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Abstract

Given an infinite field k and a simplicial complex ∆, a common theme in studying the f - and h-
vectors of ∆ has been the consideration of the Hilbert series of the Stanley–Reisner ring k[∆] modulo a
generic linear system of parameters Θ. Historically, these computations have been restricted to special
classes of complexes (most typically triangulations of spheres or manifolds). We provide a compact
topological expression of ha

d−1(∆), the dimension over k in degree d− 1 of k[∆]/(Θ), for any complex
∆ of dimension d − 1. In the process, we provide tools and techniques for the possible extension to
other coefficients in the Hilbert series.

1 Introduction

Associated to every finite simplicial complex ∆ is the notion of its h-vector, which is one way of encoding the
number of faces that ∆ has in each dimension. Perhaps the most widely-studied combinatorial invariant
of a simplicial complex since its inception, properties of this vector continue to be a motivating force
in research to this day (see, for example, the continued work toward proving McMullen’s long-standing
g-conjecture in [Adi18]).

Given a fixed infinite field k, one of the most powerful tools available for the study of the h-vector of ∆
is the Stanley–Reisner ring k[∆]. When considered as a vector space over k, this quotient of a polynomial
ring has a basis given by monomials whose supports correspond to the faces of ∆. Hence, computations
of the h-vector can often be reduced to counting dimensions of graded pieces of k[∆] over k.

We introduce two brief non-standard pieces of notation: if Θ is a linear system of parameters (or
l.s.o.p.) for k[∆] and Σ(Θ;k[∆]) is the sigma submodule which it generates (definitions to be given later),
then let

ha

i (∆) := dim
k

(
k[∆]

(Θ)

)

i

and hs

i (∆) := dim
k

(
k[∆]

Σ(Θ;k[∆])

)

i

.

The ha- and hs-vectors are invariant under a generic choice of parameters when k is infinite, and hence are
defined without respect to any particular system Θ. In the literature, these dimensions have usually been
written as (or shown to be equivalent to) h′

i(∆) and h′′
i (∆), respectively, when considering triangulated

spheres or manifolds.
When ∆ is Cohen–Macaulay (for example, a triangulation of sphere), the following theorem due to

Stanley demonstrates the powerful use of techniques from commutative algebra to produce a beautiful
correspondence between the h-vector of ∆ and the Hilbert series of k[∆]. Note that the Cohen–Macaulay
property ensures that the submodules Σ(Θ;k[∆]) and (Θ) are equal, and hence ha

i (∆) = hs

i (∆) for all i.

Theorem 1.1. [Sta96, Section II] Let ∆ be a (d − 1)-dimensional Cohen-Macaulay simplicial complex
and let Θ be an l.s.o.p. for k[∆]. Then

ha

i (∆) = hi(∆)

for i = 0, . . . , d.
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When moving from spheres to manifolds, it turns out that there is some discrepancy between ha

i (∆)

and hi(∆) which can be measured by topological invariants of ∆. For the next results, let β̃i(∆) denote the
i-th reduced Betti number of ∆ computed over k. In order to more succinctly express some pre-existing
results as well as our own contributions, we now introduce the notion of the truncated reduced Euler
characteristic of ∆, denoted by

χ̃i(∆) :=

i∑

j=−1

(−1)jβ̃j(∆). (1.1)

Schenzel generalized Stanley’s equality in Theorem 1.1 to the case of triangulations of closed manifolds
(or more generally, Buchsbaum complexes) by applying Hochster’s results connecting local cohomology
modules of Stanley–Reisner rings to the topology of ∆, producing the following theorem.

Theorem 1.2. [Sch81, p. 137] If ∆ is a (d− 1)-dimensional Buchsbaum complex and Θ is an l.s.o.p. for
k[∆], then

ha

i (∆) = hi(∆) + (−1)i
(
d

i

)
χ̃i−2(∆)

for i = 0, . . . , d.

Much more recently, Murai, Novik, and Yoshida were able to build upon the equality in the above
theorem through the use of the sigma submodule Σ(Θ;k[∆]), providing a calculation of the reduced
algebraic h-vector in the next theorem.

Theorem 1.3. [MNY17, Theorem 1.2] If ∆ is a (d − 1)-dimensional Buchsbaum complex and Θ is an
l.s.o.p. for k[∆], then

hs

i (∆) = hi(∆) + (−1)i
(
d

i

)
χ̃i−1(∆).

The Cohen–Macaulay and Buchsbaum hypotheses of these theorems can be very restrictive, and the
tools involved in their proofs rely crucially upon powerful algebraic implications of these properties. As
a result, few extensions to more general cases have been provided and those that do exist are still fairly
specialized (for example, see [NS12] for a treatment of complexes with isolated singularities). Our present
overarching goal is to provide full computations of the entries in the algebraic h-vectors for any complex
∆. Aside from low-dimensional special cases, at this time only the top entry, ha

d(∆), for ∆ of arbitrary
dimension d− 1 has been computed in the following result due to Tay, White, and Whitely in [TWW95,
Theorem 4.1] as well as Babson and Novik in [BN06, Lemma 2.2(3)].

Theorem 1.4. If ∆ is a (d− 1)-dimensional complex, then ha

d(∆) = β̃d−1(∆).

In this paper, we focus on a computation of ha

d−1(∆) and hs

d−1(∆) for an arbitrary (d−1)-dimensional
complex ∆. However, perhaps the more valuable contribution of our results is the method of their proof,
which appears to provide an avenue for the full computation of algebraic h-vectors of arbitrary complexes.
These results are optimistically planned for a follow-up paper. For the sake of brevity, we will state here
only the equation concerning the reduced algebraic h-vector, hs(∆), and refer the reader to Theorem 3.7
for the non-reduced version. In this statement, lk∆ F denotes the link of a face F in ∆.

Theorem 3.10. Let ∆ be a (d− 1)-dimensional simplicial complex. Then

hs

d−1(∆) = hd−1(∆) + (−1)d−1
∑

F∈∆

(
d− |F |

d− 1

)
χ̃d−2−|F |(lk∆ F ).

Note that since β̃i(lk∆ F ) = 0 for all faces F 6= ∅ and all i < d − 1 − |F | when ∆ is Buchsbaum and
that lk∆ ∅ = ∆, this expression is consistent with Theorem 1.3. Furthermore, due to the d − 1 term in
the binomial coefficient, the only faces that may potentially contribute a non-zero term in the sum are
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those of size 0 or 1. Despite this, the theorem has been written in the more general form summing over
all F ∈ ∆ to provide both a compact expression as well as a goalpost for further equalities proposed in
Conjecture 5.1.

