of recurrence relations and apply it to other descent-related statistics. In Section 5, we show
how to obtain martingales from a given set of recurrence relations. Then we give a formula
of certain combinatorial interest, which gives the recurrence relation coefficients for a class of
permutation statistics. Section 6 supplies examples.

2. Moments

We already noted that E(Dn) =
n−1
2 . The variance of Dn is also well-known to be n+1

12 . The

calculation of the variance can be found in Chapter 6 of [B1́6]; we adopt the same technique
therein to obtain the fourth central moment. One can also use the method of moments as in
[CKSS72].

First define 2-dependent random variables over Sn as follows:

Ti(π) =

{

1 if π(i) > π(i+ 1),

0 otherwise.

Clearly, Dn =
∑n−1

i=1 Ti. The third moment can be written as

E(D3
n) =

∑

i

E(T 3
i ) + 6

∑

i<j

E(T 2
i Tj) + 6

∑

i<j<k

E(TiTjTk).

The first term satisfies
∑

iE(T 3
i ) =

∑

iE(Ti) =
n−1
2 . For the second term, 6

∑

i<j E(T 2
i Tj) =

6
∑

i<j E(TiTj), we use 2-dependence of T ′
i s. There are (n − 2) cases where j = i + 1, for

which E(TiTj) = 1
6 . For the remaining

(n−2
2

)

cases, i and j differ by more than 1, so they

are independent. The expected value in the latter case is 1
4 . Analyzing the cases in a similar
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fashion for the last term yields

E(D3
n) =

n− 1

2
+ 6

(

n− 2

6
+

(

n−2
2

)

4

)

+ 6

(

n− 3

24
+ 2

(

n−3
2

)

12
+

(

n−3
3

)

8

)

=
(n2 − n+ 2)(n− 1)

8
.

The fourth moment is given by

E(D4
n) =

∑

i

E(T 4
i ) + 8

∑

i<j

E(T 3
i Tj) + 6

∑

i<j

E(T 2
i T

2
j )+

36
∑

i<j<k

E(T 2
i TjTk) + 24

∑

i<j<k<l

E(TiTjTkTl).

By the same argument as above,

E(D4
n) =

n4

16
− n3

8
+

13n2

48
+O(n).

Finally, we calculate the fourth central moment,

(1) E[(Dn −E(Dn))
4] =

n2

48
+O(n).

3. Asymptotic normality

A comprehensive account of martingale limit theorems and related topics is [HH14]. The
central limit theorem therein requires conditions analogous to those of classical central limit
theorems for sums of independent random variables. The first one is the Lindeberg condition.
The second condition is about the convergence in probability of the conditional variance of
martingale differences. The limiting behavior of a martingale is essentially determined by
this quantity or its counterpart U2

n :=
∑

X2
i where Xi is the ith martingale difference. See

Chapter 2 of [HH14] for their relationship.
A triangular array with small deviations for martingale differences can be obtained as

prescribed in [HH14]. Take Fn,i = Fi and define Zn,i = s−1
n Zi for 1 ≤ i ≤ n where sn is

the standard deviation of Zn. In this way, the expectation of the conditional variance is
normalized to be 1.

The central limit theorem reads:

Theorem 3.1. ([HH14]) Let {Zn,i,Fn,i, 1 ≤ i ≤ kn, n ≥ 1} be a zero-mean, square integrable

martingale array with differences Xn,i := Zn,i−Zn,i-1, and η
2 be an almost surely finite random

variable. Suppose that

for all ǫ > 0,

kn
∑

i=1

E[X2
n,iI(|Xn,i| > ǫ)|Fn,i-1]

p→ 0,(2)

kn
∑

i=1

E[X2
n,i|Fn,i-1]

p→ η2(3)

and the σ-fields are nested, i.e., Fn,i-1 ⊆ Fn,i for 1 ≤ i ≤ kn, n ≥ 1.

Then Zn,kn =
∑

iXn,i
d→ Z, where Z has characteristic function E[exp

(

−1
2η

2t2
)

].
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Proof of the asymptotic normality in Theorem 1.1. We verify the conditions of Theorem 3.1.

Take the row length kn of the array in the theorem to be equal to n. Notice that sn = n
√

n+1
12

in our case. Looking at the martingale differences, Xn,i := Zn,i − Zn,i-1, we have

(4) Xn,i =

√
12

n
√
n+ 1

(iDi − (i− 1)Di−1 − (i− 1)) .

Let Wi := Di − i−1
2 be the zero-mean random variable for the number of descents. Then

(5) Xn,i|Fn,i-1 =

√
12

n
√
n+ 1

{

Wi−1 − i
2 , with prob. 1

2 +
Wi-1
i ,

Wi−1 +
i
2 , with prob. 1

2 −
Wi−1

i .

We first verify the Lindeberg condition (2). By (4) and the fact that Di ≤ i − 1, we

have |Xn,i| ≤
√
12 i

n
√
n+1

. So, for given ǫ > 0 and sufficiently large n, P (|Xn,i| > ǫ) = 0 where

1 ≤ i ≤ n− 1. Hence, (2) is satisfied.
Next we verify the convergence of conditional variance (3). By (5),

E[X2
n,i|Fn,i-1] =

12

n2(n+ 1)2

(

i2

4
−W 2

i-1

)

.

Then the conditional variance for Znn is

V 2
n,n :=

∑

i

E[X2
n,i|Fn,i-1] =

12

n2(n+ 1)2

(

∑

i

i2

4
−
∑

i

W 2
i-1

)

,

= 1 +
1

2n
− 12

n2(n+ 1)

∑

i

W 2
i-1.

Observe that

E(V 2
n,n) = 1 +

1

2n
− 12

n2(n + 1)

∑

i

E(W 2
i-1)

= 1 +
1

2n
− 12

n2(n + 1)

∑

i

i

12

= 1.

Below, we use Cauchy-Schwarz inequality and (1) to show that the variance of V 2
nn converges

to 0.

E

[

(

V 2
n,n − 1− 1

2n

)2
]

=
144

n4(n+ 1)2





∑

1≤i,j≤n-1

E
(

W 2
i-1W

2
j-1

)





≤ 144

n4(n+ 1)2





∑

1≤i,j≤n-1

√

E(W 4
i-1)E(W 4

j-1)





≤ C

n4(n+ 1)2





∑

1≤i,j≤n-1

ij





≤ C

(n+ 1)2
→ 0.
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Finally, Chebyschev’s inequality gives that V 2
n,n =

∑

iE[X2
n,i|Fn,i-1] converges to 1 in proba-

bility. Both conditions are verified; the result follows from Theorem 3.1. �

4. Rate of Convergence

The order of convergence in the central limit theorem for sums of independent random vari-
ables is known to be n−1/2 under mild conditions and the uniform boundedness assumption of
the third moments; see Chapter 5 of [Pet75]. While the same assumption gives a rate of order

n−1/4 at best in the case of martingale differences due to the dependency [HH14]. Bolthausen
[Bol82] developed a technique, which is based on Bergström’s inductive method [Ber44], that
yields rates comparable to the former case by imposing the uniform boundedness of the fourth
conditional moment. A restriction compared to the independency case is that the variances of
martingale differences are assumed to be asymptotically constant, i.e., limnE[X2

n] = σ2 > 0.
This assumption turns out to be restrictive in some combinatorial applications. For instance,
in the case of the number of descents, the above quantity grows at a rate of n2. Another
example is the martingale differences for the character ratios of the symmetric group where
the variance grows linearly in n [Ful06b], and several other examples are given in Section 6.

