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POISSON LIMIT THEOREMS

FOR THE ROBINSON–SCHENSTED CORRESPONDENCE

AND FOR THE MULTI-LINE HAMMERSLEY PROCESS

MIKOŁAJ MARCINIAK, ŁUKASZ MAŚLANKA, AND PIOTR ŚNIADY

ABSTRACT. We consider the Robinson–Schensted–Knuth algorithm ap-

plied to a random input and study the growth of the bottom rows of the

corresponding Young diagrams. We prove a multidimensional Poisson

limit theorem for the resulting Plancherel growth process. In this way

we extend the result of Aldous and Diaconis to more than just one row.

This result can be interpreted as convergence of the multi-line Hammer-

sley process to its stationary distribution which is given by a collection

of independent Poisson point processes.

1. INTRODUCTION

1.1. Notations. The set of Young diagrams will be denoted by Y; the set

of Young diagrams with n boxes will be denoted by Yn. The set Y has

a structure of an oriented graph, called the Young graph; a pair µ Õ λ

forms an oriented edge in this graph if the Young diagram λ can be created

from the Young diagram µ by addition of a single box.

We will draw Young diagrams and tableaux in the French convention with

the Cartesian coordinate systemOxy, see Figure 1a. We index the rows and

the columns of tableaux by non-negative integers from N0 “ t0, 1, 2, . . . u.

In particular, if l is a box of a tableau, we identify it with the Cartesian

coordinates of its lower-left corner: l “ px, yq P N0 ˆN0. For a tableau T

we denote by Tx,y its entry which lies in the intersection of the row y P N0

and the column x P N0.

Also the rows of any Young diagram λ “ pλ0, λ1, . . . q are indexed by

the elements of N0; in particular the length of the bottom row of λ is denoted

by λ0.

Let X : Ω Ñ V be a random variable with values in some set V . When

we want to phrase this statement without mentioning the sample space Ω

explicitly, we will write X
rvP V .
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Figure 1. (a) The original tableau T . (b) We consider the

Schensted row insertion of the number 18 to the tableau T .

The highlighted boxes form the corresponding bumping

route. The small numbers on the left (next to the arrows) in-

dicate the inserted/bumped numbers. (c) The output T Ð 18

of the Schensted insertion.

IfE is a random event, we denote by 1E its indicator, which is the random

variable given by

1Epωq “
#
1 if ω P E,
0 otherwise.

1.2. Schensted row insertion. The Schensted row insertion is an algorithm

which takes as an input a tableau T and some number a. The number a is

inserted into the first row (that is, the bottom row, the row with the index 0)

of T to the leftmost box which contains an entry which is strictly bigger

than a.

In the case when the row contains no entries which are bigger than a,

the number a is inserted into the leftmost empty box in this row and the

algorithm terminates.

If, however, the number a is inserted into a box which was not empty,

the previous content a1 of the box is bumped into the second row (that is,

the row with the index 1). This means that the algorithm is iterated but this

time the number a1 is inserted into the second row to the leftmost box which

contains a number bigger than a1. We repeat these steps of row insertion and

bumping until some number is inserted into a previously empty box. This

process is illustrated on Figures 1b and 1c. The outcome of the Schensted

insertion is defined as the result of the aforementioned procedure; it will be

denoted by T Ð a.

1.3. Robinson–Schensted–Knuth algorithm. For the purposes of this ar-

ticle we consider a simplified version of the Robinson–Schensted–Knuth
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algorithm; for this reason we should rather call it the Robinson–Schensted

algorithm. Nevertheless, we use the first name because of its well-known

acronym RSK. The RSK algorithm associates to a finite sequence w “
pw1, . . . , wℓq a pair of tableaux: the insertion tableau P pwq and the record-

ing tableau Qpwq.

The insertion tableau

(1) P pwq “
´`

pH Ð w1q Ð w2

˘
Ð ¨ ¨ ¨

¯
Ð wℓ

is defined as the result of the iterative Schensted insertion applied to the

entries of the sequence w, starting from the empty tableau H.

The recording tableau Qpwq is defined as the standard Young tableau

of the same shape as P pwq in which each entry is equal to the number of

the iteration of (1) in which the given box of P pwq stopped being empty;

in other words the entries of Qpwq give the order in which the entries of

the insertion tableau were filled.

The tableaux P pwq and Qpwq have the same shape; we will denote this

common shape by RSKpwq and call it the RSK shape associated to w.

The RSK algorithm is of great importance in algebraic combinatorics,

especially in the context of the representation theory [Ful97].

1.4. Plancherel measure, Plancherel growth process. Let Sn denote the

symmetric group of order n. We will view each permutation π P Sn as

a sequence π “ pπ1, . . . , πnq which has no repeated entries, and such that

π1, . . . , πn P t1, . . . , nu. A restriction of RSK to the symmetric group is a

bijection which to a given permutation from Sn associates a pair pP,Qq of

standard Young tableaux of the same shape, consisting of n boxes. A fruit-

ful area of study concerns the RSK algorithm applied to a uniformly ran-

dom permutation from Sn, especially asymptotically in the limit n Ñ 8,

see [Rom15] and the references therein.

The Plancherel measure on Yn, denoted Plann, is defined as the proba-

bility distribution of the random Young diagram RSKpwq for a uniformly

random permutation w selected from Sn.

An infinite standard Young tableau [Ker99, Section 2.2] is a filling of

the boxes in a subset of the upper-right quarterplane with positive integers,

such that each row and each column is increasing, and each positive inte-

ger is used exactly once. There is a natural bijection between the set of

infinite standard Young tableaux and the set of infinite sequences of Young

diagrams

(2) λp0q Õ λp1q Õ ¨ ¨ ¨ with λp0q “ H;

this bijection is given by setting λpnq to be the set of boxes of a given infinite

standard Young tableau which are ď n.
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If w “ pw1, w2, . . . q is an infinite sequence, the recording tableau Qpwq
is defined as the infinite standard Young tableau in which each non-empty

entry is equal to the number of the iteration in the infinite sequence of Schen-

sted insertions `
pH Ð w1q Ð w2

˘
Ð ¨ ¨ ¨

in which the corresponding box stopped being empty, see [RŚ15, Section 1.2.4].

Under the aforementioned bijection, the recording tableauQpwq corresponds

to the sequence (2) with

λpnq “ RSKpw1, . . . , wnq.
Let ξ “ pξ1, ξ2, . . . q be an infinite sequence of independent, identically

distributed random variables with the uniform distribution Up0, 1q on the

unit interval r0, 1s. The Plancherel measure on the set of infinite standard

Young tableaux is defined as the probability distribution of Qpξq. Any se-

quence with the same probability distribution as (2) with

(3) λpnq “ RSKpξ1, . . . , ξnq
will be called the Plancherel growth process [Ker99]. For a more system-

atic introduction to this topic we recommend the monograph [Rom15, Sec-

tion 1.19].

1.5. The main result: Poisson limit theorem for the Plancherel growth

process.

Theorem 1.1. Let λp0q Õ λp1q Õ ¨ ¨ ¨ be the Plancherel growth process.

Let us fix k P N0. We denote by

Λpnq “
´
λ

pnq
0
, . . . , λ

pnq
k

¯
rvP pN0qk`1

the random vector formed by the lengths of the bottom k ` 1 rows of the

random diagram λpnq. For each n P N0 we consider the random function

∆n : R Ñ Zk`1 given by

(4) ∆nptq “ Λpntq ´ Λpnq,

where

(5) nt “ max
`
n` tt

?
nu, 0

˘
.

Then, for n Ñ 8, the random function ∆n converges in distribution to

a tuple pN0, . . . , Nkq of k ` 1 independent copies of the Poisson process

with unit intensity. This convergence is understood as convergence (with

respect to the topology given by the total variation distance) of all finite-

dimensional marginals
`
∆npt1q, . . . ,∆nptℓq

˘
over all choices of t1, . . . , tℓ P

R.
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The proof is postponed to Section 3.1.

In Sections 1.6 to 1.9 we shall discuss the connections of this theorem

with the (multi-line) Hammersley process and the assumption α of Ham-

mersley, and in Section 1.10 the connections with the work of Aldous and

Diaconis [AD95, Theorem 5(b)]. In Sections 1.11 and 1.12 we will discuss

links with some other areas of mathematics.

Remark 1.2. The fact that the intensity of the limiting Poisson process is

equal to 1 can be justified by the following heuristic argument. The first

order approximation for the length of the given fixed row is given by

Eλ
pnq
i « 2

?
n,

cf. (8) for the special case of the bottom row. By considering the derivative

of the right-hand side we can hope that

Eλ
pn`c

?
nq

i ´ Eλ
pnq
i « c

?
n

1?
n

“ c

which is consistent with the expected growth of the Poisson process with

the unit intensity.

1.6. Local spacings in the bottom rows of the recording tableau. The-

orem 1.1 can be interpreted as a result about the random sets of points in

which the coordinates of the function (4) have jumps; this interpretation

gives the following immediate corollary. For an alternative proof see Sec-

tion 3.2.

Corollary 1.3. Let ξ “ pξ1, ξ2, . . . q be an infinite sequence of indepen-

dent, identically distributed random variables with the uniform distribution

Up0, 1q on the unit interval r0, 1s and let Qpξq “
“
Qx,y

‰
x,yě0

be the corre-

sponding random recording tableau with the Plancherel distribution.

Then for any integer k P N0 the collection of k ` 1 random sets

(6)

˜"
Qx,y ´ n?

n
: x P N0

*
: y P t0, . . . , ku

¸

converges in distribution, as n Ñ 8, to a family of k ` 1 independent

Poisson point processes on R with the unit intensity.

1.7. The Hammersley process. The information about the sequence w “
pw1, . . . , wℓq can be encoded by a collection of points pw1, 1q, . . . , pwℓ, ℓq on

the plane (marked as small disks on Figure 2a). The time evolution of the

bottom row of the insertion tableau in the process of insertions (1) can be en-

coded by the time evolution of a collection of particles on the real line (their

trajectories are marked on Figure 2a as blue zig-zag lines) which is subject

to the following dynamics. When we have reached one of the disks px, tq
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x

t

(a)

x

t

(b)

Figure 2. (a) The dynamics of the particles in the Hammer-

sley process with some initial configuration of the particles.

