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Triangular recurrences, generalized Eulerian numbers,

and related number triangles

Robert S. Maier
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Abstract

Many combinatorial and other number triangles are solutions of recurrences of
the Graham–Knuth–Patashnik (GKP) type. Such triangles and their defining
recurrences are investigated analytically. They are acted upon by a transfor-
mation group generated by two involutions: a left–right reflection and an upper
binomial transformation, acting row-wise. The group also acts on the bivariate
exponential generating function (EGF) of the triangle. By the method of char-
acteristics, the EGF of any GKP triangle has an implicit representation in terms
of the Gauss hypergeometric function. There are several parametric cases when
this EGF can be obtained in closed form. One is when the triangle elements
are the generalized Stirling numbers of Hsu and Shiue. Another is when they
are generalized Eulerian numbers of a newly defined kind. These numbers are
related to the Hsu–Shiue ones by an upper binomial transformation, and can be
viewed as coefficients of connection between polynomial bases, in a manner that
generalizes the classical Worpitzky identity. Many identities involving these
generalized Eulerian numbers and related generalized Narayana numbers are
derived, including closed-form evaluations in combinatorially significant cases.

Keywords: Eulerian number, Stirling number, triangular recurrence, number
triangle, combinatorial triangle, Narayana number, Worpitzky identity
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1. Introduction

1.1. Notation

Recurrences of the form
∣

∣

∣

∣

n+ 1

k + 1

∣

∣

∣

∣

= [αn+ β(k + 1) + γ]

∣

∣

∣

∣

n

k + 1

∣

∣

∣

∣

+ [α′n+ β′k + γ′]

∣

∣

∣

∣

n

k

∣

∣

∣

∣

, (1.1)

satisfied by an infinite triangle of numbers
∣

∣

n
k

∣

∣, 0 6 k 6 n <∞, with
∣

∣

n
k

∣

∣ equal to
zero by convention if k < 0 or k > n, and normalized so that the apex element
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∣

∣

0
0

∣

∣ equals unity, occur in pure and applied combinatorics, the analysis of discrete
algorithms, and elsewhere in mathematics. Graham, Knuth, and Patashnik [33,
Chapter 6, Problem 94] have indicated the need for a general theory of such
triangular recurrences, which are now said to be of P94 or GKP type [57].

This would include the construction of explicit solutions
∣

∣

n
k

∣

∣ of minimal rank,
for the broadest choices of the parameter vectors α, β; γ and α′, β′; γ′, and the
identification of especially simple ‘fundamental’ solutions in terms of which other
solutions can be expressed. Here, ‘rank’ refers to the depth to which summa-
tions are nested in any explicit formula, the summand(s) being products and
quotients of factorials and powers [22, §5.7]. The strongest results to date in
these directions include those of Spivey [59] and Barbero G. et al. [4], who em-
ployed both series manipulations and generating functions. The present work
builds on theirs.

Many familiar numerical or combinatorial triangles are solutions of GKP
recurrences. The new, explicitly parametric notations

∣

∣

∣

∣

n

k

∣

∣

∣

∣

=:

[

α, β γ
α′, β′ γ′

]

n,k

, (1.2a)

n
∑

k=0

∣

∣

∣

∣

n

k

∣

∣

∣

∣

tk =:

[

α, β γ
α′, β′ γ′

]

n

(t), (1.2b)

∞
∑

n=0

n
∑

k=0

∣

∣

∣

∣

n

k

∣

∣

∣

∣

tk
zn

n!
=:

[

α, β γ
α′, β′ γ′

]

(t, z) (1.2c)

will be employed here. The first symbolizes the infinite triangle derived from
the recurrence (1.1), and the second is its n’th row polynomial, the univariate
ordinary generating function of its n’th row. The third is the bivariate expo-
nential generating function (EGF) of the triangle as a whole. The six GKP
parameters will be allowed to be complex, like the generating function argu-
ments t, z. Transformed or modified versions of a GKP triangle

∣

∣

n
k

∣

∣ or a GKP

parameter array
[

α β γ
α′ β′ γ′

]

will be indicated by an asterisk, as
∣

∣

n
k

∣

∣

∗
or

[

α β γ
α′ β′ γ′

]∗

.

