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Extending a word property for twisted Coxeter

systems

Eric Marberg

Abstract

We prove two extensions of Hansson and Hultman’s word property for

certain analogues of reduced words associated to twisted involutions in

Coxeter groups. Our first extension concerns the superset of such words

in which terms with a natural commutativity property may be optionally

primed. Our other extension involves variants of these words in which a

defining minimal length condition is relaxed. In type A the sets considered

are closely related to generating functions for Schur Q-functions and K-

theoretic Schur P -functions.

1 Introduction

Let (W,S) be a Coxeter system. A reduced word for an element w ∈ W is a
minimal length sequence (s1, s2, . . . , sn) with si ∈ S and w = s1s2 · · · sn. We
write R(w) for the set of all reduced words for w.

For any s, t ∈ S let m(s, t) denote the order of the product st ∈ W . For
each s, t ∈ S with 2 ≤ m(s, t) < ∞ there is an associated braid relation on finite
sequences of simple generators, which we write as

( — , s, t, s, t, . . .
︸ ︷︷ ︸

m(s,t) factors

, — ) ∼ ( — , t, s, t, s, . . .
︸ ︷︷ ︸

m(s,t) factors

, — ). (1.1)

Here and in similar expressions, the corresponding symbols “ — ” on either side
of ∼ are required to mask identical subsequences. It is a well-known result of
Matsumoto [23] and Tits [26] that the braid relations (1.1) span and preserve
each set R(w) for w ∈ W ; see [1, Thm 3.3.1] for a proof. This is sometimes
called the word property for Coxeter groups.

This article is concerned with similar word properties for variants of the
following construction. Let w 7→ w∗ be a self-inverse group automorphism of W
that preserves S, that is, an involution of the associated Coxeter graph. We refer
to (W,S, ∗) as a twisted Coxeter system. Suppose a = (s1, s2 · · · , sn) is a reduced
word for an element of W . There is a unique subword (si1 , si2 , . . . , sim) of
maximal length such that â := (s∗im , . . . , s∗i2 , s

∗
i1
, s1, s2, . . . , sn) is also a reduced

word.
One can show that â is always a reduced word for an element of the set of

twisted involutions I∗(W ) := {w ∈ W : w−1 = w∗}. The sequence a is defined
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to be an involution word for z ∈ I∗(W ) if a is of minimal length such that
â ∈ R(z). Let Rinv,∗(z) be the set of involution words for z. Figure 1 shows an
example of this set when W is a finite symmetric group and ∗ 6= id. We will
review some more constructive definitions of Rinv,∗(z) in Section 2.1

Involution words have been studied previously in a few different forms. In
special cases they correspond to maximal chains in the weak order posets dis-
cussed in [2, 3]. They are the same (though sometimes written in the opposite
order) as the reduced S-expressions in [11, 15, 16], reduced I∗-expressions in
[12, 13, 14], and admissible sequences in [25].

The braid relations (1.1) preserve but usually do not span the set Rinv,∗(z).
For example, suppose s, t ∈ S are fixed by ∗ with 2 < m(s, t) < ∞. Then the
1 + ⌊ 1

2m(s, t)⌋ element sequences a = (s, t, s, . . . ) and b = (t, s, t, . . . ) are both
involution words for the longest element of the finite dihedral subgroup 〈s, t〉,
despite not being connected by any braid relations. Moreover, if an involution
word begins with a then replacing this initial subword with b produces another
involution word for the same element of I∗(W ).

Hu and Zhang show in [12] that these half-braid relations plus the usual
braid relations are sufficient to span Rinv,∗(z) in type A when ∗ is the identity
map. Hansson and Hultman [11] extend this result to arbitrary twisted Coxeter
systems as follows.

For each pair of involution words for the longest element of a finite ∗-invariant
parabolic subgroup of W , there is a corresponding initial relation preserving
Rinv,∗(z). Adding all such relations to the usual braid relations generates a
relation spanning every set Rinv,∗(z). However, this includes many extraneous
relations. In fact, Hansson and Hultman show in [11] that it is only necessary to
add initial relations derived from finite ∗-invariant parabolic subgroups of types
A3, BC3, D4, H3, and I2(n). These are precisely the finite Coxeter systems for
which the complement of the Coxeter graph is disconnected. For the precise
statement of Hansson and Hultman’s word property, see Section 2.

In this article we are interested in two generalizations of Rinv,∗(z). First,
we study the set of primed involution words R+

inv,∗(z), which may be described
as follows. Above, we associated to each reduced word a = (s1, s2, . . . , sn) a
“doubled” reduced word of the form â = (s∗im , . . . , s∗i2 , s

∗
i1
, s1, s2, . . . , sn). We

refer to the indices in {1, 2, . . . , n} \ {i1, i2, . . . , im} as the commutations in a.
Each element of R+

inv,∗(z) consists of an involution word for z paired with an
arbitrary set of its commutations; we think of this object as a sequence formed
by adding primes to certain letters in an involution word.

Next, we examine the set of (reduced) involution Hecke words Hred

inv,∗(z). This

is the set of reduced words for all elements w ∈ W satisfying (w−1)∗ ◦ w = z,
where ◦ : W × W → W is the Demazure product defined in Section 2. For
examples of R+

inv,∗(z) and Hred

inv,∗(z) see Figures 2 and 4.

Our main results, Theorems 5.4 and 6.4, give word properties for R+
inv,∗(z)

1An interesting but even less constructive definition, which holds whenever W is finite and
is conjectured in general [9, Conj. 4.2], is that Rinv,∗(z) consists of the reduced words for all
minimal length elements w ∈ W satisfying w∗z ≤ w in strong Bruhat order.
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and Hred

inv,∗(z) when (W,S, ∗) is an arbitrary twisted Coxeter system. The form
of both theorems is very similar to the main result of Hansson and Hultman [11].
In addition to a set of relevant substitutes for the braid relations (1.1), to get a
spanning relation one must add certain exceptional relations corresponding to
each finite ∗-invariant parabolic subgroups of type A3, BC3, D4, H3, or I2(n).
However, some work is required to extend the proofs in [11] to our cases of
interest.

To explain the motivation for these results, we specialize to type A with
∗ = id. Then reduced words and involution words may be identified with positive
integer sequences, while primed involution words become sequences of elements
from the set {1′ < 1 < 2′ < 2 < . . . }.

From an enumerative perspective, passing from involution words to primed
involution words is a fairly trivial extension, which just accounts for an extra
power of two factor appearing in some generalizations of Schubert polynomi-
als studied in [10, 27]. The dynamics of the relations connecting all words in
R+

inv,∗(z) for z = z−1 ∈ Sn, however, turn out to be much more complicated
than for the relations connecting Rinv,∗(z).

The article [21] and its sequel [22] construct certain crystals on the sets of
increasing factorizations of words in Rinv,∗(z) and R+

inv,∗(z), respectively. The
crystal operators for these structures are composed of the relations in Theo-
rems 5.4, and some proofs in [22] rely on the results in this article.

The crystals based on Rinv,∗(z) have characters that are sums of Schur P -
polynomials Pλ while the crystals based on R+

inv,∗(z) have characters that are
sums of Schur Q-polynomials Qλ. Although there is a simple identity Qλ =
2ℓ(λ)Pλ relating these functions, there is no easy way of deducing the main
theorems about the second family of crystals from the first (such as the fact
that up to isomorphism they are closed under tensor products).

The rest of this article is organized as follows. Section 2 reviews some pre-
liminaries while Section 4 contains a couple of general results about involution
words. Our extensions of Hansson and Hultman’s word property appear in
Sections 5 and 6. Sections 7 and 8 discuss a few applications of these results.
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2 Preliminaries

For the duration of the article (W,S, ∗) denotes a twisted Coxeter system with
length function ℓ : W → N.

