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COMBINATORIAL IDENTITIES ASSOCIATED WITH A BIVARIATE

GENERATING FUNCTION FOR OVERPARTITION PAIRS

ATUL DIXIT AND ANKUSH GOSWAMI

Abstract. We obtain a three-parameter q-series identity that generalizes two results of Chan and
Mao. By specializing our identity, we derive new results of combinatorial significance in connection
with N(r, s,m, n), a function counting certain overpartition pairs recently introduced by Bringmann,
Lovejoy and Osburn. For example, one of our identities gives a closed-form evaluation of a double
series in terms of Chebyshev polynomials of the second kind, thereby resulting in an analogue of Euler’s
pentagonal number theorem. Another of our results expresses a multi-sum involving N(r, s,m, n) in
terms of just the partition function p(n). Using a result of Shimura we also relate a certain double
series with a weight 7/2 theta series.

1. Introduction and main results

A partition of a natural number n is the number of ways of writing n as a sum of natural numbers
in a non-increasing order. The partition function p(n) enumerates the number of partitions of n.
Euler showed that the generating function of p(n) is

1 +
∞
∑

n=1

p(n)qn =
1

(q; q)∞
, (1.1)

where we assume throughout that |q| < 1, and for A ∈ C, use the notation

(A)n = (A; q)n :=

n
∏

j=1

(1−Aqj−1), (A)∞ = (A; q)∞ = lim
n→∞

(A; q)n. (1.2)

The function p(n) satisfies amazing congruences discovered by Ramanujan, namely,

p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7), p(11n+ 6) ≡ 0 (mod 11). (1.3)

One of the various ways to prove (1.3) is to note that the generating function on the right-hand side
of (1.1) is essentially a half-integral weight (meromorphic) modular form. The congruences in (1.3)
then follow easily using the well-known theory of modular forms; see, for example, [11]. For more
information on this topic, we refer the reader to [6, Chapter 2] and [14, Chapter 5].

In [2], Andrews discovered the remarkable smallest parts partition function spt(n). It counts the
total number of smallest parts in all partitions of n. The generating function of spt(n) is given by
[2, p. 138]

∞
∑

n=1

spt(n)qn =
∞
∑

n=1

qn

(1− qn)2(qn+1; q)∞
. (1.4)

The generating function on the right-hand side of (1.4) is essentially a mock modular form as shown
by Folsom and Ono [9, Lemma 2.1] but not a modular form. Nevertheless, it is surprising to note that

2020 Mathematics Subject Classification. Primary 11P81, 11P84; Secondary 33D15, 05A17, 11F37.
Key words and phrases. overpartition pairs, Chebyshev polynomials, quintuple product identity, theta series, eta-

quotients.
1

http://arxiv.org/abs/2201.06746v1


2 ATUL DIXIT AND ANKUSH GOSWAMI

spt(n) satisfies the following remarkable congruences found by Andrews [2] which are reminiscent of
Ramanujan’s congruences for p(n) given in (1.3):

spt(5n+ 4) ≡ 0 (mod 5), spt(7n+ 5) ≡ 0 (mod 7), spt(13n+ 6) ≡ 0 (mod 13). (1.5)

To prove (1.5), Andrews first establishes an identity connecting p(n), spt(n) and N2(n), where N2(n)
is the Atkin-Garvan second rank moment [5]. His identity is [2, Theorem 3]

spt(n) = np(n)− 1

2
N2(n). (1.6)

This identity is, in turn, proven by him by appropriately specializing Watson’s q-analogue of Whip-
ple’s theorem thereby resulting in [2, p. 138]

∞
∑

n=0

(z)n(z
−1)nq

n

(q)n
=

(zq)∞(z−1q)∞
(q)2∞

(

1 +

∞
∑

n=1

(−1)nqn(3n+1)/2(1 + qn)(z)n(z
−1)n

(zq)n(z−1q)n

)

. (1.7)

The rest of the proof proceeds in a magical fashion and requires the following “differentiation identity”
of Andrews [2, Equation (2.4)]:

−1

2

[

d2

dz2
(zq; q)∞(z−1q; q)∞

]

z=1

= (q; q)2∞

∞
∑

n=1

nqn

1− qn
, (1.8)

with the help of which he obtains

∞
∑

n=1

qn

(1− qn)2(qn+1; q)∞
=

1

(q; q)∞

∞
∑

n=1

nqn

1− qn
+

1

(q; q)∞

∞
∑

n=1

(−1)nqn(3n+1)/2(1 + qn)

(1− qn)2
, (1.9)

which is nothing but the generating function version of (1.6).
Notice that the expression (zq; q)∞(z−1q; q)∞ appearing in (1.7) is essentially the product involving

the variable z occurring in the Jacobi triple product identity. Our present work was realized from
our quest to seek analogues of (1.7) and (1.8) together wherein the expression (zq; q)∞(z−1q; q)∞ is
replaced by the analogous expression

D(z, q) := (zq; q)∞(z−1q; q)∞(z2q; q2)∞(z−2q; q2)∞ =
(z2q; q)∞(z−2q; q)∞

(−zq; q)∞(−z−1q; q)∞
, (1.10)

which arises in the quintuple product identity (see (3.4) below). One of the reasons this is important
is because (1.7) and (1.8) were instrumental in obtaining (1.6). The desired analogue of (1.7) is
stated in the theorem below, that is,

Theorem 1.1. For z ∈ C and z 6∈ {0, e±πi/3,−qj , j ∈ Z \ {0}} and |q| < 1,

∑

n≥0

(z2; q)n(z
−2; q)nq

n

(−zq; q)n(−z−1q; q)n
= (1− z)(1− z−1)

[ −1

z(1 − z−1 + z−2)
· (z−2q, z2q)∞
(−z−1q,−zq)∞

]

+
(1 + z−1)

z(1 + z−3)
. (1.11)