As a final note, Theorem 3.10 should not be too surprising when compared to Theorems 1.1 and 1.3.
Indeed, a (d−1)-dimensional complex ∆ is Buchsbaum but not Cohen–Macaulay precisely when β̃i(∆) 6= 0

for some i < d − 1 while β̃i(lk∆ F ) = 0 for all faces F 6= ∅ and all i < d − 1 − |F |. In such a case, the

difference between hs

i (∆) and hi(∆) is written purely in terms of the values of β̃j(∆) for j < i. Hence, in

the case when ∆ fails to be Buchsbaum by having β̃i(lk∆ F ) 6= 0 for some F 6= ∅ and i < d− 1 − |F |, it
stands to reason that hi(∆)− ha

i (∆) may be written purely in terms of the Betti numbers of the links of
those faces which contain non-trivial homology in the appropriate dimensions.

The structure of this paper is as follows. In Section 2, we review definitions and the vital connections
between combinatorics, topology, and algebra that will provide the tools for our computations. In Section
3, we prove our main results after introducing some new lemmas rooted in commutative and homological
algebra. Section 4 is devoted to a brief application of our results to suspensions of Buchsbaum complexes.
Finally, in Section 5 we will discuss the implications of our results by presenting possible generalizations
and alternate viewpoints.

2 Preliminaries

For an excellent overview of many of the definitions and results in this section, we refer the reader to
[Sta96].

2.1 Combinatorics

Let V be a finite set and let k be a fixed infinite field. A simplicial complex ∆ with vertex set V
is a collection of subsets of V that is closed under inclusion. We call each element F ∈ ∆ a face of
∆, and in the case that F consists of a single vertex v ∈ V , we often abbreviate {v} to v. Each face
F ∈ ∆ has a dimension defined by dim(F ) := |F | − 1. Similarly, the dimension of ∆ is defined by
dim(∆) := max{dim(F ) : F ∈ ∆}. If all maximal faces of ∆ under inclusion have the same dimension,
then we say that ∆ is pure.

For the remainder of this section, let ∆ be a simplicial complex of dimension d − 1. If F is a face of
∆, then the link and contrastar of F in ∆ are the two induced simplicial complexes defined by

lk∆ F := {G ∈ ∆ : F ∪G ∈ ∆ and F ∩G = ∅}

and

cost∆ F := {G ∈ ∆ : F 6⊂ G},

respectively.

An important combinatorial invariant associated to ∆ is its f-vector, written in the form f(∆) =
(f−1(∆), f0(∆), . . . , fd−1(∆)) with

fi(∆) := |{F ∈ ∆ : dim(F ) = i}|.

Instead of studying the f -vector directly, we study what we will refer to as the (combinatorial) h-vector
of ∆, written as h(∆) = (h0(∆), h1(∆), . . . , hd(∆)) with

hi(∆) :=

i∑

j=0

(−1)i−j

(
d− j

i− j

)
fj−1(∆).
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2.2 Topology

If Γ is another simplicial complex with Γ ⊂ ∆, we denote by Hi(∆,Γ) the i-th relative cohomology

group of the pair (∆,Γ) (over k). In the case that Γ = ∅, we abbreviate Hi(∆, ∅) to H̃i(∆) and refer to
this as the i-th reduced cohomology group of ∆ (over k). These cohomology groups are also vector
spaces over k, and one of the most important invariants that we focus on is their dimension. The i-th

reduced Betti number of ∆ (over k) is defined by

β̃i(∆) := dim
k

H̃i(∆)

and the i-th relative Betti number of the pair (∆,Γ) (over k) is defined by

βi(∆,Γ) := dim
k

Hi(∆,Γ).

When Γ = cost∆ F for some face F ∈ ∆, we have natural isomorphisms

H̃i(lk∆ F ) ∼= Hi−|F |(∆, cost∆ F ) (2.1)

for all i provided by [Grä84, Lemma].
We say that ∆ is Buchsbaum if ∆ is pure and βi(∆, cost∆ F ) = 0 for all i < d− 1 and for every face

F ∈ ∆ with |F | > 0. Similarly, we say that ∆ is Cohen-Macaulay if βi(∆, cost∆ F ) = 0 for all i < d− 1
and for all faces F ∈ ∆ (including the empty face). Though the primary results in this paper will not
specifically involve Buchsbaum or Cohen-Macaulay complexes, many of the computations that we extend
and were mentioned in Section 1 have historically been restricted to these classes of complexes.

In further uses of Betti numbers, we define the (reduced) Euler characteristic of ∆ and the i-th

truncated Euler characteristic of ∆ by

χ̃(∆) =

d−1∑

j=−1

(−1)j β̃j(∆) and χ̃i(∆) :=

i∑

j=−1

(−1)j β̃j(∆),

respectively, for i = −1, . . . , d− 1.

2.3 Algebra

Let A be the polynomial ring k[xv : v ∈ V ], and let m be the ideal (xv : v ∈ V ). If F ⊂ V , then denote

xF :=
∏

v∈F

xv.

We define the Stanley–Reisner ideal of ∆ by

I∆ := (xF : F 6∈ ∆)

and the Stanley–Reisner ring of ∆ by the quotient

k[∆] := A/I∆.

We can view A both as a Z-graded ring by setting deg(xv) = 1 for all v ∈ V and as a ZV -graded ring
by setting deg(xv) = ev, where ev is the standard basis element of ZV corresponding to v ∈ V . When
considering some degree α = (αv : v ∈ V ) ∈ ZV , we define the support of α by supp(α) = {v : αv 6= 0}.
Since I∆ is homogeneous with respect to either of these gradings, we will consider k[∆] at times as either
a Z-graded or ZV -graded A-module or vector space over k. In general, for a Z-graded A-module M
and j ∈ Z, we denote by M [j] the module obtained from M by shifting degrees by j, defined such that
M [j]i = Mi+j .
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Let V be a Z-graded vector space over k such that Vi is finite-dimensional for all i. We abbreviate

D(Vi) := dim
k

Vi,

and in the case that Vi = 0 for i < 0, we define the Hilbert series of V in the indeterminate t by

Hilb(V, t) :=
∑

i≥0

D(Vi)t
i.

One of the primary connections between the combinatorics of ∆ and the algebraic properties of k[∆] is
the following theorem due to Stanley (see [Sta96, Section II.2]).

Theorem 2.1. Let ∆ be a (d− 1)-dimensional simplicial complex. Then

Hilb(k[∆], t) =

∑d
i=0 hi(∆)ti

(1− t)d
.

One consequence of the above theorem is that k[∆] has Krull dimension d. Given any A-module
M of Krull dimension d, we call a sequence Θ = (θ1, . . . , θd) of linear forms in A a linear system of

parameters (or l.s.o.p.) for M if M/(Θ)M is a finite-dimensional vector space over k. In the case that k
is infinite, any generic choice of d linear forms will satisfy this condition. Given an l.s.o.p. for M , further
define the Sigma submodule of M with respect to Θ by

Σ(Θ;M) := ΘM +

d∑

i=0

(θ1, . . . , θi−1, θi+1, . . . , θd)M :M θi,

where

(θ1, . . . , θi−1, θi+1, . . . , θd)M :M θi = {m ∈ M : θi ·m ∈ (θ1, . . . , θi−1, θi+1, . . . , θd)M}.

