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Abstract

This paper studies the mathematical properties of collectively canalizing Boolean functions, a class
of functions that has arisen from applications in systems biology. Boolean networks are an increasingly
popular modeling framework for regulatory networks, and the class of functions studied here captures a
key feature of biological network dynamics, namely that a subset of one or more variables, under certain
conditions, can dominate the value of a Boolean function, to the exclusion of all others. These functions
have rich mathematical properties to be explored. The paper shows how the number and type of such
sets influence a function’s behavior and define a new measure for the canalizing strength of any Boolean
function. We further connect the concept of collective canalization with the well-studied concept of the
average sensitivity of a Boolean function. The relationship between Boolean functions and the dynamics
of the networks they form is important in a wide range of applications beyond biology, such as computer
science, and has been studied with statistical and simulation-based methods. But the rich relationship
between structure and dynamics remains largely unexplored, and this paper is intended as a contribution
to its mathematical foundation.

1 Introduction

One of the great advances of biology in the twentieth century is the discovery of genes and their regulatory
relationships, now increasingly described as gene regulatory networks that are amenable to a description
by dynamic mathematical models. Traditionally, this has been done using systems of ordinary differential
equations, one per gene in the network, based on the view of the network as a biochemical reaction network,
subject to constraints, such as preservation of mass. An alternative view, arguably closer to biological think-
ing, is to represent gene regulatory networks as similar to logical switching networks, popular in engineering,
employing ON/OFF state representations instead of continuously varying concentrations, introduced by S.
Kaufman[1, 2]. This explains the increasing popularity of such models in biology, in particular, since in
many cases detailed kinetic measurements are not readily available. A natural next question then is what
the biological constraints are on the Boolean functions that occur in this way.

In the 1940s, C. Waddington introduced the concept of canalization in developmental biology as an
explanation for the surprising stability of developmental processes in the face of varying environmental
conditions [3]. S. Kauffman later adapted this concept and introduced a canalization concept for Boolean
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functions [4, 5]. A multitude of studies have shown that Boolean networks composed of canalizing functions
exhibit more ordered dynamics than random ones, resulting in, e.g., fewer and shorter attractors as well as
lower sensitivities to perturbations [4, 5, 6, 7, 8, 9, 10].

A canalizing function possesses at least one input variable such that, if this variable takes on a certain
“canalizing” value, then the output value of the function is already determined, regardless of the values of
the remaining input variables. If this variable takes on another, non-canalizing, value, and there is a second
variable with this same property, the function is 2-canalizing. If k variables follow this pattern, the function
is k-canalizing [11], and the number of variables that follow this pattern is called the canalizing depth of the
function [12]. If the canalizing depth equals the number of inputs (i.e. if all variables follow the described
pattern), the function is also called nested canalizing.

It is straightforward to see that any Boolean function can be represented as a polynomial over the field
with two elements, first exploited in [13], to use tools from computational algebra for the inference of Boolean
network models from experimental data. He and Macauley showed that any Boolean function can be written
in a unique canonical form, from which the number of Boolean functions with a certain canalizing depth can
be easily derived [11]. In addition, explicit formulas for the number of various types of Boolean and multi-
state canalizing and nested canalizing functions have also been found [14, 15, 16, 17]. Given the stringency of
the definition of canalization it is not surprising that a random Boolean function in several variables is only
rarely canalizing, let alone nested canalizing. It is thus remarkable that most functions found in published
gene regulatory network models are indeed canalizing or even nested canalizing [18, 19, 20], suggesting that
the canalization property does indeed capture an important property of the logic of gene regulatory networks.

Biological observations suggest that, in many cases, a given gene is regulated by a collection of other
genes that jointly determine that gene’s dynamics. Based on this phenomenon, less stringent definitions of
canalization have been considered [21, 22]. Most Boolean functions exhibit some degree of canalization in
the sense that a few variables taking on certain “canalizing” input values frequently suffice to determine the
output of a function, regardless of the values of the remaining input variables. This phenomenon has been
first described and studied by Bassler et al., and has been termed collective canalization [21]. The amount of
canalization a particular Boolean function exhibits is described by the set of numbers Pk, k = 0, 1, . . . , n− 1,
which are the fraction of k-dimensional input sets that are collectively canalizing. Another way to think
of these numbers is as the probability that the output of the Boolean function is already determined if
k randomly chosen inputs are fixed. Reichhardt and Bassler used results from group theory and isomer
chemistry to classify all Boolean functions in n variables based on the set of numbers Pk, k = 0, 1, . . . , n− 1
and parity symmetry (which describes if a Boolean function is symmetric, antisymmetric or not symmetric
about its midpoint, i.e. if all inputs are flipped), and derived the number of different classes and the size of
each class [22].

In this paper, we expand on this early work on collectively canalizing Boolean functions. In Section 2, we
review some concepts frequently used in the analysis of Boolean functions and provide a mathematically rigor-
ous definition of collective canalization. In Section 3, we investigate the set of numbers Pk, k = 0, 1, . . . , n−1,
described above, and combine these numbers into a single quantity that describes the canalizing strength
of any Boolean function. In Section 4, we provide bounds for the average sensitivity of a Boolean function
in terms of the set of numbers Pk, k = 0, 1, . . . , n − 1 connecting the concepts of average sensitivity and
canalization. We conclude with a brief discussion in Section 5.

2 Collective canalization

In this section, we review some concepts and definitions, introduce the concept of canalization, and generalize
it to collective canalization, following earlier work by Reichhardt and Bassler [22]. Throughout the paper,
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let ⊕ denote addition modulo 2 when used in a polynomial, and the “exclusive or” (XOR) function when
used in a Boolean logical expression.

Definition 2.1. A Boolean function f(x1, . . . , xn) is essential in the variable xi if there exists an x ∈ {0, 1}n
such that

f(x) ̸= f(x⊕ ei),

where ei is the ith unit vector.