The corresponding analogue of (1.8) is

Theorem 1.2. We have
[

d2

dz2
(zq; q)∞(z−1q; q)∞(z2q; q2)∞(z−2q; q2)∞

]

z=1

= −2(q; q)2∞(q; q2)2∞

{

3

∞
∑

n=1

nqn

1− qn
+ 2

∞
∑

n=1

(2n− 1)q2n−1

1− q2n−1

}

.
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Observe that the expression D(z, q) in (1.10) occurs in Theorems 1.1 and 1.2 in a way similar to
how (zq; q)∞(z−1q; q)∞ appears in (1.7) and (1.8). Differentiating both sides of (1.11) with respect
to z twice and letting z = 1 leads to an analogue of (1.9) given below:

4

∞
∑

n=1

(q)2n−1q
n

(−q)2n
= − (q)2∞

(−q)2∞
+ 1 = − η(τ)4

η(2τ)2
+ 1. (1.12)

It is easy to see that the expression on the left-hand side is (essentially) a modular form. The identity
(1.12) is already obtained in [7, Remark 1.4]. However, one of our goals in this paper was to obtain
the intermediate identity (1.11) which is not given in [7], for, it gives, as special cases, some new
results of combinatorial significance.

Before we discuss these new results, we show that Theorem 1.1 follows as a special case of a more
general identity which we establish in the following theorem.

Theorem 1.3. For α, γ ∈ C, and β ∈ C except possibly in the set {0, αq, γq, q−j, αγqj+2 : j ≥ 0},
we have

∞
∑

n=0

(α, γ)n
(β, αγq2/β)n

qn =
β−1q

(1− αq/β)(1− γq/β)
· (α, γ)∞
(β, αγq2/β)∞

+
(1− q/β)(1− αγq/β)

(1− γq/β)(1− αq/β)
. (1.13)

Chan and Mao [8, Theorem 1.2] recently established the following two q-series identities.

∞
∑

n=0

(x, 1/x; q)nq
n

(zq, q/z; q)n
=

(1− z)2

(1− z/x)(1− xz)
+

z(x, 1/x; q)∞
(1− z/x)(1 − xz)(zq, q/z; q)∞

, (1.14)

∞
∑

n=0

(x, q/x; q)nq
n

(z, q/z; q)n+1
=

1

x(1 − z/x)(1 − q/(xz))
+

(x, q/x; q)∞
z(1 − x/z)(1 − q/(xz))(z, q/z; q)∞

. (1.15)

We obtain these identities as special cases of Theorem 1.3.
Theorem 1.1, in turn, gives the closed-form evaluations of certain bibasic sums such as

4
∞
∑

n=0

(−q)2n−1q
n

(−q2; q2)n
= 2

(−q)2∞
(−q2; q2)∞

− 1 = 2
(q2; q2)3∞

(q)2∞(q4; q4)∞
− 1 = 2

(q2; q4)∞
(q; q2)2∞

− 1, (1.16)

and

1 + 3
∞
∑

n=1

(−q)n(q3; q3)n−1q
n

(q)n−1(−q3; q3)n
=

3

2
· (q

3; q3)∞(−q)∞
(−q3; q3)∞(q)∞

− 1

2
. (1.17)

We note that (1.16) is obtainable from (1.14) by letting x = −1 and z = i. Also, (1.17) follows by
letting z = ±ω = ±e2πi/3 in Theorem 1.1.

We now return to Theorem 1.1. The coefficients of the bivariate generating series in this theorem
are connected to certain overpartition pairs considered by Bringmann, Lovejoy and Osburn [7]. This
is now explained.

An overpartition λ of a positive integer n is a partition in which the first (or the last) occurrence
of a number may be overlined. An overpartition pair (λ, µ) of n is a pair of overpartitions where the
sum of all of the parts of λ as well as µ is n. Let ℓ((λ, µ)) denote the largest part of the overpartition
pair (λ, µ), that is, the maximum of the largest parts of λ and µ. Also, let n(π) denote the number
of parts of the partition π. Then the rank of an overpartition pair (λ, µ) is defined by

ℓ((λ, µ))− n(λ)− n(µ)− χ((λ, µ))

where χ((λ, µ)) is defined to be 1 if the largest part of (λ, µ) is non-overlined and is in µ, and 0
otherwise.
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Let N(r, s,m, n) denote the number of overpartition pairs of n having rank m such that r is the
number of overlined parts in λ plus the number of non-overlined parts in µ, and s is the number of
parts in µ. By specializing a result in [13], it was shown in [7] that

N(d, e, z; q) :=
∑

r,s,n≥0
m∈Z

N(r, s,m, n)dreszmqn =
∑

n≥0

(−1/d,−1/e)n(deq)
n

(zq, q/z)n
. (1.18)

This leads to
∑

n≥0

(z2; q)n(z
−2; q)nq

n

(−zq; q)n(−z−1q; q)n
=

∑

r,s,n≥0
m∈Z

N(r, s,m− 2s+ 2r, n)(−1)r+s+mzmqn. (1.19)

More generally, letting d = −x = e−1 in (1.18), one can represent the left-hand side of (1.14) in terms
of the function N(r, s,m, n).

Using Theorem 1.1 and (1.19), we obtain a closed-form evaluation of a double series involving
N(r, s,m, n) in terms of Chebyshev polynomials of the second kind Un(x) (see Section 2 for the
definition and properties of Un(x)). Before stating this result, we discuss the necessary setup. We
define the following subsets of integers:

I1 := (−∞,−3n) ∩ Z, I2 := {−3n}, I3 := (−3n, 1) ∩ Z,

I4 := [1, 3n+ 1) ∩ Z, I5 := {3n+ 1}, I6 := (3n+ 1,∞) ∩ Z, (1.20)

and

I ′1 := (−∞,−3n] ∩ Z, I ′2 := {−3n+ 1}, I ′3 := (−3n + 1, 1) ∩ Z,

I ′4 := [1, 3n) ∩ Z, I ′5 := {3n}, I ′6 := [3n+ 1,∞) ∩ Z. (1.21)

Then we have the following result.

