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Convergence properties of symmetrization processes

Jacopo Ulivelli ∗

Abstract

Steiner symmetrization is well known for its rounding and general convergence

properties. We identify a whole family of symmetrizations sharing analogue behav-

iors: In fact we prove that all these symmetrizations share the same converging

symmetrization processes, together with some pathological phenomena. ∗

1 Introduction

Symmetrizations play a very important role in geometry and its application, allowing to
prove many results with relatively easy and direct proofs. In particular geometric and
analytic inequalities, like the Isoperimetric, Blaschke-Santalò, Faber-Krahn inequalities
and many others have been proved using for example Steiner symmetrization. For some
self contained introductions on the subject see [9] Chapter 1 and 2, [10] Chapter 9, [17]
Chapter 10, [12] Chapter 3 and the references therein. All these results rely mainly on
the fact that through Steiner symmetrization, for every convex compact set it is always
possible to find a sequence of symmetrizations converging to a ball while preserving the
volume.
We call symmetrization process a sequence of symmetrizations applied to a subset of
Rn. These processes are the main focus of this work. In 1986 Mani-Levitska [14] showed
that, for Steiner symmetrization, a randomly chosen symmetrization process for a convex
compact body converges almost surely to a ball. This result was later extended by Van
Schaftingen [16] to general compact sets, then by Volcic [19] for measurable sets. Coupier
and Davydov [7] later proved, thanks to the inclusion between Steiner and Minkowski sym-
metrization, that an analogue probabilistic property holds for Minkowski symmetrization.
Other interesting results concerning convergence in probability can be found in the works
of Bianchi, Burchard, Gronchi and Volcic [1] and Burchard and Fortier [6].
Parallelly, the study of deterministic convergence received a boost in 2012 with the work

of Klain [13], which inspired a series of papers on the subject. In particular Bianchi,
Gardner and Gronchi in [2] and [3] introduced a general framework for the study of sym-
metrizations, focusing, among the others, on the relations between different symmetriza-
tions and their properties. We mainly use their formalism, which now we introduce. Let
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E be a family of sets (they might be convex compact sets, epigraphs of a certain class of
functions...) and fix a subspace H , then a H-symmetrization is a map

♦H : E → EH,

where EH is the subfamily of E of H-symmetric sets. Here we focus on the family of
compact sets Cn and convex compact sets Kn. Symmetrizations may enjoy many different
properties, some of which can completely characterise them, as it is shown for example in
[2], Section 9.
The properties we are interested in are monotonicity, invariance under reflections and

invariance under orthogonal translations (see next Section for the specific definitions). We
call F the family of all the symmetrizations satisfying such properties for every proper
subspace of Rn. The family F includes Minkowski and fiber symmetrizations (the latter
corresponds for convex compact bodies to the Steiner symmetrization when considered
with respect to hyperplanes) and possesses a very strong structure, as proved in Corollary
7.3 in [2]. Such structure plays an essential role in the proof of our main results. Indeed it
will allow us to characterise some convergence phenomena for F which are shared by the
whole family. A convergence property that has been studied in literature is the following.

Definition 1.1. If ♦ is a symmetrization on Kn, a sequence of subspaces (Hm) of Rn is
said to be weakly-universal for ♦ if, for every k ∈ N we have that the sequence of sets

Km,k = ♦Hm
. . . ♦Hk

K

converges for every K ∈ Kn with non empty interior to a ball of radius r(K, k), thus we
allow such quantity to change with respect to k. If r(K, k) is independent from k, then
(Hm) is said to be universal for ♦.

The definition of universal sequence was introduced in [7] (Theorem 3.1), were the follow-
ing result was obtained for the family Kn

n of convex bodies, i.e. convex compact subsets
of Rn with non empty interior.

Theorem 1.2 (Coupier and Davydov). A sequence of hyperplanes (Hm) in Rn is universal
for Steiner symmetrization in Kn

n if and only if it is universal for Minkowski symmetriza-
tion in Kn

n.

Later this Theorem was extended by Bianchi, Gardner and Gronchi together with the
introduction of weakly universal sequences. In [2], section 8 and [3] section 6 and 7 many
results were obtained in this direction, in particular we observe that Theorems 7.3 and
7.4 from [3] together with Theorem 1.2 generalize the latter result to the family Cn.
In all these results the limit of the sequence is a ball. Here instead we study a wider class

of sequences, without prescribing specific limit sets.

Definition 1.3. If ♦ is a symmetrization on E , a sequence of subspaces (Hm) is said to
be ♦-stable (or stable for the symmetrization ♦) if, for every k ∈ N the sequence defined
for m ≥ k

Km = ♦Hm
. . . ♦Hk+1

♦Hk
K

converges for every K ∈ E .
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Notice that the limit might depend on K ∈ Kn and k ∈ N both, as we show in the
Examples 3.2 and 3.3.
The generalization of Theorem 1.2 we prove is the following.