The time flows from bottom to top. (b) The second line of

the multi-line Hammersley process.

(translation: at time t, when a number x is inserted into the bottom row of

the insertion tableau. . . ) one of the following happens: (i) a particle, which

is first to the right of x, jumps left to x (translation: . . . the newly inserted

number x bumps from the bottom row the smallest number which is bigger

than x), or (ii) a new particle is created in x (translation: the number x is

appended at the end of the bottom row), see Figure 2a for an illustration.

If the locations of the disks on the upper halfplane are random, sampled

according to the Poisson point process on I ˆ R` (for some specified set

I Ď R) we obtain in this way the celebrated Hammersley process on I

[Ham72; AD95].

The information about all bumpings from the bottom row of the insertion

tableau can be encoded by the dual corners [FM09] (marked on Figure 2a by

red X crosses). These crosses are used as an input for the dynamics of the

second row of the insertion tableau in an analogous way as the disks were

used for the dynamics of the bottom row, see Figure 2b. In other words, the

output of the Hammersley process (which will be the first line of the multi-

line Hammersley process which we will construct) is used as the input for

the second line of the multi-line Hammersley process.

This procedure can be iterated; in this way the dynamics of all rows of

the insertion tableau is fully encoded by the multi-line Hammersley process

[FM09]. The name is motivated by the analogy with the tandem queues

where the happy customers who exit one waiting line are the input for

the second line.
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1.8. Limit distribution of the multi-line Hammersley process. As we

already mentioned, the entries of the bottom row of the insertion tableau

can be interpreted as positions of the particles in (the de-Poissonized ver-

sion of) the Hammersley interacting particle process on the unit interval

r0, 1s. Therefore the following result (Corollary 1.4 below) is a general-

ization of the result of Aldous and Diaconis [AD95, Theorem 5(b)] which

concerned only the special case k “ 0 of the single-line Hammersley pro-

cess (in the Poissonized setup). For a more detailed discussion of the link

between these results see Section 1.10.

The general case k ě 0 can be interpreted as a statement about the conver-

gence of the multi-line version of the Hammersley process on the the unit

interval r0, 1s to its stationary distribution on the whole real line R which

was calculated by Fan and Seppäläinen [FS20, Theorem 5.1].

Note that in his original paper [Ham72, Section 9] Hammersley consid-

ered the particle process with a discrete time parameter indexed by non-

negative integers. Slightly confusingly, this process with the modern ter-

minology would be referred to as the de-Poissonized version of the Ham-

mersley process (as opposed to the Hammersley process in which the time

is continuous and the input is given by the Poisson point process on the

quarterplane). It follows that the setup which we consider in Corollary 1.4

coincides with the one from the original paper of Hammersley. The spe-

cial case k “ 0 of Corollary 1.4 was conjectured already by Hammersley

[Ham72, “assumption α” on page 371] who did not predict the exact value

of the intensity of the Poisson process.

Corollary 1.4. Let ξ “ pξ1, . . . ξnq be a sequence of independent, identi-

cally distributed random variables with the uniform distribution Up0, 1q on

the unit interval r0, 1s and let
”
P pnq
x,y

ı
yPN0, 0ďxăλ

pnq
y

“ P pξ1, . . . , ξnq

be the corresponding insertion tableau; we denote by λpnq its shape.

For any integer k P N0 and any real number 0 ă w ă 1 the collection of

k ` 1 random sets P
pnq
0
, . . . ,P

pnq
k with

(7) Ppnq
y :“

"?
n
´
P pnq
x,y ´ w

¯
: 0 ď x ă λpnq

y

*

converges in distribution, as n Ñ 8, to a family of k ` 1 independent

Poisson point processes on R with the intensity 1?
w

.

The above statement remains true for w “ 1 but the limit in this case

is a family of k ` 1 independent Poisson point processes on the negative

halfline R´ with the unit intensity.
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The key ingredient of the proof is to use some symmetries of the RSK

algorithm which allow to interchange the roles of the insertion tableau and

the recording tableau, see Section 3.3 for the details.

We were inspired to state Corollaries 1.3 and 1.4 by the work of Azan-

gulov [Aza20] who studied fluctuations of the last entry in the bottom row

of P pnq around w “ 1; more specifically he proved that the (shifted and

rescaled) last entry in the bottom row

?
n

ˆ
1 ´ P

pnq
0,λ

pnq
0

´1

˙

converges in law to the exponential distribution Expp1q.

1.9. The idea behind the proof: the link between the Ulam’s problem

and the Hammersley’s assumption α. The key idea behind the proof of

Theorem 1.1 lies in the intimate interplay between the Ulam’s problem and

the Hammersley’s assumption α which was already subject to investigation

by several researchers in this field.

1.9.1. Ulam’s problem. Recall that Ulam [Ula61] asked about the value of

the limit

(8) c “ lim
nÑ8

Eλ
pnq
0?
n
.

The first solution to this problem consisted of two components: proving the

lower bound c ě 2 and the upper bound c ď 2; interestingly these two

components have quite different proofs.

The lower bound c ě 2 was proved independently by Logan and Shepp

[LS77] as well as by Vershik and Kerov [VK77] by finding explicitly the

limit shape of typical random Young diagrams distributed according to the

Plancherel measure. Both proofs were based on the hook-length formula

for the number of standard Young tableaux of prescribed shape and finding

the minimizer of the corresponding functional. An alternative approach

which avoids the variational calculus is to use the results of Biane [Bia01]

in order to show that the (scaled down) transition measure of a Plancherel-

distributed random diagram λpnq converges in probability to the semicircle

distribution and to deduce that the probability of the event λ
pnq
0 ă p2´ǫq?

n

converges to zero for each ǫ ą 0.

This lower bound c ě 2 will play an important role in our paper and we

will use it in order to show Proposition 2.8 (more specifically, we use it in

Lemma 2.6).
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The upper bound c ď 2 is due to Vershik and Kerov [VK85a]. This upper

bound plays an even more important role in our paper. We will come back

to this topic in Section 1.9.3 below.

1.9.2. Hammersley’s assumption α. Hammersley formulated his assump-

tion α [Ham72, page 371] as a rather vague statement (“It is reasonable to

assume that the distribution of the discontinuities yi is locally homogenous

and random”) which we interpret as a conjecture that the local behavior

of the numbers in the bottom row of the insertion tableau P pnq after appro-

priate rescaling converges to some Poisson point process with unspecified

intensity, cf. Corollary 1.4. Hammersley also gave an informal argument

which explained how the assumption α would give solution to the Ulam’s

problem and he correctly predicted the value of the constant c “ 2.

The first proof of a result of the flavor of the assumption α is the afore-

mentioned work of Aldous and Diaconis [AD95, Theorem 5(b)]. Interest-

ingly, the proof starts with two separate parts: one which happens to give an

alternative proof for the upper bound c ď 2 for the constant in the Ulam’s

problem, and one which happens to give an alternative proof for the lower

bound c ě 2. Finally, the combination of these two results gives the desired

proof of the assumption α.

The arguments in the aforementioned papers [Ham72; AD95] were based

on a probabilistic analysis of the Hammersley process viewed as an inter-

acting particle system (see Section 1.7) and thus were quite different from

those mentioned in Section 1.9.1.

1.9.3. The idea of the proof. As we can see from the aforementioned papers

[Ham72; AD95], the Ulam’s problem and the assumption α are intimately

related one with another and a solution to one of them gives (at least heuris-

tically) the solution to the other one. From this perspective it is somewhat

surprising that the original solution to the Ulam’s problem contained in the

papers [LS77; VK77; VK85a] did not result with a corresponding proof

of the assumption α in the language of the Plancherel growth process and

random Young diagrams. The current paper fills this gap.

Our strategy is to revisit the proof of the upper bound c ď 2 which is

due to Vershik and Kerov [VK85a, Раздел 3, Лемма 6] (see also [VK85b,

Section 3, Lemma 6] for the English translation; be advised that there are

two lemmas having number 6 in this paper). With the notations used in

our paper (see the proof of Lemma 2.9), this proof can be rephrased as

an application of the Cauchy–Schwarz inequality for a clever choice of a

pair of vectors X and Y of (approximately) unit length. It is somewhat

surprising that such a coarse bound as Cauchy–Schwarz inequality gives the

optimal upper bound c ď 2 for the Ulam’s constant. This phenomenon is an
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indication that the Cauchy–Schwarz inequality is applied here in a setting in

which it becomes (asymptotically) saturated, which implies that the vectors

X and Y are (approximately) multiples of one another and thereforeX « Y .

It follows in particular that

(9) xX ´ Y, Y y « 0.

Let λp0q Õ λp1q Õ ¨ ¨ ¨ be the Plancherel growth process. It turns out that

a slight modification of the left-hand side of (9) has a natural probabilistic

interpretation as the total variation distance between:

‚ the probability distribution of the Young diagram λpnq, and

‚ the conditional probability distribution of the Young diagram λpnq

under the condition that the growth between the diagrams λpn´1q

and λpnq occurred in a specified row.

In particular, (9) implies that this total variation distance converges to zero

as n Ñ 8, see Lemma 2.9 for a precise statement.

Heuristically, this means that the information about the number of the

row rpnq in which the growth occurred between λpn´1q and λpnq does not in-

fluence too much the distribution of the resulting random Young diagram λpnq.
Since the Plancherel growth process is a Markov process, this argument can

be iterated to show that the numbers of the rows

(10) rpn`1q, . . . , rpn`ℓq

in which the growths occur in the part of the Plancherel growth process

λpnq Õ ¨ ¨ ¨ Õ λpn`ℓq are approximately independent random variables, see

Theorem 2.2 for a precise statement. Various variants of the assumption α

are now simple corollaries.

This approach gives some additional information — which does not seem

to be available by the hydrodynamic approach [AD95; CG05] — about

the asymptotic independence of the rows (10) and the shape of the final

Young diagram λpn`ℓq, see Theorem 2.2 for more detail. This additional

information will be essential in our forthcoming paper devoted to the refined

asymptotics of the bumping routes [MMŚ21].

The aforementioned Lemma 2.9 can be seen as an additional step in the

reasoning which was overlooked by the authors of [VK85a]. The mono-

graph of Romik [Rom15, Section 1.19] contains a more pedagogical pre-

sentation of these ideas of Vershik and Kerov; in the following we will use

Romik’s notations with some minor adjustments.