Theorem 1.4. For ℓ ∈ Z, let ωℓ :=
3ℓ2+ℓ

2
be a pentagonal number. Then the coefficient of zmqn in

(q)∞
∑

n≥0

(z2; q)n(z
−2; q)nq

n

(−zq; q)n(−z−1q; q)n
is

∑

r,s≥0
0≤ωk≤n

N (r, s,m− 2s+ 2r, n− ωk) (−1)r+s+m+k, and is given by







































0, m ∈ I1

U1(1/2), m ∈ I2
Um+3n+1(1/2), m ∈ I3

Um+3n+1(1/2) + (−1)nUm−1(1/2), m ∈ I4
−U1(1/2) + U6n+2(1/2) + (−1)nU3n(1/2), m ∈ I5

−Um−3n(1/2) + Um+3n+1(1/2) + (−1)nUm−1(1/2), m ∈ I6

when n = ωℓ, (ℓ ≥ 0), and by






































0, m ∈ I ′1
−U1(1/2), m ∈ I ′2
−Um+3n(1/2), m ∈ I ′3
−Um+3n(1/2) + (−1)nUm−1(1/2), m ∈ I ′4
−U6n(1/2) + U1(1/2) + (−1)nU3n−1(1/2), m ∈ I ′5
−Um+3n(1/2) + Um−3n+1(1/2) + (−1)nUm−1(1/2), m ∈ I ′6

when n = ω−ℓ, (ℓ ≥ 1).
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We also obtain a combinatorial identity expressing a multi-sum involving N(r, s,m, n) explicitly
in terms of just the partition function p(n).

Theorem 1.5. Let

a(n) :=
2n
∑

k=0

(−1)kp(k)p(2n− k). (1.22)

Then

− 1

24

∑

r,s≥0
m∈Z

∑

1≤j≤n

(−1)r+s+mm2(m2 − 11)a(j)N(r, s,m− 2s+ 2r, n− j).

=
∞
∑

k=−∞

(−1)k
(

3(n− k2)p(n− k2)− 2n(−1)np(n− 2k2)
)

.

Remark 1.6. Observe that both sides of the above identity are finite sums.

Next, using Theorem 1.1 and Theorem 1.2, we express a double series in terms of a linear combi-
nation of single series as follows:

Theorem 1.7. We have

5

∞
∑

n=1

(q)2n−1q
n

(−q)2n
− 4

∞
∑

n=1

(q)2n−1q
n

(−q)2n

(

n−1
∑

k=1

qk(5 + 6qk + 5q2k)

(1− q2k)2
+

qn

(1 + qn)2

)

=
(q)2∞
(−q)2∞

{

3

∞
∑

n=1

nqn

1− qn
+ 2

∞
∑

n=1

(2n− 1)q2n−1

1− q2n−1

}

.

Using a result of Shimura, the double series in Theorem 1.7 can be expressed in terms of a linear
combination of modular forms involving a unary theta series of weight 7/2.

Theorem 1.8. We have

4

∞
∑

n=1

(q)2n−1q
n

(−q)2n

(

n−1
∑

k=1

qk(5 + 6qk + 5q2k)

(1− q2k)2
+

qn

(1 + qn)2

)

=
5

4
− 31

24
· η(τ)

4

η(2τ)2
+

1

24
· θ(τ)
η(τ)

where

θ(τ) :=

∞
∑

n=1

( n

12

)

n3q
n
2

24 ,
( n

12

)

:=











1, n ≡ 1 (mod 6)

−1, n ≡ 5 (mod 6)

0, otherwise

and η(τ) = q
1

24 (q; q)∞ is the Dedekind eta-function. Also, θ(2τ) satisfies

θ

(

2 · aτ + b

cτ + d

)

= e
iπab

6

(

3c

d

)

ε−1
d (cτ + d)7/2θ(2τ),

(

a b
c d

)

∈ Γ1(12). (1.23)

Here
( ·
·
)

is the extended Jacobi symbol and εd = 1 or i according as d ≡ 1 or 3 (mod 4) and

Γ1(N) is a congruence subgroup of SL2(Z) consisting of all 2× 2 matrices with diagonal entries ≡ 1
(mod N) and the lower left-entry ≡ 0 (mod N).
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2. Notations and preliminaries

In addition to (1.2), we adopt the following notations:

(α1, α2, α3, · · · , αk; q)n =

k
∏

i=1

(αi; q)n, (α1, α2, α3, · · · , αk; q)∞ = lim
n→∞

(α1, α2, α3, · · · , αk; q)n. (2.1)

We also require the following unilateral basic hypergeometric series :

k+1φk

(

a1 a2 . . . ak ak+1

b1 b2 . . . bk
; q, z

)

=
∞
∑

n=0

(a1, a2, . . . , ak+1; q)n
(b1, b2, . . . , bk, q; q)n

zn. (2.2)

The Chebyshev polynomials of the second kind Un(x) are defined by the recurrence relation [15, p. 9,
Equation (1.2.15 (a)-(b))]

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2x Un(x)− Un−1(x). (2.3)

The ordinary generating function of Un(x) is [17, p. 155, Equation (6.45) with γ = 1]
∞
∑

n=0

Un(x)t
n =

1

1− 2tx+ t2
. (2.4)

Also we have [15, p. 7, Equation (1.23)]

Un(x) =
1

n + 1
T ′
n+1(x) =

sin((n+ 1) cos−1(x))

sin(cos−1(x))
(2.5)

where Tk(x) is a Chebyshev polynomial of the first kind with the generating function [15, p. 36,
Equation (1.105)]

∞
∑

n=0

Tn(x)t
n =

1− tx

1− 2tx+ t2
.

From (2.4), it follows that for n > 1

U−n(x) = −Un−2(x), U−1(x) = 0. (2.6)

Next, we require a result due to Agarwal [1, Equation (3.1)].