There is a unique associative operation ◦ : W × W → W , often called
the Demazure product , satisfying v ◦ w = vw for all v, w ∈ W with ℓ(vw) =
ℓ(v) + ℓ(w) and s ◦ s = s for all s ∈ S. One way to derive this is to set as = 1
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and bs = 0 in [17, Thm. 7.1] and then notice that {Tw : w ∈ W} is a monoid
under multiplication; alternatively, see the discussion in [25, §3.10].

In terms of the ◦ operation, the set of reduced words R(w) for w ∈ W
consists of the minimal length sequences (s1, s2, . . . , sn) with si ∈ S and w =
s1 ◦ s2 ◦ · · · ◦ sn. An analogous way of defining an involution word for z ∈ W is
as a minimal length sequence (s1, s2, . . . , sn) with si ∈ S and

z = s∗n ◦ · · · ◦ s∗2 ◦ s
∗
1 ◦ s1 ◦ s2 ◦ · · · ◦ sn. (2.1)

This definition is equivalent to the one in the introduction. As ◦ is associative
with (u ◦ v)∗ = u∗ ◦ v∗ and (u ◦ v)−1 = v−1 ◦ u−1, an involution word for z is
just a reduced word for a minimal length element w ∈ W with z = (w−1)∗ ◦w.
If z is in the set of twisted involutions I∗(W ) := {w ∈ W : w−1 = w∗} then

s∗ ◦ z ◦ s =







z if ℓ(z) > ℓ(zs)

zs if ℓ(z) < ℓ(zs) and zs = s∗z

s∗zs if ℓ(z) < ℓ(zs) and zs 6= s∗z

(2.2)

for all s ∈ S by [15, Lem. 3.4]. It follows that I∗(W ) =
{
(w−1)∗ ◦ w : w ∈ W

}

so z ∈ W has an involution word if and only if z ∈ I∗(W ). We continue to write
Rinv,∗(z) for the set of all involution words for z ∈ I∗(W ); see Figure 1 for an
example.

Sometimes another equivalent definition of Rinv,∗(z) is used. Define a set of
underlined symbols S := {s : s ∈ S}. There is a unique right action of the free
monoid on S on the set I∗(W ) satisfying

zs =

{

zs if zs = s∗z

s∗zs otherwise
(2.3)

for z ∈ I∗(W ) and s ∈ S [11, Def. 2.1]. For this action, one has zss = z.
One can show that the involution words for z ∈ I∗(W ) are the minimal length
sequences (s1, s2, . . . , sn) with si ∈ S and z = 1s1s2 · · · sn [9, Cor. 2.6]. This
means involution words are the same as reduced S-expressions in [11, 15, 16].

We mention two other properties of these words, which we will often use
implicitly. Fix s ∈ S and z ∈ I∗(W ). Then z has an involution word ending in
s if and only if ℓ(zs) < ℓ(z) [15, Lem. 3.8]. It also follows from [15, Lem. 3.8]
that a sequence satisfying (2.1) belongs to Rinv,∗(z) if and only if the elements

s∗1 ◦ s1, s∗2 ◦ s
∗
1 ◦ s1 ◦ s2, s∗3 ◦ s

∗
2 ◦ s

∗
1 ◦ s1 ◦ s2 ◦ s3, . . .

are all distinct, in which case s∗i ◦ · · · ◦ s
∗
1 ◦ s1 ◦ · · · si = 1s1s2 · · · si for all i.

3 Hansson and Hultman’s relations

The definition above shows that Rinv,∗(z) is a union of sets of the form R(w)
for certain elements w ∈ W . Thus the braid relations (1.1) always preserve but
typically do not span the set Rinv,∗(z). Hansson and Hultman show in [11] that
one can connect Rinv,∗(z) by adding certain relations of the following kind.
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2123 1213

1231

3213

3231 2321 2312 2132

Figure 1: Involution words for the longest element z = (1, 4)(2, 3) in the sym-
metric group S4 relative to the unique Coxeter automorphism ∗ 6= id. Each ex-
pression abcd stands for (sa, sb, sc, sd) where si := (i, i+ 1) ∈ S4 and s∗i = s4−i.
The grey edges show all braid relations between these words while the colored
edges show all half-braid relations in the sense of Examples 3.2 and 3.3.

Definition 3.1. Choose J ⊂ S with J = J∗ such that WJ := 〈J〉 is finite.
Suppose (s1, s2, . . . , sn) and (t1, t2, . . . , tn) are involution words for the longest
element wJ

0 ∈ WJ . We refer to any relation of the form

(s1, s2, . . . , sn, — ) ∼ (t1, t2, . . . , tn, — ) (3.1)

as an initial relation, whose type is the isomorphism class of (WJ , J, ∗).

Unlike with the ordinary braid relations, words connected by initial relations
of the form (3.1) can only differ in their first n letters.

With one exception, we will only need to name the type of (WJ , J, ∗) when
WJ is finite and irreducible. In this case we denote the isomorphism class of
(WJ , J) either by Xn where X ∈ {A, BC, D, E, F, G, H} and |J | = n, or by I2(n)
in the case when |J | = 2 and |WJ | = 2n. We use the same symbol to indicate
the type of (WJ , J, ∗) when ∗ = id.

Example 3.2. The twisted subsystem (WJ , J, ∗) has type I2(n) if J = {s, t},
s∗ = s 6= t∗ = t, and m(s, t) = n. When n < ∞ there is one initial relation

(s, t, s, t, s, t, s, . . .
︸ ︷︷ ︸

1+⌊n/2⌋ factors

, — ) ∼ (t, s, t, s, t, s, t, . . .
︸ ︷︷ ︸

1+⌊n/2⌋ factors

, — ). (3.2)

This relation can be ignored when n = 2, which is the unique case when (WJ , J)
is reducible, since then it coincides with an ordinary braid relation.

We only require names for two types of systems (WJ , J, ∗) with ∗ 6= id:

Example 3.3. The twisted subsystem (WJ , J, ∗) has type
2
I2(n) if J = {s, t},

s∗ = t 6= t∗ = s, and m(s, t) = n. When n < ∞ there is one initial relation

(s, t, s, t, s, t, . . .
︸ ︷︷ ︸

⌈n/2⌉ factors

, — ) ∼ (t, s, t, s, t, s, . . .
︸ ︷︷ ︸

⌈n/2⌉ factors

, — ). (3.3)

This relation is meaningful even when n = 2, as then it lets us replace the single
letter s by t at the beginning of a word.

Following [11], we refer to (3.2) and (3.3) as half-braid relations .
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Example 3.4. The twisted subsystem (WJ , J, ∗) has type
2
An if we can write

J = {s1, s2, . . . , sn} where s∗i = sn+1−i for all i and where m(si, sj) is 3 if
|i− j| = 1 or 2 if |i− j| > 1. There are multiple initial relations of this type; in
rank n = 3 one such relation is (s2, s3, s1, s2, — ) ∼ (s2, s3, s2, s1, — ).

The following theorem extends earlier case-by-case results in [12, 13, 14, 18].

Theorem 3.5 ([11, Thm. 1.2]). Let z ∈ I∗(W ). Then Rinv,∗(z) is an equiva-
lence class under the transitive closure of the braid relations for (W,S) plus all
initial relations of type 2

A3, BC3, D4, H3, I2(n), or
2
I2(n) for 2 ≤ n < ∞.

Hansson and Hultman also prove a more explicit form of this result with a
minimal set of spanning relations [11, Thm. 4.1], similar to our Theorem 5.4.

4 Some general properties

This section contains two general propositions that slightly refine the main tech-
nical lemma in [11, §3.1].