Theorem 1.4. Let ♦ ∈ F be a symmetrization on Kn. Then, if (Hm) is a ♦-stable
sequence of subspaces of Rn, it is ♠-stable for every symmetrization ♠ ∈ F .
In particular this holds for Steiner and Minkowski symmetrizations when (Hm) are hy-

perplanes.

This turns out to be a simple consequence of a broader result we prove in Theorem 3.4,
which involves the so called convergence in shape, studied for the first time in [1]. This kind
of convergence, properly defined in the next section, involves a sequence of rotations (Am),
which corrects at every step the underlying symmetrization process. Indeed such tool can
be used to give convergence to symmetrizations processes which would not naturally have
a limit, as the ones we study in Section 4. Using the same notation of Theorem 1.4, we
prove in Theorem 3.4 that, given two symmetrizations ♦, ♠ ∈ F , we have that ♦ is stable
in shape if and only if ♠ is stable in shape.
This last result has many interesting consequences. One of them is a partial answer to the

question: Does a converging sequence of hyperplanes induce a converging symmetrization
process? We find a positive answer when one additional assumption is imposed.

Theorem 1.5. Let (Hm) be a sequence of hyperplanes and consider the corresponding
normals (um) ⊂ Sn−1. Consider moreover ♦ ∈ F . If the angles (αm) ⊂ [0, π/2] given by
the relation |um · um−1| = cos αm are such that

∑

m∈N

|αm| < +∞,

then the sequence (Hm) converges and it is ♦-stable on Kn.

We were not able to prove that such assumption is necessary, but the question is the
subject of ongoing research.
The structure of this work is the following. In Section 2 we introduce the basic notation
and definitions, recalling some tools and instrumental results. In Section 3 we prove
Theorem 3.4 and investigate some consequences. Finally in Section 4, after presenting a
counterexample from [1], we prove new ones and show that the same procedures work for
all the symmetrizations of the family F .

2 Preliminaries

Our ambient space is the family of compact subsets of Rn, where we consider the following
operation: Given two subsets A, B of Rn, the Minkowski addition of A and B is the set

A + B := {x + y|x ∈ A, y ∈ B}.

Such space is a complete metric space with respect to the topology induced by the Haus-
dorff distance, which for two compact sets K, L is given by

dH(K, L) := max{inf{ε > 0, K ⊂ L + εBn}, inf{ε > 0, L ⊂ K + εBn}},

3



where Bn is the Euclidean n-dimensional unitary ball centered in the origin. See [17],
[12], [11] for the classical theory of convex bodies.
We denote as Cn and Kn the families of compact sets and convex compact sets of Rn

respectively. When using the subscripts Cn
n , Kn

n, we are restricting ourselves to the respec-
tive families of bodies, i.e. sets with non-empty interior. Throughout the paper B(x, r)
denotes the Euclidean ball centred in x of radius r > 0, and we write the Euclidean scalar
product between two vectors x, y ∈ Rn as x · y. Sn−1 is the unit sphere in Rn.
When dealing with symmetrizations a crucial role is played by some specific set functions

on the family of sets we are considering. In particular, for Cn we are interested in the
volume, given by the n-dimensional Lebesgue measure of a set which we write as λn(·).
For convex sets we can also consider the mean width, which for K ∈ Kn is

W(K) :=
1

ωn

∫

Sn−1

[hK(ν) + hK(−ν)]dHn−1(ν),

where ωn is the (n − 1)-dimensional measure of Sn−1 and hK is the support function of
K, given by

hK(x) := sup{x · y|y ∈ K}, x ∈ S
n−1.

An important property of the Minkowski addition of compact convex sets is that it is
equivalent to the sum of support functions in the following sense:

hK(·) + hL(·) = hK+L(·) (2.1)

for every K, L ∈ Kn. In this notation, the translation of a set A by a vector x ∈ Rn may
be written as A + x.
The symmetric difference of two measurable subsets A, B of Rn is

λn(A∆B) := λn(A \ B) + λn(B \ A).

In Kn
n this is the Nikodym distance, which is equivalent to the Hausdorff distance.

We denote as G(n, i), 1 ≤ i ≤ n−1 the sets of subspaces of Rn of dimension 1 ≤ i ≤ n−1.
We use the term subspace referring to linear subspaces. For every subset A of Rn and
subspace H we writethe projection of A onto H as PHA. The reflection with respect to
a subspace H , given by the map

x 7→ x − 2PH⊥{x}, (2.2)

is denoted by RH , where H⊥ is the subspace orthogonal to H . When a set A of Rn is
such that A = RHA, it is said to be symmetric with respect to H , or H-symmetric for
short.
A fundamental result in the theory of convex bodies is the Brunn-Minkowski inequality.