Various refinements in the result mentioned above have been obtained by modifications of
the Bolthausen’s technique (see, e.g., [Hae88, Ren96, RR99]), mostly regarding the assumption
on the fourth conditional moment. To the best of authors’s knowledge, the time dependence
of the variance has not been addressed. We show that the assumption can be relaxed to allow
the variance of martingale differences to grow at a polynomial rate while the same rate of
convergence, n−1/2, is maintained.

Let Xi = Zi − Zi−1 and define σ2i = E[X2
i ]. Observe that s2n = E[Z2

n] =
∑n

i=1 σ
2
i which

follows from the fact that E[XiXj ] = 0 for i 6= j as Xi and Xj are martingale differences.
The condition

(6) 1 ≤ lim inf
n

√
n
σn+1

sn
≤ lim sup

n

√
n
σn+1

sn
<∞

replaces Assumption (1.2) in [Bol82], which can equivalently be stated as limn
√
nσn+1/sn = 1.

The theorem is as follows:

Theorem 4.1. Let {Zn,Fn, n ≥ 1} be a zero-mean martingale with martingale differences

Xi that satisfy (6) and Yi = Xi/σi. If

sup
i

‖E(Y 4
i |Fi−1)‖∞ <∞,(7)

sup
i

2p′
√
i ‖E(Y 3

i |Fi−1)‖p′ <∞,(8)

sup
i

√
i ‖E(Y 2

i |Fi−1)− 1‖p <∞(9)

for some p, p′ > 1, then

sup
t∈R

|P (Zn/sn ≤ t)− Φ(t)| ≤ C√
n

where C is a constant independent of n and Φ is the standard normal distribution.

The proof of Theorem 4.1 is an adaptation of Bolthausen’s technique. Its starting point is
the Lindeberg’s swapping argument. The key component of the proof is the recursive bound
for the Kolmogorov distance between the martingle and the normal distribution. Since the
proof involves technical details, such as term-by-term estimates in the Taylor approximation,
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we postpone it to Section 7. Here we use the result to prove the main theorem stated in the
Introduction.

Proof of Theorem 1.1. We do not have recourse to the triangular arrays as in the previous
section, so we do not have the additional scaling factor for the martingale differences, i.e.,

(10) Xi|Fi−1 =

{

Wi−1 − i
2 , with prob. 1

2 +
Wi-1
i ,

Wi−1 +
i
2 , with prob. 1

2 −
Wi−1

i .

We then have

σ2i = E[E[X2
i |Fi−1]] = E

[

i2

4
−W 2

i−1

]

=
3i2 − i

12
,

s2n =

n
∑

i=1

σ2i =
n2(n+ 1)

12
.

So the variance of martingale differences is of polynomial order. In fact limn
√
nσn+1/sn =

√
3;

thus, the condition (6) is satisfied. Next, we verify the other assumptions of the Theorem 4.1.
Regarding the fourth conditional moment,

‖E[X4
i |Fi−1]‖∞ =

∥

∥

∥

∥

i4

16
+
i2W 2

i−1

2
− 3W 4

i−1

∥

∥

∥

∥

∞
= O(i4)

as |Wi−1| ≤ i−2
2 . Then since σi is of order i, ‖E[Y 4

i |Fi−1]‖∞ is uniformly bounded. Hence, (7)
is satisfied. For the next condition, we bound

(11) ‖E[X3
i |Fi−1]‖pp = E

[∣

∣

∣

∣

i2Wi−1

2
− 2W 3

i−1

∣

∣

∣

∣

p]

.

We take p = 4/3 in (11), then it is bounded by

E





(

3

√

i2|Wi−1|
2

+
3
√
2 |Wi−1|

)4




≤C E(i8/3|Wi−1|4/3 + i2|Wi−1|2 + i4/3|Wi−1|8/3 + i2/3|Wi−1|10/3 + |Wi−1|4)
=O(i10/3),

where the last line follows from Lyapunov’s inequality,

r
√

E|Wi−1|r ≤ 4
√

E|Wi−1|4 = O(
√
i)

for 0 < r < 4. Therefore, 8/3
√
i‖E[Y 3

i |Fi−1]‖4/3 is also uniformly bounded. For the last
condition, we take p′ = 2, so we have

‖E[X2
i |Fi−1]− σ2i ‖22 = E

[

∣

∣

∣

∣

i

12
−W 2

i−1

∣

∣

∣

∣

2
]

≤ E

[

i2

144
+
iW 2

i−1

6
+W 4

i−1

]

= O(i2).

Taking the square root of the above expression and dividing by σ2i , we can show that it is

of order less than
√
i, which verifies (9). Hence, by Theorem 4.1 we obtain the asymptotic

normality with an error term of order less than or equal to n−1/2. �
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Before we move on to martingale formulation of other combinatorial statistics, we briefly
discuss another application of Theorem 4.1 without going into details. As mentioned above,
it is shown in [Ful06b] that the normalized characters of the symmetric group evaluated at
transpositions form a martingale sequence with respect to the Plancherel measure on the
conjugacy classes of the symmetric group. The asymptotic normality is shown therein, and
the convergence rate of order n−1/2 is obtained in [Ful06a] and also in [SS06] by variations of
Stein’s method, which reads as

sup
x∈R

∣

∣

∣

∣

P

(

n− 1

2

χλ(12)

dim(λ)
≤ x

)

− Φ(x)

∣

∣

∣

∣

≤ C√
n
,

where λ is a conjugacy class chosen with respect to Plancherel measure. The conditional
moments up to fourth degree are obtained in [Ful06b]. By taking p = p′ = 2 in Theorem 4.1
and using Lemma 2.3. in [Ful06a], we can give another proof of the above result.

5. Recurrence relations and martingale formulation

The primary goal of this section is to extend the martingale techniques to different permu-
tation statistics. In the Introduction, we obtained the martingale for the number of descents
in random permutation by inserting the new entry at a random position. However, as we will
see in the next section, there are examples that this idea is not readily applicable or even not
possible at all. Before introducing those examples in the next section, we show how to derive
martingales from a broader class of recurrences.

5.1. Recurrence relations to martingales. Consider the Eulerian polynomial

An(t) =
∑

π∈Sn

tdes(π) =
∑

k≥0

An,kt
k,

where des(π) is the number of descents in π ∈ Sn. Another definition of the Eulerian polyno-
mial is the generating function

An(t)

(1− t)n+1
=
∑

k≥0

(k + 1)ntk.

The coefficients in An(t) can be expressed recursively by simple manipulations of the above
sum. Foata’s survey [Foa10] gives eight different expressions for Eulerian numbers. Consider

An+1,k = (k + 1)An,k + (n− k + 1)An,k−1.

Dividing both sides by An+1(1) = (n + 1)!,

An+1,k

(n+ 1)!
=
k + 1

n+ 1

An,k

n!
+
n− k + 1

n+ 1

An,k−1

n!
.

Equivalently,

P(Dn+1 = k) =
k + 1

n+ 1
P(Dn = k) +

n− k + 1

n+ 1
P(Dn = k − 1).

In order to relate it to martingales, we write the next equation.

P(Dn+1 = k + 1) =
k + 2

n+ 1
P(Dn = k + 1) +

n− k

n+ 1
P(Dn = k).

Observe that the coefficients of P(Dn = k) in subsequent recurrences above agree with the
probabilities of the martingale defined in the Introduction.
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We next find conditions for martingale representation in a general setting. Let Pn,k be
nonnegative integers for n = 1, 2, . . . and 0 ≤ k ≤ n, which is referred as combinatorial array

in [Pit97]. Also define Pn(t) =
∑n

k=0 Pn,kt
k as before. Suppose {Pn,k} satisfies recurrences of

the form

Pn+1,k = α
(0)
n+1,kPn,k + α

(1)
n+1,kPn,k−1 + · · ·+ α

(s)
n+1,kPn,k−s,

Pn+1,k+1 = α
(0)
n+1,k+1Pn,k+1 + α

(1)
n+1,k+1Pn,k + · · ·+ α

(s)
n+1,k+1Pn,k−s+1,

...