Note that, analogously as the proof of Aldous and Diaconis [AD95, The-

orem 5(b)], our proof of the assumption α is based on combining two com-

ponents: the one which is related to the lower bound c ě 2 in the Ulam’s

problem (see Lemma 2.6) and the one related to the upper bound c ď 2 (see



POISSON LIMIT THEOREMS FOR ROBINSON–SCHENSTED CORRESPONDENCE 11

the proof of Lemma 2.9) and only combination of these two components

completes the proof.

1.10. The link with the work of Aldous and Diaconis. Following the no-

tations from [AD95] we consider the Hammersley process on R` (starting

from the empty configuration of the particles) and denote by N`px, tq the

number of particles at time t which have their spacial coordinate ď x. Al-

dous and Diaconis [AD95, Theorem 5(b)] proved that for each fixed w ą 0

the counting process

(11)
`
N`pws ` y, sq ´ N`pws, sq, y P R

˘

converges in distribution, as s Ñ 8, to the Poisson counting process with

intensity w´1{2.

1.10.1. The link of Corollary 1.4. In the following we sketch very briefly

the proof that the special case of Corollary 1.4 which corresponds to k “ 0

is equivalent to the aforementioned result of Aldous and Diaconis.

Due to the space-time scale invariance [AD95, Lemma 4], the stochastic

process (11) has the same distribution as

(12)

˜
N`

ˆ
w ` y

s
, s2

˙
´ N``w, s2

˘
, y P R

¸
.

Let η1ps2q ă η2ps2q ă ¨ ¨ ¨ denote the positions of the particles at time s2.

The result of Aldous and Diaconis can be therefore rephrased as conver-

gence in distribution of the set of jumps of the function (12) which is equal

to

(13)

"
s ¨

”
ηi
`
s2
˘

´ w
ı
: i P N

*

towards the Poisson point process with the intensity w´1{2.
For simplicity we restrict our attention to 0 ă w ă 1 (the general case

w ą 0 can be obtained by an application of a slightly more involved space-

time scale invariance). The above result does not change if we modify our

setup and consider the Hammersley process on the unit interval r0, 1s. The

number of disks (which are the input for the Hammersley process) in the rec-

tangle r0, 1sˆr0, ts is equal to the valueNptq of the Poisson process at time t.

With the notations of Corollary 1.4, the entries
´
P

pnq
x,0 : 0 ď x ă λ

pnq
0

¯
of

the bottom row in the insertion tableau P pnq can be interpreted as the coor-

dinates of the particles in the Hammersley process at the time when n disks

appeared; it follows that the set (13) is equal to

(14)

"
s ¨

”
P

pNps2qq
x,0 ´ w

ı
: 0 ď x ă λ

pnq
0

*
.
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In this way we proved that the distribution of the random set (14) (which

appears in a reformulation of the result of Aldous and Diaconis) is the mix-

ture of the probability distribution of the random set P
pnq
0

given by (7) which

corresponds to the bottom row, rescaled by the factor s?
n

. The mixture is

taken over n :“ Nps2q which has the Poisson distribution Poisps2q. Since

the scaling factor s?
n

converges in probability to 1 as s Ñ 8, the scaling is

asymptotically irrelevant.

We proved in this way that the result of Aldous and Diaconis [AD95,

Theorem 5(b)] is a consequence of the special case of Corollary 1.4 for

k “ 0, obtained by a straightforward Poissonization procedure.

The implication in the opposite direction is more challenging, but general

de-Poissonization techniques [JS98] can be used to show that the result of

Aldous and Diaconis implies the special case k “ 0 of our Corollary 1.4.

1.10.2. The link of Theorem 1.1. In the following we sketch the proof that

the special case of Theorem 1.1 which corresponds to k “ 0 is equivalent

to the result of Aldous and Diaconis (11). For simplicity we will consider

only the special case w “ 1; the general case w ą 0 would follow from a

slightly more complex scaling of the space-time.

Due to the space-time scale invariance [AD95, Lemma 4], the stochastic

process (11) in the special case w “ 1 has the same distribution as
´
N``s2 ` ys, 1

˘
´ N``s2, 1

˘
, y P R

¯

and, due to the space-time interchange property [AD95, Lemma 3], the

same distribution as

(15)
´
N``1, s2 ` ts

˘
´ N``1, s2

˘
, t P R

¯
.

By [AD95, Theorem 5(b)] the process (11) for w “ 1 or, equivalently, the

process (15) converges for s Ñ 8 to the Poisson process with the unit

intensity. This result does not change if we modify our setup and consider

the Hammersley process on the unit interval r0, 1s.
For each t ě 0 the number of disks (which are the input for the Ham-

mersley process) in the rectangle r0, 1s ˆ r0, ts is equal to the value Nptq
of the Poisson process at time t. Thus the number of all particles at time t,

given by N`p1, tq “ λ
pNptqq
0

, is equal to the length of the bottom row of the

insertion tableau after Nptq disks appeared. In this way we proved that the

probability distribution of the process (15) coincides with the probability

distribution of the process

(16)

ˆ
λ

pNps2`tsqq
0

´ λ
pNps2qq
0

, t P R

˙
.
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We set n :“ Nps2q and

(17) τptq “ Nps2 ` tsq ´ Nps2qa
Nps2q

so that Nps2 ` tsq “ nτptq with the notations from (5). In the case when

Nps2q “ 0 and (17) is not well-defined, we declare that nτptq “ Nps2 ` tsq
by definition. Since the probability of the event that Nps2q “ 0 converges

to zero as s Ñ 8, this will not create problems in the following.

The random function τ converges in probability, as s Ñ 8, to the iden-

tity map t ÞÑ t uniformly over compact subsets. With these notations the

probability distribution of the process (15) coincides with the probability

distribution of the process

(18)

ˆ
λ

pnτptqq
0

´ λ
pnq
0
, t P R

˙
.

By taking the average over the random values of n and τ it follows that the

special case of Theorem 1.1 for k “ 0 implies that (18) indeed converges

to the Poisson process. We proved in this way that the result of Aldous and

Diaconis [AD95, Theorem 5(b)] (at least in the special case w “ 1) is a

consequence of the special case of Theorem 1.1 for k “ 0, obtained by a

rather straightforward Poissonization procedure.

The implication in the opposite direction is more challenging, but again

general de-Poissonization techniques [JS98] can be applied.

1.11. Asymptotics of the bottom rows. The research related to the Ulam’s

problem culminated in the works of Baik, Deift and Johansson [BDJ99;

BDJ00] as well as its extensions [BOO00; Oko00; Joh01]. Roughly speak-

ing, these results say that the suitably normalized lengths of the bottom

rows of a Plancherel distributed random Young diagram converge to an ex-

plicit non-Gaussian limit which is related to the eigenvalues of a large GUE

random matrix, see the monograph [Rom15] for a more pedagogical intro-

duction.

Such a non-Gaussian limit behavior for the lengths of the bottom rows is

at a sharp contrast with our Theorem 1.1 which states that the growths of the

bottom rows ∆nptq are given by the Poisson process which with the right

scaling converges to the Brownian motion. This discrepancy is an indication

that the process ∆nptq considered in that theorem cannot be approximated

by the Poisson process in the scaling as t “ tpnq " 1. It would be interest-

ing to find the scaling in which this passage from the regime of independent

growths to the non-Gaussian regime related to the random matrices occurs.

See also Problem 3.2.
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1.12. Possible generalization of Corollary 1.4: the bottom rows in the

Schur–Weyl insertion tableau. We suspect that Corollary 1.4 is a special

case of a conjectural result which would hold in a much wider generality.

In the current section we will present the details.

1.12.1. Schur–Weyl insertion tableau. For given positive integers d and n

let w “ pw1, . . . , wnq be a sequence of independent, identically distributed

random variables with the uniform distribution on the discrete set t1, . . . , du
with d elements; we denote by P “ P pw1, . . . , wnq the corresponding in-

sertion tableau. This random tableau appears naturally in the context of the

Schur–Weyl duality which we review in the following. The tensor product`
Cd

˘bn
has a natural structure of a Sn ˆ GLdpCq-module; the irreducible

components are naturally indexed by Young diagrams. The Schur–Weyl

measure is defined as the probability distribution on Young diagrams which

corresponds to sampling a random irreducible component of
`
Cd

˘bn
with

the probability proportional to the dimension of the component, see [Mél11]

for the details. The probability distribution of the shape of P coincides with

the Schur–Weyl measure; for this reason we will call the random tableau P

itself the Schur–Weyl insertion tableau.

In the scaling when d, n Ñ 8 tend to infinity in such a way that d » c
?
n

for some c ą 0, there is a law of large numbers for the global form of the

scaled down insertion tableau P , see [MŚ20, Remark 1.6 and Section 1.7.3].

In the following we will concentrate on another aspect of the Schur–Weyl

insertion tableau P , namely in the entries which are located in the bottom

row, near its end. For an integer i P t1, . . . , du we denote by Mi “ MipP q
the number of occurrences of i in the bottom row of P ; our problem is

to understand the joint distribution of the family of random variables Mi

indexed by i P I in some interval of the form

(19) I “ td ` 1 ´ ℓ, d` 2 ´ ℓ, . . . , du
for some choice of an integer ℓ ě 1.

There are two interesting limits which one can consider in this setup,

namely the one when the size of the alphabet d Ñ 8 tends to infinity, and

the one when the length of the sequence n Ñ 8 tends to infinity. In the

following we will review these two limits and discuss what happens when

these two limits are iterated.

1.12.2. The limit d Ñ 8. When d Ñ 8 and the length n of the se-

quence is fixed, the probability that w1, . . . , wn are all distinct converges to

1. In the following we consider the conditional probability space for which

w1, . . . , wn are all distinct; it is easy to check that such a conditional joint

distribution of the ratios w1

d
, . . . , wn

d
converges to that of a tuple ξ1, . . . , ξn
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of independent random variables with the uniform distribution Up0, 1q. It

follows that the (conditional, and hence unconditional as well) probability

distribution of the tableau 1

d
P (which is obtained from P by dividing each

entry by d) converges to the probability distribution of the insertion tableau

P pξ1, . . . , ξnq.