We are now ready to provide full definitions for the two main invariants of study in this paper. One
of them is what we will call the algebraic h-vector of ∆, written as ha(∆) = (ha

0(∆), . . . , ha

d(∆)), where

ha

i (∆) = dim
k

(k[∆]/(Θ))i = D ((k[∆]/(Θ))i)

for i = 0, 1, . . . , d, and the other is the reduced algebraic h-vector of ∆, written as hs(∆) = (hs

0(∆), . . . , hs

d(∆)),
where

hs

i (∆) = dim
k

(k[∆]/Σ(Θ;M))i = D ((k[∆]/Σ(Θ;M))i) .

As usual, our study of algebraic h-vectors will involve much consideration of local cohomology modules
of Stanley–Reisner rings. For a general introduction to these modules, the reader is referred to [ILL+07]. In
order to clarify and make use of the structure of the local cohomology modulesHi

m
(k[∆]) from a topological

perspective, it will be important to consider them in the ZV -graded setting. Note that regardless of the
choice of grading, the overall structures of these modules (and more importantly, the dimensions of their
graded pieces) remain unchanged when considering either grading. The following stunning theorem due
to Gräbe in [Grä84, Theorem 2] will provide the necessary connections between homological properties of
k[∆] and the topology of ∆.

Theorem 2.2. Let ∆ be a simplicial complex, and let α ∈ ZV . If α 6∈ ZV
≤0 or supp(α) 6∈ ∆, then

Hi
m
(k[∆])α = 0. Otherwise, writing supp(α) = F ∈ ∆,

Hi
m
(k[∆])α ∼= Hi−1(∆, cost∆ F )

as vector spaces over k. Furthermore, the A-module structure of Hi
m
(k[∆]) can be defined as follows. If

v 6∈ F , then the multiplication map ·xv is the zero map on Hi
m
(k[∆])α. If v ∈ F , then

·xv : Hi
m
(k[∆])α → Hi

m
(k[∆])α+ev

corresponds to the map

Hi−1(∆, cost∆ F )) → Hi−1(∆, cost∆(supp(α+ ev)))

induced by the inclusion of pairs (∆, cost∆(supp(α+ ev))) → (∆, cost∆ F )).
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3 Algebraic h-vectors

For the entirety of this section, we will assume that ∆ is an arbitrary (d − 1)-dimensional complex and
that Θ = (θ1, . . . , θd) is a generic l.s.o.p. for k[∆]. Given a subset S ⊂ Θ, for the ease of notation we will
also use S to denote the submodule (S)k[∆] generated by the ideal (S). In addition, denote

Mi(S) := Hi
m
(k[∆]/S).

If θj 6∈ S, then also define
Ki(S, θj) := Ker

(
·θj : M

i(S) → Mi(S)
)

and
CKi(S, θj) := Coker

(
·θj : M

i(S) → Mi(S)
)
.

In the frequent case that S = (θ1, . . . , θj−1) for some j, we make the further abbreviations

Mi(j − 1) := Mi(S) = Hi
m
(k[∆]/(θ1, . . . , θj−1)),

Ki(j) := Ki(S, θj) = Ker
(
·θj : M

i(j − 1) → Mi(j − 1)
)
,

and
CKi(j) := CKi(S, θj) = Coker

(
·θj : M

i(j − 1) → Mi(j − 1)
)
.

One particular submodule of Hi
m
(k[∆]) will play a very important role, which we define by

Li
j :=

[
Mi(∅)≥−1

] j⋂

p=1

[
Ker

(
·θp : Mi(∅)≥−1 → Mi(∅)≥0

)]
.

This submodule has a topological interpretation using Gräbe’s theorem. As a Z-graded vector space, Li
j

is concentrated in degrees −1 and 0. In the top degree, Li
j is isomorphic to H̃i−1(∆). In degree −1, Li

j is
isomorphic to the intersection of the kernels of generic linear combinations of maps of the form

Hi−1(∆, cost∆ v) → Hi−1(∆, ∅)

induced by inclusions.

3.1 Calculating h
a

d−1
(∆)− hd−1(∆)

Before beginning to study ha

d−1(∆) directly, we introduce four lemmas that will allow for some generaliza-
tions of the standard techniques for studying ha-vectors of Cohen–Macaulay and Buchsbaum complexes.

Lemma 3.1. If ∆ is a (d− 1)-dimensional simplicial complex and Θ = θ1, . . . , θd is a generic l.s.o.p. for
k[∆], then

Ker (·θj : k[∆]/S → k[∆]/S) = K0(S, θj)

for any S ( Θ and θj 6∈ S.

Proof. Define

N (S) :=
k[∆]/S

M0(S)
.

Since k[∆]/S has Krull dimension d−|S| while M0(S) is an Artinian submodule, N (S) has positive Krull
dimension for 0 ≤ |S| ≤ d − 1. Furthermore, since m · N (S) 6= N (S) and H0

m
(N (S)) = 0, the depth of

N (S) is at least 1, and so we may assume (under the genericness of Θ) that θj is a non-zero-divisor on
N (S). Hence,

Ker (·θj : k[∆]/S → k[∆]/S) = Ker
(
·θj : M

0(S) → M0(S)
)
.
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Lemma 3.2. If ∆ is a (d− 1)-dimensional simplicial complex and Θ = θ1, . . . , θd is a generic l.s.o.p. for
k[∆], then

Hilb(k[∆]/Θ, t) =

d∑

i=0

ha

i (∆)ti =

d∑

i=0

hi(∆)ti +

d∑

j=1

(1− t)d−jtHilb(K0(j), t).

Proof. By the standard Hilbert series computations, if

Z(j) = Ker(·θj : k[∆]/(θ1, . . . , θj−1) → k[∆](θ1, . . . , θj−1)),

then

Hilb(k[∆]/Θ, t) =

d∑

i=0

hi(∆)ti +

d∑

j=1

(1− t)d−jtHilb(Z(j), t).

The result now follows by Lemma 3.1.

In the case of a Buchsbaum complex, the trivial structure of the local cohomology modules of k[∆]
and special properties of Θ allow for very straightforward computations of the K0(j) submodules above
using short exact sequences. In the next two lemmas, we use the same prime avoidance technique from
Lemma 3.1 to show that a similar approach is still viable in a more general setting.

Lemma 3.3. If ∆ is a (d−1)-dimensional simplicial complex and θ1, . . . , θd is a generic l.s.o.p. for k[∆],
then for any S ( Θ and θj 6∈ S there exists a long exact sequence of graded A-modules of the form

0 M0(S)
θj ·(M0(S)[−1]) M0(S ∪ {θj})

M1(S)[−1] M1(S) M1(S ∪ {θj})

Md−|S|(S)[−1] Md−|S|(S) Md−|S|(S ∪ {θj}) 0.

δ

·θj

·θj

Proof. As in the proof of Lemma 3.1, denote

N (S) :=
k[∆]/S

M0(S)
.