Pn+1,k+s = α
(0)
n+1,k+sPn,k+s + α

(1)
n+1,k+sPn,k+s−1 + · · ·+ α

(s)
n+1,k+sPn,k,

where α
(i)
n+1,k ≥ 0 for all 0 ≤ i ≤ s. In addition, we want the diagonal coefficients to add up

to Pn+1(1)
Pn(1)

for all k i.e.,

(12) α
(0)
n+1,k + α

(1)
n+1,k+1 + · · ·+ α

(s)
n+1,k+s =

Pn+1(1)

Pn(1)
.

Let pn+1,i := α
(i)
n+1,k+i · 1

Pn+1(1)/Pn(1)
to ease notation. Define the following random process,

(13) Zn+1 =























Zn, with prob. pn+1,0,

Zn + 1, with prob. pn+1,1,
...

Zn + s, with prob. pn+1,s.

We observe that (12) and nonnegativity of the coefficients are sufficient to conclude that Zn

is a submartingale with respect to Fn = σ(Z1, · · · , Zn). A submartingale is defined in the
same way with a martingale, but the difference is that we replace “E(Zn|Fm) = Zm” by
the weaker condition: “E(Zn|Fm) ≥ Zm” for n > m. A general formula on how to obtain a
martingale from Zn is not possible with no further information on the probabilities involved in
the definition of Zn. Nevertheless, in Section 6, we give examples of descent-related statistics
for which we derive martingales from the submartingale obtained in the way described above.
A counterexample to (12) is Stirling numbers of second kind, which is recursively defined as

(14)

{

n+ 1

k

}

= k

{

n

k

}

+

{

n

k − 1

}

.

So the method above does not apply in this case.

5.2. Rational generating functions to recurrence relations. The next goal of this sec-
tion is to derive recurrence relations from the rational generating functions of the form

(15)
Pdn(t)

(1− t)dn+1
=
∑

k≥0

fn(k)t
k,

and use it in the next section. We note that fn has degree d(n + 1) if and only if P (1) 6= 0
(see Corollary 4.3.1 of [Sta86]). These functions appear in many different contexts. The order
polynomials of labelled posets has rational generating functions, [Sta86] where the classical
Eulerian polynomial is associated with the special case of an anti-chain. Another example is
Ehrhart polynomials of convex polytopes; if the polytope is taken to be the unit cube, the
generating function has Eulerian polynomial in the numerator (see Chapter 4 of [Sta86] and
Chapter 8 of [Pet15]).
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Suppose fn+1(k) = gn(k)fn(k) for some degree d polynomial gn(k) for all n. For instance,
d = 1 and gn(k) = k + 1 for Eulerian numbers. In general, if gn(k) = αnk + βn for some
αn, βn ∈ R, we have

(16)
Pn(t)

(1− t)n+1
= αnt

(

Pn−1(t)

(1− t)n

)′
+ βn

Pn−1(t)

(1− t)n
.

This implies

(17) Pn(t) = ((αnn− βn)t+ βn)Pn−1(t) + αnt(1− t)P ′
n−1(t),

and Pn(1) = n!
∏n

i=1 αi. By Proposition 3.5. in [LW07], Pn(t) has only real roots if and only
if the leading coeffcient αn ≥ 0. In that case, the following theorem applies.

Theorem 5.1. ([Ben73]) Let Pn(t) =
∑

k Pn,kt
k be a polynomial with all non-positive real

roots, and Xn be a random variable such that P(Xn = k) =
Pn,k

Pn(1)
. If var(Xn) goes to infinity

as n→ ∞, then Xn is asymptotically normal.

Pitman in [Pit97] gives an account of polynomials with only real zeros in this context.
If gn(k) is not linear in k, the real-rootedness does not necessarily hold (see Proposition

6.1). Next, we identify the coefficients of recurrences for an arbitrary degree of gn. An example
where gn(k) is of degree 2 is the number of descents in fixed-point free involutions, which we
study in the next section.

It is easy to derive the following from (15).

(18) Pdn,k =

k
∑

i=0

(−1)i
(

d(n+ 1) + 1

i

)

fn(k − i).

Working the expression above, Koutras [Kou94] obtained the formula

(19) Pn+1,k = (kαn + βn)Pn,k + (αn(n− k + 2)− βn)Pn,k−1

where (x)k = x(x− 1) · · · (x− k+1) is the falling factorial and fn(k) = αnk+βn. The special
cases of the identities below are used in [Kou94] to break (18) into parts. The first one is

(20) (i)l

(

d(n + 1) + 1

i

)

= (d(n + 1) + d)l

(

dn + d− l + 1

i− l

)

,

and the second one is a consequence of Vandermonde’s identity,

(21)

(

dn+ d− l + 1

i− l

)

=
d
∑

m=l

(

d− l

m− l

)(

dn+ 1

i−m

)

.

We refer to them later in the section.
Now consider the operator ∆ =

∑

k≥0
(−1)k

k! Dk (not to be confused with the difference

operator), where D is the usual differentiation. ∆i means applying ∆ i times. It acts on
monomials by shifting, i.e. ∆ixn = (x− i)n, which can be shown inductively, e.g., in [Foa10].
At the same time, it can be interpreted as Taylor expansion, i.e.,

∆if(k) =
∞
∑

j=0

(−1)j
ij

j!
f (j)(k).
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Given that fn+1(k) = gn(k)fn(k) where gn(k) is a polynomial of degree d, we have

Pd(n+1),k =

k
∑

i=0

(−1)i
(

d(n + 1) + 1

i

)

gn(k − i)fn(k − i)

=

k
∑

i=0

(−1)i
(

d(n + 1) + 1

i

)

∆ign(k)fn(k − i)(22)

by (18). In order to get use of (20), we change the basis as

xn =

n
∑

k=0

{

n

k

}

(x)k,

where
{

n
k

}

is Stirling number of the second type. Then, we have

∆ign(k) =

d
∑

j=0

(−1)j
ij

j!
g(j)n (k)

=

d
∑

j=0

(−1)j

j!
g(j)n (k)

j
∑

l=0

{

j

l

}

(i)l

=
d
∑

l=0





d
∑

j=l

(−1)j

j!
g(j)n (k)

{

j

l

}



 (i)l.

Plugging the expression above in (22) and applying (21) and (20) accordingly, we arrive at

(23) Pd(n+1),k =

d
∑

m=0

(−1)m

(

m
∑

l=0

(d(n+ 1) + 1)l

(

d− l

m− l

)

[(i)l]∆
ign(k)

)

Pdn,k−m,

where

[(i)l]∆
ign(k) =

d
∑

j=l

(−1)j

j!
g(j)n (k)

{

j

l

}

is the coefficient of (i)l in ∆ign(k). This gives a rather complicated but an explicit recurrence
relation for combinatorial arrays defined in the rational form (15) for which fn+1(k)/fn(k) is
a polynomial of k.

6. Applications

The first two examples are simple cases, in the sense that they can be written as sums
of independent random variables (which is shown in [Fel68]) by the same formulation for
descents.

6.1. Inversions. The number of inversions in a permutation π is defined to be the number
of all pairs i ≤ j such that π(j) < π(i). Let In be the random variable counting the number
of inversions in a randomly chosen permutation from Sn. Inserting n+1 in any possible n+1
positions and counting the probabilities, we obtain

In+1 =

{

In + i with probability
1

n+ 1
, 0 ≤ i ≤ n

}

.
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Then subtracting the mean of In, we have the zero-mean martingale below.