Definition 2.2. A Boolean function f(x1, . . . , xn) is canalizing if there exists a variable xi, a Boolean
function g(x1, . . . , xi−1, xi+1, . . . , xn) and a, b ∈ {0, 1} such that

f(x1, x2, ..., xn) =

{
b, if xi = a

g(x1, x2, ..., xi−1, xi+1, ..., xn), if xi ̸= a

In that case, we call xi a canalizing variable and say that xi canalizes f . More specifically, if xi receives the
canalizing input value a it canalizes f to the canalized output value b.

Some authors further require the function g to be non-constant; in this paper, we do not impose this
requirement. This is because when defining collectively canalizing functions, it makes sense to include
constant g, and it is convenient to have our definition of canalizing functions here correspond to the definition
of 1-set canalizing functions in Definition 2.8.

Definition 2.3. [11] A Boolean function f(x1, . . . , xn) is k-canalizing, where 1 ≤ k ≤ n, with respect to the
permutation σ ∈ Sn, inputs a1, . . . , ak and outputs b1, . . . , bk, if

f(x1, . . . , xn) =



b1 xσ(1) = a1,
b2 xσ(1) ̸= a1, xσ(2) = a2,
b3 xσ(1) ̸= a1, xσ(2) ̸= a2, xσ(3) = a3,
...

...
bk xσ(1) ̸= a1, . . . , xσ(k−1) ̸= ak−1, xσ(k) = ak,
g ̸≡ bk xσ(1) ̸= a1, . . . , xσ(k−1) ̸= ak−1, xσ(k) ̸= ak,

where g = g(xσ(k+1), . . . , xσ(n)) is a Boolean function on n − k variables. When g is not canalizing, the
integer k is the canalizing depth of f (as in [12]). An n-canalizing function is also called nested canalizing
function (NCF), and we define all Boolean functions to be 0-canalizing.

He and Macauley provided the following powerful stratification theorem.

Theorem 2.4. [11] Every Boolean function f(x1, . . . , xn) ̸≡ 0 can be uniquely written as

f(x1, . . . , xn) = M1(M2(· · · (Mr−1(MrpC ⊕ 1)⊕ 1) · · · )⊕ 1)⊕ b,

where each Mi =
∏ki

j=1(xij ⊕ aij ) is a non-constant extended monomial, pC is the core polynomial of f ,

and k =
∑r

i=1 ki is the canalizing depth. Each xi appears in exactly one of {M1, . . . ,Mr, pC}, and the only
restrictions are the following “exceptional cases”:

1. If pC ≡ 1 and r ̸= 1, then kr ≥ 2;

2. If pC ≡ 1 and r = 1 and k1 = 1, then b = 0.
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When f is a non-canalizing functions (i.e., when k = 0), we simply have pC = f .

Theorem 2.4 shows that any Boolean function has a unique standard monomial form, in which the
variables are partitioned into different layers based on their dominance. Any canalizing variable is in the
first layer. Any variable that “becomes” canalizing when excluding all variables from the first layer is in
the second layer, etc. All remaining variables that never become canalizing are part of the core polynomial.
The number of variables that “become” eventually canalizing is the canalizing depth, and NCFs are exactly
those functions where all variables “become” eventually canalizing.

Definition 2.5. [9] The layer structure of a Boolean function f(x1, . . . , xn) with canalizing depth k is defined
as the vector (k1, . . . , kr), where r is the number of layers and ki is the size of the ith layer, i = 1, . . . , r.
The layer structure follows directly from the unique standard monomial form of f (Theorem 2.4).

Example 2.6. The function f(x1, x2, x3) = x1 ∧ (x2 ∨ x3) is nested canalizing with layer structure (k1 =
1, k2 = 2). The unique standard monomial form is f = M1(M2⊕1), whereM1 = x1 andM2 = (x2⊕1)(x3⊕1).

Remark 2.7. Variables in the same layer of a k-canalizing Boolean function may have different canalizing
input values, however they canalize the function to the same output (i.e., have the same canalized output
value). On the other hand, the outputs of two consecutive layers are distinct. Therefore, the number of
layers of a k-canalizing function expressed as in Definition 2.3 is simply one plus the number of changes in
the vector of canalized outputs, (b1, b2, . . . , bk). More specifically, all variables in odd layers canalize f to b1,
while all variables in even layers canalize f to b1 ⊕ 1.

Definition 2.8. A Boolean function f(x1, . . . , xn) is k-set canalizing, where 0 ≤ k ≤ n, if there exists a
permutation σ ∈ Sn, inputs a1, . . . , ak ∈ {0, 1} and an output b ∈ {0, 1} such that

f(x1, x2, ..., xn) =

{
b, (xσ(1), xσ(2), . . . , xσ(k)) = (a1, a2, . . . , ak),

g(x1, . . . , xn), otherwise.

In that case, the input set Ck = {(xσ(1), a1), (xσ(2), a2), ..., (xσ(k), ak)} (collectively) canalizes f (to b).

Definition 2.9. For 0 ≤ k ≤ n, the k-set canalizing proportion of a Boolean function f(x1, . . . , xn), denoted
Pk(f), is defined as the proportion of k-sets Ck from Definition 2.8, which collectively canalize f .

Remark 2.10. These definitions imply the following.

(a) A function f is k-set canalizing if and only if Pk(f) > 0.

(b) For any function f(x1, . . . , xn), Pn(f) ≡ 1.

(c) Constant functions are the only 0-set canalizing functions. That is, P0(f) = 0 except when f is a
constant function, in which case P0(f) = 1.

(d) Canalizing functions, as defined in Definition 2.2, are exactly the 1-set canalizing functions.

(e) Consider the n-dimensional Boolean cube Bn, with vertices labeled according to f . Pk(f) is the proba-
bility that any (n− k)-face of Bn is constant.