Fix s, t ∈ S with m(s, t) < ∞ and let ∆ = w
{s,t}
0 be the longest element

of the finite dihedral subgroup W{s,t} = 〈s, t〉. Choose a map θ : {s, t} → W .
If θ({s, t}) = {s, t} then θ extends to a Coxeter involution of W{s,t} and we
define m(s, t; θ) to be the common length of all involution words in Rinv,θ(∆).
If θ({s, t}) 6= {s, t} then we set m(s, t; θ) := ℓ(∆) to be the common length of
all reduced words in R(∆). More explicitly one has [9, Prop. 7.7]

m(s, t; θ) :=







1
2m(s, t) + 1

2 if m(s, t) is odd and θ({s, t}) = {s, t}
1
2m(s, t) + 1 if m(s, t) is even, θ(s) = s, and θ(t) = t
1
2m(s, t) if m(s, t) is even, θ(s) = t, and θ(t) = s

m(s, t) otherwise.

(4.1)

For convenience we also set m(s, t; θ) := ∞ if s, t ∈ S and m(s, t) = ∞.
For z ∈ W let Ad∗z : W → W be the group automorphism w 7→ (zwz−1)∗.

The formula (4.1) has the following consequence.

Corollary 4.1. Let s, t ∈ S and z ∈ I∗(W ). Then m(s, t; Ad∗z) ≤ m(s, t), with
equality if and only if either m(s, t) ∈ {1,∞}, m(s, t) = 2 and zs 6= t∗z, or
m(s, t) ∈ {3, 4, 5, . . .} and {zs, zt} 6= {s∗z, t∗w}.

Denote the right descent set of w by DesR(w) := {s ∈ S : ℓ(ws) < ℓ(w)}.

Proposition 4.2. Suppose s, t ∈ S, y ∈ I∗(W ), and (r1, r2, . . . , rk) ∈ Rinv,∗(y).
Let n > 0 be an integer. Then the words

(r1, r2, . . . , rk, . . . , t, s, t, s
︸ ︷︷ ︸

n terms

) and (r1, r2, . . . , rk, . . . , s, t, s, t
︸ ︷︷ ︸

n terms

) (4.2)

both belong to Rinv,∗(z) for some z ∈ I∗(W ) if and only if {s, t}∩DesR(y) = ∅

and n = m(s, t; Ad∗
y), and in this case it holds that m(s, t; Ad∗y) = m(s, t; Ad∗z).
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Proof. Let w ∈ W . When m(s, t) < ∞, set ∆ := w
{s,t}
0 as above. It is well-

known that if {s, t} ⊂ DesR(w) then m(s, t) < ∞ and ℓ(w∆) = ℓ(w) − ℓ(∆),
while if {s, t} ∩ DesR(w) = ∅ and m(s, t) < ∞, then ℓ(w∆) = ℓ(w) + ℓ(∆) [7,
Lem. 1.2.1]. Taking inverses gives similar left-handed properties.

Assume that {s, t}∩DesR(y) = ∅ and n = m(s, t; Ad∗y) so that m(s, t) < ∞.
We first argue that the words in (4.2) belong to Rinv,∗(z) for some z ∈ I∗(W ).
Let θ = Ad∗y and note that yw = θ(w)∗y. If θ({s, t}) = {s, t}, then by using
the observations in the previous paragraph one can check that y∆ ∈ I∗(W ) and
that both words in (4.2) belong to Rinv,∗(y∆). In this case, since conjugation
by ∆ preserves {s, t} and since ∆ is central in W{s,t} when m(s, t) is even, it
follows that m(s, t; Ad∗z) = m(s, t; θ) for z = y∆.

The exchange condition implies that s∗ (respectively, t∗) is a left descent of
y∆ if and only if θ(s) (respectively, θ(t)) belongs to {s, t}. Therefore if θ({s, t})
and {s, t} are disjoint then ∆∗y∆ ∈ I∗(W ) and both words in (4.2) belong to
Rinv,∗(∆

∗y∆). In this case if z = ∆∗y∆ then Ad∗z({s, t}) = {∆θ(s)∆,∆θ(t)∆}
must also be disjoint from {s, t}, so m(s, t; Ad∗

z) = m(s, t; θ) = m(s, t).
By similar reasoning, if θ(s) = s and θ(t) /∈ {s, t} then neither s∗ nor t∗ is a

left descent of ys∆. It follows that both words in (4.2) belong to Rinv,∗(z) for
z := ∆∗ys∆ ∈ I∗(W ) and that Ad∗

z(t) /∈ {s, t}, so m(s, t; Ad∗z) = m(s, t; θ) =
m(s, t). The final case when θ(s) /∈ {s, t} and θ(t) = t is handled by a symmetric
argument.

Now assume both words in (4.2) belong to Rinv,∗(z) for some z ∈ I∗(W ).
We must have {s, t} ∩DesR(y) = ∅ by the definition of an involution word and
m(s, t) < ∞ since both s and t are right descents of z. If n 6= m(s, t; Ad∗y)
then our hypothesis gives us one pair of involution words of length k + n for z
while the preceding argument gives another pair of involution words of length
k + m(s, t; Ad∗y) for another element of I∗(W ). But each of the shorter words
is a prefix of one of the longer words, so swapping these prefixes in the longer
words should result in two new elements in Rinv,∗(z). This is impossible since
these words would have adjacent repeated letters.

The following is an analogue of the already mentioned fact that if w ∈ W and
s, t ∈ DesR(w), then m(s, t) < ∞ and w has reduced words ending with both of
the m(s, t)-letter sequences (. . . , t, s, t, s) and (. . . , s, t, s, t) [7, Lem. 1.2.1].

Proposition 4.3. Suppose z ∈ I∗(W ), s, t ∈ DesR(z), and n = m(s, t; Ad∗z).
Then n < ∞ and there exists a unique y ∈ I∗(W ) such that the words

(r1, r2, . . . , rk, . . . , t, s, t, s
︸ ︷︷ ︸

n terms

) and (r1, r2, . . . , rk, . . . , s, t, s, t
︸ ︷︷ ︸

n terms

)

are both in Rinv,∗(z) for some (equivalently, every) (r1, r2, . . . , rk) ∈ Rinv,∗(y).

Proof. Since {s, t} ⊂ DesR(w), we have m(s, t) < ∞. The uniqueness of y
follows from the description of Rinv,∗(z) in terms of the monoid action (2.3),
so we just need to establish existence. One can at least construct an element
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y ∈ I∗(W ) with {s, t} ∩DesR(y) = ∅ such that

z = s∗ ◦ t∗ ◦ s∗ ◦ t∗ ◦ · · ·
︸ ︷︷ ︸

α factors

◦y ◦ · · · ◦ t ◦ s ◦ t ◦ s
︸ ︷︷ ︸

α factors

(4.3)

where α ≥ 0 is minimal: in terms of the action (2.3), y is the first element in the
sequence zs, zs t, zs t s, . . . whose length is less than the element which follows.
Appending the α-letter sequence (. . . , t, s, t, s) to any word in Rinv,∗(y) gives an
element ofRinv,∗(z), and by Proposition 4.2 appending either of them(s, t; Ad∗y)-
letter sequences (. . . , t, s, t, s) or (. . . , s, t, s, t) to any word in Rinv,∗(y) gives two
involution words for some element of I∗(W ).

In view of these properties, we cannot have α < m(s, t; Ad∗
y) as s and t

are both in DesR(z), and we cannot have m(s, t; Ad∗y) < α as this would let
us construct an involution word for z with equal adjacent letters. Thus α =
m(s, t; Ad∗y). Proposition 4.2 implies that m(s, t; Ad∗y) = m(s, t; Ad∗z) = n so
the result follows.

These results extend [11, Lem. 3.6], which asserts that if s and t are distinct
right descents of z ∈ I∗(W ) then Rinv,∗(z) contains two words of the form (4.2)
with n = m(s, t) if and only if m(s, t; Ad∗

z) = m(s, t). Proposition 4.2 implies
the “only if” part of this claim while Proposition 4.3 implies the “if” direction.