It states that for every compact sets K, L the inequality

λn(K + L)1/n ≥ λn(K)1/n + λn(L)1/n (2.3)

holds, where equality is achieved if and only if K and L are homothetic convex bodies
or lower-dimensional convex sets liyng in two parallel affine subspaces. For a complete
survey regarding this inequality and its extensions see Gardner [8].
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We now go back to the concept of H-symmetrization introduced in [2], [3]. Given a
family of sets E and a subspace H , an H-symmetrization is a map

♦H : E → EH

with EH = {C ∈ E|RHE = E}, where RH is the map given by (2.2).
Let ♦ be a H-symmetrization in E . Of particular interest are the following properties:

1. (Monotonicity): For every K, L ∈ E if K ⊆ L, then ♦HK ⊆ ♦HL,

2. (Idempotence): For every K ∈ E holds ♦HK = ♦H♦HK,

3. (H⊥-translation invariance for H-symmetric sets): If K ∈ E and RHK = K, then
for every x ∈ H⊥ holds ♦H(K + x) = K,

4. (Invariance for H-symmetric sets): If K ∈ E and RHK = K, ⇒ ♦HK = K.

5. (F -invariance): There exist a function F : E → R such that F (K) = F (♦HK) for
every K ∈ E .

When we refer to ♦ as a symmetrization it is understood that ♦H is a H-symmetrization
for every subspace H of Rn. Of particular interest is the following family of symmetriza-
tions:

F := {♦ symmetrization| properties 1,3,4 hold }.

The results obtained in this paper concern mainly Schwarz, Minkowski e fiber Symmetriza-
tions, which we proceed now to present.

Schwarz Symmetrization Let C ∈ Cn, for a fixed H ∈ G(n, i), 1 ≤ i ≤ n − 1. The
Schwarz symmetrization of C is the set

SHC :=
⋃

x∈H

B(x, rx),

where rx is such that λn−i(K ∩ (H⊥ + x)) = λn−i(B(x, rx)) if λn−i(K ∩ (H⊥ + x)) > 0.
If the measure of the section a t x ∈ H is zero but the section is non empty, we replace
it with x, otherwise we replace such section with the empty set. From Fubini’s Theorem
it follows that this symmetrization preserves the volume, thus satisfying property (5) for
F (·) = λn(·). When i = n − 1 this is better know as Steiner Symmetrization, and in
general it decreases intrinsic volumes (see [11], Satz XI, p. 260, or Theorem 10.4.1 in
[17]). Both in Cn and Kn Schwarz symmetrization satisfies properties (1,2,5), while (3,4)
hold only for convex sets in the case i = n − 1.

Minkowski Symmetrization Let C ∈ Cn, H ∈ G(n, i), 1 ≤ i ≤ n. The Minkowski
symmetrization of C is the set

MHK :=
C + RHC

2
.
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Clearly from the definition of W(K) and (2.1) it preserves the mean width when C is
convex, thus property (5) holds for F (·) = W(·). From the Brunn-Minkowski inequality
(2.3) it follows that

λn(MHK) ≥ λn(K).

It may be useful to consider the central Minkowski symmetrization, i.e.

MoK =
K − K

2
,

which is centrally symmetric. If K lies in an affine subspace H + x, x ∈ H⊥, then we
write MxK for the central Minkowski symmetrization in such affine subspace, i.e.

MxK =
K + RH⊥K

2
.

In Kn Minkowski symmetrization satisfies all the listed properties, but in Cn only (1)
holds.

Fiber Symmetrization Let C ∈ Cn, H ∈ G(n, i)1 ≤ i ≤ n. Then its fiber symmetriza-
tion is the set

FHK =
⋃

x∈H

Mx(K ∩ (H⊥ + x)).

This symmetrization can be seen as an hybrid between Schwarz and Minkowski sym-
metrization, and the underlying operation was introduced by McMullen [15]. As Minkowski
symmetrization it increases the volume and in Kn it satisfies property (1,2,3,4), while
(2,3,4) fail to hold in Cn. See [18] for some specific examples.
Fiber and Minkowski symmetrizations can be considered the extremals of the family F ,

in a sense that Theorem 2.1 will make clear. Moreover other symmetrizations, different
from fiber or Minkowski, can be found in F ; see for example the remarks after Corollary
7.3 in [2], where the following fact is proved.

Theorem 2.1 (Bianchi, Gardner and Gronchi). Let H ∈ G(n, i), 1 ≤ i ≤ n − 1, E = Kn

or Kn
n. If ♦ ∈ F , then

FHK ⊆ ♦HK ⊆ MHK (2.4)

for every K ∈ E .