Example 2.11. The function f(x1, x2, x3, x4) = (x1∨x2)∧ (x3∨x4) is not canalizing, P1(f) = 0. However,
f is 2-set canalizing because if x1 = 0 and x2 = 0, then f ≡ 0, regardless of the values of x3 and x4.
Thus, {(x1, 0), (x2, 0)} collectively canalizes F to 0. Similarly, {(x3, 0), (x4, 0)} canalizes f to 0, while
{(x1, 1), (x3, 1)}, {(x1, 1), (x4, 1)}, {(x2, 1), (x3, 1)}, and {(x2, 1), (x4, 1)} canalize f to 1. Thus, P2(f) =

6
24 =

1
4 .
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3 Quantifying the canalizing strength of any Boolean function

In this section we investigate the k-set canalizing proportion of various types of functions and use it to
define the canalizing strength of any Boolean function, a measure which we argue more accurately resembles
the biological concept of canalization. We begin by showing that the k-set canalizing proportion can never
decrease in k.

Theorem 3.1. Let f(x1, . . . , xn) be a Boolean function. Then for 1 ≤ k < n,

Pk−1(f) ≤ Pk(f) ≤
1

2
(1 + Pk−1(f)).

Proof. Let [n] = {1, 2, . . . , n}. Let f(x1, . . . , xn) be a Boolean function, and let Ck be the set of all k-input
sets that collectively canalize f . For an input set C = {(xσ(1), a1), (xσ(2), a2), ..., (xσ(k−1), ak−1)} with |C| =
k − 1, define an extended input set C∗(σ(k), ak) = {(xσ(1), a1), (xσ(2), a2), ..., (xσ(k−1), ak−1), (xσ(k), ak)},
where σ(i) ̸= σ(j) whenever i ̸= j. Further, let PC(f) be the proportion of all possible extended input sets
C∗ which collectively canalize f . Clearly,

Pk(f) = E[PC(f)],

where the expectation is taken uniformly over all possible input sets C with |C| = k − 1.
Case 1, C ∈ Ck−1: If C already collectively canalizes f , then PC(f) = 1.
Case 2, C ̸∈ Ck−1: We will consider all 2(n− (k − 1)) extended input sets C∗ and show that PC(f) ≤ 1

2 .
Case 2a, ∃j ∈ [n]− {σ(1), σ(2), . . . , σ(k − 1)} such that C∗(j, 0) and C∗(j, 1) both collectively canalize f to
the same output: This implies that C already collectively canalizes f but this contradicts C ̸∈ Ck−1.
Case 2b, ∃j ∈ [n] − {σ(1), σ(2), . . . , σ(k − 1)} such that C∗(j, 0) and C∗(j, 1) both collectively canalize f
to different output values: This implies that C∗(j, 0) and C∗(j, 1) are the only two choices for C∗ that
collectively canalize f . Since there are n− (k− 1) choices for j and each has two corresponding C∗, we have
PC(f) =

2
2(n−(k−1)) =

1
n−k+1 ≤ 1

2 .

Case 2c, ∄j ∈ [n] − {σ(1), σ(2), . . . , σ(k − 1)} such that C∗(j, 0) and C∗(j, 1) both collectively canalize f :
This implies that at most one of the two corresponding C∗ collectively canalizes f , thus PC(f) ≤ 1

2 .
By definition, P(C ∈ Ck−1) = Pk−1(f). Therefore, conditioning on C ∈ Ck−1 yields

Pk(f) = E[PC(f)]

= P(C ∈ Ck−1)E
[
PC(f)

∣∣ C ∈ Ck−1

]
+ P(C ̸∈ Ck−1)E

[
PC(f)

∣∣ C ̸∈ Ck−1

]
= Pk−1(f) · 1 + (1− Pk−1(f))E

[
PC(f)

∣∣ C ̸∈ Ck−1

]
Thus,

Pk−1(F ) ≤ Pk(F ) ≤ Pk−1(F ) +
(
1− Pk−1(F )

)1
2
=

1

2

(
1 + Pk−1(F )

)

Corollary 3.2. For a constant Boolean function f(x1, . . . , xn), P0(f) = P1(f) = . . . = Pn(f) = 1. If f is
not constant, then Pk(f) ≤ 1− 1

2k
for all 0 ≤ k < n.

Proof. If f(x1, . . . , xn) is constant, then P0(f) = 1 and Pn(f) = 1 by Remark 2.10. Thus, by Theo-
rem 3.1, P0(f) = P1(f) = . . . = Pn(f) = 1.
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If f(x1, . . . , xn) is not constant, then P0(f) = 0 = 1 − 1
20 . Proceed by induction and assume that

Pk−1(f) ≤ 1− 1
2k−1 for some k < n− 1. Then by Theorem 3.1,

Pk(f) ≤
1

2
(1 + Pk−1(f)) ≤

1

2

(
1 + 1− 1

2k−1

)
= 1− 1

2k

In fact, we can show that the equality Pk(f) = 1 − 1
2k

only holds if f is a special type of canalizing
function, an NCF with exactly one layer (see Theorem 2.4 and Definition 2.5). However, we first prove a
more general theorem that provides a formula for Pk(f) for any NCF with known layer structure.

Theorem 3.3. If f(x1, . . . , xn) is a Boolean NCF with known layer structure k1, . . . , kr, where r is the
number of layers and k1 + · · ·+ kr = n, then for all 0 ≤ k < n,

Pk(f) =
1(

n
k

)
2k

[(
kr−1 + kr−3 + . . .

k − kr − kr−2 − . . .

)
+

+

r∑
i=1

∑
c≥1

(2c − 1)

(
ki
c

)∑
d≥0

(
ki−2 + ki−4 + . . .

d

)(
ki+1 + ki+2 + · · ·+ kr

k − c− d− ki−1 − ki−3 − . . .

)
2k−c−d−ki−1−ki−3−...

]
.