5 Relations for primed words

An index i is a commutation in an involution word (s1, s2, . . . , sn) if s
∗
i y = ysi

for y := s∗i−1 ◦ · · · ◦ s∗2 ◦ s∗1 ◦ s1 ◦ s2 ◦ · · · ◦ si−1. A primed involution word
for z ∈ I∗(W ) is a sequence formed from an involution word for z by adding
primes to some set of letters indexed by commutations. The elements of such a
sequence belong to S ⊔ S′ where S′ := {s′ : s ∈ S} is a duplicate set of formal
symbols. We write R+

inv,∗(z) for the set of all primed involution words for z.
Figure 2 shows an example of this set.

The number of commutations is the same in every involution word for a
fixed z ∈ I∗(W ) [16, Prop. 2.5]: in view of (2.2) this number must be 2ρ∗(z)−
ℓ(z) where ρ∗(z) denotes the common length of every word in Rinv,∗(z). The
cardinality of R+

inv,∗(z) is therefore 22ρ∗(z)−ℓ(z)|Rinv,∗(z)|. Our main result in
this section is a version of Theorem 3.5 for these sets.

Lemma 5.1. Let z ∈ I∗(W ) and a = (a1, a2, . . . , al) ∈ Rinv,∗(z). Choose
distinct simple generators s, t ∈ S with n := m(s, t) < ∞ and suppose that

(ai+1, ai+2, . . . , ai+n) = (s, t, s, t, . . . )

for some 0 ≤ i ≤ l − n. Then the following properties hold:

(a) No index j with i+ 1 < j < i+ n is a commutation in a.

(b) If the indices i+ 1 and i+ n are both commutations in a then n = 2.

8



1′232

1′323

1232

1323

31′23

2132′

2312′

3212′

3′1′21

1′3′21

31′213′212′

13′21

2′132′

2′312′

2′132

2132

2′312

2312
1′321

1321

3′212

3212

1′3′23

13′23

1′232′

1232′

3121

3123

3′121

3′123

3′1′23

Figure 2: Primed involution words for z = (1, 4)(2, 3) ∈ S4 with ∗ = id. Each
expression like 13′21 is an abbreviation for a sequence like (s1, s

′
3, s2, s1) where

si := (i, i+ 1) ∈ S4. Grey edges are primed braid relations while colored edges
are primed half-braid relations in the sense of Definitions 5.2 and 5.5.

(c) Form b ∈ Rinv,∗(z) from a by replacing the subword (ai+1, ai+2, . . . , ai+n)
by (t, s, t, s, . . . ). Then the set of commutations for b is the image of the
set of commutations for a under the transposition (i+ 1 ↔ i+ n).

In particular, part (c) means that i+ 1 (respectively, i+ n) is a commutation
in a if and only if i+ n (respectively, i+ 1) is a commutation in b.

Proof. It follows from (2.2) that if there are q commutations in a, then we
can form 2q reduced words for z by removing exactly one of a∗j or aj from the
doubled word (a∗l , . . . , a

∗
2, a

∗
1, a1, a2, . . . , al) for each commutation j in a. Part (a)

follows since if any of the indices i+ 2, i+ 3, . . . , i+ n− 1 were commutations,
then one of these words would contain two adjacent letters equal to s or t, which
is impossible since each is reduced. This observation is also noted within the
proof of [11, Lem. 3.3].

To prove part (b), suppose that both i+ 1 and i+ n are commutations in
a. Let y = a∗i ◦ · · · ◦ a

∗
1 ◦ a1 ◦ · · · ◦ ai so that we have a∗i+1 ◦ y ◦ ai+1 = ys = s∗y.
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Also define w := ai+2ai+3 · · · ai+n−1 = tstst · · · (n− 2 factors). If n is odd then
w = w−1 so part (a) implies that

a∗i+n ◦ · · · ◦ a∗1 ◦ a1 ◦ · · · ◦ ai+n = s∗ ◦ w∗ ◦ s∗ ◦ y ◦ s ◦ w ◦ s

= w∗ysws

= s∗w∗ysw

= s∗w∗s∗yw

and therefore y(swsw) = (wsws)∗y. In this case swsw = (st)n−1 = ts and
wsws = st so we have s∗t∗y = yts. Likewise if n is even then

a∗i+n ◦ · · · ◦ a∗1 ◦ a1 ◦ · · · ◦ ai+n = t∗ ◦ (w−1)∗ ◦ s∗ ◦ y ◦ s ◦ w ◦ t

= (w−1)∗yswt

= t∗(w−1)∗ysw

= t∗(w−1)∗s∗yw

so y(swtw−1) = (wtw−1s)∗y, and as swtw−1 = (st)n−1 = ts and wtw−1s = st
it follows again that s∗t∗y = yts. Thus for either parity of n we have

t∗ys = s∗(s∗t∗y)s = s∗(yts)s = s∗yt = yst.

This implies that i+ 2 is a commutation in a, which by part (a) can only occur
if n = 2. This proves part (b).

For part (c) we may assume that i + n = l. The desired property is clear
if n = 2, so suppose n ≥ 3. Note that b ∈ Rinv,∗(z) since involution words
are closed under the usual braid relations. The number of commutations is the
same in all involution words for z, so it follows from parts (a) and (b) that if
i+ 1 is a commutation in a then exactly one of i+ 1 or i+ n is a commutation
in b, and that if i+ n is a commutation in b then exactly one of i+ 1 or i+ n is
a commutation in a. Therefore it suffices to show that i+1 (respectively i+n)
is not a commutation in both a and b.

Again let y = a∗i ◦ · · · ◦ a
∗
1 ◦ a1 ◦ · · · ◦ ai ∈ I∗(W ). If i+ 1 were a commuta-

tion in both a and b then we would have {ys, yt} = {s∗y, t∗y} or equivalently
Ad∗y({s, t}) = {s, t}, and if i + n were a commutation in both a and b then
we would have {zs, zt} = {s∗z, t∗z} or equivalently Ad∗

z({s, t}) = {s, t}. Nei-
ther condition can occur since m(s, t) is odd and Proposition 4.2 implies that
m(s, t; Ad∗y) = m(s, t; Ad∗z) = m(s, t).

We may now describe versions of braid relations for words in S ⊔ S′.

Definition 5.2. The primed braid relations for the twisted Coxeter system
(W,S, ∗) are the relations on words with all letters in S ⊔ S′ that have

( — , s′, t′, — ) ∼ ( — , t′, s′, — ) (5.1)

for any s, t ∈ S such that m(s, t) = 2, as well as

( — , s, t, s, t, . . .
︸ ︷︷ ︸

n factors

, — ) ∼ ( — , t, s, t, s, . . .
︸ ︷︷ ︸

n factors

, — ) (5.2)

10



for any s, t ∈ S such that n = m(s, t) ∈ {2, 3, 4, . . .}, as well as

( — , s′, t, s, t, . . . , s
︸ ︷︷ ︸

n factors

, — ) ∼ ( — , t, s, t, s, . . . , t′
︸ ︷︷ ︸

n factors

, — ) (5.3)

for any s, t ∈ S such that n = m(s, t) ∈ {3, 5, 7, . . .}, and finally

( — , s′, t, s, t, . . . , t
︸ ︷︷ ︸

n factors

, — ) ∼ ( — , t, s, t, s, . . . , s′
︸ ︷︷ ︸

n factors

, — ) (5.4)

for any s, t ∈ S such that n = m(s, t) ∈ {2, 4, 6, . . .}.

Note that if s, t ∈ S have m(s, t) = 2 then

( — , s, t, — ) ∼ ( — , t, s, — ) and ( — , s′, t, — ) ∼ ( — , t, s′, — )

are also primed braid relations, as these are special cases of (5.2) and (5.4).
It follows from Lemma 5.1 that the primed braid relations preserve each

set R+
inv,∗(z). These relations cannot always span R+

inv,∗(z), since none of them
changes the number of primed letters in a word. To get a spanning relation, we
must add the following analogues of initial relations.