We see that the iterated limit in which we first take the limit as the size

of the alphabet d Ñ 8 tends to infinity and then the limit n Ñ 8 as

the length of the sequence tends to infinity, is the one in which we recover

Corollary 1.4. Heuristically, we can expect that if n Ñ 8 and d “ dpnq "
n2 tends to infinity fast enough, each integer from the interval I given by

(19) of moderate length ℓ “ O
´

d?
n

¯
will not appear more than once (except

for asymptotically negligible probability); and that the probability that a

given integer i P I will appear in the bottom row is of order

q “ n

d
¨ 1?

n
“

?
n

d
«

?
n

d ` ?
n

! 1

which is approximately the product of the probability that i belongs to the

sequence w (which is roughly n
d

) and the probability that a given large en-

try of the sequence w will be in the bottom row (which is roughly 1?
n

by

Corollary 1.4).

Such a Bernoulli probability distribution on the set t0, 1u with the success

probability q can be approximated by the geometric distribution on the set

of non-negative integers with the parameter p “ 1 ´ q. We formalize this

informal discussion as the following conjecture.

Conjecture 1.5. Let d “ dpnq and ℓ “ ℓpnq be as above.

Then the total variation distance between:

‚ the random vector of the multiplicities

pMi : i P Iq ,

and

‚ the collection of ℓ independent random variables, each with the geo-

metric distribution Geoppq with the parameter

p “ 1 ´
?
n

d` ?
n

“ d

d ` ?
n

converges to zero, as n Ñ 8.

In the following we will discuss whether this conjecture is plausible also

in some other choices of the scaling for the parameters d and n.
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1.12.3. The limit n Ñ 8. For the purposes of the current section by the dˆ
d GUE random matrix we understand the random matrix with the Gaussian

distribution supported on Hermitian dˆd matrices, which is invariant under

conjugation by unitary matrices, and normalized in such a way that the

variance of each diagonal entry is equal to d. The traceless GUE random

matrix is obtained from the above random matrix by subtracting a multiple

of the identity matrix in such a way that the trace of the outcome is equal to

zero.

For m P t0, 1, . . . , du we denote by

λpÓmq “
`
λ

pÓmq
0

, . . . , λ
pÓmq
m´1

˘
“ shPďm

the shape of the tableau Pďm which is obtained from the Schur–Weyl ran-

dom insertion tableau P by keeping only the boxes which are at most m;

in particular λpÓdq is the shape of P . Recall that P and, as a consequence,

λpÓmq as well, depend implicitly on the choice of the positive integers d and

n. In the following we fix the value of the integer d ě 1 and let n vary.

Johansson [Joh01, Theorem 1.6] proved that the distribution of the random

vector
dλpÓdq ´ n?

n

converges, as n Ñ 8, to the joint distribution of the eigenvalues specX of

the traceless d ˆ d GUE random matrix pXijq1ďi,jďd . This result can be

further extended using the ideas of Kuperberg [Kup02]; one can show that

the joint distribution of the random vectors

dλpÓdq ´ n?
n

,
dλpÓd´1q ´ n?

n
, . . . ,

dλpÓ1q ´ n?
n

converges in distribution to the joint distribution of the eigenvalues of X ,

together with the eigenvalues of the minors of X obtained by iterative re-

moval of the last row and the last column:

(20) specpXijq1ďi,jďd, specpXijq1ďi,jďd´1, . . . , specpXijq1ďi,jď1.

Since the content of the current section is mostly heuristic, we skip the

details of the proof; the key point is to use [CŚ09, Corollary 5.2].

With the above notations, form P t2, . . . , du we have thatMm “ λ
pÓmq
0 ´

λ
pÓm´1q
0 is the number of entries in the bottom row of the tableau P which

are equal tom. Also, form P t1, . . . , du let µpmq “ max
`
specpXijq1ďi,jďm

˘

be the largest eigenvalue of the minor pXijq1ďi,jďm. The aforementioned re-

sult implies, in particular, that the probability distribution of the random

vector

(21)
d?
n

`
Md, Md´1, . . . , M2

˘
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which describes the content of the bottom row of P (after disregarding all

entries equal to 1) converges, as n Ñ 8, to the joint distribution of the

entries of the random vector

(22)
´
µpdq ´ µpd´1q, µpd´1q ´ µpd´2q, . . . , µp2q ´ µp1q

¯
.

Gorin and Shkolnikov [GS17, Corollary 1.3] studied the asymptotics

d Ñ 8 of the probability distribution of any prefix of a fixed length ℓ

of the random vector (22). In this scaling the difference between the GUE

random matric and the traceless GUE random matrix turns out to be irrele-

vant. More specifically, they proved that for each fixed value of an integer

ℓ ě 1 the joint distribution of the random variables
´
µpdq ´ µpd´1q, µpd´1q ´ µpd´2q, . . . , µpd`1´ℓq ´ µpd´ℓq

¯

converges to the distribution of ℓ independent random variables, each with

the exponential distribution Expp1q.

By combining these results it follows that for each fixed integer ℓ ě 1 the

probability distribution of the random vector

d?
n

`
Md, Md´1, . . . , Md`1´ℓ

˘

converges to that of independent exponential random variables in the iter-

ated limit in which we first take the limit n Ñ 8 as the length of the se-

quence tends to infinity, and then the limit as the size of the alphabet d Ñ 8
tends to infinity. Since the exponential distribution arises naturally as a limit

of the geometric distribution Geoppq in the scaling as p Ñ 0, we suspect

that the following stronger result is true.

Conjecture 1.6. Conjecture 1.5 remains true if d “ dpnq is a sequence of

positive integers which tends to infinity in a sufficiently slow way and ℓ ě 1

is a fixed integer.

1.12.4. The joint limit d, n Ñ 8. Heuristically, each of the iterated limits

considered at the very end of the Sections 1.12.2 and 1.12.3 can be seen as

a limit in which both variables d, n Ñ 8 tend to infinity in such a way that

one of these variables grows much faster than the other one. With these two

extreme cases covered one can wonder whether Conjecture 1.5 holds true

in general.

Conjecture 1.7. Conjecture 1.5 remains true if d “ dpnq is an arbitrary

sequence of positive integers which tends to infinity and ℓ “ ℓpnq is a se-

quence of positive integers which is either constant or tends to infinity in

such a way that ℓ “ O
´

d?
n

¯
.
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Particularly interesting is the balanced scaling in which n and d tend to

infinity in such a way that d?
n

converges to some limit so that the law of

large numbers applies to the shape of P [Bia01, Section 3] as well as to

the tableau P itself [MŚ20, Remark 1.6 and Section 1.7.3]. Conjecture 1.7

concerns the entries in the bottom row; we conjecture that an analogous

result for any fixed number of bottom rows remains true.

2. ESTIMATES FOR THE TOTAL VARIATION DISTANCE

Our main tool for proving the main results of the paper is Theorem 2.2.

It gives an insight into the way in which the first rows of a Young diagram

develop in the Plancherel growth process (thanks to this part we will have

Theorem 1.1 as a straightforward corollary), together with the information

about the global shape of the Young diagram. This latter additional informa-

tion will be key for the developments in our forthcoming paper [MMŚ21].

2.1. Total variation distance. Suppose that µ and ν are probability mea-

sures on the same discrete set S. Such measures can be identified with

real-valued functions on S. We define the total variation distance between

the measures µ and ν

(23) δpµ, νq :“ 1

2
}µ´ ν}ℓ1 “ max

XĂS

ˇ̌
µpXq ´ νpXq

ˇ̌

as half of their ℓ1 distance as functions. If X and Y are two random vari-

ables with values in the same discrete set S, we define their total variation

distance δpX, Y q as the total variation distance between their probability

distributions.

Several times we will use the following simple lemma.

Lemma 2.1.

(a) Let X “ pX1, X2q and Y “ pY1, Y2q be random vectors with inde-

pendent coordinates and such that their first coordinates have equal

distribution: X1

d“ Y1. Then the total variation distance between

the vectors is equal to the total variation distance between their sec-

ond coordinates:

δpX, Y q “ δpX2, Y2q.
(b) Let X “ pX1, . . . , Xℓq and Y “ pY1, . . . , Yℓq be random vectors

with independent coordinates. Then the total variation distance be-

tween the random vectors is bounded by the sum of the coordinate-

wise total variation distances:

δpX, Y q ď
ÿ

1ďiďℓ

δpXi, Yiq.
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(c) If µ1, . . . , µℓ and ν1, . . . , νl are discrete measures on some vector

space then the total variation distance between their convolutions is

bounded by the sum of the summand-wise total variation distances:

δ pµ1 ˚ ¨ ¨ ¨ ˚ µℓ, ν1 ˚ ¨ ¨ ¨ ˚ νℓq ď
ÿ

1ďiďℓ

δpµi, νiq.

This result seems to be folklore wisdom [pik15], nevertheless we failed

to find a conventional reference and we provide a proof below.

Proof. For part (a) we view the total variation distance δpX, Y q as half of

the appropriate ℓ1 norm. This double sum factorizes thanks to indepen-

dence.

For the part (b) we consider a collection of random vectors given by

Z i “ pY1, . . . , Yi, Xi`1, . . . , Xℓq for i P t0, . . . , ℓu.

In this way Z0 “ X and Zℓ “ Y ; the neighboring random vectors Z i´1 and

Z i differ only on the i-th coordinate. By the triangle inequality

δpX, Y q ď
ÿ

1ďiďℓ

δpZ i´1, Z iq “
ÿ

1ďiďℓ

δpXi, Yiq,

where the last equality is a consequence of part (a).

In order to prove part (c) we shall use (b) with the special choice that Xi

is a random variable with the distribution µi and Yi is a random variable

with the distribution νi. An application of the same measurable map to both

arguments X “ pX1, . . . , Xℓq and Y “ pY1, . . . , Yℓq cannot increase the

total variation distance between them, so

δ pµ1 ˚ ¨ ¨ ¨ ˚ µℓ, ν1 ˚ ¨ ¨ ¨ ˚ νℓq “ δpX1 ` ¨ ¨ ¨`Xℓ, Y1 ` ¨ ¨ ¨ `Yℓq ď δpX, Y q.
The application of part (b) to the right-hand side completes the proof. �

2.2. Growth of rows in Plancherel growth process. Let us fix an integer

k P N0. We define the finite set N “ t0, 1, . . . , k,8u which can be inter-

preted as the set of the natural numbers from the perspective of a person

who cannot count on numbers bigger than k (for example, for k “ 3 we

would have “zero, one, two, three, many”).