Zn := In −
(

n
2

)

2
.

In the triangular array setting of Section 3, the martingale difference Xn,i =
1
sn
(Zn,i −Zn,i-1)

satisfy

(24) Xn,i|Fn,i-1 =
1

sn

{

j − i− 1

2
with probability

1

i
, 0 ≤ j ≤ i− 1

}

,

which are indeed independent random variables for 1 ≤ i ≤ n. Therefore, we can use classical
limit theorems for the sums of independent random variables. The Lindeberg condition suffices
to show the asymptotic normality (see Chapter 10 of [Fel68]).

We first calculate the variance of the differences,

E[X2
n,i|Fn,i-1] =

1

s2n

i−1
∑

j=0

(j − i−1
2 )2

i
=

1

s2n

i2 − 1

12
.

Since V 2
n,n =

∑

iE[X2
n,i|Fn,i-1] is deterministic in this case and its expected value is 1, we have

s2n =
∑

i

i2 − 1

12
=
n(2n + 5)(n − 1)

72
.

So that |Xn,i| ≤ C 1√
n
, the Lindeberg condition (2) in Theorem 3.1 can be verified by choosing

ǫ > 0 small enough. It can also be shown that the absolute third moment is bounded, so
the Berry-Esseen theorem for the sum of independent random variables gives an error term
of order n−1/2.

6.2. Cycles. Let Qn denote the number of cycles of a uniformly chosen random permutation
in Sn. Goncharov [Gon44] shows a central limit theorem for Qn considering it asymptotically
as sum of Poisson distributions of the number of fixed length cycles. Suppose we insert n+1
either in any of the cycles of a given permutation, or place it as a fixed-point. This defines
the zero-mean martingale

Zn = Qn −
n
∑

1

1

k
.

Observe that E(Qn) ∼ log n. Then

Xn,i|Fn,i-1 =
1

sn

{

1− 1
i with prob. 1

i ,

−1
i with prob. i−1

i .

The conditional variance of the ith differences is

E[X2
n,i|Fn,i-1] =

1

s2n

(

i− 1

i2

)

,

and

s2n =

n
∑

i=1

i− 1

i2
∼ log n.

The Lindeberg condition is easily verified, since |Xn,i| ≤ 1√
logn

. The asymptotic normality

follows.
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6.3. Signed permutations. The notion of descent in relation with group structure has its
generalization in Coxeter groups (see Chapter 11 and 13 of [Pet15]). A particular case other
than the symmetric group that we are interested is Coxeter groups of type B, also known as
hyperoctahedral groups. We denote them by Wn for n = 1, 2, · · · . They are isomorphic to the
set of signed permutations with usual multiplication in Sn. A signed permutation π is defined
to be the mapping

π : {−n, · · · ,−1, 0, 1, · · · , n} → {−n, · · · ,−1, 0, 1, · · · , n}
which satisfies π(−i) = −π(i). The descent set of π is defined to be {0 ≤ i ≤ n − 1 : π(i) <
π(i+1)}. Unlike in the case of Sn, we also take the zeroth position into account. It is clear that
the probability that π has a descent at position i is 1

2 . Let Bn count the number of descents of
a random signed permutations. Then the linearity of expectation gives E(Bn) =

n
2 . Provided

that

Bn(t) :=
∑

π∈W
tdes(π) =

n
∑

k=1

Bn,kt
k,

we have (Theorem 13.3. of [Pet15])

Bn(t)

(1− t)n+1
=
∑

k≥0

(2k + 1)ntk,

and also the recurrence relation

Bn+1,k = (2k + 1)Bn,k + (2n − 2k + 3)Bn,k−1.

It satisfies the condition (12), so we have the submartingale below.

Bn+1 =

{

Bn, with prob. 2Bn+1
2n+2 ,

Bn + 1, with prob. 2n−2Bn+1
2n+2 .

After normalization, Zn = n
(

Bn − n
2

)

is a zero-mean martingale. In order to derive the
moments, we first use (17) and obtain

Bn(t) = (1 + (2n− 1)t)Bn−1(t) + 2t(1− t)B′
n−1(t).

Then, we can use method of moments observing that

E(Bn) =
B′

n(1)

Bn(1)
.

Similarly,

E(B2
n) =

B′′
n(1) +B′

n(1)

Bn(1)
.

We do not carry out the calculations, but point out that the leading terms of the moments are
asymptotically same with the classical Eulerian numbers’. Consider the generating function

B(u, t) =
∑

n≥0

Bn(t)
un

n!
=

(t− 1)eu(t−1)

t− e2u(t−1)
,

which can be found in Chapter 13 of [Pet15]. It has a simple pole at r(t) = log t
2(t−1) , which is a

constant multiple of the simple pole of A(u, t), the generating function for Eulerian numbers
(see Section 9.6. of [FS09] for an accessible singularity analysis for combinatorial arrays).
Then, Theorem 1 in [Ben73] verifies the claim.

In fact, Eulerian polynomials for all Coxeter groups have only real roots, so that Theorem
5.1 applies. The last open case was for Coxeter groups of type D, which is shown in [SV15]. A
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simple recurrence relation for Eulerian numbers for Coxeter groups of type D is not available
to the best of author’s knowledge. But their relation to the first two types’ is rather simple,

Dn,k = Bn,k − n2n−1An,k−1.

6.4. Stirling permutations. Gessel and Stanley define Stirling polynomials, fn(k) =
{n+k

k

}

,
and their generating function

Cn(t)

(1− t)n+1
=
∑

k≥0

{

n+ k

k

}

tk,

in [GS78], and they provide a combinatorial interpretation for Cn(t). The coefficient of tk in
Cn(t), call it Cn,k, is the number of Stirling permutations with exactly k descents. Stirling
permutations are permutations of the multiset {1, 1, 2, 2, · · · , n, n} such that the numbers
between two occurences of i are larger than i for all 1 ≤ i ≤ n. The numbers {Cn,k}, known as
second-order Eulerian numbers, appear in different branches of combinatorics (see [HV12]).

By (14), it can be easily shown that

(25) Cn(t) = (2n − 1)tCn−1(t) + t(1− t)C ′
n−1(t).

Let Cn be the random variable counting descents in Stirling permutations. Then working the
coefficients, we obtain the submartingale

Cn+1 =

{

Cn, with prob. Cn
2n+1 ,

Cn + 1, with prob. 2n−Cn+1
2n+1 .

As in the previous example, the moments can be studied by (25). Note that the number of
Stirling permutations is Cn(1) = (2n− 1)!! ≡ 1 · 3 · · · (2n− 1). For the first moment, we have

E(Cn) = 1 +
2n − 2

2n − 1
E(Cn−1),

which does not yield a simple expression. But a purely combinatorial count for the first
moment by Bóna leads him to this curious identity

E(Cn) =

n−1
∑

k=0

k
∏

i=1

2n− 2i

2n− 2i+ 1
=

2n+ 1

3

in [B0́9]. It is also shown therein that Cn(t) has only real zeros. Also, observe that (25) satisfies
(17) with a positive coefficient. Therefore, Theorem 5.1 is applicable to show asymptotic
normality.

6.5. Alternating runs. For π ∈ Sn, π is said to change direction at position i, if either
π(i−1) > π(i) < π(i+1) or π(i−1) < π(i) > π(i+1).Then π has k−alternating runs if there
exist exactly k − 1 positions that it changes direction (see Section 1.2 of [B1́6]). Let Gn,k be
the number of k-alternating runs, then it is known to satisfy the recurrence relation

(26) Gn+1,k = kGn,k + 2Gn,k−1 + (n− k + 1)Gn,k−2.