Definition 5.3. Choose J ⊂ S with J = J∗ such that WJ = 〈J〉 is finite. If
(s1, s2, . . . , sn) and (t1, t2, . . . , tn) both belong to R+

inv,∗(w
J
0 ), then we refer to

(s1, s2, . . . , sn, — ) ∼ (t1, t2, . . . , tn, — )

as a primed initial relation, whose type is the isomorphism class of (WJ , J, ∗).

Theorem 5.4. Let z ∈ I∗(W ). Then R+
inv,∗(z) is an equivalence class under

the transitive closure of the primed braid relations for (W,S) plus all primed
initial relations of type A1,

2
A3, BC3, D4, H3, I2(n), or

2
I2(n) for 2 ≤ n < ∞.

This is the simplest possible extension of Theorem 3.5. The only type not
listed earlier is A1, which contributes (s, — ) ∼ (s′, — ) for s = s∗ ∈ S.

Proof. Fix a primed involution word a = (s1, s2, . . . , sn) ∈ R+
inv,∗(z). It suffices

by Theorem 3.5 to show that this word is equivalent under the given relation to a
word in Rinv,∗(z) ⊂ R+

inv,∗(z). It is enough to check this when s1, s2, . . . , sn−1 ∈
S and sn = s′ ∈ S′ for some s ∈ S. In this case zs = s∗z and s ∈ DesR(z).

If n = 0 then z = s = s∗ and a = (s′) ∼ (s) using the primed initial relation
of type A1. If n > 0 then sn−1 ∈ DesR(z), so z has at least one other involution
word ending in sn−1. Theorem 3.5 implies that we may apply a sequence of braid
relations and initial relations to transform (s1, s2, . . . , sn−1, s) to this word.

Consider what happens if we try to apply this sequence to the word a,
with primed braid relations in place of ordinary braid relations but still using
unprimed initial relations. One of two cases must occur. Either some primed
braid relation in this sequence moves the single prime from sn = s′ to an earlier
letter, or we reach a point where we wish to apply an initial relation of length
n. (Otherwise, the relations would not change the last letter of a.)

11



In the first case, we may assume by induction (on the position of the primed
letter) that some sequence of primed braid relations and primed initial relations
turns a into an element of Rinv,∗(z) as needed. In the second case, we just
substitute the initial relation we want to apply with a primed initial relation that
removes all primes from our word, and we again get an element of Rinv,∗(z).

We do not need to include all primed initial relations of the types indicated
to span R+

inv,∗(z). Our next theorem describes one possible choice for a minimal
set of sufficient relations. Recall the formula for m(s, t; θ) from (4.1).

Definition 5.5. The primed half-braid relations for the twisted Coxeter system
(W,S, ∗) are relations on words with all letters in S ⊔ S′ that have

(. . . , t, s, t, s, t, s
︸ ︷︷ ︸

m(s,t;∗) letters

, — ) ∼ (. . . , s, t, s, t, s, t
︸ ︷︷ ︸

m(s,t;∗) letters

, — ) (5.5)

for any s, t ∈ S such that {s∗, t∗} = {s, t} and m(s, t) < ∞, as well as

(. . . , t, s, t, s, t, s
︸ ︷︷ ︸

m(s,t;∗) letters

, — ) ∼ (. . . , t, s, t, s, t, s′
︸ ︷︷ ︸

m(s,t;∗) letters

, — ) (5.6)

for any s, t ∈ S such that either s∗ = s and t∗ = t and m(s, t) ∈ {4, 6, 8, . . .},
or s∗ = t and t∗ = s and m(s, t) ∈ {1, 3, 5, . . .}.

If s = s∗ then the type A1 primed initial relation (s, — ) ∼ (s′, — ) is the
instance of (5.6) with s = t. If s 6= t then (5.5) and (5.6) are primed initial
relations of type I2(n) or 2

I2(n) for n := m(s, t) < ∞, and all primed initial
relations for the finite dihedral types arise in this way.

If s∗ = s, t∗ = t, and m(s, t) = 2, then (5.6) is not considered to be a primed
half-braid relation. We exclude this case because then m(s, t; ∗) = 2 so (5.6) is
the relation (t, s, — ) ∼ (t, s′, — ), which one can alternatively get using the
primed braid relations as (t, s, — ) ∼ (s, t, — ) ∼ (s′, t, — ) ∼ (t, s′, — ).

◦
a

◦
b

◦
c

2
A3

(with a∗ = c)

◦
a

◦
b

◦
c

4

BC3

◦
a

◦
c

◦
b

◦
d

D4

◦
a

◦
b

◦
c

5

H3

Figure 3: Coxeter graphs for types 2
A3, BC3, D4, and H3

In the following theorem, we assume that the Coxeter graph for any twisted
subsystem (WJ , J, ∗) of type

2
A3, BC3, D4, or H3 is labeled as in Figure 3.

Theorem 5.6. Suppose z ∈ I∗(W ). Then R+
inv,∗(z) is an equivalence class

under the transitive closure of the primed braid relations, the primed half-braid
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relations, and the symmetric relation with the following properties for each
subset J = J∗ ⊆ S labeled as in Figure 3:

• If (WJ , J, ∗) is of type
2
A3 then

(b, c, a, b, — ) ∼ (b, c, b, a, — ),

(b, c, a, b, — ) ∼ (b, c, a, b′, — ), and

(b, c, b, a, — ) ∼ (b, c, b, a′, — ).

• If (WJ , J, ∗) is of type BC3 then

(a, b, c, a, b, a, — ) ∼ (a, b, c, b, a, b, — ),

(a, b, c, a, b, a, — ) ∼ (a, b, c, a, b, a′, — ), and

(a, b, c, b, a, b, — ) ∼ (a, b, c, b, a, b′, — ).

• If (WJ , J, ∗) is of type D4 then

(d, b, a, c, b, a, c, d, — ) ∼ (d, b, a, c, b, a, d, c, — ),

(d, b, a, c, b, a, c, d, — ) ∼ (d, b, a, c, b, a, c, d′, — ), and

(d, b, a, c, b, a, d, c, — ) ∼ (d, b, a, c, b, a, d, c′, — ).

• If (WJ , J, ∗) is of type H3 then

(a, c, b, a, c, b, a, b, c, — ) ∼ (a, c, b, a, c, b, a, c, b, — ),

(a, c, b, a, c, b, a, b, c, — ) ∼ (a, c, b, a, c, b, a, b, c′, — ), and

(a, c, b, a, c, b, a, c, b, — ) ∼ (a, c, b, a, c, b, a, c, b′, — ).

This is also a very straightforward extension of Hansson and Hultman’s
results: the first relations in each type involve no primed letters and are the
same as the initial relations listed in [11, Thm. 4.1].