In the last section of this paper we study some counterexamples to the convergence of
symmetrization processes. We will present one in Example 4.1, which was independently
proved in [5] and [6]. Such example shows that a dense sequence of directions, if accurately
chosen, leads to a non converging symmetrization process. We show in particular that the
same construction holds for the whole family of symmetrizations considered in Theorem
2.1.
For this family of non converging sequences, when dealing with Steiner symmetrization of

compact sets, convergence is still possible in a weaker sense, called convergence in shape.
The next section will be devoted to the study and the generalization of such convergence
(see Definition 3.2). The first result in this direction was achieved in [1], Theorem 2.2,
with the following result.
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Theorem 2.2 (Bianchi, Burchard, Gronchi and Volcic). Let (um) be a sequence in S
n−1

such that um · um−1 = cos αm, where (αm) is a sequence that satisfies
∑

m∈N α2
m < +∞.

Define moreover (Hm) as the corresponding sequence of orthogonal hyperplanes given by
Hm = u⊥

m for every m ∈ N.
Then there exist a sequence of rotations Rm such that for every non empty compact set

K ⊂ Rn the sequence
Km := RmSHm

. . . SH1
K

converges in Hausdorff distance to a convex compact set L.

In Corollary 3.6 we obtain a generalization of such result in Kn for all the symmetrizations
in F with respect to sequences of hyperplanes.

3 Shape-Stable Symmetrization Processes

We start noticing some monotonicity properties for volume and mean width with respect
to symmetrizations in F .

Lemma 3.1. Consider H ∈ G(n, i), 1 ≤ i ≤ n − 1, and a symmetrization ♦H : Kn →
(Kn)H such that ♦ ∈ F . Then for every K ∈ Kn hold

λn(♦HK) ≥ λn(K), W(K) ≥ W(♦HK).

Proof. The first inequality is a consequence of the Brunn-Minkowski inequality (2.3).
Indeed by definition, if K ∈ Kn then every H-orthogonal section of FHK is a Minkowski
symmetrization of a H-orthogonal section of K, thus λn(FHK) ≥ λn(K).
Now, thanks to the inclusions chain (2.4) we have

λn(♦HK) ≥ λn(FHK) ≥ λn(K).

For the second inequality, again thanks to (2.4) we have that ♦HK ⊆ MHK, thus clearly
h♦HK(u) ≤ hMH K(u) for every u ∈ Sn−1 and consequently

W(♦HK) ≤ W(MHK) = W(K),

completing the proof.

We need now a weaker concept of convergence, which generalizes the phenomenon studied
in Theorem 2.2.

Definition 3.2 (Convergence in Shape). Given a set C ∈ E , a symmetrization ♦ on E
and a sequence of subspaces (Hm), the sequence of symmetrals

♦Hm
. . . ♦H1

C

is said to converge in shape if there exist a sequence of rotations (Am) such that

Am♦Hm
. . . ♦H1

C (3.1)

converges.

7



H2, H4, H6, . . .

H3, H5, H7, . . .

H1

Figure 1: Different limits may arise from stable sequences.

Definition 3.3 (Shape-stable Sequences). If in Definition 3.2 for every k ∈ N, m ≥ k the
sequence

Am♦Hm
. . . ♦Hk

C

converges, where (Am) is independent from C and k, the sequence of subspaces (Hm) is
shape-stable in E for ♦.

Examples of a shape-stable sequences are presented in Theorem 2.2. Notice that if Am

is the identity for every m ∈ N, then a shape-stable sequence (Hm) is stable. To better
understand these new concepts, let us show some examples.

Example 3.1 (Klain’s Theorem). In [13] Klain proved that, considered a finite family
of hyperplanes D = {G1, . . . , Gk}, a sequence (Hm) such that Hm ∈ D for every m ∈ N

is stable for Steiner symmetrization on Kn. This result is extended in [3] to Minkowski,
Fiber, Schwarz and more generic symmetrizations, again in the family Kn. In [18] we
proved that such result holds as well for the Minkowski symmetrization on compact sets
of Rn.

Example 3.2 (Stable Sequence). Consider in R
2 the square Q with vertices (1, 0),

(0, −1), (−1, 0), (0, 1) as in Figure 1. Consider the sequence of lines (Hm) where Hm =
span{(1, 0)} when m is even, Hm = span{(0, 1)} when m is odd, for m ≥ 2, while
H1 = span{(

√
2 + 1, 1)}. Then (Hm) is stable in K2 for Minkowski symmetrization

thanks to Theorem 5.7 [3] (see example 3.1). Now, observe that MH1
Q is the red octagon

in the figure, and all the other symmetrizations leave this body unchanged, so that the
limit is be exactly MH1

Q. If we start from m ≥ 2 instead the limit is always Q.

Example 3.3 (Shape-stable Sequence). Consider in R2 an ellipse E centered in the
origin and a sequence of lines as in Theorem 2.2. It is known that Steiner symmetrization
preserves ellipses and we can choose a direction v such that the symmetrization with
respect to the line H1 parallel to v gives a ball.