Gn+1 =











Gn, with prob. Gn
n+1 ,

Gn + 1, with prob. 2
n+1 ,

Gn + 2, with prob. n−Gn−1
n+1 .
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We can calculate the first moment simply by observing that the probability of π to change
direction at each position i is 2

3 .We have E(Gn) =
2
3 (n−2)+1, whence we have the zero-mean

martingale

Zn =
n(n− 1)

2

(

Gn − 2n− 1

3

)

.

Another important statistic, which is closely related to alternating runs is the length of the
longest alternating subsequences. Let Ln be the corresponding random variable. We have the
simple relation [Sta08],

(27) Ln,k =
1

2
(Gn,k−1 +Gn,k).

Putting (26) and (27) together, we have

Ln+1,k = kLn,k + Ln,k−1 + (n− k + 2)Ln−1,k−2,

which defines the submartingale

Ln+1 =











Ln, with prob. Ln
n+1 ,

Ln + 1, with prob. 1
n+1 ,

Ln + 2, with prob. n−Ln
n+1 .

Similarly, Zn = n(n−1)
2

(

Ln − 4n+1
6

)

is a zero-mean martingale. In the setting of Section 4,
the martingale difference Xi = Zi − Zi−1 satisfies

Xi|Fi-1 =
i− 1

2











2Li−1 − 2i+ 1, with prob. Li−1

i ,

2Li−1 − i+ 1, with prob. 1
i ,

2Li−1 + 1, with prob. i−Li−1−1
i .

Different techniques are used to show the asymptotic normality [HR09, Sta08, WS96, Wid06]
of Ln. In order to study the convergence rate in the limit, the higher moments of Ln can
be computed from the factorial moment generating function given in [Sta08] to check if the
conditions of Theorem 4.1 are satisfied.

6.6. Matchings. A matching is a fixed-point free involution, a permutation consisting only
of transpositions, in S2n. The asymptotic normality of the number of descents in matchings is
addressed by Kim [Kim19]. It is proven by pointwise convergence of the moment generating
function. We obtain the same result by martingales. Let

J2n(t) :=
∑

π∈J2n
tdes(π) =

2n−1
∑

k=0

J2n,kt
k.

Désarménien and Foata [DF85] derived the generating function below using algebraic prop-
erties of Schur functions.

∑

n≥0

Jn(t)
un

(1− t)n+1
=
∑

k≥0

tk

(1− u2)(
k+1

2 )
.

Note that Jn(t) = 0 if n is odd, and J2n(1) = (2n− 1)!!. Equating the coefficients of u2n gives

J2n(t)

(1− t)2n+1
=
∑

k≥0

(
(k+1

2

)

+ n− 1

n

)

tk.

It is tempting to ask if Theorem 5.1 is applicable in this case. The answer is negative by the
following proposition.
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Proposition 6.1. J2n(t) is not log-concave.

Proof: By (18) we have

J2n(t) =

2n−1
∑

k=0

J2n,kt
k =

2n−1
∑

k=0

(

k
∑

i=0

(−1)i
(

2n + 1

i

)(
(k−i+1

2

)

+ n− 1

n

)

)

tk.

By inverting the coefficients (see Chapter 3.3 of [Rio68]),

an,k :=

(
(k+1

2

)

+ n− 1

n

)

=

k
∑

i=0

(

2n+ i

i

)

J2n,k−i.

Then, we have

∑

k

an,kx
k =

(

∑

i

(

2n+ i

i

)

xi

)





∑

j

J2n,jx
j



 .

The first three terms of {an,k} reveal below that it is not a log-concave sequence since

a2n,2 =

(

n+ 2

2

)2

<

(

n+ 6

2

)

= an,1an,3.

On the other hand, the coefficients of the first sum on the right hand side is a log-concave
sequence. But Proposition 1 in [Sta89] says that the product of two log-concave polynomials
is also log-concave, which implies {J2n,k} is not log concave. �

Since real-rootedness implies log-concavity, the roots of J2n(t) are not real-only. So Theorem
5.1 is not applicable in this case. Nevertheless, the asymptotic normality is shown by Kim
using generating function to determine the asymptotic behaviour of the moments. We give a
martingale proof below. The recurrence relation is derived in [GZ06], it can also be obtained
from (23).

J2n+2,k =
k(k + 1) + 2n

2n+ 2
J2n,k +

2(k − 1)(2n − k + 1) + 2

2n+ 2
J2n,k−1

+
(2n− k + 2)(2n − k + 3) + 2n

2n+ 2
J2n,k−2.

Let M2n count the number of descents in random matchings. We can verify (12) and define
the submartingale

M2n+2 =



















M2n, with prob. M2n(M2n+1)+2n
(2n+1)(2n+2) ,

M2n + 1, with prob. 2M2n(2n−M2n)+2
(2n+1)(2n+2) ,

M2n + 2, with prob. (2n−M2n)(2n−M2n+1)+2n
(2n+1)(2n+2) .

We have E(M2n+2|Fn) =
n

n+1M2n +
2n+1
n+1 . Note that E(M2n) = n (see [Kim19] for its deriva-

tion). Then by properly scaling, we have the zero-mean martingale Zn = n (M2n − n) . We
then have

Xi|Fi-1 =



















Wi-1 − i, with prob. (Wi-1+i−1)(Wi-1+i)+2i−2
2i(2i−1) ,

Wi-1, with prob. 2(Wi-1+i−1)(i−1−Wi-1)+2
2i(2i−1) ,

Wi-1 + i, with prob. (i−1−Wi-1)(i−Wi-1)+2i−2
2i(2i−1) ,
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whereWi =M2i− i. Next we calculate the higher confitional moments to apply Theorem 4.1.

E[X2
i |Fi-1] =

i− 1

2i− 1

(

i2 + 2i−W 2
i−1

)

,

E[X3
i |Fi-1] =

2− i

2i− 1
W 3

i−1 +
i(i2 − 2i− 6)

2i− 1
Wi−1,

E[X4
i |Fi-1] =

3

2i− 1
W 4

i−1 −
i(i2 + 2i+ 12)

2i− 1
W 2

i−1 +
i3(i+ 1)(i − 2)

2i− 1
.

The moments of M2i up to the fifth degree are calculated in [Kim17]. We can compute the
central moments using them to show that the conditions of Theorem 4.1 is satisfied.

Matchings define a particular conjugacy class in S2n, namely the one with n 2-cycles. In
general, let C be a conjugacy class in Sn with ni i−cycles and AC(t) =

∑

π∈C t
des(π). It can

be found in [Ful98] that

AC(t)

(1− t)n+1
=
∑

k≥0

tk
n
∏

i=1

(

fik + ni − 1

ni

)

.

where fik = 1
i

∑

d|i µ(d)k
i/d and µ(·) is the Möbius function. We are interested in finding

recursive formulae for the number of permutations in a fixed conjugacy class with a given
number of descents. These numbers arise in riffle shuffles [DMP95]. A recursive formula can be
derived from (23) for certain cases. For example, it is possible to find such recurrence relation
in the case of n 3−cycles in S3n, but it is not possible for involutions with no restriction on
the number of fixed-points. But if the number of fixed-points is fixed at a certain proportion,
then a martingale formulation is possible.

6.7. Two-sided Eulerian numbers. The last example is a vector descent statistic which
can be studied by multivariate martingale limit theorems. Two-sided Eulerian numbers are
introduced in [CRS66] as the coefficients of

An(t, s) =
∑

π∈Sn

tdes(π)+1sdes(π
−1)+1.

The generating function is obtained by counting n unlabelled balls in kl distinct boxes, which
is a two-dimensional analogue of barred permutations. See [Pet13] for the counting argument
and a survey on these numbers. It is given by

An(t, s)

(1− t)n+1(1− s)n+1
=
∑

k,l≥0

(

kl + n− 1

n

)

tksl.