Theorem 2.1. We have
∞
∑

n=0

(α)n(γ)n
(β)n(δ)n

tn =
(q/(αt), γ, αt, β/α, q; q)∞
(β/(αt), δ, t, q/α, β; q)∞

2φ1

(

δ/γ, t
qαt/β

; q, γq/β

)

+
(γ)∞
(δ)∞

(

1− q

β

) ∞
∑

m=0

(δ/γ)m(t)m
(q)m(αt/β)m+1

(qγ/β)m
(

2φ1

(

q, q/t
qβ/(αt)

; q, q/α

)

− 1

)

+
(γ)∞
(δ)∞

(

1− q

β

) ∞
∑

p=0

γp(δ/γ)p
(q)p

∞
∑

m=0

(δqp/γ)m(tq
p)m

(q1+p)m(αtqp/β)m+1
(qγ/β)m. (2.7)

The next result generalizes an identity of Andrews [2] in the case k = 2. It is required later in our
proofs.

Lemma 2.2. For any C∞-function f and 2 ≤ k ∈ N, we have

−(−1)k

k!

[

dk

dzk
(1− z)(1 − z−1)f(z)

]

z=1

=
k
∑

ℓ=2

(−1)ℓ

(ℓ− 2)!

[

dℓ−2

dzℓ−2
f(z)

]

z=1

. (2.8)

Proof. The proof follows by Taylor’s expansion and successive differentiation. �
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Lemma 2.3. We have

(−q; q)∞
(q; q)2∞

=:

∞
∑

n=0

a(n)qn

where a(n) is defined in (1.22).

Proof. Observe that

1

(q; q)∞

∞
∏

n=1

1

1− (−q)n =
1

(q; q)∞(q2; q2)∞(−q; q2)∞
=

(q4; q4)∞
(q2; q2)3∞

=:
∑

n≥0

a(n)q2n, (2.9)

say. On the other hand,

1

(q; q)∞

∞
∏

n=1

1

1− (−q)n =

(

∞
∑

ℓ=0

p(ℓ)qℓ

)(

∞
∑

k=0

(−1)kp(k)qk

)

=
∑

n≥0

(

n
∑

k=0

(−1)kp(k)p(n− k)

)

qn.

(2.10)

Comparing coefficients of q2n on both sides of (2.9) and (2.10) yields the result. Additionally, we
obtain

2n+1
∑

k=0

(−1)kp(k)p(2n+ 1− k) = 0, (2.11)

which also follows immediately by rearranging the sum. �

3. Proofs of the main results

3.1. Proof of Theorem 1.3. We first prove the result for |γ| < min (1, |β/q|). Let t = q and
δ = αγq2/β in (2.1) to obtain

∞
∑

n=0

(α, γ)n
(β, αγq2/β)n

qn =
(α−1, γ, αq, α−1β, q)∞

(α−1q−1β, αβ−1γq2, q, α−1q, β)∞

∞
∑

k=0

(

γq

β

)k

+
(γ)∞

(αβ−1γq2)∞

(

1− q

β

) ∞
∑

p=0

γp(αq2/β)p
(q)p

∞
∑

m=0

(αqp+2/β)m
(αqp+1/β)m+1

(

γq

β

)m

=
(1− α−1)

(1− α−1βq−1)(1− β−1γq)
· (αq, γ)∞
(β, αγq2/β)∞

+
(γ)∞

(αβ−1γq2)∞

(

1− q

β

) ∞
∑

p=0

γp(αq2/β)p
(1− αqp+1/β)(q)p

∞
∑

m=0

(

γq

β

)m

=
β−1q

(1− αβ−1q)(1− β−1γq)
· (α, γ)∞
(β, αγq2/β)∞

+
(γ)∞

(αβ−1γq2)∞
· (1− β−1q)

(1− β−1γq)

∞
∑

p=0

γp(αq2/β)p
(1− αqp+1/β)(q)p

, (3.1)

where in the penultimate step we used the condition |γq/β| < 1.
Next, we notice that the sum in the right-hand side of (3.1) can be rewritten as

∞
∑

p=0

γp(αq2/β)p
(1− αqp+1/β)(q)p

=
1

(1− αβ−1q)
+

∞
∑

p=1

(αq2/β)p−1

(q)p
γp
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=
1

(1− αβ−1q)
+

1

(1− αβ−1q)

∞
∑

p=1

(αq/β)p
(q)p

γp

=
1

(1− αβ−1q)

∞
∑

p=0

(αq/β)p
(q)p

γp

=
1

(1− αβ−1q)
· (αγq/β)∞

(γ)∞
(3.2)

where the last step follows by q-binomial theorem [6, p. 8, Theorem 1.3.1] since |γ| < 1. Identity
(1.13) now follows for |γ| < min (1, |β/q|) from (3.1) and (3.2). By analytic continuation, the result
is easily seen to be extended to the said values in the hypotheses. �

3.2. Proofs of (1.14) and (1.15). Equation (1.14) readily follows from Theorem 1.3 by letting
α = x = γ−1 and β = zq. Similarly, letting α = x, γ = q/x and β = zq results in (1.15). �

3.3. Proof of Theorem 1.1. Theorem 1.1 follows from (1.14) by first replacing z by −z and then
letting x = z2. �

3.4. Proof of Theorem 1.2. The quintuple product identity is given by [6, p. 18, Theorem 1.3.17]

∞
∑

n=−∞

q3n
2+n
(

z3nq−3n − z−3n−1q3n+1
)

= (q2; q2)∞(qz; q2)∞(q/z; q2)∞(z2; q4)∞(q4/z2; q4)∞. (3.3)

Replacing q by
√
q and then z by z

√
q in (3.3) gives

∞
∑

n=−∞

q(3n
2+n)/2

(

z3n − z−3n−1
)

= (q; q)∞(zq; q)∞(z−1; q)∞(z2q; q2)∞(z−2q; q2)∞. (3.4)

Hence
[

d2

dz2
(zq; q)∞(z−1q; q)∞(z2q; q2)∞(z−2q; q2)∞

]

z=1

=
1

(q; q)∞

[

d2

dz2

∑∞

n=−∞
q(3n

2+n)/2(z3n − z−3n−1)