8



If we consider a sequence of lines (Hm) starting from H1 and then continuing as the
sequence of Theorem 2.2, we infer that (Hm) is shape-stable in K2. Moreover, considering
that SH1

E is a ball centered in the origin the limit is of course SH1
E. If we skip the

first symmetrizations, as it was proved in Example 2.1 from [1] (which we recall here in
Example 4.1) we can choose the remaining directions such that the limit of the convergence
in shape is not a ball.

We can now prove the following equivalence result. Notice that for this result the dimen-
sion of the subspaces in the sequence is not relevant.

Theorem 3.4. Let ♦ ∈ F . Given a sequence of subspaces (Hm) shape-stable for ♦
in Kn with isometries (Am), (Hm) is shape-stable in Kn with isometries (Am) for every
symmetrization ♠ ∈ F .
In particular a sequence of subspaces (Hm) is shape-stable for ♦ ∈ F if and only if the

same property holds for fiber or Minkowski symmetrizations. If (Hm) are hyperplanes, the
same conclusion holds for Steiner symmetrization.

Proof of Theorem 3.4. The outline of the proof is the following. We will proceed applying
multiple times (2.4), first proving that if (Hm) is shape stable for ♦ in Kn then it is shape-
stable for M in Kn. After that, we show that if the same sequence is shape-stable for M
in Kn then the same holds for ♠.
Let (Hm) be a shape-stable sequence of subspaces for ♦ in Kn as in the hypothesis, we

want to prove that for every K ∈ Kn the sequence

Km = AmMHm
. . . MH1

K (3.2)

converges. Suppose by contradiction that there exists K ∈ Kn such that for two sub-
sequences Kmj

, Kml
obtained by (3.2) one has Kmj

→ L1, Kml
→ L2 where L1 6= L2,

L1, L2 ∈ Kn.
Consider the sequence of bodies originated from the same process starting from Kr :=

K + B(0, r) instead of K, r > 0 fixed. This is done in order to cover both the full and
lower dimensional cases at the same time.
Notice that if H is a subspace and A is a rotation, for every K ∈ Kn

MH(K + B(0, r)) = MH(K) + B(0, r), A(K + B(0, r)) = A(K) + B(0, r)

thus

(Kr)m := AmMHm
. . . MH1

(K + B(0, r)) = AmMHm
. . . MH1

K + B(0, r),

that is (Kr)m = Km + B(0, r) = (Km)r and instead of L1 and L2 we have the limits
L1+B(0, r) and L2+B(0, r). Notice that L1 6= L2 if and only if L1+B(0, r) 6= L2+B(0, r)
(see for example [17], Lemma 3.1.11).
Since λn(Kr) > 0, thanks to Lemma 3.1 the sequence of the volumes λn(Km + B(0, r)) is

increasing and strictly positive. Moreover it is bounded, indeed from the compactness of
K there exists a ball B(0, R) with R > 0 such that Kr ⊆ B(0, R). For the monotonicity

9



and symmetry invariance of the Minkowski symmetrization we have that Km + B(0, r) ⊆
B(0, R) for every m ∈ N. Then λn((Km)r) converges to a certain value cr > 0.
Since L1 6= L2, λn((L1)r∆(L2)r) = δ > 0. Fix 0 < ε < δ/2, then there exists an index ν

such that cr − λn((Km)r) < ε for every m ≥ ν. Consider for m > ν the sequence

Jm = Am♦Hm
. . . ♦Hν+1

A
−1

ν (Kν)r

= Am♦Hm
. . . ♦Hν+1

MHν
. . . MH1

Kr,

then thanks to Theorem 2.1, Jm ⊆ (Km)r and in particular we have Jmj
⊆ (Kmj

)r, Jml
⊆

(Kml
)r. From the hypothesis the sequence (Hm) is shape-stable in Kn for ♦, thus there

exists J ∈ Kn such that Jm → J . Clearly the same holds for (Jmj
), (Jml

). In particular
J ⊆ (L1)r, J ⊆ (L2)r and for Lemma 3.1 λn(J) ≥ λn((Kν)r). We infer

λn((L1)r∆(L2)r) = λn((L1)r \ (L2)r) + λn((L2)r \ (L1)r) ≤
λn((L1)r \ J) + λn((L2)r \ J) = 2cr − 2λn(J) ≤ 2cr − 2λn((Kν)r) < 2ε < δ

which is a contradiction, thus L1 = L2. The same argument can be repeated for every
truncated sequence

AmMHm
. . . MHk

K

and consequently (Hm) is shape-stable for the Minkowski symmetrization.
Now we prove that if a sequence is shape-stable in Kn for Minkowski symmetrizations,

then it is shape-stable for ♠ ∈ F as well. Consider for Z ∈ Kn the sequence

Zm = Am♠Hm
. . . ♠H1

Z.