The recurrence relation on coefficients are derived in [CRS66]; it satisfies the two-dimensional
generalization of (12). Let Dn be the random variable counting the number of descents of a
uniformly chosen permutation π, while D′

n counts the number of descents in π−1. Then,

(Dn+1,D
′
n+1) =























(Dn,D
′
n), with prob. (Dn+1)(D′

n+1)+n
(n+1)2

,

(Dn + 1,D′
n), with prob. (n−Dn)(D′

n+1)−n
(n+1)2 ,

(Dn,D
′
n + 1), with prob. (Dn+1)(n−D′

n)−n
(n+1)2

(Dn + 1,D′
n + 1), with prob. (n−Dn)(n−D′

n)+n
(n+1)2

is a submartingale, and

(Zn, Z
′
n) = n

(

Dn − n− 1

2
,D′

n − n− 1

2

)
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is a zero-mean martingale. A central limit theorem is recently shown in [CD17]. We use
below a multivariate limit theorem for martingales, whose proof is in [Aal77]. The theorem
is in functional form, but we can embed (Zn, Z

′
n) in Brownian motion (see Appendix of

[HH14]), apply the theorem, and the unit time for standard Brownian motion gives standard
normal distribution. Later, equivalent conditions for the theorem are given in [Hel82]. They
are similar to one-dimensional case. First, we need to verify Lindeberg-condition and the
convergence of conditional variance for both coordinates. Since Dn and D′

n are identically
distributed, and the case for Dn is already covered in Section 3, we only need to show the
additional condition on covariances,

(28)
∑

i

E[Xn,iX
′
n,i|Fn,i−1]

p→ 0,

where Xn,i and X
′
n,i are defined as in Section 3 to be martingale differences. We also define

the central random variables, Wi = Di − i−1
2 and W ′

i = D′
i − i−1

2 . It can be calculated from
(5) that

E[Xn,iX
′
n,i|Fn,i−1] =

36

n2(n+ 1)
Wi−1W

′
i−1.

In order to use Chebyschev’s inequality to show (28), we first prove the following lemma.

Lemma 6.1. For a uniformly chosen permutation π ∈ Sn, define the random variables,

Dn(π) = des(π) and D′
n(π) = des(π−1). Then, E

[

(

Dn − n−1
2

)2 (
D′

n − n−1
2

)2
]

is of order n2.

Proof: Define Dn =
∑n−1

i=1 Ti and D
′
n =

∑n−1
i=1 Si as in Section 2, where Ti is as before and

Si(π) =

{

1 if π−1(i) > π−1(i+ 1),

0 otherwise.

We first evaluate

E(DnD
′
n) =

n−1
∑

i=1

n−1
∑

j=1

E(TiSj).

As suggested in [CD17], we define K = {π(i), π(i+1)}∩{j, j +1}, and break the expectation
into three terms with respect to the size of K,

E(TiSj) = P(TiSj = 1|K = 0) ·P(K = 0)

+P(TiSj = 1|K = 1) ·P(K = 1)

+P(TiSj = 1|K = 2) ·P(K = 2).

It is straightforward that P(Ti = Sj = 1|K = 0) = 1
4 by independence. The same holds true

for K = 1 by symmetry. Suppose π(i) = j, which has 1
4 probability conditioned on K = 1.

Then TiSj = 1 if and only if π(i+ 1) < j and π−1(j + 1) < i. While if π(i+ 1) = j, TiSj = 1
if and only if π(i) > j and π−1(j+1) < i. Considering the other two cases as well, we observe
that the probabilities of {TiSj = 1} add up to 1 through four equiprobable cases. Therefore,
P(Ti = Sj = 1|K = 1) = 1

4 . Finally, we deal with the last term. There are four possible pairs,

and two of them give descents in both positions, so P(Ti = Sj = 1|K = 2) = 1
2 . A simple

counting argument shows that P(K = 2) = 1

(n2)
= 2

n(n−1) . Hence,

E(TiSj) =
1

4
+

1

2n(n− 1)
,
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which eventually shows that

E(DnD
′
n)−E(Dn)E(D′

n) =
n− 1

2n
,

which is of constant order. We argue for E(D2
nD

′
n) and E(D2

nD
′2
n ) along the same lines.

Consider

E(D2
nD

′
n) =

n−1
∑

i=1

n−1
∑

j=1

n−1
∑

k=1

E(TiTjSk),

(We refer to Section 2 for treatment of cases where j = i and j = i+1) Again, depending on
the size of {π(i), π(i + 1), π(j), π(j + 1)} ∩ {k, k + 1}, we can perform case-by-case analysis.
Given that the size of the intersection is 0 or 1, it can be shown that TiTj is independent of

Sk. Since, the probability that the size of the intersection is 2, is of order 1
n2 and there are

(n− 1)3 terms, we have

E(D2
nD

′
n)−E(D2

n)E(D′
n) = O(n).

A similar argument gives

E(D2
nD

′2
n )−E(D2

n)E(D′2
n ) = O(n2).

Therefore, we can check term by term that

E(W 2
nW

′2
n )−E(W 2

n)E(W ′2
n ) = O(n2).

�

We have

E

(

∑

i

E[Xn,iX
′
n,i|Fn,i−1]

)2

≤ C

n6

∑

1≤i,j≤n-1

E(Wi−1W
′
i−1Wj−1W

′
j−1)

≤ C

n6

∑

1≤i,j≤n-1

√

E(W 2
i-1W

′2
i-1)E(W 2

j-1W
′2
j-1)

≤ C

n6

∑

1≤i,j≤n-1

ij

≤ C

n2
→ 0,

where the third inequality follows from Lemma 6.1. Therefore, we verify (28) by Chebyschev’s
inequality. Then the conditions of Theorem 3.3 in [Hel82] are satisfied. We conclude that





Dn − n−1
2

√

n+1
12

,
D′

n − n−1
2

√

n+1
12





is asymptotically bivariate normal with zero mean and unit covariance matrix.

7. Proof of Theorem 4.1

In the rest of the paper, we repeatedly use C, c, C ′ and c′ for different constants that are
all independent of n, if no confusion arises.
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7.1. Preliminaries. The following two lemmas play key roles in the Bolthausen’s proof.

Lemma 7.1. ([Bol82]) Let X and ξ be random variables and Φ be the standard normal

distribution function. Define

δ = sup
t

|P(X ≤ t)− Φ(t)|

and δ∗ = sup
t

|P(X + ξ ≤ t)− Φ(t)|.

Then,

δ ≤ 2δ∗ +
5√
2π

‖E(ξ2|X)‖1/2∞ .

Lemma 7.2. ([Bol82]) Let X be a random variable, f ∈ L1(R) be of bounded variation ‖f‖V
and δ be as defined in Lemma 7.1. For a 6= 0,

|E[f(aX + b)]| ≤ ‖f‖V δ +
‖f‖1√
2π

|a|−1.

We next discuss some technically useful implications of the additional assumption (6) to
the Berry-Esseen theorem in [Bol82]. First, (6) implies that for ǫ > 0 there exists N ∈ N such
that m ≥ N implies

(29)
1− ǫ

m
≤ σ2m
s2m

≤ C + ǫ

m

for some constant C. Let us fix α ∈ (0, 1) and choose n large enough that αn > N. Then

since s2n = s2n−1+σ
2
n, we have

s2n−1

sn
≤ 1− 1−ǫ

n by (29). Repeating the same argument, we have

(30)
s2m
s2n

≤
n
∏

k=m+1

(

1− 1− ǫ

k

)

.