Proof. Consider the two prefixes in the first initial relation listed for each type.
One can check that ∼ relates each word to any way of adding primes to commu-
tations among its letters. Thus in type 2

A3 we have (b′, c, a, b′) ∼ (b, c, a, b′) ∼
(b, c, a, b) ∼ (b′, c, a, b) and (b′, c, b, a′) ∼ (b, c, b, a′) ∼ (b, c, b, a) ∼ (b′, c, b, a),
while in type BC3, less trivially, we have

(a′, b, c, a′, b, a′) ∼ (a, b, c, a′, b, a′) ∼ (a, b, a′, c, b, a′) ∼ (a, b, a, c, b, a′)

∼ (a, b, c, a, b, a′) ∼ (a′, b, c, a, b, a′) ∼ (a, b, c, a, b, a′)

∼ (a, b, c, a, b, a) ∼ (a′, b, c, a, b, a) ∼ (a, b, c, a, b, a)

∼ (a, b, a, c, b, a) ∼ (a, b, a′, c, b, a) ∼ (a, b, c, a′, b, a)

∼ (a′, b, c, a′, b, a)
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and

(a′, b, c, b′, a, b′) ∼ (a, b, c, b′, a, b′) ∼ (a, c′, b, c, a, b′) ∼ (c′, a, b, c, a, b′)

∼ (c, a, b, c, a, b′) ∼ (a, c, b, c, a, b′) ∼ (a, b, c, b, a, b′)

∼ (a′, b, c, b, a, b′) ∼ (a, b, c, b, a, b′) ∼ (a, b, c, b, a, b)

∼ (a′, b, c, b, a, b) ∼ (a, b, c, b, a, b) ∼ (a, c, b, c, a, b)

∼ (c, a, b, c, a, b) ∼ (c′, a, b, c, a, b) ∼ (a, c′, b, c, a, b)

∼ (a, b, c, b′, a, b) ∼ (a′, b, c, b′, a, b) .

The eight boxed words in these chains of equivalences show all of the differ-
ent ways of adding primes to the three commutations in (a, b, c, a, b, a) and
(a, b, c, b, a, b).

Checking our claim in the other two types is a similar (and easier) calcu-
lation. Ignoring primes converts ∼ into the transitive closure of the ordinary
braid relations and the extra relations listed in [11, Thm. 4.1]. This relation
connects all words in Rinv,∗(z) [11, Thm. 4.1]. Thus, repeating the argument
in the proof of Theorem 5.4 shows that any word in R+

inv,∗(z) is connected by
our relation ∼ to its unprimed form in Rinv,∗(z), which suffices to prove the
result.

6 Relations for Hecke words

There is another generalization of involution words which is sometimes relevant.
An involution Hecke word for z ∈ I∗(W ) is any finite sequence (s1, s2, . . . , sn)
with si ∈ S and z = s∗n◦· · ·◦s

∗
2 ◦s

∗
1◦s1◦s2◦· · ·◦sn. In type A when ∗ = id these

sequences form the set of orthogonal Hecke words for z defined in [20, §1.2].
Let Hinv,∗(z) denote the set of involution Hecke words for z ∈ I∗(W ). This

set is infinite if z 6= 1, and most of its elements are not reduced words. However,
it is easy to describe a relation spanning its elements.

Proposition 6.1. Suppose z ∈ I∗(W ). Then Hinv,∗(z) is an equivalence class
under the transitive closure of the equivalence relation in Theorem 3.5 and the
symmetric relations ( — , s, s, — ) ∼ ( — , s, — ) for each s ∈ S.

Proof. Denote this equivalence relation by ∼. It suffices by Theorem 3.5 to show
that any a = (a1, a2, . . . , an) ∈ Hinv,∗(z) is equivalent under ∼ to an element of
Rinv,∗(z). If a /∈ Rinv,∗(z) then there is a minimal index i ∈ {1, 2, . . . , n − 1}
such that ai is a right descent of a∗i−1 ◦ · · · ◦ a

∗
2 ◦ a

∗
1 ◦ a1 ◦ a2 ◦ · · · ◦ ai−1, in which

case a ∼ b for some word b = (b1, . . . , bi, ai, . . . , an) with bi = ai, and hence also
with b ∼ (b1, . . . , bi, ai+1, . . . , an). By induction on length we may assume that
the latter word is equivalent to an element of Rinv,∗(z) as needed.
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Let Hred

inv,∗(z) denote the set of involution Hecke words for z ∈ I∗(W ) that
are reduced words (usually for elements of W other than z). Then we have

Hred

inv,∗(z) =
⊔

w∈B∗(z)

R(w) (6.1)

where B∗(z) := {w ∈ W : (w−1)∗ ◦ w = z} is the set of Hecke atoms studied in
[9]. For an example of Hred

inv,∗(z), see Figure 4. Another interesting problem is
to describe a relation that spans and preserves each of these sets.

231213

231231

232123

31213

31231

32123
21321

23121

212321

23212

312132

312312

321232

132132
132312

13231

123121

123212

12132

12312

21232

32312

121321

213231

321323

323123

32132
21323

23123

2132

2312

213213

1321
3121

3212

12321

13213

1323

3123

1232

Figure 4: Reduced involution Hecke words for z = (1, 4)(2, 3) ∈ S4 with ∗ =
id. Words are represented here using the same conventions as in Figures 1
and 2. Grey edges correspond to ordinary braid relations while colored edges
correspond to the mixed half-braid relations in the sense of Definition 6.5.

Note that Hred

inv,∗(z) contains Rinv,∗(z) and is preserved by all ordinary braid
relations, but not by the initial relations (3.1), at least as given in Definition 3.1,
as these may lead from Hred

inv,∗(z) \Rinv,∗(z) to words that are not reduced. The

appropriate analogue of initial relations for Hred

inv,∗(z) is as follows.
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Definition 6.2. Choose J ⊂ S with J = J∗ such that WJ = 〈J〉 is finite with
longest element wJ

0 . Suppose (s1, s2, . . . , sp) and (t1, t2, . . . , tq) are two elements
of Hred

inv,∗(w
J
0 ). We refer to any relation of the form

(s1, s2, . . . , sp, r1, r2, . . . , rk) ∼ (t1, t2, . . . , tq, r1, r2, . . . , rk) (6.2)

where (r1, r2, . . . , rk) is a reduced word for an element of

JW := {w ∈ W : ℓ(sw) > ℓ(w) for all s ∈ J}

as an initial Hecke relation, whose type is the isomorphism class of (WJ , J, ∗).

Such relations preserve each of the sets Hred

inv,∗(z) for z ∈ I∗(W ).

Example 6.3. The initial Hecke relations of type I2(n) or
2
I2(n) are

(s, t, s, t, . . .
︸ ︷︷ ︸

p terms

, r1, r2, . . . , rk) ∼ (t, s, t, s, . . .
︸ ︷︷ ︸

q terms

, r1, r2, . . . , rk) (6.3)

where s, t ∈ S have {s∗, t∗} = {s, t} and m(s, t; ∗) ≤ p, q ≤ m(s, t) < ∞ and
where (r1, r2, . . . , rk) is a reduced word for w ∈ W with ℓ(sw) = ℓ(tw) > ℓ(w).

Theorem 6.4. Suppose z ∈ I∗(W ). Then Hred

inv,∗(z) is an equivalence class
under the transitive closure of the braid relations for (W,S) plus all initial
Hecke relations of type 2

A3, BC3, D4, H3, I2(n), or
2
I2(n) for 2 ≤ n < ∞.

Proof. Denote the given equivalence relation by ∼. Given b, c ∈ Hred

inv,∗(z), write
b → c if ℓ(b) ≥ ℓ(c) and b ∼ c such that the two words differ by a sequence of
braid relations or a single initial Hecke relation.

Suppose a = (a1, a2, . . . , an) ∈ Hred

inv,∗(z). By Theorem 3.5 it suffices to show
that a is equivalent under ∼ to an element of Rinv,∗(z). We will prove a more
specific claim: there are words a0, a1, a2, . . . , al with

a = a0 → a1 → a2 → · · · → al ∈ Rinv,∗(z).

This is clear if n = 0. Assume n > 0, let b := (a1, a2, . . . , an−1), and write y
for the element of I∗(W ) with b ∈ Hred

inv,∗(y). By induction we may assume that

there are words bi with b = b0 → b1 → b2 → · · · → bl ∈ Rinv,∗(y). For each i let
ai be the word formed by adding an to the end of bi.