Again, by contradiction if Zm does not converge we can find two different subsequences
Zmj

, Zml
converging respectively to W1, W2 ∈ Kn with W1 6= W2.

Thanks to Lemma 3.1 the sequence W(Zm) is non negative and non increasing, thus
W(Zm) → b for some b ≥ 0. Then, if W1 6= W2, we have that W(conv(W1 ∪ W2)) > b.
Notice that the cases W1 ⊂ W2 and vice versa are automatically excluded since b =
W(W1) = W(W2) and the mean width is strictly monotone. Now, for every ε > 0 we
can find ν ∈ N such that W(Zm) − b < ε for every m ≥ ν. Define for every m ≥ ν the
sequence

Vm = AmMHm
. . . MHν+1

A
−1

ν Zν

= AmMHm
. . . MHν+1

♠Hν
. . . ♠H1

Z

which converges to some V ∈ Kn because (Hm) is shape-stable for Minkowski sym-
metrization. Minkowski symmetrization preserves the mean width, thus W(V ) = W(Zν).
Moreover, thanks to Theorem 2.1 we have that W1, W2 ⊆ V and being V convex it holds
conv(W1 ∪ W2) ⊆ V , thus W(V ) ≥ W(conv(W1 ∪ W2)), then

W(conv(W1 ∪ W2)) − b ≤ W(V ) − b = W(Zν) − b < ε.

Being ε arbitrary this inequality contradicts W (conv(W1 ∪W2)) > b and W1 = W2. Again
the same process can be applied to the truncated sequences, concluding the proof.
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Now Theorem 1.4 is just an easy corollary.

Proof of Theorem 1.4. Observe that if (Hm) is stable then it is shape-stable with Am equal
to the identity for every m. The proof is then a straightforward application of Theorem
3.4.

A first consequence is the following extension of Theorem 1.2. Notice that the extension
is twofold: The result holds for the whole family F and the respective family of objects
is Kn instead of Kn

n.

Theorem 3.5. Let ♦, ♠ ∈ F . A sequence (Hm) of subspaces is weakly-universal for ♦
in Kn if and only if the same holds for ♠.

Proof. The strategy will be the same of Theorem 3.4, with the advantage of using Theorem
1.4.
If (Hm) is weakly-universal for ♦ in Kn, then it is stable in Kn. Using Theorem 1.4, this

implies that (Hm) is stable for Minkowski symmetrization, thus we only need to prove
that for every K ∈ Kn the limit L of corresponding symmetrization process

Km = MHm
. . . MH1

K

is a ball. Again the sequence λn(Km) is bounded and increasing, thus it converges to a
certain c ≥ 0. Through the same argument employed in Theorem 3.4 we can suppose
c > 0, i.e. considering K + B(0, r) instead of K for r > 0 arbitrary small.
Since (Hm) is weakly-universal for ♦, for every ν ∈ N we have that the sequence

♦Hm
. . . ♦Hν+1

MHν
. . . MH1

K

converges to a ball Bν such that λn(Bν) ≥ λn(Kν) thanks to Lemma 3.1 and Bν ⊆ L for
every ν thanks to Theorem 2.1. Since λn(Km) → c increasingly, we have that for every
ε > 0 exists ν ∈ N such that λn(L∆Bν) < ε, thus L is a ball.
Suppose now that (Hm) is weakly universal for Minkowski symmetrization in Kn, then

clearly (Hm) is stable for ♠. Consider then for Z ∈ Kn the limit W of the sequence

Zm = ♠Hm
. . . ♠H1

Z.

Again W(Zm) is a non negative and non increasing sequence, thus it converges to a value
b ≥ 0.
(Hm) is weakly-universal for Minkowski symmetrization, thus for every ν ∈ N we have a

ball Bν as the limit of the sequence

MHm
. . . MHν+1

♠Hν
. . . ♠H1

Z.

Then W(Bν) = W(Zν) thanks to the properties of Minkowski symmetrization and for
every ν Theorem 2.1 gives W ⊆ Bν . Since W(Bν) converges decreasingly to W(W ), we
have that W must be a ball.
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Theorem 3.4 gives us the possibility to extend many known results for Steiner sym-
metrization to all the ♦ satisfying (1,3,4), in particular the Minkowski symmetrization
through hyperplanes. For example we immediately have the following generalization of
Theorem 2.2.

Corollary 3.6. Let (Hm) be a sequence of hyperplanes and the corresponding normals
(um) ⊂ Sn−1. Consider moreover ♦ ∈ F and the angles (αm) such that um·um−1 = cos αm.
If

∑

m∈N α2
m < +∞, then there exist rotations (Rm) such that for every non empty convex

compact set K ⊂ Rn the sequence

Km := Rm♦Hm
. . . ♦H1

K

converges in Hausdorff distance to a set L ∈ Kn.