An alternative six-parameter notation will be introduced in Section 3.1.
Partial lists of GKP recurrences and solutions that have appeared in the

literature can be found in [4, 63, 64]. In particular,

{

n

k

}

=

[

0, 1 0
0, 0 1

]

n,k

,

[

n

k

]

=

[

1, 0 0
0, 0 1

]

n,k

,

〈

n

k

〉

=

[

0, 1 1
1, −1 0

]

n,k

,

(

n

k

)

=

[

0, 0 1
0, 0 1

]

n,k

,

(1.3)

where
{

n
k

}

are the Stirling subset numbers (also denoted by S(n, k) and called

the Stirling numbers of the second kind),
[

n
k

]

are the Stirling cycle numbers (also
denoted by (−1)n−ks(n, k) and called the unsigned Stirling numbers of the first
kind), and

〈

n
k

〉

are the Eulerian numbers (also denoted in the traditional indexing
by An,k+1). Each of these triangles has a combinatorial interpretation. For any
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n-set,
{

n
k

}

counts the number of its partitions into k blocks, and
[

n
k

]

counts the
number of its permutations that have k cycles. If the n-set is totally ordered,
〈

n
k

〉

counts the number of its permuations that have k descents. The Stirling
and Eulerian numbers are introduced in [22, 33, 55]. The Eulerian numbers are
reviewed in [28] (see also [62]) and are treated more abstractly in [29, 54].

1.2. Context and overview

This paper introduces a new, GKP-type generalization of the Eulerian num-
bers

〈

n
k

〉

, in addition to developing further the analytic theory of GKP recur-
rences and their solutions. Two other parametric GKP triangles are also studied.
The following remarks place the new Eulerian numbers in context.

Hsu and Shiue [40] introduced a parametric, GKP-type generalization of the
Stirling numbers

{

n
k

}

and
[

n
k

]

, which subsumes various previously treated ones.
In a slight modification of their notation, it is

Sn,k(a, b; r) :=

[

−a, b r
0, 0 1

]

n,k

. (1.4)

(Examples are listed in [7, 37, 40].) They originally defined the Sn,k(a, b; r) num-
bers as coefficients of connection between graded polynomial bases of factorial
type, i.e.,

(x)n,a =

n
∑

k=0

Sn,k(a, b; r)(x − r)k,b. (1.5)

When (a, b; r) = (0, 1; 0), this reduces to the original definition of
{

n
k

}

,

xn =

n
∑

k=0

{

n

k

}

xk, (1.6)

which is the Newton–Gregory expansion of xn, and similarly when (a, b; r) =
(−1, 0; 0), it reduces to the original definition of

[

n
k

]

. (Here (x)n,a and xk denote
the falling factorials (x)(x − a) · · · [x − (n − 1)a] and x(x − 1) · · · [x − (k − 1)];
rising factorials will be indicated by an overbar.) The explicit general formula

Sn,k(a, b; r) =
1

bkk!

k
∑

j=0

(−1)k−j
(

k

j

)

(bj + r)n,a (1.7)

was pointed out by Corcino [23]. Equation (1.7) is a rank-1 formula that sub-
sumes the well-known formula for the Stirling subset numbers [22, 33], which
is

{

n

k

}

=
1

k!

k
∑

j=0

(−1)k−j
(

k

j

)

jn. (1.8)

But (1.7) clearly does not apply when b = 0, as is the case for the Stirling
cycle numbers

[

n
k

]

, for which a rank-2 formula must be used [22]. For a dis-
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cussion of the related definitions (1.4), (1.5), and (1.7), see [23] and [47, §4.2].1

When restricted to integer parameter values, Sn,k(a, b; r) has been interpreted
combinatorially [7, 18, 24, 46, 48].