Since

log

(

1− 1− ǫ

k

)

= −1− ǫ

k
+O(k−2),

comparing the right-hand side of (30) with
∏n

k=m+1

(

1− 1
k

)

= m
n , we have

(31)
s2m
s2n

≤
n
∏

k=m+1

(

1− 1− ǫ

k

)

≤
(m

n

)1−ǫ
+O(n−1)

for m ≥ αn. In addition, reconsidering (30),

(32) σ2m ≤ (C + ǫ)
s2m
m

≤ α−ǫ(C + ǫ)
s2n
n

provided that m ≥ αn. If we take m ≤ αn, it follows from (31) that

(33) s2n − s2m ≥ s2n − s2αn ≥ (1− α1−ǫ)s2n.

The proof will also use the following lemma in relation to (6).

Lemma 7.3. Let γ > 0 and s 6= 1. Then
n
∑

k=1

(

1

k + γ

)s

≤ Csmax{1, n1−s}

for some constant Cs independent of n.
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Proof: Suppose s > 1. Then
n
∑

k=1

(

1

k + γ

)s

≤
n
∑

k=1

1

ks
≤ ζ(s)

where ζ is Riemann zeta function. If s < 1, we can bound it by the upper Riemann sums of
∫ n
1 x

−sdx, which is n1−s

1−s plus smaller order terms. �

7.2. Lindeberg’s argument. Let X1, . . . ,Xn be martingale differences with σ2i = E[X2
i ]

and s2k =
∑k

i=1 σ
2
i . Define Z1, . . . , Zn, ξ to be central normal variables with Var(Zi) = σ2i and

Var(ξ) = κ2 > 0, which are independen, both from X1, . . . ,Xn and also among themselves.
Later in the proof, κ2 is chosen to be a function of s2n. Define

δ(i) = sup
t

∣

∣

∣

∣

P

(

X1 + · · ·+Xi

si
≤ t

)

−Φ(t)

∣

∣

∣

∣

δξ(i) = sup
t

∣

∣

∣

∣

P

(

X1 + · · ·+Xi + ξ

si
≤ t

)

−Φ(t)

∣

∣

∣

∣

.

Lemma 7.1 and the simple estimate below

sup
t

|Φ(t)− Φ(αt)| ≤ e−1/2

√
2π

|α− 1|

imply that

(34) δ(n) ≤ 4δξ(n) + C
κ

sn
.

Our goal is to bound

δξ(n) = sup
t

∣

∣

∣

∣

P

(

X1 + · · · +Xn + ξ

sn
≤ t

)

−P

(

Z1 + · · ·+ Zn + ξ

sn
≤ t

)∣

∣

∣

∣

.

Lindeberg’s idea in his proof of the central limit theorem [Lin22] is to write the difference of
probabilities above as

n
∑

i=1

P

(

X1 + · · ·+Xi−1 +Xi + Zi+1 + · · ·+ Zn + ξ

sn
≤ t

)

−
n
∑

i=1

P

(

X1 + · · ·+Xi−1 + Zi + Zi+1 + · · ·+ Zn + ξ

sn
≤ t

)

.

Define Um =
∑m−1

i=1 Xi/sn. Observe that
∑n

i=m Zi + ξ/sn is a central normal random

variable with variance λ2m := s2n−s2m+κ2

s2n
and independent of Um,Xm and Zm. Write the above

expression as
n
∑

m=1

Φ

(

t− Um

λm
− Xm

λmsn

)

− Φ

(

t− Um

λm
− Zm

λmsn

)

,

then to apply martingale properties and the fact that Um is Fm−1 measurable, we further
write it as

(35)
n
∑

m=1

E

(

E

[

Φ

(

t− Um

λm
− Xm

λmsn

)

− Φ

(

t− Um

λm
− Zm

λmsn

) ∣

∣

∣

∣

Fm−1

])

.

The idea is to use the Taylor expansion of the normal distribution function to obtain bounds
on the sum above.
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7.3. Error term in the Taylor expansion. The estimations below are for a fixed term of
the sum, so we drop the index for m and define

U =
t− Um

λm
, Vx =

Xm

λmsn
and Vz =

Zm

λmsn
.

Consider the Taylor expansion of the third order,

Φ(u− v) = Φ(u)− vϕ(u) +
v2

2
ϕ′(u)− v3

6
ϕ′′(u) +R4(u, v),

where R4(u, v) is the remainder term. So the expression in the expectation of the mth term
of (35) is

E [Φ (U − Vx)− Φ (U − Vz) |Fm−1]

= ϕ(U)E[(Vz − Vx)|Fm−1] + ϕ′(U)E

[(

V 2
x − V 2

z

2

) ∣

∣

∣

∣

Fm−1

]

− ϕ′′(U)E

[(

V 3
x − V 3

z

6

) ∣

∣

∣

∣

Fm−1

]

+E[R4(U, Vx)|Fm−1] +E[R4(U, Vz)|Fm−1].

Observe that the first term vanishes since Vx is a martingale difference. For the third term,
we note that E(Z3

m) = 0. Then we write

(36) E [Φ (U − Vx)− Φ (U − Vz) |Fm−1] = A1 +A2 +A3 +A4

where

A2 =
1

2λ2ms
2
n

E((E[X2
m|Fm−1]− σ2m)ϕ′(U)),

A3 = − 1

6λ3ms
3
n

E(E[X3
m|Fm−1]ϕ

′′(U)),

A4 = E[R4(U, Vx)] +E[R4(U, Vz)].

We note that the two terms of A4 have identical estimates. We further define

β(p)r,m = ‖E[Xr
m|Fm−1]‖p

γ(p)r,m = ‖E[Xr
m|Fm−1]−E[Xr

m]‖p.
The next step is to estimate each term in (36) to bound the right hand side of (34) by a

constant independent of n times n−1/2. We note an implication of Hölder’s inequality for the
sums above, which we will use for the estimates below.

(37) |E((E[X2
m|Fm−1]− σ2m)ϕ′(u))| ≤ ‖E[X2

m|Fm−1]− σ2m‖p‖ϕ′(u)‖q ,
where 1

p +
1
q = 1.

7.3.1. A2. Since the normal density ϕ and its derivatives are bounded,

A2 ≤ C λ−2
m s−2

n γ
(p)
2,m ≤ C

σ2m√
m(s2n − s2m + κ2)

,

by (37) and (9). Summing the quantity above over m up to a linear order of n yields small
enough bounds, of order less than or equal to n−1/2. Define

(38) πm =
σ2m

s2n − s2m + κ2
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We want to show that

(39) sup
n

√
n

αn
∑

m=1

πm√
m
<∞.

where α ∈ (0, 1). Let us take κ2 = γ s2n
n for γ > 0. Then by (33),

√
n

αn
∑

m=1

πm√
m

≤ C
√
n

s2n

αn
∑

m=1

σ2m√
m
.

It follows from (6) that, as in (29), σ2m ≤ (C+δ)s2m
m except for finitely many m for δ > 0.

Therefore,

C
√
n

s2n

αn
∑

m=1

σ2m√
m

≤ c
√
n

s2n

αn
∑

m=1

s2m
m
√
m

+
c′
√
n

s2n
≤ C ′

since s2n is order larger or equal to n and
∣

∣

∣

s2m
s2m

∣

∣

∣
< 1 for m < n. Note that C ′ depends on α and

δ but not on n. Thus, (39) holds true. However, better estimates are needed for large m. The
idea in [Bol82] is to use Lemma 7.2 on f = (ϕ′)q to obtain the bound

(40) A2 ≤ Cλ−2
m s−2

n γ
(p)
2,m

(

δ(m− 1)1/q +

(

λm
sn
sm−1

)1/q
)

.