Proof. For any k, 1 ≤ k ≤ n, let Ck be the set of all 2k
(
n
k

)
input sets

Ck = {(xσ(1), aσ(1)), (xσ(2), aσ(2)), ..., (xσ(k), aσ(k))}

(remember: σ(i) ̸= σ(j) for i ̸= j), each of which may collectively canalize a Boolean function f(x1, . . . , xn).
To compute Pk(f) for any nested canalizing function f(x1, . . . , xn) with known layer structure k1, . . . , kr,
where r is the number of layers and k1 + · · ·+ kr = n, we will stratify all these sets as follows.

Let f be written as in Theorem 2.4. In an abuse of notation, we express the extended monomials
as Mi = {(xi1 , ai1), . . . , (xiki

, aiki
)}, i = 1, . . . , r to align with the notation for Ck. Further, we define

M̄i = {(xi1 , ai1 ⊕ 1), . . . , (xiki
, aiki

⊕ 1)} to be the “negated” input sets where all variables in Mi receive
their non-canalizing input. We will now enumerate all the input sets of size k that canalize f . For k = 1,
we have Ck = {(xσ(1), aσ(1))} canalizes f if and only if (xσ(1), aσ(1)) ∈ M1. M1 contains k1 elements. Thus,

P1(f) =
k1

2n .
For any k, 1 ≤ k ≤ n, we can stratify Ck into the following r + 2 disjoint sets. For i = 1, . . . , r,

Si =
{
Ck ∈ Ck

∣∣∣Ck ∩Mi ̸= ∅ and

Ck ∩ M̄i+1−2j = M̄i+1−2j ∀ 1 ≤ j ≤
⌊ i
2

⌋
and

Ck ∩Mi−2j = ∅ ∀ 1 ≤ j ≤
⌊ i− 1

2

⌋}
,

Sr+1 =
{
Ck ∈ Ck

∣∣∣Ck ∩ M̄r−2j = M̄r−2j ∀ 0 ≤ j ≤
⌊r − 1

2

⌋
and

Ck ∩Mr+1−2j = ∅ ∀ 1 ≤ j ≤
⌊r
2

⌋}
,

Sr+2 =
{
Ck ∈ Ck

∣∣∣Ck ̸∈ Si ∀1 ≤ i ≤ r + 1
}
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The first condition, Ck ∩ Mi ̸= ∅, in the definition of Si, i = 1, . . . , r ensures that f is canalized in
layer i, i.e., we know that at least one of the variables in layer t receives its canalizing input. The second
and the third condition ensure that layer i is even reached in the nested evaluation of f . Layer i can only
determine the output of f if all variables in those more important (i.e., outside) layers, which would lead
to a different output, receive their non-canalizing input; due to Remark 2.7 these are exactly the variables
in layers i − 1, i − 3, etc. Similarly, layer i can only determine the output of f if none of the variables in
those more important (i.e., outside) layers, which lead to the same output (e.g. layers i − 2, i − 4, etc.),
receive their canalizing input. Thus, the third condition ensures that the sets Si, Si−2, Si−4, etc. are disjoint.
Without this condition, some input sets in Si for i ≥ 3 may also occur in e.g. Si−2 because a variable in a
more important layer may have already received its canalizing input.

If none of the variables of an NCF receive their canalizing input value, the NCF evaluates to bn ⊕ 1
(Definition 2.3). The set Sr+1 contains all those input sets Ck, for which this is the case. We require two
conditions similar to the second and third condition in the previous paragraph. First, all variables in layers
r, r − 2, r − 4, etc. must receive their non-canalizing input so that f is not canalized to bn (Remark 2.7).
Second, to ensure the sets Sr+1, Sr−1, Sr−3, etc. are mutually disjoint, none of the variables in layers
r− 1, r− 3, etc. are allowed to receive their canalizing input; they may however receive their non-canalizing
input.

Altogether, an input set Ck collectively canalizes f if and only Ck ∈ Si for some i = 1, . . . , r+1. To find
the k-set canalizing proportion, we sum up the magnitudes of the sets Si, i = 1, . . . , r+1. This computation
relies heavily on the multivariate hypergeometric distribution: there are

∏r
i=1

(
ki

ci

)
ways to draw (without

replacement) k out of n variables such that ci variables are part of Mi (i.e., layer i), for i = 1, . . . , r.
Let Ck ∈ Si for some 1 ≤ i ≤ r. The first condition in the definition of Si implies ci ≥ 1. The second

condition implies that we need cj = kj for j = i− 1, i− 3, etc. and that each variable in layers i− 1, i− 3,
etc. must receive its non-canalizing input. Otherwise, Ck ̸∈ Si. That means there is only one choice for the
input value in Ck associated with each variable in these layers. The third condition implies that while cj
can be freely chosen for j = i − 2, i − 4, etc., there is again only one choice for the input value associated
with any variable in these layers that is also part of Ck, namely the non-canalizing input. On the contrary,
for all variables in layers i+1, i+2, . . . , r that are part of Ck, there are two choices for the associated input
value, 0 and 1. Finally, for those ci ≥ 1 variables that are part of Ck and of layer i, there is a total of 2ci − 1
combined possible choices for the input values associated with these variables, as only at least one variable
must receive its canalizing input. Thus, we have for 1 ≤ i ≤ r,

|Si| =
∑[ r∏

j=1

(
kj
cj

)][ r∏
m=i+1

2cm
]
(2ci − 1),

where the sum is taken over all (c1, . . . , cr) such that

1. c1 + c2 + · · ·+ cr = k,

2. 0 ≤ cj ≤ kj for all 1 ≤ j ≤ r,

3. ci ≥ 1 (first condition in the definition of Si),

4. cj = kj for all j = i− 1, i− 3, etc. (second condition in the definition of Si).

With Vandermonde’s identity,
(
a+b
c

)
=

∑c
i=1

(
a
i

)(
b

c−i

)
, this simplifies to

|Si| =
∑
c≥1

(2c − 1)

(
ki
c

)∑
d≥0

(
ki−2 + ki−4 + . . .

d

)(
ki+1 + ki+2 + · · ·+ kr

k − c− d− ki−1 − ki−3 − . . .