Let λp0q Õ λp1q Õ ¨ ¨ ¨ be the Plancherel growth process. For integers

n ě 1 and r P N0 we denote by E
pnq
r the random event which occurs if

the unique box of the skew diagram λpnq{λpn´1q is located in the row with

the index r. For n ě 1 we define the random variable Rpnq which takes

values in N and which is given by

Rpnq “
#
r if the event E

pnq
r occurs for 0 ď r ď k,

8 if the event E
pnq
r occurs for some r ą k,
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and which — from the perspective of the aforementioned person with lim-

ited counting skills — gives the number of the row in which the growth

occurred.

Let ℓ “ ℓpmq be a sequence of non-negative integers such that

ℓ “ O
`?

m
˘
.

For a given integer m ě pk ` 1q2 we focus on the specific part of the

Plancherel growth process

(24) λpmq Õ ¨ ¨ ¨ Õ λpm`ℓq.

We will encode some partial information about the growths of the rows as

well as about the final Young diagram in (24) by the random vector

(25) V pmq “
´
Rpm`1q, . . . , Rpm`ℓq, λpm`ℓq

¯
rvP N ℓ ˆ Y.

We also consider the random vector

(26) V
pmq “

´
R

pm`1q
, . . . , R

pm`ℓq
, λ

pm`ℓq¯ rvP N
ℓ ˆ Y

which is defined as a sequence of independent random variables; the random

variables R
pm`1q

, . . . , R
pm`ℓq

have the same distribution given by

P

!
R

pm`iq “ r
)

“ 1?
m

for r P t0, . . . , ku,(27)

P

!
R

pm`iq “ 8
)

“ 1 ´ k ` 1?
m

(28)

and λ
pm`ℓq

is distributed according to Plancherel measure Planm`ℓ; in par-

ticular the random variables λpm`ℓq and λ
pm`ℓq

have the same distribution.

Heuristically, the following result states that when Plancherel growth pro-

cess is in an advanced stage and we observe a relatively small number of its

additional steps, the growths of the bottom rows occur approximately like

independent random variables. Additionally, these growths do not affect

too much the final shape of the Young diagram.

Theorem 2.2. With the above notations, for each fixed k P N0 the total

variation distance between V pmq and V
pmq

converges to zero, as m Ñ 8;

more specifically

(29) δ
´
V pmq, V

pmq¯ “ o

ˆ
ℓ?
m

˙
.

The proof is postponed to Section 2.6; in the forthcoming Sections 2.3

to 2.5 we will gather the tools which are necessary for this goal. In fact, we

conjecture that the following stronger result is true.
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Conjecture 2.3. The distance (29) is equal to

O

ˆ
ℓ

m
5

6

˙
.

We will discuss this stronger result in Section 2.7.

2.3. Asymptotics of growth of a given row. Our main result in this sub-

section is Proposition 2.8 which gives asymptotics of the probability of

a growth of a given row in the Plancherel growth process. This result is

not new; it was proved by Okounkov [Oko00, Proposition 2]. Nevertheless

we provide an alternative (hopefully simpler) proof below. As a preparation,

we start with some auxiliary lemmas.

In the following we keep the notations from the beginning of Section 2.2;

in particular λp0q Õ λp1q Õ ¨ ¨ ¨ is the Plancherel growth process. Let

K P N0 be fixed. For n ě 1 we define

(30) s
pnq
K “

ÿ

0ďrďK

P

´
Epnq

r

¯
,

i.e., s
pnq
K is defined as the probability that the unique box of the skew diagram

λpnq{λpn´1q is located in one of the rows 0, 1, . . . , K.

Lemma 2.4. For eachK P N0 the sequence s
p1q
K , s

p2q
K , . . . is weakly decreas-

ing.

Proof. For n ě 1 letdn denote the unique box of the skew diagram λpnq{λpn´1q.

Then s
pnq
K is equal to the probability that the box dn is located in one of the

rows 0, 1, . . . , K.

Romik and the last named author [RŚ15, Section 3.3] constructed a ran-

dom sequence of boxes q1,q2, . . . (which is “the jeu de taquin trajectory

in the lazy parametrization”) such that for each n ě 1 we have equality of

distributions [RŚ15, Lemma 3.4]

dn
d“ qn

and, furthermore, each box qn`1 is obtained from the previous one qn by

moving one node to the right, or node up, or by staying put. In this way

pthe number of the row of qnqně1

is a weakly increasing sequence of random variables. It follows that the cor-

responding cumulative distribution functions evaluated in point K

s
pnq
K “ P

 
(the number of the row of dn) ď K

(
“

P
 

(the number of the row of qn) ď K
(

form a weakly decreasing sequence, which completes the proof. �
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Lemma 2.5. For each K P N0 and n ě 1

s
pnq
K ď K ` 1?

n
.

Proof. The monograph of Romik [Rom15, Section 1.19] contains the proof

(which is based on the work of Vershik and Kerov [VK85a; VK85b, Sec-

tion 3, Lemma 6]) of the inequality

(31) P

´
Epnq

r

¯
ď 1?

n

in the special case of the bottom row r “ 0. After some minor adjust-

ments this proof is applicable to the general case of r P N0 (in fact, these

adjustments are explicitly explained in the proof of Eq. (36) later on). The

summation over r P t0, . . . , Ku concludes the proof. �

Lemma 2.6. For each K P N0

lim inf
nÑ8

s
p1q
K ` ¨ ¨ ¨ ` s

pnq
K?

n
ě 2pK ` 1q.

Proof. We write λpnq “ pλpnq
0
, λ

pnq
1
, . . . q so that λ

pnq
r is the length of the

appropriate row of the Young diagram λpnq. The work of Logan and Shepp

[LS77] as well as the work of Vershik and Kerov [VK77] contains the proof

that for each ǫ ą 0

(32) lim
nÑ8

P

#
λ

pnq
r?
n

ă 2 ´ ǫ

+
“ 0

in the special case of the bottom row r “ 0. We will revisit this proof and

explain how to adjust it for the general case r P N0.

With the notations of Romik [Rom15, the proof of Theorem 1.23], if (32)

were not true for some ǫ ą 0 and r P N0, then for infinitely many values of

n the corresponding function ψn (which encodes the Young diagram λpnq in

the Russian coordinate system [Rom15, Section 1.17]) would be bounded

from above by the shifted absolute value function |u| ` r
b

2

n
on the interval

”?
2 ´ ǫ?

2
,
?
2
ı
. Clearly this would prevent ψn from converging uniformly

to the limit shape in contradiction to Logan–Shepp–Vershik–Kerov limit

theorem [Rom15, Theorem 1.22].

Equation (32) implies that for each r P N0

(33) lim inf
nÑ8

Eλ
pnq
r?
n

ě 2.
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We revisit the ideas of Vershik and Kerov [VK85a; VK85b, Section 3,

Lemma 6], see also [Rom15, Section 1.19]. Since the indicator of the event

Epmq fulfills

1
E

pmq
r

“ λpmq
r ´ λpm´1q

r

it follows that

P

´
Epmq

r

¯
“ E1

E
pmq
r

“ Eλpmq
r ´ Eλpm´1q

r .

By summing over 1 ď m ď n and over 0 ď r ď K it follows that

s
p1q
K ` ¨ ¨ ¨ ` s

pnq
K “ Eλ

pnq
0 ` ¨ ¨ ¨ ` Eλ

pnq
K .

Application of (33) completes the proof. �

Lemma 2.7. For each K P N0

(34) lim
nÑ8

?
n s

pnq
K “ K ` 1.

Proof. We will use a simplified notation and write spiq “ s
piq
K .

The upper bound for the left-hand side is a consequence of Lemma 2.5.

For the lower bound, suppose a contrario that for some ǫ ą 0 there exist

infinitely many values of an integer n ě 1 for which

(35)
?
n spnq ă p1 ´ ǫqpK ` 1q.

Let C ą 0 be a number which will be fixed later in the proof and set m “
n` tCnu. Lemmas 2.4 and 2.5 imply that

sp1q ` ¨ ¨ ¨ ` spmq

pK ` 1q?
n

ď

´
sp1q ` ¨ ¨ ¨ ` spnq

¯
` pm´ nqspnq

pK ` 1q?
n

ă

1?
n

ˆ
1?
1

` ¨ ¨ ¨ ` 1?
n

˙
` p1 ´ ǫqm ´ n

n
.

On the right-hand side we may bound the sum 1?
1

` ¨ ¨ ¨ ` 1?
n

by the corre-

sponding integral, thus

c
m

n
¨ s

p1q ` ¨ ¨ ¨ ` spmq

pK ` 1q?
m

“ sp1q ` ¨ ¨ ¨ ` spmq

pK ` 1q?
n

ă

1?
n

ż n

0

1?
x
dx ` p1 ´ ǫqm ´ n

n
“ 2 ` p1 ´ ǫqm ´ n

n
.

Passing to the limit n Ñ 8 for the values of n for which (35) holds true,

Lemma 2.6 and the above inequality imply that

2
?
1 ` C ď 2 ` p1 ´ ǫqC.
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However, the above inequality is not fulfilled for any

0 ă C ă 4ǫ

p1 ´ ǫq2
which completes the proof a contrario. �

The following result is due to Okounkov [Oko00, Proposition 2]. We pro-

vide an alternative, hopefully simpler proof below.

Proposition 2.8. For each i P N0

lim
nÑ8

?
n P

´
E

pnq
i

¯
“ 1.

Proof. From (30) it follows that

?
n P

´
E

pnq
i

¯
“

?
n
´
s

pnq
i ´ s

pnq
i´1

¯
“

?
n s

pnq
i ´

?
n s

pnq
i´1
.

To each of the two summands on the right-hand side we apply Lemma 2.7

which completes the proof. �

2.4. What happens after just one step? We will prove Lemma 2.9 and

Lemma 2.10 which show that the (rough) information about the number of

the row in which the growth of a Young diagram occurred does not influence

too much the probability distribution of the resulting Young diagram.