1− z−1

]

z=1

=
1

(q; q)∞

[

d2

dz2

∞
∑

n=−∞

q(3n
2+n)/2

(

1− z6n+1

1− z

)

]

z=1

=
1

(q; q)∞

[

d2

dz2

∞
∑

n=−∞

q(3n
2+n)/2

6n
∑

j=0

z−3n+j

]

z=1

=
1

(q; q)∞

[

d2

dz2

∞
∑

n=−∞

q(3n
2+n)/2

6n
∑

j=0

(−3n + j)(−3n+ j − 1)z−3n+j−2

]

z=1

=
1

(q; q)∞

∞
∑

n=−∞

q(3n
2+n)/2n(3n + 1)(6n+ 1)

=
2q

(q; q)∞

∞
∑

n=−∞

(6n+ 1)
n(3n+ 1)

2
q(3n

2+n)/2−1

=
2q

(q; q)∞

d

dq

∞
∑

n=−∞

(6n+ 1)q(3n
2+n)/2. (3.5)
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Now employing an identity of Ramanujan and proved by Gordon [6, p. 20, Corollary 1.3.21],
∞
∑

n=−∞

(6n+ 1)q(3n
2+n)/2 = (q; q)3∞(q; q2)2∞. (3.6)

Thus, (3.5) and (3.6) give
[

d2

dz2
(zq; q)∞(z−1q; q)∞(z2q; q2)∞(z−2q; q2)∞

]

z=1

=
2q

(q; q)∞

d

dq
(q; q)3∞(q; q2)2∞

= −2(q; q)2∞(q; q2)2∞

{

3
∞
∑

n=1

nqn

1− qn
+ 2

∞
∑

n=1

(2n− 1)q2n−1

1− q2n−1

}

.

�

3.5. Proof of Theorem 1.4. Using the Quintuple product identity (3.4) on the right-hand side of
Theorem 1.1, we obtain

(1− z)(1− z−1)

[ −1

z(1 − z−1 + z−2)
· (z−2q, z2q)∞
(−z−1q,−zq)∞

]

+
(1 + z−1)

z(1 + z−3)

= − (1− z)(1 − z−1)

z(1 − z−1 + z−2)
·

∞
∑

n=−∞

q(3n
2+n)/2(z3n − z−3n−1)

(1− z−1)(q)∞
+

1

z(1 − z−1 + z−2)

= − 1

z(1 − z−1 + z−2)

[

(1− z)

(q)∞

∞
∑

n=−∞

q(3n
2+n)/2(z3n − z−3n−1)− 1

]

. (3.7)

Substituting x = 1/2 and t = z in (2.4), we obtain
∞
∑

n=0

Un

(

1

2

)

zn =
1

1− z + z2
. (3.8)

Thus, (2.3), (3.7) and (3.8) yield

(1− z)(1 − z−1)

[ −1

z(1− z−1 + z−2)
· (z−2q, z2q)∞
(−z−1q,−zq)∞

]

+
(1 + z−1)

z(1 + z−3)

=

(

−z
∞
∑

m=0

Um

(

1

2

)

zm

)[

(1− z)

(q)∞

∞
∑

n=−∞

q(3n
2+n)/2(z3n − z−3n−1)− 1

]

= −(1− z)

(q)∞

∞
∑

m=1

Um−1(1/2)z
m

∞
∑

n=−∞

q(3n
2+n)/2(z3n − z−3n−1) +

∞
∑

m=1

Um−1(1/2)z
m

= − 1

(q)∞

(

∞
∑

m=1

Um(1/2)z
m

)

∞
∑

n=−∞

q(3n
2+n)/2(z3n − z−3n−1) +

∞
∑

m=1

Um−1(1/2)z
m

= − 1

(q)∞

∞
∑

m=1

∞
∑

n=−∞

Um(1/2)q
(3n2+n)/2(zm+3n − zm−3n−1) +

∞
∑

m=1

Um−1(1/2)z
m.

= − 1

(q)∞

(

∞
∑

n=−∞

∞
∑

m=1

Um(1/2)q
(3n2+n)/2zm+3n −

∞
∑

n=−∞

∞
∑

m=1

Um(1/2)q
(3n2+n)/2zm−3n−1

)

+

∞
∑

m=1

Um−1(1/2)z
m. (3.9)
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Making the change of variables m → m − 3n and m → m + 3n + 1 respectively on the two double
series in the right-hand side of (3.9), we obtain

(1− z)(1 − z−1)

[ −1

z(1− z−1 + z−2)
· (z−2q, z2q)∞
(−z−1q,−zq)∞

]

+
(1 + z−1)

z(1 + z−3)

= − 1

(q)∞

(

∞
∑

n=−∞

∞
∑

m=3n+1

Um−3n(1/2)q
(3n2+n)/2zm −

∞
∑

n=−∞

∞
∑

m=−3n

Um+3n+1(1/2)q
(3n2+n)/2zm

)

+
∞
∑

m=1

Um−1(1/2)z
m. (3.10)

Using Theorem 1.1 and (1.19), we immediately see that the left-hand side of (3.10) can be rewritten
in the following way and we have:

∑

r,s,n≥0
m∈Z

N(r, s,m− 2s+ 2r, n)(−1)r+s+mzmqn

= − 1

(q)∞

(

∞
∑

n=−∞

∞
∑

m=3n+1

Um−3n(1/2)q
(3n2+n)/2zm −

∞
∑

n=−∞

∞
∑

m=−3n

Um+3n+1(1/2)q
(3n2+n)/2zm

)

+
∞
∑

m=1

Um−1(1/2)z
m. (3.11)