Once more, the Krull dimension of N (S) is positive since S ( Θ. Furthermore, the depth of N (S) is
positive because H0

m
(N (S)) = 0 and m ·N (S) 6= N (S), and so we may assume by the genericity of Θ that

θj is a non-zero-divisor on N (S). Hence, there is a short exact sequence of the form

0 → N (S)[−1]
·θj
−−→

k[∆]/S

θj · (M0(S)[−1])
→ k[∆]/(S ∪ {θj}) → 0,

inducing a long exact sequence in local cohomology of the form

H0
m
(N (S))[−1] H0

m

(
k[∆]/S

θj ·(M0(S)[−1])

)
M0(S ∪ {θj})

H1
m
(N (S))[−1] H1

m

(
k[∆]/S

θj ·(M0(S)[−1])

)
M1(S ∪ {θj})

H
d−|S|
m (N (S))[−1] H

d−|S|
m

(
k[∆]/S

θj ·(M0(S)[−1])

)
Md−|S|(S ∪ {θj}).

·θj

δ

·θj

·θj

(3.1)
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Since M0(S) ⊂ k[∆]/S is an Artinian submodule, Hi
m
(N (S)) ∼= Mi(S) for i > 0. Thus, we can replace

both Hi
m
(N (S)) and Hi

m

(
k[∆]/S

θj(·M0(S)[−1])

)
with Mi(S) for i > 0 in this sequence. Furthermore, the first

term, H0
m
(N (S)), is zero, and thus it only remains to show that the natural map

M0(S)

θj · (M0(S)[−1])
→ M0(S ∪ {θj})

is an injection. For this step, consider the short exact sequence

0 → θj · (M
0(S)[−1]) → k[∆]/S →

k[∆]/S

θj · (M0(S)[−1])
→ 0

where the maps involved are the inclusion and projection. Since H1
m
(θj · (M0(S)[−1])) = 0, the induced

long exact sequence in local cohomology begins with

0 → H0
m
(θj · (M

0(S)[−1])) → M0(S) → H0
m

(
k[∆]/S

θj · (M0(S)[−1])

)
→ 0.

However, H0
m
(θj · (M0(S)[−1])) = θj · (M0(S)[−1]), and thus we obtain the natural isomorphism

M0(S)

θj · (M0(S)[−1])
∼= H0

m

(
k[∆]/S

θj · (M0(S)[−1])

)
.

By replacing the appropriate term in the long exact sequence (3.1), the statement of the lemma follows.

Unfortunately, we cannot use trivial module structure to directly split the long exact sequence above
into a series of short exact ones as in the Buchsbaum case. However, we can still use the standard implied
short exact sequences to allow for further analysis of the kernels that we need to study. These sequences
are shown in the following lemma, which follows immediately from Lemma 3.3 and the definitions.

Lemma 3.4. Let S ⊂ Θ be such that θj1 , θj2 ∈ ΘrS and θj1 6= θj2 . Then for any i, there is a commutative
diagram with exact rows of the form

0 CKi(S, θj1) Mi(S ∪ {θj1}) Ki+1(S, θj1 )[−1] 0

0 CKi(S, θj1)[1] Mi(S ∪ {θj1})[1] Ki+1(S, θj1 ) 0.

·θj2 ·θj2 ·θj2

The next proposition is the first example of reducing statements about Mi(j) for varying i and j to
statements about Mi+j(∅), whose structure is well-understood through Gräbe’s theorem.

Proposition 3.5. Let ∆ be a (d − 1)-dimensional simplicial complex and let θ1, . . . , θd be a generic
l.s.o.p. for k[∆]. Then for all i and j, there exists a submodule Bi(j) of Ki(j) that satisfies the following
three conditions:

(i) There is a natural isomorphism
(
Ki(j)

Bi(j)

)

≥j−2

∼= Li+j−1
j [1− j].

(ii) Bi(j) is concentrated in degree j − 2. In particular, Bi(j) has trivial module structure.

(iii) The dimension of Bi(j) as a vector space over k in degree j − 2 is

D
(
Bi(j)j−2

)
=

j−1∑

p=1

D
[
Coker ·θp : Li+j−2

p−1 → Mi+j−2(∅)0
]
.

8



Proof. The proof will proceed by induction on j. For the inductive step, we will need to establish both
base cases j = 1 and j = 2. For j = 1, taking Bi(1) = {0} satisfies all three conditions of the proposition,
as the sum in part (iii) is empty and (Ki(1))≥−1 = Li

1.
For the j = 2 case, let Bi(2) = CKi(1)0. This choice immediately satisfies condition (ii) since CKi(1)0

is concentrated in a single degree, and the equality

CKi(1)0 = Coker ·θ1 : Li
0 → Mi

0

demonstrates that it also satisfies condition (iii). For condition (i), the commutative diagram (with exact
rows) guaranteed by Lemma 3.4 can be truncated and written in the following form:

0 CKi(1)0 Mi(1)≥0 Li+1
1 [−1] 0

0 0 Mi(1)[1]0 Mi+1(∅)0 0.

·θ2 ·θ2 ·θ2

Applying the snake lemma to this diagram results in the short exact sequence

0 → CKi(1)0 → Ki(2)≥0 → Ker(·θ2 : Li+1
1 [−1] → Mi+1(∅)0) → 0,

so (
Ki(2)

Bi(2)

)

≥0

=

(
Ki(2)

CKi(1)

)

≥0

∼= Ker(·θ2 : Li+1
1 [−1] → Mi+1(∅)0).

Finally, note that this rightmost term is nothing more than Li+1
2 [−1], establishing the j = 2 case.

Now suppose that j ≥ 2 and that Ki(ℓ) contains a submodule Bi(ℓ) satisfying the properties of the
proposition for all i and all ℓ ≤ j. As in the j = 2 case, the main tool will be the truncated version of the
diagram from Lemma 3.4, with exact rows:

0 CKi(j)j−1 Mi(j)≥j−1 Ki+1(j)[−1]≥j−1 0

0 0 Mi(j)[1]j−1 Mi+1(j − 1)j−1 0.

·θj+1 ·θj+1 ·θj+1

Once more, the snake lemma implies the existence of a natural isomorphism

ϕ :

(
Ki(j + 1)

CKi(j)

)

≥j−1

∼
−→ Ker

(
·θj+1 : Ki+1(j)[−1]≥j−1 → Mi+1(j − 1)j−1

)
. (3.2)

By the inductive hypothesis, there exists a submodule Bi+1(j) ⊂ Ki+1(j)≥j−2 satisfying the properties of
the proposition. In particular,

(
Ki+1(j)

Bi+1(j)
[−1]

)

≥j−1

∼= Li+j
j [1− (j + 1)].

Now define
Bi(j + 1) := CKi(j)j−1 + ϕ−1(Bi+1(j)[−1]).