Lemma 2.9. For each r P N0 the total variation distance between:

‚ the probability distribution of λpnq (i.e., the Plancherel measure on

the set Yn), and

‚ the conditional probability distribution of λpnq under the condition

that the event E
pnq
r occurred,

converges to zero, as n Ñ 8.

In Section 2.7 we will discuss the conjectural rate of convergence in this

result.

Proof. For a Young diagram µ “ pµ0, µ1, . . . q and r P N0 we denote by

delr µ “ pµ0, . . . , µr´1, µr ´ 1, µr`1, . . . q
the Young diagram obtained from µ by removing a single box from the row

with the index r. The Young diagram delr µ is well-defined only if µr ą µr`1.

We consider the finite-dimensional vector space of real-valued functions

on the set Yn of Young diagrams with n boxes. For any subset A Ď Yn

we consider the non-negative bilinear form on this space

xf, gyA “
ÿ

µPA
fµ gµ
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and the corresponding seminorm

}f}A :“
a

xf, fyA.
An important special case is A “ Yn with the corresponding norm } ¨ }Yn

.

We consider two special vectors X, Y in this space:

Xµ :“

$
&
%

1?
pn´1q!

ddelr µ, if delr µ is well-defined,

0 otherwise,

Yµ :“ dµ?
n!

where dµ denotes the number of standard Young tableaux of shape µ. Ob-

serve that the vectorXµ depends on r. An important feature of these vectors

is that for any set A Ď Yn

}Y }2A “ P

!
λpnq P A

)
,

xX, Y yA “
?
n P

!
λpnq P A and Epnq

r

)
,

}X}2A “ P

!
λpn´1q P delr A

)
,

see [Rom15, Section 1.19, Proof of Lemma 1.25].

In particular, for the special case A “ Yn

(36) cn :“
?
n P

´
Epnq

r

¯
“ xX, Y yYn

ď }X}Yn
¨ }Y }Yn

ď 1.

By Proposition 2.8 the left-hand side converges to 1 as n Ñ 8. Since

}X}Yn
ď 1 and }Y }Yn

“ 1, it follows that

lim
nÑ8

cn “ lim
nÑ8

xX, Y yYn
“ lim

nÑ8
}X}Yn

“ 1.

As a consequence, a simple calculation using bilinearity of the scalar prod-

uct shows that

lim
nÑ8

››c´1

n X ´ Y
››
Yn

“ 0.

For any A Ď Yn it follows therefore that

ˇ̌
ˇ̌P

!
λpnq P A

ˇ̌
ˇ Epnq

r

)
´ P

!
λpnq P A

)ˇ̌
ˇ̌ “

“

ˇ̌
ˇ̌
ˇ̌
ˇ

xX, Y yA?
n P

´
E

pnq
r

¯ ´ xY, Y yA

ˇ̌
ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ
@
c´1

n X ´ Y, Y
D
A

ˇ̌
ˇ ď

››c´1

n X ´ Y
››
Yn

¨ }Y }Yn
.
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The right-hand side does not depend on the choice of A and converges to

zero which concludes the proof. �

Lemma 2.10. For each k P N0 the total variation distance between:

‚ the probability distribution of λpnq (i.e., the Plancherel measure on

the set Yn), and

‚ the conditional probability distribution of λpnq under the condition

that the event
´
E

pnq
0

Y ¨ ¨ ¨ Y E
pnq
k

¯c

occurred,

is of order o
´

1?
n

¯
, as n Ñ 8.

Proof. For real numbers x and c ą 0 we will denote by x˘ c some unspec-

ified real number in the interval rx´ c, x` cs. In the following we will use

the quantity s
pnq
k defined in (30). We denote

F pnq “
´
E

pnq
0 Y ¨ ¨ ¨ Y E

pnq
k

¯c

.

Let Cn be the maximum (over r P t0, . . . , ku) of the total variation dis-

tance considered in Lemma 2.9. The law of total probability implies that

for any set A Ď Yn

P

!
λpnq P A

)
“

ÿ

0ďrďk

P

!
λpnq P A

ˇ̌
ˇ Epnq

r

)
P

´
Epnq

r

¯
` P

!
λpnq P A

ˇ̌
ˇ F pnq

)
P

´
F pnq

¯
“

ÿ

0ďrďk

„
P

!
λpnq P A

)
˘ Cn


P

´
Epnq

r

¯
` P

!
λpnq P A

ˇ̌
ˇ F pnq

)
PpF pnqq “

“ P

!
λpnq P A

)
s

pnq
k ˘ Cns

pnq
k ` P

!
λpnq P A

ˇ̌
ˇ F pnq

)´
1 ´ s

pnq
k

¯
.

By solving the above equation for the conditional probability we get

P

!
λpnq P A

ˇ̌
ˇ F pnq

)
“

P

!
λpnq P A

)´
1 ´ s

pnq
k

¯
˘ Cns

pnq
k

1 ´ s
pnq
k

.

In this way we proved that the total variation distance considered in the

statement of the lemma is bounded from above by

(37)
Cns

pnq
k

1 ´ s
pnq
k

.

The asymptotics of the individual factors in (37) is provided by Lemma 2.9

(which givesCn “ op1q) and by Lemma 2.7 or, equivalently, by Okounkov’s

result Proposition 2.8
`
which gives s

pnq
k “ O

´
1?
n

¯˘
; this completes the

proof. �
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2.5. Asymptotic independence. As an intermediate step towards the proof

of Theorem 2.2 we consider a sequence of independent random variables

(38) rV pmq “
´
rRpm`1q, . . . , rRpm`ℓq, rλpm`ℓq

¯
rvP N

ℓ ˆ Y

which is independent with the vectors V pmq and V
pmq

(recall the definitions

in (25) and (26)), and such that the marginal distributions of V pmq and (38)

coincide:

rRpm`iq d“ Rpm`iq, for all 1 ď i ď ℓ

rλpm`ℓq d“ λpm`ℓq.

In particular, the probability distribution of rV pmq depends implicitly on k

which is the number of the rows of Young diagrams which we observe

less 1.

Lemma 2.11. For each k P N0 there exists a sequence bn “ o
´

1?
n

¯
with

the property that for all m ě pk ` 1q2 and ℓ ě 1 and i P t1, . . . , ℓu

(39) δ

ˆ ´
rRpm`1q, . . . , rRpm`i´1q, Rpm`iq, Rpm`i`1q, . . . , Rpm`ℓq, λpm`ℓq

¯
,

´
rRpm`1q, . . . , rRpm`i´1q, rRpm`iq, Rpm`i`1q, . . . , Rpm`ℓq, λpm`ℓq

¯˙

ď bm`i.

The only difference between the two random vectors considered in (39)

lies in the i-th coordinate: in the first vector this coordinate is equal to

Rpm`iq while in the second to rRpm`iq.

Proof. For an integer n ě 1 we define

bn :“
ÿ

rPN
P

´
Rpnq “ r

¯
ˆ

ÿ

λPYn

ˇ̌
ˇ̌P
´
λpnq “ λ

ˇ̌
ˇ Rpnq “ r

¯
´ P

´
λpnq “ λ

¯ˇ̌
ˇ̌ .

For the summands corresponding to r P t0, . . . , ku we note that the random

events
!
Rpnq “ r

)
and E

pnq
r are equal and we apply Proposition 2.8 and

Lemma 2.9. For the summand r “ 8 we apply Lemma 2.10. This gives

the desired asymptotics bn “ o
´

1?
n

¯
. In the following we will show that

this sequence indeed fulfills (39).
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An iterative application of Lemma 2.1(a) shows that the left-hand side

of (39) is equal to the total variation distance of the suffixes

δ

ˆ ´
Rpm`iq, Rpm`i`1q, . . . , Rpm`ℓq, λpm`ℓq

¯
,

´
rRpm`iq, Rpm`i`1q, . . . , Rpm`ℓq, λpm`ℓq

¯˙
.

In order to evaluate the latter we consider an arbitrary set X Ď N ℓ`1´i ˆ
Y. We can write

X “
ď

rPN
tru ˆ Xr

for some family of sets Xr Ď N ℓ´i ˆ Y indexed by r P N . Since the

Plancherel growth process (24) is a Markov process [Ker99, Sections 2.2

and 2.4],

(40) P

ˆ´
Rpm`iq, Rpm`i`1q, . . . , Rpm`ℓq, λpm`ℓq

¯
P X

˙
“

ÿ

rPN

ÿ

λPYm`i

P

´
Rpm`iq “ r and λpm`iq “ λ

¯
ˆ

P

ˆ´
Rpm`i`1q, . . . , Rpm`ℓq, λpm`ℓq

¯
P Xr

ˇ̌
ˇ̌ λpm`iq “ λ

˙
“

ÿ

rPN

ÿ

λPYm`i

P

´
Rpm`iq “ r

¯
P

´
λpm`iq “ λ

ˇ̌
ˇ Rpm`iq “ r

¯
ˆ

P

ˆ´
Rpm`i`1q, . . . , Rpm`ℓq, λpm`ℓq

¯
P Xr

ˇ̌
ˇ̌ λpm`iq “ λ

˙
.

An analogous, but simpler calculation shows that

(41) P

ˆ´
rRpm`iq, Rpm`i`1q, . . . , Rpm`ℓq, λpm`ℓq

¯
P X

˙
“

ÿ

rPN

ÿ

λPYm`i

P

´
Rpm`iq “ r

¯
P

´
λpm`iq “ λ

¯
ˆ

P

ˆ´
Rpm`i`1q, . . . , Rpm`ℓq, λpm`ℓq

¯
P Xr

ˇ̌
ˇ̌ λpm`iq “ λ

˙
.

The first and the third factor on the right-hand side of (40) coincide with

their counterparts on the right-hand side of (41), and the third factor is

bounded from above by 1. It follows that the absolute value of the difference

between (40) and (41) is bounded from above by bm`i, as required. �
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2.6. Proof of Theorem 2.2.

Proof. An iterative application of the triangle inequality combined with

Lemma 2.11 implies that

(42) δ

ˆ ´
Rpm`1q, . . . , Rpm`ℓq, λpm`ℓq

¯
,

´
rRpm`1q, . . . , rRpm`ℓq, rλpm`ℓq

¯˙
“ o

ˆ
ℓ?
m

˙
.