)
2k−c−d−ki−1−ki−3−....
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By definition, for n ≥ 0 we have
(
n
m

)
= 0 if m > n and if m < 0. Thus, the previous formula is correct

without specific upper bounds for c and d. For implementation purposes, the correct bounds would be

c = max
(
1, k − n+ ki

)
, . . . ,min

(
ki, k − ki−1 − ki−3 − . . .

)
,

d = max
(
0, k − n− c+ ki + ki−2 + ki−4 + ...

)
, . . . ,min

(
ki−2 + ki−4 + ..., k − c− ki−1 − ki−3 − . . .

)
.

Similarly, we obtain

|Sr+1| =
∑ r∏

j=1

(
kj
cj

)
=

(
kr−1 + kr−3 + . . .

k − kr − kr−2 − . . .

)
where the sum is taken over all (c1, . . . , cr) such that

1. c1 + c2 + · · ·+ cr = k,

2. 0 ≤ cj ≤ kj for all 1 ≤ j ≤ r,

3. cj = kj for all j = r, r − 2, etc. (first condition in the definition of Sr+1).

Theorem 3.4. If f(x1, . . . , xn) is a Boolean NCF with exactly one layer, then Pk(f) = 1 − 1
2k

for all

0 ≤ k < n. Further, if for some f(x1, . . . , xn) with n ≥ 3, there exists a k, 0 < k < n such that Pk(f) = 1− 1
2k
,

then f is a NCF with exactly one layer.

Proof. Let f be a Boolean NCF with exactly one layer. Pk(f) = 1 − 1
2k

directly follows from Theo-
rem 3.3 with k1 = n. However, we provide an alternative, direct proof here. By Theorem 2.4, there exist
α1, . . . , αn, β ∈ {0, 1} such that f can be uniquely written in standard monomial form,

f(x1, . . . , xn) = β +

n∏
i=1

(xi + αi).

Let Ck = {(xσ(1), aσ(1)), (xσ(2), aσ(2)), ..., (xσ(k), aσ(k))} be a randomly chosen input set of size k, 0 < k < n,

as in Definition 2.8. Then, Ck collectively canalizes f to β if
∏k

i=1(xσ(i) + αi) = 0, i.e. if ασ(i) ̸= aσ(i) for

some 1 ≤ i ≤ k. We have P (ασ(i) = aσ(i)) =
1
2 for all 1 ≤ i ≤ k and thus, due to independence,

Pk(f) = P
(
∃i ∈ {1, . . . , k} : ασ(i) ̸= aσ(i)

)
= 1− P

(
∀i ∈ {1, . . . , k} : ασ(i) = aσ(i)

)
= 1− 1

2k
.

Further by Remark 2.10, P0(f) = 0 = 1− 1
20 as f is not constant.

To prove the second part, let f be a Boolean function on n ≥ 3 variables such that Pk(f) = 1 − 1
2k

for

some 0 < k < n. By Theorem 3.1, Pk(f) ≤ 1
2 (1 + Pk−1(f)). Thus,

1− 1

2k
≤ 1

2
(1 + Pk−1(f))

1− 1

2k−1
≤ Pk−1(f)

However, by Corollary 3.2, Pk−1(f) ≤ 1− 1
2k−1 , so in fact Pk−1(f) = 1− 1

2k−1 . Iteratively, we get P1(f) =
1
2 .

8



Consider any variable xi. If both xi = 0 and xi = 1 canalize f to the same value, then f is a constant
function and P1(f) = 1, a contradiction. On the other hand, If both xi = 0 and xi = 1 canalize f to different
values then no other variable can canalize f , thus P1(f) =

1
n , contradicting P1(f) =

1
2 for n ≥ 3. Thus, only

xi = 0 or xi = 1 can canalize f for n ≥ 3 and thus P1(f) ≤ 1
2 .

In order for P1(f) =
1
2 , we need every variable xi to canalize f to the same value b ∈ {0, 1} for exactly

one input ai. Thus, we can express f in standard monomial form (Theorem 2.4),

f = b+

n∏
i=1

(xi + āi),

and deduce that f is an NCF with exactly one layer.

Theorem 3.4 provides maximal values for the k-set canalizing proportion of non-constant functions. The
following example provides minimal values.

Example 3.5. For b ∈ {0, 1}, let f(x1, . . . , xn) = x1 ⊕ x2 ⊕ . . . ⊕ xn ⊕ b be the parity function. Then,
Pk(f) = 0 for all 0 ≤ k < n because in any case knowledge of all inputs is required to determine the output.

Given maximal and minimal values for the k-set canalizing proportion of non-constant functions, we are
now in a position to define a new robustness measure for any Boolean function with n ≥ 2 inputs as a
combination of the k-set canalizing proportions for all k with 0 < k < n.

Definition 3.6. The canalizing strength of a non-constant Boolean function f(x1, . . . , xn) with n ≥ 2 is
defined as

c(f) =
1

n− 1

n−1∑
k=1

2k

2k − 1
Pk(f) ∈ [0, 1].

Example 3.7. For b ∈ {0, 1}, let f(x1, . . . , xn) = x1 ⊕ x2 ⊕ . . . ⊕ xn ⊕ b be the parity function as in
Example 3.5. Then, c(f) = 0, highlighting that the output of the parity function can only be determined
when the values of all inputs are known.

On the other hand, if f is a nested canalizing function with exactly one layer, f.e. the AND function
f(x1, . . . , xn) = x1x2 · · ·xn, then with Theorem 3.4,

c(f) =
1

n− 1

n−1∑
k=1

2k

2k − 1
(1− 1

2k
)

=
1

n− 1

n−1∑
k=1

1

= 1.