For the Minkowski symmetrization with respect to hyperplanes we have a stronger result.
First we need the following convergence criterion from [18] (Theorem 1.2).

Theorem 3.7. Consider K ∈ Kn and a sequence of isometries (Am). If the sequence

Km =
1

m

m
∑

j=1

AjK

converges, then the same happens for every compact set C ∈ Cn such that conv(C) = K.
Moreover, the two sequences converge to the same limit.

Together with Theorem 1.4 this implies the following.

Corollary 3.8. If (Hm) is a shape-stable sequence of hyperplanes for Steiner symmetriza-
tion on Cn, then it is shape-stable on Cn for Minkowski symmetrization. In particular
Theorem 2.2 holds for Minkowski symmetrization as well.

Proof. First observe that being Kn closed in Cn, then (Hm) is obviously shape-stable for
Steiner symmetrization on Kn and from Theorem 3.4 it is shape-stable for Minkowski
symmetrization on Kn.
Now, in order to conclude the proof we just have to express the shape-stable sequence as

a sequence of means of isometries so that we can apply Theorem 3.7. This is clear if we
write explicitly the sequence. Indeed, for every C ∈ Cn

C1 = A1MH1
C = A1

(

C + RH1
C1

2

)

=
A1C + A1RH1

C

2
.

Iterating this process every Cm is a Minkowski mean of 2m isometries of C.
Theorem 2.2 provides shape-stable sequences for Steiner symmetrization in Cn, thus the

same sequences are shape-stable in Cn for Minkowski symmetrization.

We conclude this section with the proof of Theorem 1.5.
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Proof of Theorem 1.5. In the hypothesis of the theorem we can apply Corollary 3.6. The
rotations Rm in such statement (for the details on their construction see the proof of
Theorem 2.2 in [1], in this paper Theorem 2.2) correspond to the composition of the
m planar rotations Am of αm degrees as Rm = Am . . .A1, where every Am is such that
AmRm−1um = e1 and it fixes the subspace u⊥

m ∩ e⊥
1 .

We now show that (Rm) is a Cauchy sequence on the space of endomorphisms of Rn with
the classical sup norm

‖A‖ := sup
z∈Sn−1

‖Az‖,

thus it converges to a certain rotation R. From the properties of the norm and the
triangular inequality

‖Rm+k − Rm‖ = ‖Am+k . . .Am+1Rm − Rm‖ = ‖Rm‖‖Am+k . . .Am+1 − Id‖ =

‖Am+k . . .Am+1 − Id‖ ≤ ‖Am+k . . .Am+1 − Am+1‖ + ‖Am+1 − Id‖ ≤

‖Am+1‖‖Am+k . . .Am+2 − Id‖ + 2 sin(|αm+1|/2) ≤ · · · ≤ 2
m+k
∑

j=m+1

sin(|αj |/2).

From the hypothesis the series (|αm|) converges, proving the claim.
From Corollary 3.6 the sequence of sets

Rm♦Hm
. . . ♦H1

K

converges for every K ∈ Kn to a certain set L, then it makes sense to consider the set
R−1L. We then have the following estimates

dH(♦Hm
. . . ♦H1

K, R−1L) ≤ dH(♦Hm
. . . ♦H1

K, R−1

m L) + dH(R−1

m L, R−1L).

Thanks to the invariance with respect to isometries of the Hausdorff distance

dH(Rm♦Hm
. . . ♦H1

K, L) = dH(♦Hm
. . . ♦H1

K, R−1

m L)

and thus from the convergence of Rm♦Hm
. . . ♦H1

K and Rm we infer that ♦Hm
. . . ♦H1

K
converges to R−1L, concluding the proof.

4 Counterexamples to convergence

As we have seen Theorem 3.4 lets us extend Theorem 2.1 to all the symmetrizations
♦ ∈ F . The latter result arises from the study of a peculiar counterexample which now
we briefly show. It can be found in different versions in [5],[6] and [1]. In the following
examples the vectors {e1, e2} are intended as the standard orthonormal basis in R2.

Example 4.1. Consider a sequence of angles (αm) ⊂ (0, π/2) such that

∑

m∈N

αm = +∞,
∑

m∈N

α2

m < +∞, (4.1)
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and take the sequence of directions in R
2 given by um := (cos βm, sin βm) where

βm :=
m

∑

j=1

αj

with corresponding orthogonal lines Hm = u⊥
m.