It is immediate that Bi(j + 1) satisfies property (ii) of the proposition. Furthermore, taking the quotient
of both sides of (3.2) produces an isomorphism

(
Ki(j + 1)

Bi(j + 1)

)

≥(j+1)−2

∼= Ker(·θj+1 : Li+j
j [1− (j + 1)] → Mi+j(∅)[1− (j + 1)]).
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Since this kernel is just L
i+(j+1)−1
j+1 [1 − (j + 1)], property (i) of the proposition has been established. It

remains to calculate D
(
Bi(j + 1)j−1

)
and establish property (iii).

By assumption, we immediately have

D
(
ϕ−1(Bi+1(j)[−1])j−1

)
=

j−1∑

p=1

D
[
Coker ·θp : L

i+(j+1)−2
p−1 → Mi+(j+1)−2(∅)0

]
. (3.3)

Thus, it remains to calculate the dimension of CKi(j)j−1. For this, once again consider the commutative
diagram with exact rows

0 CKi(j − 1)j−2 Mi(j − 1)≥j−2 Ki+1(j − 1)[−1]≥j−2 0

0 0 Mi(j − 1)[1]j−2 Mi+1(j − 2)j−2 0.

·θj ·θj ·θj

In this case, the snake lemma provides an immediate isomorphism

CKi(j)j−1
∼= (Coker ·θj : K

i+1(j − 1)[−1]≥j−2 → Mi+1(j − 2)j−2). (3.4)

Applying our inductive hypothesis once more provides a submodule Bi+1(j − 1) ⊂ Ki+1(j − 1) such that

(
Ki+1(j − 1)

Bi+1(j − 1)

)

≥j−3

∼= Li+j−1
j−1 [2− j].

Furthermore, since Bi+1(j − 1) has trivial module structure, the map ·θj descends to the quotient and we
obtain the next commutative diagram in which the horizontal maps are isomorphisms:

(
Ki+1(j−1)
Bi+1(j−1)

)
[−1]≥j−2 Li+j−1

j−1 [−(j − 1)]

Mi+1(j − 2))j−2 Mi+j−1(∅)[−(j − 2)]j−2.

·θj ·θj

Finally, the cokernel we are interested in from equation (3.4) is unaffected by taking the quotient. That
is, CKi(j)j−1 is isomorphic to the cokernel of the left vertical map above, and thus the diagram implies
that

CKi(j)j−1
∼= (Coker ·θj : L

i+(j+1)−2
j−1 [−(j − 1)] → Mi+(j+1)−2(∅)[−(j − 2)]).

This, combined with (3.3), shows that Bi(j + 1) also has the appropriate dimension (property (iii)),
completing the proof.

The calculations in the above proposition allow for us to further rephrase properties of successive
quotients in our Hilbert series calculations back to statements about submodules of Mj(∅). At this point,
we can revert these dimensions back to the relevant Betti numbers of links of certain faces.

Corollary 3.6. If ∆ is a (d− 1)-dimensional simplicial complex, then

D
(
Ki(j)j−2

)
= (j − 1)β̃i+j−3(∆) +D

(
(Li+j−1

j )−1

)
+D

(
(Li+j−2

j−1 )−1

)
−
∑

v∈V

βi+j−3(∆, cost∆ v).

for all i and j = 1, . . . , d.
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Proof. Since
Li
j = Ker · θj : L

i
j−1 → Mi(∅)0,

we can write

D
[
Coker ·θp : Li+j−2

p−1 → Mi+j−2(∅)0
]
= D(Mi+j−2(∅)0)−D

[
Im ·θp : Li+j−2

p−1 → Mi+j−2(∅)0
]

= D(Mi+j−2(∅)0)−
[
D
(
(Li+j−2

p−1 )−1

)
−D

(
(Li+j−2

p )−1

)]

= β̃i+j−3(∆) +D
(
(Li+j−2

p )−1

)
−D

(
(Li+j−2

p−1 )−1

)
.

Hence,

j−1∑

p=1

D
[
Coker ·θp : Li+j−2

p−1 → Mi+j−2(∅)0
]
=

j−1∑

p=1

(
β̃i+j−3(∆) +D

(
(Li+j−2

p )−1

)
−D

(
(Li+j−2

p−1 )−1

))

= (j − 1)β̃i+j−3(∆) +D
(
(Li+j−2

j−1 )−1

)
−D

(
(Li+j−2

∅ )−1)
)

= (j − 1)β̃i+j−3(∆) +D
(
(Li+j−2

j−1 )−1

)
−D

(
Mi+j−2(∅)−1

)

= (j − 1)β̃i+j−3(∆) +D
(
(Li+j−2

j−1 )−1

)
−
∑

v∈V

βi+j−3(∆, cost∆ v).

Combining the above equation with Proposition 3.5 and the equation

D
(
Ki(j)j−2

)
= D

(
Bi(j)j−2

)
+D

((
Ki(j)

Bi(j)

)

j−2

)

completes the proof.

Theorem 3.7. If ∆ is a (d− 1)-dimensional simplicial complex, then

ha

d−1(∆)− hd−1(∆) = D
(
(Ld−1

d )−1

)
+ (−1)d−1

∑

F∈∆

(
d− |F |

d− 1

)
χ̃d−3−|F |(lk∆ F ).

Proof. By Lemma 3.2, ha

d−1(∆)− hd−1(∆) is the coefficient on td−1 of the polynomial

d∑

j=1

(1 − t)d−jtHilb(K0(j), t),

so that

ha

d−1(∆)− hd−1(∆) =

d∑

j=1

[(
d− j

d− j − 1

)
(−1)d−j−1D

(
K0(j)j−1

)
+ (−1)d−jD

(
K0(j)j−2

)]
.

We will break this into two sums. First, since

K0(j)j−1 = M0(j − 1)j−1
∼= Mj−1(∅)0 ∼= H̃j−2(∆),

we obtain
d∑

j=1

(
d− j

d− j − 1

)
(−1)d−j−1D

(
K0(j)j−1

)
=

d−2∑

j=0

(d− j − 1)(−1)d−jβ̃j−1(∆).
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On the other hand, by Corollary 3.6,

D
(
K0(j)j−2

)
= (j − 1)β̃j−3(∆) +D

(
(Lj−1

j )−1

)
+D

(
(Lj−2

j−1)−1

)
−
∑

v∈V

βj−3(∆, cost∆ v).

Thus,

d∑

j=1

(−1)d−jD
(
K0(j)j−2

)

=

d∑

j=1

(−1)d−j

[
(j − 1)β̃j−3(∆) +D

(
(Lj−1

j )−1

)
+D

(
(Lj−2

j−1)−1

)
−
∑

v∈V

βj−3(∆, cost∆ v)

]

= D
(
(Ld−1

d )−1

)
+

d−2∑

j=0

(−1)d−j

[
(j + 1)β̃j−1(∆)−

∑

v∈V

βj−1(∆, cost∆ v)

]
.