Multiplying both sides of (3.11) by (q)∞, employing Euler’s pentagonal number theorem (q)∞ =
∑∞

k=−∞
(−1)kqk(3k+1)/2, and simplifying, we get

∑

n≥0
m∈Z







∑

r,s≥0
0≤ωk≤n

N (r, s,m− 2s+ 2r, n− ωk) (−1)r+s+m+k






zmqn

= −
∞
∑

n=−∞

∞
∑

m=3n+1

Um−3n(1/2)q
(3n2+n)/2zm +

∞
∑

n=−∞

∞
∑

m=−3n

Um+3n+1(1/2)q
(3n2+n)/2zm

+

∞
∑

n=−∞

∞
∑

m=1

(−1)nUm−1(1/2)z
mq(3n

2+n)/2. (3.12)

We define the following functions:

f1(m,n) :=

{

Um−3n(1/2), m > 3n

0, otherwise,
f2(m,n) :=

{

Um+3n+1(1/2), m ≥ −3n

0, otherwise,

f3(m,n) :=

{

(−1)nUm−1(1/2), m ≥ 1

0, otherwise
(3.13)

f̃1(m,n) :=

{

Um+3n(1/2), m > −3n

0, otherwise,
f̃2(m,n) :=

{

Um−3n+1(1/2), m ≥ 3n

0, otherwise,

f̃3(m,n) :=

{

(−1)nUm−1(1/2), m ≥ 1

0, otherwise.
(3.14)
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Consider the first double series

−
∞
∑

n=−∞

∞
∑

m=3n+1

Um−3n(1/2)q
(3n2+n)/2zm

= −
∞
∑

n=1

∞
∑

m=−3n+1

Um+3n(1/2)q
(3n2−n)/2zm −

∞
∑

n=0

∞
∑

m=3n+1

Um−3n(1/2)q
(3n2+n)/2zm

= −
∞
∑

n=1

∞
∑

m=−∞

f̃1(m,n)z
mqω−n −

∞
∑

n=0

∞
∑

m=−∞

f1(m,n)z
mqωn . (3.15)

Similarly the remaining two double series in (3.12) can be written using f2(m,n), f̃2(m,n), f3(m,n)

and f̃3(m,n) thereby leading to

∑

n≥0
m∈Z







∑

r,s≥0
0≤ωk≤n

N (r, s,m− 2s+ 2r, n− ωk) (−1)r+s+m+k






zmqn

=
∞
∑

n=0

∞
∑

m=−∞

(−f1(m,n) + f2(m,n) + f3(m,n)) z
mqωn

+
∞
∑

n=1

∞
∑

m=−∞

(

−f̃1(m,n) + f̃2(m,n) + f̃3(m,n)
)

zmqω−n . (3.16)

This establishes the result. �

Before proving Theorem 1.5, we establish a crucial lemma which also appears to be new. One of
the ideas employed in its proof resulted through a personal communication with George Andrews [3].

Lemma 3.1. Let p
sc
(n) denote the number of self-conjugate partitions of n. Then

psc(n) = p(n) + 2
∑

j≥1

(−1)jp(n− 2j2). (3.17)

Proof. To prove (3.17), we need the two identities below

∞
∑

n=0

p(2n)qn =
(−q3,−q5, q8; q8)∞

(q)2∞
,

∞
∑

n=0

p(2n+ 1)qn =
(−q,−q7, q8; q8)∞

(q)2∞
, (3.18)

which follow from the 2-dissection of Gauss’ triangular series identity:

ψ(q) :=
∞
∑

n=−∞

q2n
2−n =

(q2; q2)2∞
(q; q)∞

. (3.19)

At this point, we note that [4, p. 5430]

∑

n≥0

psc(n)q
n =

∑

n≥0

qn
2

(q2; q2)n
, (3.20)

which yields the following identities upon 2-dissections:

∑

n≥0

psc(2n)q
n =

∑

n≥0

q2n
2

(q; q)2n
,

∑

n≥0

psc(2n+ 1)qn =
∑

n≥0

q2n
2+2n

(q; q)2n+1

. (3.21)
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Using identities (38) and (39) from Slater’s list [18], (3.18) and (3.21) yield

∑

n≥0

psc(2n)q
n =

∑

n≥0

q2n
2

(q; q)2n
=

(−q3,−q5, q8; q8)∞
(q2; q2)∞

=
(q; q)∞
(−q; q)∞

∑

n≥0

p(2n)qn

∑

n≥0

psc(2n+ 1)qn =
∑

n≥0

q2n
2+2n

(q; q)2n+1

=
(−q,−q7, q8; q8)∞

(q2; q2)∞
=

(q; q)∞
(−q; q)∞

∑

n≥0

p(2n+ 1)qn.

(3.22)

Using (3.29) on the extreme right-hand sides of each identity in (3.22) and comparing coefficients of
qn on both sides of the identities together yield (3.17). �

3.6. Proof of Theorem 1.5. From Theorem 1.1 and (1.19),
∑

r,s,n≥0
m∈Z

N(r, s,m− 2s+ 2r, n)(−1)r+s+mzmqn

= (1− z)(1 − z−1)

[ −1

z(1− z−1 + z−2)
· (z−2q, z2q)∞
(−z−1q,−zq)∞

]

+
(1 + z−1)

z(1 + z−3)
. (3.23)

The idea is to take the fourth derivative on both sides of the above identity with respect to z, let z = 1,
and then equate the coefficients of qn on both sides of the resulting identity. We first concentrate on
the right-hand side.

Invoking Lemma 2.2 and using the definition of D(z, q) in (1.10), it is seen using routine simplifi-
cation that

− 1

24

[

d4

dz4

{

(1− z)(1 − z−1)

( −1

z(1 − z−1 + z−2)
·D(z, q)

)

+
(1 + z−1)

z(1 + z−3)

}]

z=1

= −1

2
D′′(1, q)

= (q; q)2∞(q; q2)2∞

{

3

∞
∑

n=1

nqn

1− qn
+ 2

∞
∑

n=1

(2n− 1)q2n−1

1− q2n−1

}

, (3.24)

where in the last step we invoked Theorem 1.2. Note that differentiating Euler’s generating function
for p(n) leads to [2, Equation (3.3)]

∞
∑

n=1

np(n)qn =
1

(q; q)∞

∞
∑

n=1

nqn

1− qn
. (3.25)

Since psc(n) equals the number of partitions of n into distinct odd parts, we have
∞
∑

n=1

psc(n)q
n = (−q; q2)∞.