On the other hand, thanks to the independence of the coordinates, Lemma 2.1(b)

gives

(43) δ

ˆ ´
rRpm`1q, . . . , rRpm`ℓq, rλpm`ℓq

¯
,

´
R

pm`1q
, . . . , R

pm`ℓq
, λ

pm`ℓq¯
˙

ď
ÿ

1ďiďℓ

δ
´
rRpm`iq, R

pm`iq¯
.

In the remaining part of the proof we will investigate the individual sum-

mand which corresponds to n :“ m` i. We have

(44) δ
´
rRpnq, R

pnq¯ “ 1

2

ÿ

0ďrďk

ˇ̌
ˇ̌P

´
rRpnq “ r

¯
´ P

´
R

pnq “ r
¯ˇ̌
ˇ̌`

1

2

ˇ̌
ˇ̌P

´
rRpnq “ 8

¯
´ P

´
R

pnq “ 8
¯ˇ̌
ˇ̌ .

The equality

P

´
rRpnq “ 8

¯
“ 1 ´

ÿ

0ďrďk

P

´
rRpnq “ r

¯

and the analogous equality for R
pnq

imply that the right-hand side of (44)

can be bounded as follows:

(45) δ
´
rRpnq, R

pnq¯ ď
ÿ

0ďrďk

ˇ̌
ˇ̌P
´
rRpnq “ r

¯
´ P

´
R

pnq “ r
¯ˇ̌
ˇ̌ .

Below we will find the asymptotics of the individual summands on the right-

hand side.

For any 0 ď r ď k, by the definitions

P

´
rRpnq “ r

¯
“ P

´
Rpnq “ r

¯
“ P

´
Epnq

r

¯
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and by Proposition 2.8 we get the asymptotics of the probabilityP
´
rRpnq “ r

¯
.

The asymptotics of the probabilityP
´
R

pnq “ r
¯

is given by its definition (27).

It follows that the total variation distance in (45) is of order o
´

1?
n

¯
.

In this way we proved that

(46) δ

ˆ ´
rRpm`1q, . . . , rRpm`ℓq, rλpm`ℓq

¯
,

´
R

pm`1q
, . . . , R

pm`ℓq
, λ

pm`ℓq¯
˙

ď o

ˆ
ℓ?
m

˙
.

The triangle inequality combined with (42) and (46) completes the proof.

�

The following problem was asked by Maciej Dołęga.

Question 2.12. Plancherel growth process may be defined in terms of Schur

polynomials and the corresponding Pieri rule. Is it possible to apply the ideas

presented in the current section in the context of some other growth pro-

cesses on Y (such as Jack–Plancherel growth process [Ker00]) which are

related to other classical families of symmetric polynomials (such as Jack

polynomials)?

2.7. What is the rate of convergence? A more refine asymptotics for the

length of the given row

(47) Eλ
pnq
i “ 2

?
n` cin

1

6 ` o
´
n

1

6

¯

(see [BDJ99, Theorem 1.2] for the case of the bottom row) suggests that the

probability of the event E
pnq
i can be approximated by the derivative of the

right-hand side of (47), thus

1 ´
?
n P

´
E

pnq
i

¯
“ O

´
n´ 1

3

¯
;

note that the same kind of argument appeared already in Remark 1.2. If this

stronger version of Proposition 2.8 indeed holds true, then also the total vari-

ation distance in Lemma 2.9 is at most O
´
n´ 1

3

¯
. Consequently, the total

variation distance in Lemma 2.10 as well as the sequence bn in Lemma 2.11

can be better bounded as O
´
n´ 1

2
´ 1

3

¯
“ O

´
n´ 5

6

¯
. This would imply that

Conjecture 2.3 indeed holds true.
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3. PROOFS OF THE MAIN RESULTS

3.1. Proof of Theorem 1.1. Let Nptq “
`
N0ptq, . . . , Nkptq

˘
, t P R, be

a collection of k ` 1 independent copies of the standard Poisson process.

Let us fix some real number c ą 0; in the following we assume that n is big

enough so that n´ c
?
n ě pk ` 1q2. It follows in particular that

nt “ n` tt
?
nu for t P r´c, cs.

We denote

L “ Lpnq “ nc ´ n´c “ tc
?
nu ´ t´c

?
nu.

Lemma 3.1. For each c ą 0 the total variation distance between the ran-

dom vector

(48)
´
Λpn`iq ´ Λpnq : t´c

?
nu ď i ď tc

?
nu
¯

rvP
´
Z
k`1

¯L`1

and the corresponding random vector

(49)

˜
N

ˆ
i?
n

˙
: t´c

?
nu ď i ď tc

?
nu

¸
rvP
´
Z
k`1

¯L`1

converges to zero, as n Ñ 8 tends to infinity.

Proof. We consider the bijection

Z
L Q

´
ai : t´c

?
nu ď i ď tc

?
nu with a0 “ 0

¯
ÞÑ

´
ai ´ ai´1 : t´c

?
nu ă i ď tc

?
nu
¯

P Z
L.

Since an application of a bijection does not change the total variation dis-

tance, the aforementioned total variation distance between (48) and (49)

is equal to the total variation distance δpA,Bq between the corresponding

sequences of the increments, i.e.,

A :“
´
Λpn`iq ´ Λpn`i´1q : t´c

?
nu ă i ď tc

?
nu
¯

“
ˆ

p1Rpn`iq“0, . . . , 1Rpn`iq“kq : t´c
?
nu ă i ď tc

?
nu

˙

and the sequence of independent random vectors

B :“
˜
N

ˆ
i?
n

˙
´ N

ˆ
i´ 1?
n

˙
: t´c

?
nu ă i ď tc

?
nu

¸
.
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In the following we use the notations from Section 2.2 withm :“
X
n ´ c

?
n
\

and ℓ :“ L. In particular we consider the collection of random variablesR
pmq

with the probability distribution given by (27) and (28) for this specific value

of m. We define

A :“
ˆ´

1
R

pn`iq“0
, . . . , 1

R
pn`iq“k

¯
: t´c

?
nu ă i ď tc

?
nu

˙
;

our strategy will be to apply the triangle inequality

(50) δpA,Bq ď δpA,Aq ` δpA,Bq.

In order to bound the first summand on the right-hand side of (50) we

apply Theorem 2.2 for the aforementioned values ofm and ℓ; it follows that

δpA,Aq ď δ
´
V pmq, V

pmq¯ “ op1q.

For the second summand on the right-hand side of (50) we apply Lemma 2.1(b)

δpA,Bq “
ÿ

t´c
?
nuăiďtc

?
nu

δ

˜´
1
R

pn`iq“0
, . . . ,1

R
pn`iq“k

¯
,

Pois

ˆ
1?
n

˙
ˆ ¨ ¨ ¨ ˆ Pois

ˆ
1?
n

˙

loooooooooooooooooooomoooooooooooooooooooon
k ` 1 factors

¸
“ O

ˆ
1?
n

˙
,

where the last bound follows from a direct calculation of the total variation

distance of specific probability distributions on N
k`1

0 . �

Proof of Theorem 1.1. For given t1, . . . , tℓ P R we select arbitrary c ą
maxp|t1|, . . . , |tℓ|q. Let n be big enough so that n´c

?
n ě pk`1q2. We ap-

ply Lemma 3.1; from the two random vectors which appear in this lemma

we select the coordinates which correspond to i P
 

tt1
?
nu, . . . , ttℓ

?
nu
(

.

It follows that the total variation distance between the law of the finite-

dimensional marginal
´
Λpnt1

q ´ Λpnq, . . . , Λpntℓ
q ´ Λpnq

¯

and the law of the appropriate marginal of N, that is

(51)

¨
˝N

˜
tt1

?
nu?
n

¸
, . . . , N

˜
ttℓ

?
nu?
n

¸˛
‚

converges to zero as n Ñ 8.
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On the other hand, by the maximal coupling lemma [Tho00, Section 8.3,

Eq. (8.19)] (the definition of the total variance distance therein differs from

ours by the factor 2), the total variation distance between (51) and
`
N pt1q , . . . , N ptℓq

˘

is bounded from above by

P

$
&
%N

˜
tti

?
nu?
n

¸
‰ N ptiq for some i P t1, . . . , ℓu

,
.
- “ O

ˆ
1?
n

˙
.

An application of the triangle inequality for the total variation distance

completes the proof. �

Problem 3.2. Find the precise rate of convergence in Lemma 2.9 and Theo-

rem 2.2. This convergence probably cannot be too fast because this would

imply that an analogue of Theorem 1.1 holds true also in the scaling when

in (4) we study t " 1, and the latter would potentially contradict the non-

Gaussianity results for the lengths of the rows of Plancherel-distributed

Young diagrams [BDJ99; BDJ00; BOO00; Joh01].

3.2. Proof of Corollary 1.3.

Proof. Let c ą 0 be arbitrary. We consider n P N0 which is big enough so

that n´ c
?
n´ 1 ě pk ` 1q2. We denote

In “
!P
n ´ c

?
n
T
, . . . ,

X
n ` c

?
n
\)
.

Our strategy is to apply Theorem 2.2 form :“
P
n ´ c

?
n
T

´1 and ℓ :“ |In|;
in particular in the following we will use the collection of random variables

R
piq

over i P In with the probability distribution given by (27) and (28) for

this specific value of m.

We consider the following three collections of k`1 random subsets of In:

‚ the sequence A “ pA0, . . . , Akq with

Ay “
 
Qx,y : x P N0

(
X In

“
!
i P In : Rpiq “ y

)

obtained by selecting the entries of the bottom k ` 1 rows of the

recording tableau which belong to the specified interval,

‚ the sequence A “
´
A0, . . . , Ak

¯
with

Ay “
!
i P In : R

piq “ y
)
,
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‚ the sequence B “ pB0, . . . , Bkq obtained by independent sampling,

i.e., such that the family of random events
 
i P By

(
indexed by i P I

and y P t0, . . . , ku is a family of independent events, each having

equal probability 1?
n

.

Theorem 2.2 implies that the total variation distance δ
`
A,A

˘
converges

to zero, as n Ñ 8.