Suppose there exists a minimal i ∈ {1, 2, . . . , l} such that ai−1 → ai fails to
hold. Then bi−1 and bi must differ by a single initial Hecke relation, so we may
assume that these words are the left and right sides of (6.2) with p ≥ q. Since
i is minimal, we have a = a0 ∼ ai−1 so ai−1 ∈ Hred

inv,∗(z), which means that the
subword (r1, r2, . . . , rk, an) must be a reduced word for an element of W that is
not in JW .

As (r1, r2, . . . , rk) is itself a reduced word for an element of JW , it follows
(e.g., from [7, Lem. 1.2.6]) that (r1, r2, . . . , rk, an) is connected by a sequence
of braid relations to (s, r1, r2, . . . , rk) for some s ∈ J with (s1, s2, . . . , sp, s) ∈
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Hred

inv,∗(w
J
0 ). Therefore ai−1 → (s1, . . . , sp, s, r1, . . . , rk) → bi, which implies that

y = z, so on setting ãi := (s1, . . . , sp, s, r1, . . . , rk) we have

a = a0 → · · · → ai−1 → ãi → bi → · · · → bl ∈ Rinv,∗(y) = Rinv,∗(z)

as predicted by our claim.
If no such i exists and al ∈ Rinv,∗(z) then a0 → a1 → · · · → al as needed.

If al /∈ Rinv,∗(z) then an must be a right descent of y. In this case we may
assume by Theorem 3.5 that bl ends in an, so there must exist an index i where
ai−1 → ai fails, and we can apply the argument above to deduce our claim.

Like Theorem 5.4, the preceding result includes more relations than are
necessary to generate an equivalence relation spanning the sets of interest.

Definition 6.5. The mixed half-braid relations for the twisted Coxeter system
(W,S, ∗) are the relations on words with all letters in S of the form

(s, t, s, t, . . .
︸ ︷︷ ︸

p terms

, r1, r2, . . . , rk) ∼ (s, t, s, t, . . .
︸ ︷︷ ︸
p+1 terms

, r1, r2, . . . , rk) (6.4)

where s, t ∈ S are such that m(s, t; ∗) ≤ p < m(s, t) < ∞ and (r1, r2, . . . , rk) is
a reduced word for some w ∈ W with ℓ(sw) = ℓ(tw) > ℓ(w).

Note that m(s, t; ∗) < m(s, t) < ∞ implies that {s∗, t∗} = {s, t}. The
transitive closure of the mixed half-braid relations and the usual braid relations
include all of the type I2(n) or

2
I2(n) initial Hecke relations (6.3).

We may now give a version of Theorem 5.6 for reduced involution Hecke
words. As in that result, we assume below that the Coxeter graph for any
subsystem (WJ , J, ∗) of type

2
A3, BC3, D4, or H3 is labeled as in Figure 3.

Theorem 6.6. Suppose z ∈ I∗(W ). Then Hred

inv,∗(z) is an equivalence class
under the transitive closure of the braid relations, the mixed half-braid relations,
and the symmetric relation with the following properties for each J = J∗ ⊆ S:

• If (WJ , J, ∗) is of type
2
A3 then

(b, c, a, b, — ) ∼ (b, c, b, a, — ) ∼ (b, c, b, a, b, — ).

• If (WJ , J, ∗) is of type BC3 then

(a, b, c, a, b, a, — ) ∼ (a, b, c, b, a, b, — ) ∼ (a, b, c, b, a, b, a, — ).

• If (WJ , J, ∗) is of type D4 then

(d, b, a, c, b, a, c, d, — ) ∼ (d, b, a, c, b, a, d, c, — )

∼ (d, b, a, c, b, a, d, c, d, — ).
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• If (WJ , J, ∗) is of type H3 then

(a, c, b, a, c, b, a, b, c, — ) ∼ (a, c, b, a, c, b, a, c, b, — )

∼ (a, c, b, a, c, b, a, c, b, c, — )

∼ (a, c, b, a, c, b, a, c, b, a, — )

∼ (a, c, b, a, c, b, a, c, b, a, b, — ).

The meaning of the symbols “ — ” here is slightly different than above: in each
sequence of relations, this symbol stands for an arbitrary reduced word for an
element of JW (rather than an arbitrary word as previously).

One can translate this result into a description of an equivalence relation
on the group W classifying the sets B∗(z) in (6.1). In types An and BCn the
theorem can be used in this way to recover [9, Thm. 6.4] and [8, Thm. 9.4].

Proof. Let ≈ be the transitive closure of the relation on W that connects two
elements if they have reduced words that differ by a mixed half-braid relation.
In types 2

A3, BC3, D4, and H3 the respective sizes of the sets B∗(w
J
0 ) are 7, 13,

29, and 37. These sets are divided by ≈ into 3, 3, 3, and 5 equivalence classes,
respectively. It suffices to check that each equivalence class has an element with
a reduced word that matches one of the prefixes of the relations given in the
relevant type. This, along with our other observations in this proof, follows by
a straightforward (finite) computer calculation.

7 Simply braided systems

We say that a twisted Coxeter system (W,S, ∗) is simply braided if no subsystem
(WJ , J, ∗) with J = J∗ ⊆ S is of type 2

A3, BC3, D4, or H3. As Hansson and
Hultman observe in [11, Cor. 5.1], this occurs precisely when each set Rinv,∗(z)
is spanned by just the braid relations and half-braid relations. Theorems 5.4
and 6.4 imply a similar fact about R+

inv,∗(z) and Hred

inv,∗(z).

Theorem 7.1. The following properties are equivalent:

(a) The twisted Coxeter system (W,S, ∗) is simply braided.

(b) Each set Rinv,∗(z) for z ∈ I∗(W ) is an equivalence class for the transitive
closure of the braid relations (1.1) and half-braid relations (3.2) and (3.3).

(c) Each set R+
inv,∗(z) for z ∈ I∗(W ) is an equivalence class for the transitive

closure of the primed braid relations and primed half-braid relations in
Definitions 5.2 and 5.5.

(d) Each set Hred

inv,∗(z) for z ∈ I∗(W ) is an equivalence class for the transitive
closure of the braid relations (1.1) and mixed half-braid relations (6.4).
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This theorem significantly strengthens [18, Prop. 1.10], which is equivalent
to just the assertion that (b) ⇒ (d).

We define a twisted Coxeter system (W,S, ∗) to be irreducible if ∗ acts transi-
tively on the components of the relevant Coxeter graph. This occurs if and only
if W is irreducible or has two irreducible factors interchanged by ∗. Comparing
the definition of simply braided with the classification of the Coxeter graphs of
positive type in [17] yields the following observation about irreducible systems:

Proposition 7.2. Suppose (W,S, ∗) is irreducible of finite or affine type. Then
(W,S, ∗) is simply braided if and only if either s∗ 6= s for all s ∈ S; ∗ = id and
W has type An or Ãn; or W has type Ã2, C̃2, G̃2, or I2(n) for 3 ≤ n ≤ ∞.

For each w ∈ W , there is a natural connected graph with vertex set R(w), in
which two reduced words form an edge if they differ by a single braid relation.
The properties of this reduced word graph (in particular, its diameter) have been
studied for finite Coxeter systems in several places [4, 5, 6, 24].

There are three similar graphs one can associate to the finite vertex sets
Rinv,∗(z), R+

inv,∗(z), and Hred

inv,∗(z), which we call the involution word graph,
primed involution word graph, and involution Hecke word graph of z ∈ I∗(W ).
In the (primed) involution word graph, each edge corresponds to a single (primed)
braid relation or (primed) half-braid relation; in the involution Hecke word
graph, each edge corresponds to a single braid relation or mixed half-braid re-
lation. We have already seen examples of these graphs in Figures 1, 2, and 4.
They are always connected if (W,S, ∗) is simply braided, and their properties
may be of independent interest. At a minimum, such graphs often make for
interesting pictures. Figures 5, 6, 7, and 8 show some larger examples.