Replacing q by −q in the above identity and then differentiating both sides with respect to q leads
us to

∞
∑

n=1

(−1)nnpsc(n)q
n = −(q; q2)∞

∞
∑

n=1

(2n− 1)q2n−1

1− q2n−1
. (3.26)

Therefore from (3.25) and (3.26), we deduce that

3
∞
∑

n=1

nqn

1− qn
+ 2

∞
∑

n=1

(2n− 1)q2n−1

1− q2n−1
= 3(q; q)∞

∑

n≥1

np(n)qn − 2

(q; q2)∞

∑

n≥1

(−1)nnpsc(n)q
n

= 3(q; q)∞
∑

n≥1

np(n)qn − 2(−q; q)∞
∑

n≥1

(−1)nnpsc(n)q
n, (3.27)
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where in the last step, we employed the elementary result 1/(q; q2)∞ = (−q; q)∞. Thus taking the
fourth derivative on both sides of (3.23) with respect to z and then letting z = 1, employing (3.24)
and (3.27), and then multiplying both sides by (−q; q)∞/(q; q)2∞, we obtain

− 1

24

(−q; q)∞
(q; q)2∞

∞
∑

n=1

qn
∑

r,s≥0
m∈Z

m(m− 1)(m− 2)(m− 3)N(r, s,m− 2s+ 2r, n)(−1)r+s+m

= 3
(q; q)∞
(−q; q)∞

∑

n≥1

np(n)qn − 2
∑

n≥1

(−1)nnpsc(n)q
n. (3.28)

By an application of the Jacobi triple product identity [6, Theorem 1.3.3],

1 + 2
∞
∑

j=1

(−1)jqj
2

=
∑

j∈Z

(−1)jqj
2

=
(q; q)∞
(−q; q)∞

(3.29)

so that the right-hand side of (3.28) can be rewritten as

3
(q; q)∞
(−q; q)∞

∑

n≥1

np(n)qn − 2
∑

n≥1

(−1)nnpsc(n)q
n

=
∑

n≥1

[

3np(n) + 6
∑

j≥1

(−1)j(n− j2)p(n− j2)− 2(−1)nnpsc(n)

]

qn

=
∑

n≥1

[

(3− 2(−1)n)np(n) + 6
∑

j≥1

(−1)j
{

(n− j2)p(n− j2)− 2(−1)nnp(n− 2j2)
}

]

qn, (3.30)

where in the last step, we invoked Lemma 3.1. Lastly, observe that replacing z by z−1 in (1.19)
results in

N(r, s,m− 2s+ 2r, n) = N(r, s,−m− 2s+ 2r, n), (3.31)

which, in turn, implies that for fixed r, s and n,
∑

m∈Z

m(m− 1)(m− 2)(m− 3)N(r, s,m− 2s+ 2r, n)(−1)m

=
∑

m∈Z

(−1)mm2(m2 − 11)N(r, s,m− 2s+ 2r, n). (3.32)

Hence invoking Lemma 2.3, (3.28), (3.30) and (3.32), the result now follows by comparing the coef-
ficients of qn on both sides and by expressing the resulting right-hand side as a bilateral series. �

3.7. Proof of Theorem 1.7. We compute the fourth derivative of the identity in Theorem 1.1 with
respect to z and then let z = 1. Using Lemma 2.2, we obtain

− 1

4!

[

d4

dz4
(1− z)(1 − z−1)f(z)

]

z=1

=

4
∑

ℓ=2

(−1)ℓ

(ℓ− 2)!

[

dℓ−2

dzℓ−2
f(z)

]

z=1

= f(1)− f ′(1) +
f ′′(1)

2
. (3.33)

First, let f(z) be defined by

f(z) := (1 + z)(1 + z−1)

∞
∑

n=1

(z2q)n−1(z
−2q)n−1q

n

(−zq)n(−z−1q)n
(3.34)
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so that

1 + (1− z)(1 − z−1)f(z) =
∑

n≥0

(z2; q)n(z
−2; q)nq

n

(−zq; q)n(−z−1q; q)n
. (3.35)

Clearly, we have

f(1) = 4
∞
∑

n=1

(q)2n−1q
n

(−q)2n
. (3.36)

By logarithmic differentiation, it follows that

f ′(z) = f(z)















1

1 + z
− z−2

1 + z−1
+

(

∞
∑

n=1

(z2q)n−1(z
−2q)n−1q

n

(−zq)n(−z−1q)n

)′

∞
∑

n=1

(z2q)n−1(z
−2q)n−1q

n

(−zq)n(−z−1q)n















. (3.37)

Next, we have
(

∞
∑

n=1

(z2q)n−1(z
−2q)n−1q

n

(−zq)n(−z−1q)n

)′

=

∞
∑

n=1

(z2q)n−1(z
−2q)n−1q

n

(−zq)n(−z−1q)n

{

n−1
∑

k=1

−2zqk

1− z2qk
+

n−1
∑

k=1

2z−3qk

1− z−2qk

−
n
∑

k=1

qk

1 + zqk
+

n
∑

k=1

z−2qk

1 + z−1qk

}

. (3.38)

Thus (3.38) yields
[(

∞
∑

n=1

(z2q)n−1(z
−2q)n−1q

n

(−zq)n(−z−1q)n

)′]

z=1

= 0. (3.39)

Hence (3.37) and (3.39) yield

f ′(1) = 0. (3.40)

Next, using (3.37) we compute the second derivative of f(z) to get

f ′′(z) = f ′(z) · S(z) + f(z) · S ′(z), (3.41)

where

S(z) :=
1

1 + z
− z−2

1 + z−1
+

(

∞
∑

n=1

(z2q)n−1(z
−2q)n−1q

n

(−zq)n(−z−1q)n

)′

∞
∑

n=1

(z2q)n−1(z
−2q)n−1q

n

(−zq)n(−z−1q)n

. (3.42)