Remark 3.8. The weights in Definition 3.6 are chosen such that (i) c(f) ∈ [0, 1] for any non-constant
Boolean function and (ii) c(f) = 1 for the “most” canalizing functions (NCFs with exactly one layer),
irrespective of n. This results however in c(f) > 1 for constant functions f .

Alternatively, one could define the canalizing strength of a Boolean function using the unweighted average,

cunweighted(f) =
1

n− 1

n−1∑
k=1

Pk(f).
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This definition would ensure that any function (even constant ones) possesses a canalizing strength in [0, 1]
and that the canalizing strength can be directly interpreted as the probability that a randomly chosen subset
of inputs determines the output, no matter the values of all other inputs, where the number of randomly
chosen inputs is drawn uniformly from 1 to n − 1. On the other hand, only Definition 3.6 ensures that
the canalizing strength can be readily compared between functions with varying numbers of inputs (as the
canalizing strength of any maximally canalizing function, irrespective of the number of inputs, is fixed at 1),
and can thus serve as a measure for the closeness to “perfect” canalization (NCF with 1 layer with c(f) = 1).
We believe that the weighted definition of the canalizing strength is therefore more useful.

Remark 3.9. The time required to calculate the exact value of all k-set canalizing proportions, Pk(f), (and
thus the canalizing strength) increases exponentially in the number of variables. Boolean functions may
exhibit some level of symmetry. In this context, two variables are part of the same symmetry group if their
values can be interchanged without affecting the value of the function. Knowledge of the symmetry groups
can reduce the time required to calculate the k-set canalizing proportions as only one member of each group
needs to be considered. However, the problem of identifying the symmetry groups of a Boolean function
is known to be NP-hard [23]. For this reason, we hypothesize there exists no algorithm that computes the
canalizing strength of any Boolean function in polynomial time. For practical applications, Monte Carlo
methods can yield approximate values of the k-set canalizing proportions and the canalizing strength for
functions with any number of variables.

The next example highlights how the canalizing strength coincides more closely with the biological concept
of canalization than, for instance, the canalizing depth or a simple binary measure of the presence/absence
of canalizing variables.

Example 3.10. The function f(x1, . . . , x5) = x1 ∧
(
⊕5

i=2 xi

)
is canalizing in x1 (canalizing depth = 1).

We have P1(f) = 0.1, P2(f) = 0.2, P3(f) = 0.3, P4(f) = 0.5, resulting in c(f) ≈ 0.336. On the other
hand, the threshold function g(x1, . . . , x5) =

(
(x1 + · · ·+ x5) > 1

)
is not canalizing (canalizing depth = 0),

P1(g) = 0. However, P2(g) = 0.25, P3(g) = 0.5, P4(g) = 0.75, resulting in c(g) ≈ 0.426, which is larger than
the canalizing strength of the canalizing function f .

This example highlights that functions that are canalizing in the traditional sense (Definition 2.2) may
have a lower canalizing strength than functions not canalizing in the traditional sense. We thus investigated
the distribution of the k-set canalizing proportion and the canalizing strength for different types of functions.

Definition 3.11. (see f.e. [6]) A random Boolean function f(x1, . . . , xn) with bias p can be generated by
flipping a p-biased coin 2n times and accordingly filling in the truth table. The bias is not a property of
an individual Boolean function; rather, it is a property of the underlying probability space. Setting p = 1

2
yields a uniform distribution on all Boolean functions f : {0, 1}n → {0, 1}.

Theorem 3.12. For a given bias p ∈ (0, 1) and for 0 ≤ k ≤ n, we have

E[Pk(f)] = (1− p)
2n−k

+ p2
n−k

.

In particular, when the expectation is taken uniformly over all f : {0, 1}n → {0, 1} (i.e., in the unbiased
case of p = 1

2),

E[Pk(f)] =
1

22n−k−1
.

Proof. Let f be a Boolean function in n variables, sampled uniformly at random from the space of
p-biased Boolean functions. By Remark 2.10e, the k-set canalizing proportion, Pk(f), is the probability

10
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Figure 1: (A) Probability that a random input canalizes a function (E[P1]) for different sampling biases
and different numbers of inputs (n). (B) Expected k-set canalizing proportion (E[Pk]) for different sampling
biases and different values of k ∈ {n− 4, n− 3, n− 2, n− 1}.

that an (n − k)-face of the n-dimensional Boolean cube, with vertices labeled according to f , is constant.
Each (n− k)-face has 2(n−k) vertices and there are two possible constants, 0 and 1, which are taken on with
probability 1− p and p, respectively. Thus,

E[Pk(f)] = (1− p)
2n−k

+ p2
n−k

.

Figure 1 highlights the implications of Theorem 3.12. Unbiased functions (p = 0.5) exhibit the lowest
k-set canalizing proportion and thus the lowest canalizing strength, irrespective of k or the number of inputs,
n. Increased absolute bias leads to increased canalization.

An analysis of all Boolean functions in n = 4 variables revealed that, on average, functions with more
canalizing variables have a higher canalizing strength (Figure 2A). There are, however, strong variations
and this result holds only in the average, as highlighted by Example 3.10. Functions in n = 4 variables
with canalizing depth 3 = n − 1 all contain some non-essential variables, which explains their increased
canalizing strength. In addition, functions with higher symmetry levels (that is, fewer symmetry groups)
possess, on average, higher canalizing strengths, again with strong variations (Figure 2B). Note that the
“most” canalizing functions, NCFs with one layer, are all completely symmetric (that is, they have one
symmetry group).

Theorem 3.12 also directly yields the following corollary.

Corollary 3.13. For any bias p ∈ (0, 1), the expected canalizing strength of randomly chosen Boolean
functions approaches 0 as the number of variables increases,

E[c(f)] −→
n→∞

0.