Combining the two parts together shows that

ha

d−1(∆) − hd−1(∆) = D
(
(Ld−1

d )−1

)
+

d−2∑

j=0

(−1)d−j

[
dβ̃j−1(∆) −

∑

v∈V

βj−1(∆, cost∆ v)

]
,

and re-writing this expression using the truncated Euler characteristic and equation (2.1) results in the
statement of the theorem.

3.2 Sigma submodules

We will begin this subsection with two lemmas detailing the content and structure of the sigma submodule.
First, given S ( Θ and θj 6∈ S, let ϕj and πj be the connecting homomorphism and the map induced by
the projection, respectively, in the long exact sequence

· · · → Mi(S)
·θj
−−→ Mi(S)

πj

−→ Mi(S ∪ {θj}))
ϕj

−→ Mi+1(S) → · · ·

provided by Lemma 3.3. We also must introduce two final abbreviations

Θ̂i := (θ1, . . . , θi−1, θi+1, . . . , θd)

and
Θ̂i,j := (θ1, . . . , θi−1, θi+1, . . . , θj−1, θj+1, . . . , θd).

Lemma 3.8. If Θ is a generic linear system of parameters for k[∆] and m ∈ Σ(Θ;k[∆])/Θ, then m ∈
πi(M0(Θ̂i)) for some i.

Proof. Assume that m 6= 0. First note that M0(Θ) = k[∆]/Θ, since k[∆]/Θ is finite-dimensional. By
assumption, m satisfies m ∈ (Θ̂i) : θi for some i, while m 6∈ (Θ̂i). Hence, there exists n ∈ k[∆]/Θ̂i such
that πi(n) = m. Furthermore,

n ∈ Ker(·θi : k[∆]/Θ̂i → k[∆]/Θ̂i).

But by Lemma 3.1, this means that n ∈ K0(Θ̂i, θi). In particular, n ∈ M0(Θ̂i), and hence m ∈
πi(M0(Θ̂i)).

Lemma 3.9. If Θ = (θ1, . . . , θd) is a generic linear system of parameters for k[∆], then

πi(M
0(Θ̂i))d−1 ∩ πj(M

0(Θ̂j))d−1 = {0}

for i 6= j.
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Proof. Suppose that m ∈ M0(Θ̂i) and n ∈ M0(Θ̂j) satisfy πi(m) = πj(n), and consider the diagram

M0(Θ̂j)d−1 M0(Θ)d−1

M1(Θ̂i,j)d−2 M1(Θ̂i)d−2,

ϕi

πj

ϕi

πj

which commutes by [MNY17, Appendix]. Since (ϕi ◦ πi)(m) = 0 and πi(m) = πj(n), it must be that

(ϕi ◦ πj)(n) = 0. Then by commutativity, (πj ◦ ϕi)(n) = 0. However, ϕi : M0(Θ̂j) → M1(Θ̂i,j)[−1] is an
isomorphism in degree d− 1, and hence ϕi(n) 6= 0. Since

Ker
[
πj : M

1(Θ̂i,j)d−2 → M1(Θ̂i)d−2

]
= Im

[
·θj : M

1(Θ̂i,j)d−3 → M1(Θ̂i,j)d−2

]
,

this implies that ϕi(n) = θj · q for some q ∈ M1(Θ̂i,j)d−3. That is, θj · q is mapped to zero under the
projection

M1(Θ̂i,j) → CK1(Θ̂i,j , θj).

However, CK1(Θ̂i,j , θj)d−2 is naturally isomorphic to CK0(Θ̂j , θj)d−1 via the descent of ϕi. Hence, n = 0

in CK0(Θ̂j , θj)d−1 as well. Since πj factors through the projection

M0(Θ̂j)d−1 → CK0(Θ̂j , θj)d−1,

we have that πj(n) = 0.

With these lemmas in place, we can now move on to proving the main result.

Theorem 3.10. If ∆ is a (d− 1)-dimensional simplicial complex, then

hs

d−1(∆) = hd−1(∆) + (−1)d−1
∑

F∈∆

(
d− |F |

d− 1

)
χ̃d−2−|F |(lk∆ F ).

Proof. First note that since m · M0(Θ̂i)d−1 = 0, it must be that πi(M0(Θ̂i))d−1 ⊆
(

Σ(Θ;k[∆])
Θ

)

d−1
for all

i. Combining this with Lemmas 3.8 and 3.9,

(
Σ(Θ;k[∆])

Θ

)

d−1

∼=

d⊕

i=1

πi(M
0(Θ̂i))d−1.

Moreover, as noted in the previous proof, πi factors through the projection to produce an injection

M0(Θ̂i)d−1 → CK0(Θ̂i, θi)d−1 →֒ M0(Θ)d−1.

Now combining this with the dimension calculation of CK0(Θ̂i, θi)d−1 in Proposition 3.5 along with the
generic assumption on Θ, we obtain

D

(
Σ(Θ;k[∆])

Θ

)

d−1

= d · D
[
Coker ·θi : L

d−1
d → Md−1(∅)

]

for any i. Once more, since Ld−1
d = Ker

[
·θd : Ld−1

d−1 → Md−1(∅)
]
, this can be re-written as

D

(
Σ(Θ;k[∆])

Θ

)

d−1

= d ·
[
β̃d−2(∆) +D

(
(Ld−1

d )−1

)
−D

(
(Ld−1

d−1)−1

)]
.
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Now consider the maps

fi : M
d−1(∅)−1 →

i⊕

j=1

Md−1(∅)0

defined componentwise by fi(m) = (θ1 ·m, θ2 ·m, . . . , θi ·m). Then Kerfi = (Ld−1
i )−1, so we obtain

D
(
(Ld−1

i )−1

)
= D(Kerfi) = D

(
Md−1(∅)−1

)
−

i∑

j=1

D
[
Im ·θj : M

d−1(∅)−1 → Md−1(∅)0
]
. (3.5)

In particular,

D
(
(Ld−1

d )−1

)
−D

(
(Ld−1

d−1)−1

)
= D

[
Im ·θd : Md−1(∅)−1 → Md−1(∅)0

]
,

so

D

(
Σ(Θ;k[∆])

Θ

)

d−1

= d · β̃d−2(∆) + d · D
[
Im ·θd : Md−1(∅)−1 → Md−1(∅)0

]
.

Combining this equality with Theorem 3.7 yields

D

(
k[∆]

Σ(Θ;k[∆])

)

d−1

= D

(
k[∆]

Θ

)

d−1

−D

(
Σ(Θ;k[∆])

Θ

)

d−1

= hd−1(∆) +D
(
(Ld−1

d )−1

)
+ (−1)d−1

∑

F∈∆

(
d− |F |

d− 1

)
χ̃d−3−|F |(lk∆ F )

−
(
d · β̃d−2(∆) + d · D

[
Im ·θd : Md−1(∅)−1 → Md−1(∅)0

])
.