We compute S ′(z) first. Let us further put

S1(z) :=

(

∞
∑

n=1

(z2q)n−1(z
−2q)n−1q

n

(−zq)n(−z−1q)n

)′

, S2(z) :=

∞
∑

n=1

(z2q)n−1(z
−2q)n−1q

n

(−zq)n(−z−1q)n
. (3.43)

Then (3.42) and (3.43) yield

S ′(z) = − 1

(1 + z)2
+

1 + 2z

(z + z2)2
+
S2(z) · S ′

1(z)− S1(z) · S ′
2(z)

S2
2(z)

. (3.44)
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Next, we note from (3.34) and (3.43) that f(z) = (1+z)(1+z−1)S2(z) and from (3.39) that S1(1) = 0.
Then from (3.40), (3.41) and (3.44) that

f ′′(1) = 4 · S2(1) ·
(

−1

4
+

3

4
+
S ′
1(1)

S2(1)

)

= 2
∞
∑

n=1

(q)2n−1q
n

(−q)2n
+ 4 · S ′

1(1). (3.45)

Thus, it remains to calculate S ′
1(1). Before we do that, we note that S1(1) = 0 and this precisely

happens since the quantity inside curly braces in the right-hand side of (3.38) is zero. Let us call
this quantity C(z). Thus, in order to calculate S1(1)

′, we need only calculate C ′(1).

C ′(z) =

n−1
∑

k=1

(1− z2qk) · (−2qk)− (−2zqk) · (−2zqk)

(1− z2qk)2
+

n−1
∑

k=1

−2qk(3z2 − qk)

(z3 − zqk)2

−
n
∑

k=1

−q2k
(1 + zqk)2

+

n
∑

k=1

−qk(2z + qk)

(z2 + zqk)2
. (3.46)

Thus (3.46) implies

C ′(1) = −8
n−1
∑

k=1

qk

(1− qk)2
− 2

n
∑

k=1

qk

(1 + qk)2

= −2

n−1
∑

k=1

qk(5 + 6qk + 5q2k)

(1− q2k)2
− 2qn

(1 + qn)2
. (3.47)

Hence (3.38),(3.43), (3.45) and (3.47) yield

f ′′(1) = 2
∞
∑

n=1

(q)2n−1q
n

(−q)2n
− 8

∞
∑

n=1

(q)2n−1q
n

(−q)2n

(

n−1
∑

k=1

qk(5 + 6qk + 5q2k)

(1− q2k)2
+

qn

(1 + qn)2

)

. (3.48)

Thus (3.33), (3.35), (3.36), (3.40) and (3.48) yield

− 1

24

[

d4

dz4

∑

n≥0

(z2; q)n(z
−2; q)nq

n

(−zq; q)n(−z−1q; q)n

]

z=1

= 5
∞
∑

n=1

(q)2n−1q
n

(−q)2n

−4
∞
∑

n=1

(q)2n−1q
n

(−q)2n

(

n−1
∑

k=1

qk(5 + 6qk + 5q2k)

(1− q2k)2
+

qn

(1 + qn)2

)

. (3.49)

Along with (1.11) and (3.24), this implies the result. �

3.8. Proof of Theorem 1.8. Using Theorem 1.7 and (1.12), we have

4

∞
∑

n=1

(q)2n−1q
n

(−q)2n

(

n−1
∑

k=1

qk(5 + 6qk + 5q2k)

(1− q2k)2
+

qn

(1 + qn)2

)

= −5

4

(

(q)2∞
(−q)2∞

− 1

)

− (q)2∞
(−q)2∞

{

5

∞
∑

n=1

nqn

1− qn
− 4

∞
∑

n=1

nq2n

1− q2n

}

. (3.50)

Note that
(q)2∞
(−q)2∞

=
(q)4∞

(q2; q2)2∞
and by logarithmic differentiation we have

d

dq

(

(q)5∞
(q2; q2)2∞

)

=
(q)5∞

(q2; q2)2∞

{

−5

∞
∑

n=1

nqn−1

1− qn
+ 4

∞
∑

n=1

nq2n−1

1− q2n

}

. (3.51)
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Thus, (3.51) gives

(q)2∞
(−q)2∞

{

5
∞
∑

n=1

nqn

1− qn
− 4

∞
∑

n=1

nq2n

1− q2n

}

= −q
25/24

η(τ)
· d
dq

(

(q)5∞
(q2; q2)2∞

)

= −q
25/24

η(τ)
· d
dq

(

q−1/24 η(τ)
5

η(2τ)2

)

(3.52)

and from [12, Theorem 1.1], it follows that

η(τ)5

η(2τ)2
=

∞
∑

n=1

( n

12

)

nq
n
2

24 . (3.53)

Thus

d

dq

(

q−1/24 η(τ)
5

η(2τ)2

)

=
1

24

∞
∑

n=1

( n

12

)

n(n2 − 1)q
n
2
−1

24
−1. (3.54)

Combining (3.50), (3.52) and (3.54), we get

4
∞
∑

n=1

(q)2n−1q
n

(−q)2n

(

n−1
∑

k=1

qk(5 + 6qk + 5q2k)

(1− q2k)2
+

qn

(1 + qn)2

)

= −5

4

(

(q)2∞
(−q)2∞

− 1

)

+
1

24η(τ)

∞
∑

n=1

( n

12

)

n(n2 − 1)q
n
2

24

= −5

4

(

(q)2∞
(−q)2∞

− 1

)

− 1

24

η(τ)4

η(2τ)2
+

1

24
· θ(τ)
η(τ)

(3.55)

where we have used (3.53) in the last step and where θ(τ) is defined as in the theorem. The result
now follows. It remains to show that θ(2τ) satisfies the transformation in (1.23). This follows by
choosing N = 6, h = 1, P (m) = m3, A = [6] in [16, Proposition 2.1]. �
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