Proof. By Definition 3.6, Theorem 3.12 and linearity of the expectation, we have

E[c(f)] =
1

n− 1

n−1∑
k=1

2k

2k − 1

(
(1− p)

2n−k

+ p2
n−k

)

11
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Figure 2: Distribution of the canalizing strength for all 22
4

= 65, 536 Boolean functions in n = 4 variables
with a fixed (A) the canalizing depth, (B) number of symmetry groups. Horizontal dark lines depict the
respective maximal, mean and minimal value (top to bottom).

≤ 1

n− 1

n−1∑
k=1

4max (1− p, p)
2n−k

≤ 4

n− 1

n−1∑
k=1

max (1− p, p)
n−k

≤ 4

n− 1

1

1−max (1− p, p)
−→
n→∞

0.

An interesting, related question is the following: We know that the set of all canalizing functions is very
small compared to all Boolean functions. That is,

P
(
P1(f) > 0

∣∣ f : {0, 1}n → {0, 1}
)
−→
n→∞

0.

Similarly, we know that all Boolean functions except for the parity function and its conjugate have some
constant edge in their hypercube representation. That is, all but two Boolean functions are (n − 1)-set
canalizing and

P
(
Pn−1(f) > 0

∣∣ f : {0, 1}n → {0, 1}
)
−→
n→∞

1.

But what happens “in between”? More precisely: For which k, does

P
(
Pk(f) > 0

∣∣ f : {0, 1}n → {0, 1}
)
−→
n→∞

1?

The following, quite intuitive corollary provides some answers.

Corollary 3.14. For any bias p ∈ (0, 1) and any integer k > 0,

lim
n→∞

P
(
Pn−k(f) > 0

∣∣ f : {0, 1}n → {0, 1}
)
̸= 0

while
lim
n→∞

P
(
Pk(f) > 0

∣∣ f : {0, 1}n → {0, 1}
)
= 0.
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Proof. By Theorem 3.12,

E[Pn−k(f)] = (1− p)
2k

+ p2
k

> 0,

irrespective of n. This directly yields the first part of the corollary.
To prove the second part, we realize that all possible values of Pk(f) are by definition fractions. There

are
(
n
k

)
2k different input sets, which contain k out of n variables. Thus, Pk(f) > 0 implies Pk(f) ≥ 1

(nk)2k
.

Now, assume
lim
n→∞

P
(
Pk(f) > 0

∣∣ f : {0, 1}n → {0, 1}
)
= r ̸= 0.

This implies

E[Pk(f)] ≥ r · 1(
n
k

)
2k

.

We can express
(
n
k

)
as a polynomial in n with degree k and leading coefficient 1

k! , and get

lim
n→∞

nk E[Pk(f)] ≥ lim
n→∞

r · nk(
n
k

)
2k

= r · k!
2k

> 0.

However, by Theorem 3.12 we have for any p ∈ (0, 1) that

lim
n→∞

nk E[Pk(f)] = lim
n→∞

nk
(
(1− p)

2n−k

+ p2
n−k

)
= 0

by l’Hôpital’s rule. This is a contradiction, which completes the proof.

4 Canalization and average sensitivity

The average sensitivity, introduced in [24], measures how sensitive the output of a function is to input
changes, and constitutes one of the most studied properties of a Boolean function [16, 6, 25]. Thus far,
average sensitivity and canalization were two distinct concepts. In this section, we derive bounds for the
average sensitivity of a Boolean function in terms of the k-set canalizing proportions, allowing us to connect
these two concepts.

Definition 4.1. The sensitivity of a Boolean function f(x1, . . . , xn) at a vector x ∈ {0, 1}n is defined as the
number of Hamming neighbors of x with a different function value than f(x). That is,

S(f,x) =

n∑
i=1

χ[f(x) ̸= f(x⊕ ei)].

Definition 4.2. The average sensitivity of a Boolean function f(x1, . . . , xn) is the expected value of S(f,x).
Assuming a uniform distribution of x,

S(f) = E[S(f,x)] =
1

2n

∑
x∈{0,1}n

n∑
i=1

χ[f(x) ̸= f(x⊕ ei)].

Definition 4.3. Assuming a uniform distribution of x, the normalized average sensitivity of a Boolean
function f(x1, . . . , xn) is

s(f) =
1

n
S(f) =

1

n

n∑
i=1

E
[
f(x)⊕ f(x⊕ ei)

]
=

1

n2n

∑
x∈{0,1}n

n∑
i=1

χ[f(x) ̸= f(x⊕ ei)].

13



Theorem 4.4. For any Boolean function f : {0, 1}n → {0, 1}, and for any integer 0 < k ≤ n,

1

2k−1
(1− Pn−k(f)) ≤ s(f) ≤ 1− Pn−k(f).

Proof. We prove the left inequality using a geometric argument. By Remark 2.10, Pk(f) is the probability
that an (n− k)-face of the n-dimensional Boolean cube Bn is constant, where the vertices of Bn are labeled
according to f . Thus, 1−Pn−k(f) is the probability that a k-face is not constant. Similarly, s(f) is exactly
the probability that a 1-face (i.e., an edge) of Bn is not constant. Let H be a k-face of Bn where f is not
constant. Any vertex in H has k edges that are part of H and H possesses k2k−1 total edges. Since f is not
constant on H, there is at least one vertex in H where f takes on a different value. Thus, H possesses at
least k non-constant edges, and by summing over all (constant and non-constant) k-faces we get

s(f) ≥ (1− Pn−k(f)) ·
k

k2k−1
+ Pn−k(f) · 0

=
1

2k−1
(1− Pn−k(f))

The right inequality is a direct consequence of Theorem 3.1.

Theorem 4.4 provides bounds for the average sensitivity of a Boolean function given only some of its
canalizing proportions, or in terms of Graph Theory, given only the proportion of monochromatic higher-
dimensional sides of a Boolean cube, we provide upper and lower bounds for the number of monochromatic
(1-dimensional) edges. Further, the k = 1 case in Theorem 4.4 directly yields the following trivial result,
relating the normalized average sensitivity and the (n− 1)-set canalizing proportion.