Now using (3.5) and appealing once more to the genericity of Θ, from which it follows that

D
[
Im ·θd : Md−1(∅)−1 → Md−1(∅)0

]
= D

[
Im ·θi : M

d−1(∅)−1 → Md−1(∅)0
]

for all i, we obtain

D

(
k[∆]

Σ(Θ;k[∆])

)

d−1

= hd−1(∆) + (−1)d−1
∑

F∈∆

(
d− |F |

d− 1

)
χ̃d−3−|F |(lk∆ F )

+ D
(
Md−1(∅)−1

)
− d · β̃d−2(∆)

= hd−1(∆) + (−1)d−1
∑

F∈∆

(
d− |F |

d− 1

)
χ̃d−2−|F |(lk∆ F ).

4 An application to suspensions of Buchsbaum complexes

A (d−1)-dimensional complex ∆ is said to have isolated singularities if β̃i(lk∆ F ) = 0 for all i < d−1−|F |
and all faces F ∈ ∆ with |F | ≥ 2 while failing this condition for at least one face F with |F | = 1. As
stated in Section 1, algebraic h-vectors of complexes with isolated singularities have been studied in some
depth in [MNS10] and [NS12]. However, those computations depended upon a further assumption that
the singularities of ∆ are homologically isolated, stipulating that images of inclusion maps of the form

Hi(∆, cost∆ v) → Hi(∆, cost∆ ∅)

across singular vertices v have trivial intersection for i < d − 1. It turns out that in this case, [NS12,
Lemma 4.3] shows that quotienting k[∆] only by (θ1) results in a Buchsbaum A-module, allowing for an
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easy resumption of Schenzel’s classic techniques on further quotients to compute the algebraic h-vector (in
fact, this is an equivalent characterization of homological isolation of singularities, see [Saw17, Proposition
4.5]).

When singularities are not homologically isolated, the situation has the potential to become much more
complex. In particular, even the simple case of ∆ being a triangulation of the suspension of a manifold
that is not a sphere, not much has previously been written about ha(∆). In this section we will use the
methods of Section 3 to calculate the ha-vector for such a complex.

Let ∆ be a triangulation of the suspension of (the geometric realization of) a Buchsbaum complex
that is not Cohen–Macaulay. It turns out to be relatively straightforward to calculate the structure and
dimensions of Mi(j) for arbitrary j, as [Saw17, Section 3.2] shows that

Mi(2)j ∼=

{
H̃i(∆) j = 0

H̃i+1(∆) j = 2.
(4.1)

Given that Mi(2) is concentrated in degrees 0 and 2, it has trivial module structure. Hence, the same is
seen to be true of Mi(j) for all j ≥ 2 by recursively applying Lemma 3.4, and

Mi(j + 1) ∼= Mi(j)
⊕(

Mi+1(j)[−1]
)

for j ≥ 2. Then

M0(j) ∼=

j−2⊕

i=0



⊕

(j−2

i )

Mi(2)[−i]


 ,

and in consideration of (4.1),

D
(
M0(j)i

)
=

(
j − 2

i

)
β̃i(∆) +

(
j − 2

i− 2

)
β̃i−1(∆) (4.2)

for j ≥ 2. The technique of Section 3 can now be applied to calculate the full ha-vector for a complex of
this type.

Theorem 4.1. Let ∆ be a triangulation of the suspension of (the geometric realization of) a Buchsbaum
complex, and suppose that ∆ is of dimension d− 1. Then

ha

i (∆) − hi(∆) = (−1)i
[(

d− 2

i− 2

)
χ̃i−2(∆)−

(
d− 2

i

)
χ̃i−1(∆)

]

for i = 0, . . . , d.

Proof. Since Mi(j) has trivial module structure for j ≥ 2 from the above comments,

K0(j) = M0(j − 1)

for j ≥ 3. Also, since ∆ triangulates a suspension, it is connected. Thus, the depth of k[∆] is at least 2
(see [Hib91, Corollary 2.6]), so K0(1) = K0(2) = 0 and, by Lemma 3.2,

Hilb(k[∆]/Θ, t) =

d∑

i=0

hi(∆)ti +

d∑

j=1

(1 − t)d−jtHilb(K0(j), t)

=
d∑

i=0

hi(∆)ti +
d∑

j=1

[
(1− t)d−jt

∑

k

tk
((

j − 3

k

)
β̃k(∆) +

(
j − 3

k − 2

)
β̃k−1(∆)

)]
.
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Hence, ha

i+1(∆) − hi+1(∆) is equal to the coefficient on ti+1 of the polynomial formed in the second
summation above. Equivalently, considering the factor of t in all terms of this sum, this ti+1 coefficient is
the same as the coefficient on ti of the polynomial

d∑

j=1

[
(1 − t)d−j

∑

k

tk
((

j − 3

k

)
β̃k(∆) +

(
j − 3

k − 2

)
β̃k−1(∆)

)]
,

which is the same as

d∑

j=1

[
∑

k+ℓ=i

(−1)ℓ
(
d− j

ℓ

)((
j − 3

k

)
β̃k(∆) +

(
j − 3

k − 2

)
β̃k−1(∆)

)]

=

d∑

j=1

[
i∑

k=0

(−1)i−k

(
d− j

i− k

)((
j − 3

k

)
β̃k(∆) +

(
j − 3

k − 2

)
β̃k−1(∆)

)]
.

This can now be broken into two sums. For the “β̃k(∆)” terms,

d∑

j=1

[
i∑

k=0

(−1)i−k

(
d− j

i− k

)(
j − 3

k

)
β̃k(∆)

]
=

i∑

k=0

(−1)i−kβ̃k(∆)




d∑

j=1

(
d− j

i− k

)(
j − 3

k

)



=

i∑

k=0

(−1)i−kβ̃k(∆)

(
d− 2

i+ 1

)
.

Similarly, the “β̃k−1(∆)” terms can be written as

d∑

j=1

[
i∑

k=0

(−1)i−k

(
d− j

i− k

)(
j − 3

k − 2

)
β̃k−1(∆)

]
=

i∑

k=0

(−1)i−kβ̃k−1(∆)




d∑

j=1

(
d− j

i− k

)(
j − 3

k − 2

)


=

i∑

k=0

(−1)i−kβ̃k−1(∆)

(
d− 2

i− 1

)
.

Thus,

ha

i+1(∆) − hi+1(∆) = (−1)i+1

(
d− 2

i− 1

)
χ̃i−2(∆) + (−1)i

(
d− 2

i+ 1

)
χ̃i(∆).

A straightforward calculation shows that if ∆ is the direct suspension of a (d−2)-dimensional complex
Γ, then

hi(∆) = hi(Γ) + hi−1(Γ) (4.3)

for i = 0, . . . , d. With this combinatorial relationship in mind, it is worth examining which relationships
may exist between between the ha-vectors of a Buchsbaum complex and its suspension now that Theorem
4.1 can produce the ha-vector of the suspension, resulting in the next corollary.

Corollary 4.2. Let Γ be a (d − 2)-dimensional Buchsbaum complex, and let ∆ be the suspension of Γ.
Then

ha

i (∆) = ha

i (Γ) + ha

i−1(Γ)−

(
d− 2

i− 1

)
β̃i−2(Γ)

for i = 0, . . . , d.