Let 0 < γ :=
∏

m∈N cos αm (which converges because of the second condition in (4.1)),
we consider a compact set K ⊂ R2 with area 0 < |K| < π(γ/2)2 and containing a vertical
unitary segment ℓ centered in the origin. We prove now that the sequence

Km := SHm
. . . SH1

K

does not converge. Consider indeed the sequence of segments

ℓm := PHm
Km−1,

where the length of ℓm converges to γ > 0 and each of them is clearly aligned with Hm.
The sequence of directions (um) is dense in S1, thanks to (4.1), and it does not converge.
The same holds for the perpendicular sequence of lines (Hm). Thus for every ν ∈ S1 we
can find a subsequence H⊥

mk
such that its corresponding direction converges to ν. Similarly

ℓmk
converges to a segment of length γ > 0 aligned to ν.

Now, if Km converges, for the monotonicity of Steiner symmetrization it must contain
all these subsequences of diameters, and consequently a ball B of diameter γ centered in
the origin. But we supposed λ2(K) < π(γ/2)2, thus Km cannot converge.

The peculiarity of the sequence involved in this example is that the corresponding direc-
tions are dense in S1, which could seem a reasonable sufficient condition for convergence
to a ball. As it was showed this is definitely not the case, even though in [5] it was proved
for compact convex sets that a dense sequence of hyperplanes can be reordered to obtain
a universal sequence. This was generalized in [20] to generic compact sets.
In [4] instead it is proved a characterization of the symmetry that a convex compact body

needs in order to be a ball. The form we present includes the statements from Theorem
3.2 for one dimensional subspaces.

Theorem 4.1 (Bianchi, Gardner and Gronchi). Let Hj ∈ G(n, 1), j = 1, . . . , n, be such
that
(i) at least two of them form an angle that is an irrational multiple of π,
(ii) H1 + · · · + Hn = Rn and
(iii)H1, . . . , Hn cannot be partitioned into two mutually orthogonal non empty subsets.
If E ⊆ Sn−1 is nonempty, closed and such that RHj

E = E, j = 1, ..., n, then E = Sn−1.
Hence, if K ∈ Kn

n satisfies RHj
K = K for j = 1, . . . , n, then K is a ball centered in the

origin.

We can use this theorem to find sequences of lines such that the corresponding sym-
metrization process, if it converges, goes to a ball. Indeed, consider a sequence (vm) ⊂ S

n−1

with n accumulation points generating a family of lines H1, . . . , Hn as in the statement of
Theorem 4.1. Consider indeed a sequence (Km) of convex bodies such that every Km is
symmetric with respect to v⊥

m. Then, if the sequence converges, the limit must necessarily
be a ball. We can use this fact to provide a new kind of counterexample.
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Example 4.2. Consider in R
2 the two directions w1 = (1, 0), w2 = (cos α, sin α) such

that α > 0 is an irrational multiple of π. We consider a sequence (γm) ⊂ [0, α] such that
(αm) := (|γm+1 − γm|) is as in (4.1). Moreover we want α and 0 to be accumulation points
of (γm).
Consider the sequence of lines Hm = span{(cos γm, sin γm)}, then the corresponding

directions go back and forth between w1 and w2. Observe that (Hm) has two accumulation
points aligned with w1 and w2.
Let K be a compact body centered in the origin with a unitary diameter parallel to w1

and consider the sequence of symmetrals

Km = SHm
. . . SH1

K.

As in Example 4.1 we can consider a sequence of segments

ℓm = Km ∩ Hm

such that λ1(ℓm+1) ≥ λ1(ℓm) cos αm+1, thus λ1(ℓm) converges to a certain value γ > 0 and
in particular the two limits of the converging subsequences of (ℓm) respectively aligned
with w1 and w2 will have length greater than γ.
Using Theorem 4.1, if Km converges then the limit must be a ball. If we choose λ2(K) <

π(γ/2)2, such ball should contain a diameter of length γ, which is not possible, thus Km

cannot converge.

We conclude proving that Example 4.1 can be generalized for other symmetrizations,
again thanks to Theorem 2.1.

Example 4.3. Consider a set K ∈ K2
2 such that it contains a unitary horizontal segment

and with mean width 1/2π < W(K) < γ, where γ is as in Example 4.1. In the hypothesis
of Theorem 2.1, for ♦ ∈ F we have that

SUm
...SU1

K ⊆ ♦Um
...♦U1

K ⊆ MUm
...MU1

K,

again Uj := span(uj), and we used Steiner symmetrization because it is equivalent to fiber
symmetrization relative to a hyperplane, which is our case working on R2.
In this way we can exploit the first counterexample and the inclusion chain of Theorem

2.1 to guarantee that, if a limit exists for ♦Um
...♦U1

K and MUm
...MU1

K, proceeding as
before it must contain a ball of diameter γ, therefore this limit must have mean width
greater than γ. In particular this holds for the sequence of Minkowski symmetrals. But
Minkowski symmetrization preserves mean width, which we supposed to be less than γ.
This is a contradiction, thus there cannot be a limit.
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