The information about the sequence A can be alternatively encoded by

the sequence of independent random variables pvi : i P Inq given by

vi “
´
1iPA0

, . . . ,1iPAk

¯
“
´
1
R

piq“0
, . . . ,1

R
piq“k

¯
for i P In

Analogously the information about B can be encoded by the sequence of

independent random variables pwi : i P Inq, where

wi “
`
1iPB0

, . . . ,1iPBk

˘
for i P In.

By Lemma 2.1(b) it follows that the total variation distance for the vectors

δpA,Bq “ δpv, wq ď
ÿ

iPIn
δpvi, wiq

is bounded by the sum of the coordinatewise total variation distances. The asymp-

totics of the individual summand

δpvi, wiq “ o

ˆ
1?
n

˙

is a consequence of a direct calculation based on the explicit form of the

two probability distributions involved here. In this way we proved that the

total variation distance δpA,Bq converges to 0 as n Ñ 8.

We apply a shift and a scaling to the random sets which form the col-

lection A and the collection B; it follows that the total variation distance

between

‚ the collection of random subsets of R˜"
Qx,y ´ n?

n
: x P N0

*
X r´c, cs : y P t0, . . . , ku

¸

obtained by truncating (6), and

‚ the collection of random subsets of R

(52)

˜"
j ´ n?
n

: j P By

*
: y P t0, . . . , ku

¸

converges to zero as n Ñ 8.

Each random set from the collection (52) converges in distribution to

the Poisson point process on the interval r´c, cs, see [DVJ08, Proposition

11.3.I], which concludes the proof. �
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3.3. Proof of Corollary 1.4. We start with an auxiliary result.

Lemma 3.3. For real numbers p, λ ě 0 and for integers k ě 0 and n such

that ppk ` 1q ď 1 let ξ1, . . . , ξn be independent, identically distributed ran-

dom variables with the uniform distribution Up0, 1q and let R
p1q
, . . . , R

pnq

be independent, identically distributed random variables with the distribu-

tion

(53)

$
’&
’%

P

!
R

piq “ r
)

“ p for r P t0, . . . , ku,

P

!
R

piq “ 8
)

“ 1 ´ pk ` 1qp,

cf. (27) and (28) for an analogous distribution in a similar context.

Then for any real numbers a, b such that 0 ď a ď b ď 1 the total varia-

tion distance between:

(a) the collection of k ` 1 random sets

(54)

ˆ
ra, bs X

!
ξi : R

piq “ y
)

: y P t0, . . . , ku
˙
,

and

(b) the collection of k`1 independent Poisson point processesN0, . . . , Nk

on the interval ra, bs with the intensity λ,

is bounded from above by

pk ` 1q2np2l2 ` pk ` 1q ¨ |λl ´ npl| ,
where l “ b´ a is the length of the interval.

Proof. For each i P t0, . . . , ku the corresponding Poisson point process Ni

can be generated by the following two-step procedure. Firstly, we sample

the number of points ni; it is a random variable with the Poisson distribution

with the parameter λl, where l :“ b ´ a is the length of the interval. Sec-

ondly, we take ni independent random elements of the unit interval ra, bs
with the uniform distribution. The random variables n0, . . . , nk which cor-

respond to independent Poisson processes are independent.

A similar construction can be performed for the collection (54) of random

sets: we first sample the vector pm0, . . . ,mkq of the cardinalities of the sets

from (54) and then for each index i P t0, . . . , ku we sample mi elements of

the interval ra, bs. In this case, however, the random variables m0, . . . ,mk

are not independent.

From the above discussion it follows that the total variation distance con-

sidered in the statement of this lemma between (a) and (b) is equal to the

total variation distance between the random vectors m “ pm0, . . . ,mkq and

n “ pn0, . . . , nkq. In the following we will bound the latter distance.
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The distribution of the random vector

m “
ÿ

1ďjďn

´
1
R

pjq“0
, . . . , 1

R
pjq“k

¯

is the n-fold additive convolution of the discrete probability measure M

on Z
k`1 which to each basis vector ei “ r0, . . . , 0, 1, 0, . . . , 0s P Z

k`1 as-

sociates the probability pl and to the zero vector associates the remaining

probability 1 ´ pk ` 1qpl.
On the other hand, the distribution of the random vector n can be al-

ternatively seen as the n-fold additive convolution of the product measure

N “ Pois
´

λl
n

¯
ˆ ¨ ¨ ¨ ˆ Pois

´
λl
n

¯
on Zk`1. We also consider an auxiliary

product measure N 1 “ Pois pplq ˆ ¨ ¨ ¨ ˆ Pois pplq on Zk`1.

By Lemma 2.1(c) and the triangle inequality it follows that

(55) δpm, nq ď n δ pM,N q ď n δ
`
M,N 1˘ ` n δ

`
N 1,N

˘
.

For the first summand on the right-hand side, by a direct calculation of the

positive part of the difference of the two measures and its ℓ1 norm, we have

n δ
`
M,N 1˘ “ npk ` 1q

”
pl ´ ple´plpk`1q

ı
ď npk ` 1q2p2l2,

where the inequality follows from an elementary bound on the exponential

function. For the second summand on the right-hand side of (55) we apply

Lemma 2.1(c) in order to bound the total variation distance between two

Poisson distributions; it follows that

n δ
`
N 1,N

˘
ď pk ` 1q ¨ |λl ´ npl|

which completes the proof. �

Proof of Corollary 1.4. We start with the case when 0 ă w ă 1. We will

show a stronger result that for each A ą 0 the total variation distance be-

tween:

(i) the collection of k ` 1 sets

(56)
´
Ppnq

y X r´A,As : y P t0, . . . , ku
¯
,

(cf. (7)), and

(ii) the collection of k ` 1 independent Poisson point processes on the

interval r´A,As with the intensity 1?
w

converges to zero, as n Ñ 8.

As the first step, let us fix ǫ ą 0. Let Z1 be the number of the entries

of the sequence ξ1, . . . , ξn which are weakly smaller than w ´ A?
n

and let

Z2 be the number of the entries of this sequence which are strictly smaller
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than w ` A?
n

; clearly the probability distribution of Z1 and Z2 is a bino-

mial distribution. By Bienaymé–Chebyshev inequality it follows that the

constant

B :“ A` 1?
ǫ

has the property that for each positive integer n

(57) P pZ1 ă nminq ď ǫ, P pZ2 ě nmaxq ď ǫ

with

nmin :“
X
nw ´ B

?
n
\
, nmax :“

P
nw ` B

?
n
T
.

In the following we assume that n is big enough so that

1 ď nmin ď nmax ď n.

Without loss of generality we may assume that the entries of the sequence

ξ1, . . . , ξn are not repeated. It follows that this sequence can be encoded by

two pieces of information:

‚ the sequence of order statistics 0 ă ξp1q ă ¨ ¨ ¨ ă ξpnq ă 1, and

‚ the permutation π “ pπ1, . . . , πnq which encodes the order of the

entries, i.e. πi ă πj if and only if ξi ă ξj;

these two pieces of information are clearly independent and the permutation

π is a uniformly random element of the symmetric group.

Since RSK algorithm is sensitive only to the relative order of the entries

and not to their exact values, the insertion tableaux P pξ1, . . . , ξnq can be

obtained from the insertion tableau P pπ1, . . . , πnq by replacing each entry

by the corresponding order statistic. It follows that the entries of a given row

y P N0 of the insertion tableau can be alternatively described as follows:
!
P pnq
x,y : 0 ď x ă λpnq

y

)
“

“
 
ξpiq : i is in the row y of the tableau P pπ1, . . . , πnq

(
.

It follows in particular that the intersection P
pnq
y X r´A,As is defined

in terms of (a certain subset of) the set of these order statistics ξpiq which

belong to the interval

I :“ ra, bs
with

a :“ w ´ A?
n
, b :“ w ` A?

n
.

If neither of the two random events appearing in (57) holds true then this

set of order statistics fulfills

I X
 
ξp1q, . . . , ξpnq

(
Ď
 
ξpnminq, . . . , ξpnmaxq

(
;
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under this condition it follows that in order to find the number of the row of

P pnq which contains a given order statistic ξpiq P I it is enough to know the

number of the row of the tableau P pπ1, . . . , πnq which contains a given num-

ber j, over all choices of j P tnmin, . . . , nmaxu. Here and in the following

by the number of the row we will understand the element of the fixed finite

set N “ t0, . . . , k,8u with the convention that the element 8 corresponds

to all rows above the bottom k ` 1 rows.

The insertion tableau P pπq “ Q
`
π´1

˘
is equal to the recording tableau

of the inverse permutation; as a consequence the probability distribution of

P pπq is given by the Plancherel measure, can be interpreted as (a part of)

the Plancherel growth process and thus Theorem 2.2 is applicable to this

tableau. It follows that the probability distribution of the vector formed by

the so understood numbers of the rows of the boxes nmin, . . . , nmax can be

approximated (up to an error op1q with respect to the total variation dis-

tance) by a sequence of independent random variables with the probability

distribution given by (53) for p “ 1?
nmin

. Here and in the following we

assume that n is big enough so that pk ` 1qp ď 1.

The above two paragraphs show that the total variation distance between

the collection

(58)

ˆ
ra, bs X

!
P pnq
x,y : x ě 0

)
: y P t0, . . . , ku

˙
,

of truncated entries of the bottom rows and the collection (54) is bounded

from above by 2ǫ`op1q. On the other hand, Lemma 3.3 applied to λ “
a

n
w

shows that the total variation distance between (54) and the collection of

k ` 1 independent Poisson point processes (b) with the intensity λ on the

interval I converges to zero. We combine these two bounds by the triangle

inequality; as a result the total variation distance between (58) and (b) is

bounded from above by 2ǫ` op1q.

We consider the affine transformation x ÞÑ ?
n px ´ wq which maps

the interval ra, bs to r´A,As. This affine transformation also maps the ran-

dom collection (58) to (56) from (i); it also maps the collection of Poisson

processes (b) from Lemma 3.3 with the intensity λ to the collection (ii) of

Poisson processes with the intensity λ 1?
n

“ 1?
w

. The application of this

affine transformation preserves the total variation distance between the ran-

dom variables, so the inequality from the previous paragraph completes the

proof.

In the case when w “ 1 the above proof can be easily adjusted by chang-

ing the definitions of nmax :“ n and b :“ 1. �
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