8 Relations in type A

Fix an integer n ≥ 2 and let [n] := {1, 2, . . . , n}. For each i ∈ Z let si denote the
permutation of Z that interchanges i + nk and i + 1 + nk for each k ∈ Z while
fixing all other integers. Then {s1, s2, . . . , sn} is a Coxeter generating set for
the affine symmetric group S̃n of bijections w : Z → Z with w(i+n) = w(i)+n
for all i ∈ Z and

∑

i∈[n] w(i) =
∑

i∈[n] i. The corresponding length function

ℓ : S̃n → N has ℓ(wsi) = ℓ(w)− 1 if and only if w(i) > w(i + 1).
In this final section, we discuss what our general results reduce to when

W = S̃n, S = {s1, s2, . . . , sn}, and ∗ = id. All statements here apply equally
well to the finite symmetric group Sn

∼= 〈s1, s2, . . . , sn−1〉 ⊂ S̃n.
Write Rinv(z) := Rinv,∗(z) and define R+

inv
(z), Hinv(z), and Hred

inv
(z) analo-

gously. We abbreviate (sa1
, sa2

, . . . , sal
) as the word a1a2 · · · al with ai ∈ [n],

and write elements of R+
inv
(z) as words with letters in {1′ < 1 < · · · < n′ < n}.

Lemma 8.1. If a1a2 · · · al is an involution word for z = z−1 ∈ S̃n, then i ∈ [l]
is a commutation if and only if ai and 1+ ai are fixed points of y := si−1 ◦ · · · ◦
s2 ◦ s1 ◦ s2 ◦ · · · ◦ si−1, in which case (ai, 1 + ai) is a cycle of sai

◦ y ◦ sai
.
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Figure 5: Involution word graph for the longest element in the twisted Coxeter
system of type A4. Grey edges correspond to ordinary braid relations.

Proof. A generator sa commutes with y if and only if either y(a) = a + 1 and
y(a + 1) = a, or y(a) = a and y(a + 1) = a + 1. The first case cannot occur
when a = ai as then sa would be a right descent of y.

An involution word in any type has no adjacent repeated letters, so a primed
involution word has no consecutive subwords of the form aa, a′a, aa′, or a′a′.

Proposition 8.2. A primed involution word for z = z−1 ∈ S̃n has no consecu-
tive subwords of the form a′(a+1)′, (a+1)′a′, ab′a, a′b′a, a′ba′, ab′a′, or a′b′a′

and does not begin with any consecutive subwords of the form a(a+1)′, (a+1)a′,
aba, a′ba, or aba′, replacing a+ 1 by 1 if a = n. Such a word may only contain
aba, a′ba, or aba′ as consecutive non-initial subwords if b− a ∈ {−1, 1}+ nZ.

Proof. The seven consecutive subwords are forbidden by Lemmas 5.1 and 8.1.
The first two initial subwords are forbidden as sa and sa+1 do not commute.
The last three initial subwords are forbidden since no (unprimed) involution
word can begin with aba, for sa ◦ sb ◦ sa ◦ sa ◦ sb ◦ sa is either sasb if sa and sb
commute or else sbsasb, which in either case is equal to sb ◦ sa ◦ sa ◦ sb. The
last claim holds since sa ◦ sb ◦ sa = sa ◦ sb if b− a /∈ {−1, 1}+ nZ.

Define ∼A to be the transitive closure of the symmetric relation on words
with all letters in {1′ < 1 < 2′ < 2 < · · · < n′ < n} that has

(a, — ) ∼A (a′, — ) and (a, b, — ) ∼A (b, a, — ) (8.1)
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Figure 6: Primed involution word graph for the longest element in the twisted
Coxeter system of type A4. Grey edges correspond to ordinary braid relations.

for all a, b ∈ [n], along with

( — , a, b, — ) ∼A ( — , b, a, — ),

( — , a, b′, — ) ∼A ( — , b′, a, — ), and

( — , a′, b′, — ) ∼A ( — , b′, a′, — )

(8.2)

for all a, b ∈ [n] with a− b /∈ {−1, 0, 1}+ nZ, and finally with

( — , a, b, a, — ) ∼A ( — , b, a, b, — ) and

( — , a′, b, a, — ) ∼A ( — , b, a, b′, — )
(8.3)

for all a, b ∈ [n] with a − b ∈ {−1, 1} + nZ. Below, let z = z−1 ∈ S̃n. Theo-
rems 3.5 and 5.4 and Proposition 6.1 applied to type Ãn−1 have this corollary:
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Figure 7: Involution word graph for the longest element in the twisted Coxeter
system of type 2

A4. Grey edges correspond to ordinary braid relations.

Corollary 8.3. The set R+
inv
(z) is an equivalence class under ∼A. The set

Rinv(z) is an equivalence class for the restriction of ∼A to unprimed words,
while Hinv(z) is an equivalence class under the transitive closure of the same
restriction and the symmetric relations ( — , a, a, — ) ∼ ( — , a, — ).

Next define ≈A to be the transitive closure of the symmetric relation on
words with all letters in [n] that has

( — , a, b, — ) ≈A ( — , b, a, — ) (8.4)

for all a, b ∈ [n] with a− b /∈ {−1, 0, 1}+ nZ, along with

( — , a, b, a, — ) ≈A ( — , b, a, b, — ) (8.5)

for all a, b ∈ [n] with a− b ∈ {−1, 1}+ nZ, and finally with

(a, b, c1, c2, . . . , ck) ≈A (a, b, a, c1, c2, . . . , ck) (8.6)

for all a, b ∈ [n] with a − b ∈ {−1, 1} + nZ and reduced words (c1, c2, . . . , ck)
for permutations w ∈ S̃n with w−1(a) < w−1(a+ 1) and w−1(b) < w−1(b + 1).
Note that combining (8.5) and (8.6) gives

(a, b, c1, c2, . . . , ck) ≈A (b, a, c1, c2, . . . , ck). (8.7)

By applying Theorem 6.4 to type Ãn−1, we obtain:
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Figure 8: Primed involution word graph for the longest element in the twisted
Coxeter system of type 2

A4. Grey edges correspond to ordinary braid relations.

Corollary 8.4. The set Hred

inv
(z) is an equivalence class under ≈A.

If [w1, w2, . . . , wn] is an integer sequence with wi − wj /∈ nZ for all 1 ≤ i <

j ≤ n then there is a unique w ∈ S̃n such that wi = w(i + d) for all i ∈ [n] for
some d ∈ Z. We identify [w1, w2, . . . , wn] with this element w ∈ S̃n.

Given z = z−1 ∈ S̃n, let a1 < a2 < · · · < al be the numbers in [n] with
ai ≤ z(ai) and define αmin(z) ∈ S̃n to be the inverse of the element given by
[z(a1), a1, z(a2), a2, . . . , z(al), al] with all duplicate entries removed. If n = 5
and z = s2s3s2 then αmin(z) = [1, 4, 2, 3, 5]−1 = [1, 3, 4, 2, 5] ∈ S̃5.

Proposition 8.5. If z = z−1 ∈ S̃n then the set B(z) :=
{

w ∈ S̃n : w−1 ◦ w = z
}

is the equivalence class of αmin(z) under the transitive closure of the symmet-
ric relation on S̃n that has u−1 ∼ v−1 ∼ w−1 whenever u = [ — , c, b, a, — ],
v = [ — , c, a, b, — ], and w = [ — , b, c, a, — ] for some integers a < b < c,
where the corresponding dashes are identical subwords.

Proof. We have αmin(z) ∈ B(z) by [19, Prop. 6.8], and u, v, w ∈ S̃n have
u−1 = [ — , c, b, a, — ], v−1 = [ — , c, a, b, — ], and w−1 = [ — , b, c, a, — ]
for some a < b < c if and only if u, v, and w have reduced words related as in
(8.6) or (8.7). The result then follows by the word property for S̃n via (6.1).
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