Corollary 4.5. s(f) = 1− Pn−1(f) for any Boolean function f : {0, 1}n → {0, 1}.

The trivial upper bound provided by Theorem 4.4 is a very weak result. We believe the establishment
of a good, general upper bound is an elusive problem. One substantially better upper bound, for which we
have no proof, is given by the following conjecture.

Conjecture 4.6. For any Boolean function f : {0, 1}n → {0, 1}, and for any integer 0 < k ≤ n,

s(f) ≤ 1− k
√
Pn−k(f).

Remark 4.7. To get an intuition how tight the bounds provided by Theorem 4.4 and Conjecture 4.6 are,
we classified all 65, 536 Boolean functions in n = 4 variables based on their normalized average sensitivity,
i.e., based on 1 − Pn−1(f). For each class of functions with fixed normalized average sensitivity, we then
determined the minimal and the maximal value of Pn−k(f) for k = 3 (Table 1A) and for k = 2 (Table 1B).
We used these values to derive the best lower and the best upper bound that Theorem 4.4 and Conjecture 4.6
provide for functions with a specific normalized average sensitivity.

When only Pn−3(f) = P1(f) is known (that is, only the number of canalizing variables; Table 1A), the
lower bound is as good as it can be except for one class, functions with an average sensitivity of 0.1875.
These are however degenerated functions with only three essential variables, which are all canalizing, e.g.,
f(x1, x2, x3, x4) = x1 ∧ x2 ∧ x3. When Pn−2(f) = P2(f) is known (Table 1B), the lower bound is for all
classes as good as it can be. The hypothesized upper bound, on the other hand, could certainly be improved
as there are several instances for k = 2 and for k = 3 where it is not tight.
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Number of 
functions   min$%&'())  max$%&'()) 

Lower bound 
-

./01 (1 − $%&'())) 4()) Upper bound 
 1 − 5$%&'())/  

k =
 2

 

2 1 1 0 0 0 
32 0.75 0.75 0.125 0.125 0.1340 
64 0.625 0.625 0.1875 0.1875 0.2094 

424 0.5 0.5417 0.25 0.25 0.2640 
1728 0.375 0.4167 0.3125 0.3125 0.3545 
6688 0.25 0.375 0.375 0.375 0.3876 

13568 0.125 0.25 0.4375 0.4375 0.5 
20524 0 0.25 0.5 0.5 0.5 
13568 0 0.125 0.5 0.5625 0.6464 
6688 0 0.125 0.5 0.625 0.6464 
1728 0 0.0417 0.5 0.6875 0.7959 
424 0 0.0417 0.5 0.75 0.7959 
64 0 0 0.5 0.8125 1 
32 0 0 0.5 0.875 1 
2 0 0 0.5 1 1 

 
  

A B

Table 1: Classification of all 22
4

= 65, 536 Boolean functions in n = 4 variables based on their average
sensitivity, s(f). For each class, the number of functions, minimal and maximal value of Pn−k(f), as well as
the best lower and upper bound provided by Theorem 4.4 and Conjecture 4.6 are shown. Bold font highlights
bounds that are not optimal. In (A) k = 3, i.e., n− k = 1, in (B) k = 2, i.e., n− k = 2.

5 Discussion

Many properties of Boolean functions have been thoroughly studied over the course of the last decades.
Most early studies and complexity measures of Boolean functions were motivated by questions arising from
theoretical computer science. For example, Nisan used the sensitivity, the block sensitivity and the certificate
complexity of a Boolean function to derive bounds for the worst-case time needed to compute a Boolean
function using an ideal algorithm [26]. Just recently, Huang showed that all these complexity measures are
polynomially related, thereby proving a major open problem in complexity theory [27].

The definition of the k-set canalizing proportions Pk, k = 0, 1, . . . , n−1, which are the focus of this paper,
is reminiscent of the definition of certificate complexity, with one big difference. Nisan defines certificates
as sets of inputs to a Boolean function, which suffice to determine the output of the function [26]. A
certificate is thus exactly a collectively canalizing input set (Definition 2.8). The certificate complexity of
an n-variable Boolean function, however, is defined as the number of inputs that need to be known in the
worst case (i.e., when considering all 2n configurations) to determine the output of the function. The k-set
canalizing proportion, on the other hand, quantifies the average proportion of k-sets that collectively canalize
a function. This highlights a general difference in the scope of use of Boolean functions in different areas
of application. While theoretical computer science is particularly concerned with the worst-case scenario,
the focus of biological studies is the average behavior of a system, which can be described by complexity
measures like the average sensitivity of a Boolean function.

The motivation for the complexity measures studied in this paper comes from the biological concept of
canalization. Considering canalization as a property of a Boolean function (as in [21, 22]), rather than on the
basis of individual variables as traditionally done [4, 5, 6, 11], allows us to define and study the canalizing
strength of any Boolean function. With this broader definition of canalization, we can thus distinguish
finer differences in the canalization property. Given that the large majority of Boolean functions in several
variables is simply not canalizing in the traditional sense (Definition 2.3), this constitutes a biologically
relevant advancement.

The k-set canalizing proportions Pk, k = 0, 1, . . . , n − 1 allow us to connect the widely used concept of
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average sensitivity with the concept of canalization. Theorem 4.4 shows how the bounds on the average
sensitivity of a Boolean function tighten the more inputs we know. If we know only one input of a function
(i.e., P1), we can derive the number of canalizing variables. If, on the other hand, we know all but one input
of a function, we can derive its average sensitivity, which is thus a bijection of the (n − 1)-set canalizing
proportion. Further, Theorem 3.1 establishes bounds for the k-set canalizing proportions, which together
with Theorem 3.4, allow us to define the most canalizing and least canalizing Boolean functions. The
subsequent definition of the canalizing strength (Definition 3.6) yields a novel measure for how close to
perfect canalization any non-constant Boolean function is.
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