Let us define
Kn =

√
n δ(n) and K(n) = max

1≤i≤n

√
i δ(i),

which will be crucial at the end of the paper. The first term in (40) times
√
n added up over

m for the higher indices is bounded as

(41)
√
n

n
∑

m=αn

σ2m(δ(m − 1)
√
m− 1)1/q√

m 2q
√
m− 1(s2n − s2m + κ2)

≤ Cn−
1

2qK
1/q
(n−1)

n
∑

m=αn

πm.

For the second term, we have

(42)
√
n

n
∑

m=αn

1√
m

(

σ2m
s2m−1

)1/2q

π
1− 1

2q
m ≤ Cn−

1

2q

n
∑

m=αn

π
1− 1

2q
m ,

which follows from (6). Then by the definition of (38),

πm =
σ2m

∑n
k=m+1 σ

2
k + κ2

By (31) and considering that σ2n ≤ (C + ǫ)s
2
n
n ,

(43) π2m ≤ C + ǫ

(n −m)αǫ(C + ǫ) + γ
≤ C ′ 1

n−m+ γ
.

Therefore, we have
n
∑

m=αn

πsm ≤ C ′
(1−α)n
∑

k=1

(

1

k + γ

)s

.

Observe that if s = 1, which is the case excluded in Lemma 7.3, then the sum is bounded by
C ′ log n. This verifies (41) is uniformly bounded. Whereas the case with (42) is covered by
Lemma 7.3, which guarantees its uniform boundedness.
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7.3.2. A3. A3 is treated in a similar way to A2. By (37) and (8),

A3 ≤ C λ−3
m s−3

n β
(p′)
3,m ≤ C

1
2p′
√
m
π3/2m .

We first want to show

(44) sup
n

√
n

αn
∑

m=1

π
3/2
m

2p′
√
m
<∞.

Again, by (6) and (33), we have

√
n

αn
∑

m=1

πm√
m

≤ C
√
n

s3n

αn
∑

m=1

σ3m
2p′
√
m

≤ c
√
n

s3n

αn
∑

m=1

s3m

m
3

2
+ 1

2p′

+
c′
√
n

s3n
≤ C ′,

which verifies (44). For larger values of m, we have the estimate

A3 ≤ C λ−3
m s−3

n β
(p′)
3,m

(

δ(m− 1)1/q
′

+

(

λm
sn
sm−1

)1/q′
)

where 1
p′ +

1
q′ = 1. Multiplying by

√
n and adding the terms up, we have

C
√
n

n
∑

m=αn

1
2p′
√
m
π3/2m

(δ(m − 1)
√
m− 1)

1

q′

2q′
√
m

≤C
√
nK

1

q′

(n−1)

n
∑

m=αn

1√
m
π3/2m ≤ CK

1

q′

(n−1)

n
∑

m=αn

π3/2m .(45)

For the second term,

C
√
n

n
∑

m=αn

1
2p′
√
m
π3/2m

(

s2n − s2m + κ2

s2m−1

)
1

2q′

≤C
√
n

n
∑

m=αn

1
2p′
√
m
π

3

2
− 1

2q′

m
1

2q′
√
m

≤C
n
∑

m=αn

π
3

2
− 1

2q′

m ,(46)

where the second inequality follows from (6). Then by (43) and Lemma 7.3, both (45) and
(46) are uniformly bounded.

7.3.3. A4. The final terms are the remainders of the Taylor expansion, for which we take

R4(u, v) =
v4

24ϕ
(3)(u− θv) for some 0 ≤ θ ≤ 1. For p = ∞ and q = 1, we have

A4 ≤ C λ−4
m s−4

n β∞4,m ≤ Cπ2m

by (7). Similar to the first two cases, we can show that

sup
n

√
n

αn
∑

m=1

π2m ≤ C
√
n

s4n

αn
∑

m=1

σ4m ≤ c
√
n

s3n

αn
∑

m=1

s4m
m2

+
c′
√
n

s4n
≤ C ′.
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For the part of the sum with higher indices (αn ≤ m ≤ n), further work is required. Let 1A
denote the indicator function of the event A. Consider the four regions below:
Γ1 := {|U | < 1}. In this case,

E

[

V 4
x

24
ϕ(3)(U − θVx)1Γ1

]

≤
β∞4,m‖ϕ(3)‖∞

24λ4ms
4
n

E(1|U |<1)

≤ Cλ−4
m s−4

n β∞4,m

(

δ(m− 1) +

(

λm
sn
sm−1

))

where we bound 1|u|<1 by a smoothly decreasing function and apply Lemma 7.2.

Γ2 :=
{

Vx ≤ |U |
2 , |U | ≥ 1

}

. Observe that |U−θVx| ≥ |U |
2 . Defining ψ(u) = sup|x|≥|u|/2 |ϕ(3)(x)|,

we can apply Lemma 7.2 to ψ obtain

E

[

V 4
x

24
ϕ(3)(U − θVx)1Γ2

]

≤ E

[

V 4
x

24
ψ(U)1Γ2

]

≤ Cλ−4
m s−4

n β∞4,m

(

δ(m− 1) +

(

λm
sn
sm−1

))

.

Γ3 := { |U |
2 ≤ Vx ≤ U2, |U | ≥ 1}. In this region, |R4(U, Vx)| is uniformly bounded as below.

|R4(U, Vx)1Γ3
| ≤ sup

u

{

|2Φ(u)|+
∣

∣u2ϕ(u)
∣

∣ +

∣

∣

∣

∣

u4

2
ϕ′(u)

∣

∣

∣

∣

+

∣

∣

∣

∣

u6

6
ϕ′′(u)

∣

∣

∣

∣

}

P(Γ3)

≤ Cλ−4
m s−4

n β∞4,mE(|U |−41|U |≥1)

≤ Cλ−4
m s−4

n β∞4,m

(

δ(m− 1) +

(

λm
sn
sm−1

))

,

where the second line follows from Markov’s inequality.
Γ4 := {Vx ≥ U2 ≥ 1}. Here we use the bound |R4(u, vx)| ≤ c|v|3. See [Ren96] for an estimate
on this and some other constants used in this section. We then have,

E
[

c|Vx|31Γ4

]

≤ λ−3
m s−3

n β∞3,mP(Γ4)

≤ Cλ−4
m s−4

n β∞3,mE[
∣

∣U |−21|U |≥1

]

≤ Cλ−4
m s−4

n β∞3,m

(

δ(m − 1) +

(

λm
sn
sm−1

))

.

where the first line is by Hölder’s inequality for p = ∞, q = 1 recalling that Vx = Xm
λsn

. Since
β∞3,m ≤ β∞4,m, the two derivations above can be put together to have

A4 ≤ Cπ2m

(

δ(m − 1) +

(

λm
sn
sm−1

))

.

Multiplying by
√
n and adding them up gives an expression that can be bounded by

(47) CK(n−1)

n
∑

m=αn

π2m + C ′
n
∑

m=αn

π3/2m .

We apply Lemma 7.3 to the second sum of (47), while the first sum serves as the pivot term
for the recursive bound in the final part of the proof.
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7.4. Recursive bound. Combining our estimates in (34) and recalling that κ2 = γ s2n
n for

γ > 0, we have

Kn ≤ CK(n−1)

n
∑

m=αn

π2m + c.

We observe that
∑n

m=αn π
2
m can be taken as small as desired by choosing γ large enough.

Hence,

Kn ≤ βK(n−1) + c.

for some 0 < β < 1 and for some constant c. This implies that Kn ≤ K(n−1) if K(n−1) ≥
c

1−β . Thus, Kn ≤ max
{

c
1−β ,K(n−1)

}

. So the conclusion is supnKn < ∞, which proves the

theorem. �
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