16



Proof. Since β̃j(∆) = β̃j−1(Γ) for all j, a shift in index on one of the sums in Theorem 4.1 provides the
equation

ha

i (∆) = hi(∆) +

(
d− 2

i− 2

) i−2∑

j=0

(−1)i−j β̃j−1(Γ) +

(
d− 2

i

) i−1∑

j=0

(−1)i−j−1β̃j−1(Γ).

On the other hand, Schenzel’s Theorem 1.2 tells us that

ha

i (Γ) = hi(Γ) +

(
d− 1

i

) i−1∑

j=0

(−1)i−j−1β̃j−1(Γ).

Then using (4.3),
[
ha

i (Γ) + ha

i−1(Γ)
]
− ha

i (∆)

=

[(
d− 1

i

)
−

(
d− 2

i

)] i−1∑

j=0

(−1)i−j−1β̃j−1(Γ) +

[(
d− 1

i− 1

)
−

(
d− 2

i− 2

)] i−2∑

j=0

(−1)i−j β̃j−1(Γ)

=

(
d− 2

i− 1

) i−1∑

j=0

(−1)i−j−1β̃j−1(Γ) +

(
d− 2

i − 1

) i−2∑

j=0

(−1)i−j β̃j−1(Γ)

=

(
d− 2

i− 1

)
β̃i−2(Γ)

5 Further comments and possible extensions

As the optimistic title of this paper suggests, we are hopeful that the current results can be further
generalized and utilized to great effect. There are two principal avenues which we wish to investigate in
the future.

5.1 Lower entries in h
s(∆)

Thus far we have only dealt with the specific case of hs

d−1(∆) afforded by the relatively nice description of
local cohomology modules in special degrees stated in Proposition 3.5. The fact that so many of the terms
involved “collapsed” in such a spectacular fashion during the calculations in the proofs of Theorems 3.7
and 3.10 has allowed for us to be very hopeful that these methods may be pushed further to accommodate
a description of hs

i (∆) for all values of i. In particular, a natural extension of Theorem 3.10 provides the
following conjecture.

Conjecture 5.1. If ∆ is a (d − 1)-dimensional simplicial complex and Θ = θ1, . . . , θd is a generic
l.s.o.p for k[∆], then there exists a submodule τ(Θ;k[∆]) ⊂ k[∆] such that

dim
k

(
k[∆]

τ(Θ;k[∆])

)

i

= hi(∆) + (−1)i
∑

F∈∆

(
d− |F |

i

)
χ̃i−1−|F |(lk∆ F ).

Furthermore, in the case that ∆ is Buchsbaum, τ(Θ;k[∆]) = Σ(Θ;k[∆]).

An obvious candidate for the submodule τ(Θ;k[∆]) in the above conjecture would be Σ(Θ;k[∆]), but
it is very possible that a different choice may turn out to be more meaningful and produce the conjectured
equality. As seen in the discussion leading up to Theorem 3.10, the sigma submodule satisfies

Σ(Θ;k[∆])/Θ =

d∑

j=1

πj

(
K0(Θ̂j , θj)

)
.
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While the sigma submodule has been well-studied, it seems unnecessary to restrict ourselves to this
submodule in particular when studying Hilbert series of reductions of Stanley–Reisner rings. Indeed, it
seems very natural to instead consider the submodule

τ(Θ;k[∆]) =
d∑

j=1

πj

(
M0(Θ̂j)

)
.

Note that in the calculations of Σ(Θ;k[∆])i that currently exist (those being the Buchsbaum case in
[MNY17] and the i = d− 1 case in this paper), trivial module structure has ensured that

τ(Θ;k[∆])i = Σ(Θ;k[∆])i

in the relevant degrees. However, this may not be true in greater generality. Furthermore, the proof
techniques used in this paper suggest that computing the dimensions of graded pieces of the suggested
τ(Θ;k[∆]) may be more approachable than computing those of Σ(Θ;k[∆]) to begin with.

5.2 Symmetries in h
s(∆)

The following result concerning homology manifolds elegantly combines the algebraic computations of
hs(∆), Poincaré duality, and Klee’s combinatorial Dehn-Sommerville relations found in [Grä87].

Theorem 5.2. [MN17, Proposition 1.1] Let ∆ be a connected (d − 1)-dimensional orientable homology
manifold. Then

hs

i (∆) = hs

d−i(∆)

for all 0 ≤ i ≤ d.

In a forthcoming paper of Sawaske and Xue, Klee’s relations have been greatly generalized to account
for all pure simplicial complexes through the following theorem (here Si denotes a sphere of dimension i).

Theorem 5.3. Let ∆ be a pure (d− 1)-dimensional simplicial complex. Then

hd−j(∆)− hj(∆) = (−1)j
∑

F∈∆

(
d− |F |

j

)(
χ̃(lk∆ F )− χ̃(Sd−1−|F |)

)

for j = 0, . . . , d.

We are hopeful that combining these relations with a full computation of hs(∆) will allow for some
version of symmetry to hold in analogy with Theorem 5.2. Already with the case covered in this paper,
such symmetry can be stated as follows.

Corollary 5.4. Let ∆ be a pure and connected (d− 1)-dimensional simplicial complex, and assume that
the link of each vertex of ∆ is connected as well. Then

hs

1(∆)− hs

d−1(∆) = (−1)d−1
∑

F∈∆

(
d− |F |

d− 1

)(
βd−1−|F |(lk∆ F )− β0(lk∆(F ))

)
.

Hence, the discrepancy between hs

1(∆) and hs

d−1(∆) measures the discrepancy in ∆ satisfying Poincaré
duality in the top and bottom dimensions. In fact, if ∆ is also normal, then the use of intersection homology
theory, in particular [GM80][Theorem, Section 4.3], shows that this difference equivalently measures the
accuracy of intersection homology.

Corollary 5.5. Let ∆ be a pure, normal, and connected (d − 1)-dimensional simplicial complex, and
assume that the link of each vertex of ∆ is normal and connected as well. Then

hs

1(∆)− hs

d−1(∆) = (−1)d−1
∑

F∈∆

(
d− |F |

d− 1

)(
D(IH0

0 (lk∆ F ))− β0(lk∆(F ))
)
.
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matics. Birkhäuser Boston, Inc., Boston, MA, second edition, 1996.

[TWW95] Tiong-Seng Tay, Neil White, and Walter Whiteley. Skeletal rigidity of simplicial complexes. I.
European J. Combin., 16(4):381–403, 1995.

19


	1 Introduction
	2 Preliminaries
	2.1 Combinatorics
	2.2 Topology
	2.3 Algebra

	3 Algebraic h-vectors
	3.1 Calculating hd-1a()-hd-1()
	3.2 Sigma submodules

	4 An application to suspensions of Buchsbaum complexes
	5 Further comments and possible extensions
	5.1 Lower entries in hs()
	5.2 Symmetries in hs()