The GKP recurrences solved in the present paper are largely ones with
ββ′ 6= 0 (they are of ‘type I’ in the classification of [4]). They would seem
unrelated to the generalized Stirling numbers of (1.4). But in fact, if β′ 6= 0
then

[

α, β γ
0, β′ γ′

]

n,k

=

(

γ′

β′

)k

(β′)k
[

α, β γ
0, 0 1

]

n,k

= (γ′)k,β
′

Sn,k(−α, β; γ). (1.9)

This is because if the lower parameter vector (α′, β′; γ′) of a GKP recurrence
is equal to (0, 0; c1), replacing it by (0, c1; sc1) will multiply the solution

∣

∣

n
k

∣

∣

by sk [59]. Also, multiplying (α′, β′; γ′) by any common constant factor A
clearly multiplies

∣

∣

n
k

∣

∣ by Ak. (If the upper vector (α, β; γ) were multiplied by A,
the solution would be multiplied instead by An−k.) Thus solutions of the Hsu–
Shiue type (1.4) are fundamental ones, in terms of which the solution of any
GKP recurrence with α′ = 0 and β′ 6= 0 can be expressed.

Formulas for the GKP solution
∣

∣

n
k

∣

∣ when ββ′ 6= 0 have been systematically

derived in three cases: (A I) α′ = 0, (A II) α + β = 0, and (A III) α
β = 1 + α′

β′
.

In each case,
∣

∣

n
k

∣

∣ can be expressed as a double sum involving subset and cycle
Stirling numbers, binomial coefficients, and generalized factorials. (See [59], and
[27, Proposition 2.5] for a compact restatement.) The derived expressions for

∣

∣

n
k

∣

∣

are therefore of high rank: up to 5, though the nested summations can sometimes
be simplified. In case (A I), with α′ = 0, it is better to compute the triangle

∣

∣

n
k

∣

∣

by applying (1.9) to reduce it to the generalized Stirling triangle Sn,k(−α, β; γ),
which can be computed from formula (1.7). The resulting formula for

∣

∣

n
k

∣

∣ is of
rank 1. The handling of case (A II), when α+β = 0, can be similarly improved,
because one can show that there is an involution

[

α, β γ
0, β′ γ′

]

n

(t) = tn
[

β′, −β′ γ′

α+ β, −β γ

]

n

(

1

t

)

. (1.10)

That is, row polynomials in cases (A I), (A II) are reversed or ‘reflected’ versions
of each other.

A major theme of the present paper is that the analysis of case (A III) leads
naturally to a new generalization of the Eulerian numbers

〈

n
k

〉

, combinatorial
interpretations of which remain to be explored. When ββ′ 6= 0, one can assume
without loss of generality that β′ = −β, which is an innocuous normalization.
Case (A III) is then the case when α + α′ = β, which suggests defining the

1It should be noted that numbers equivalent to the Sn,k(a, b; r) had been introduced pre-
viously by Singh Chandel [58] and Charalambides and Koutras [18]. Their starting point was
not (1.4) or (1.5), but (1.7).
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parametric generalized Eulerian triangle

En,k(a, b; c0, c∞) :=

[

−a, b c0
a+ b, −b c∞

]

n,k

, (1.11)

which reduces to
〈

n
k

〉

when (a, b; c0, c∞) is (0, 1; 1, 0) and to the traditionally
indexed numbers An,k when it is (0, 1; 0, 1).

Equation (1.11) will be shown to imply that for all n > 0,

(c0 + c∞)n,b(x)n,a =

n
∑

k=0

En,k(a, b; c0, c∞) (x− c0)
k,b(x+ c∞)n−k,b, (1.12)

which if (c0 + c∞)n,b 6= 0, defines the generalized numbers En,k(a, b; c0, c∞),

0 6 k 6 n, as expansion coefficients. (For a proof that (x− c0)
k,b(x+ c∞)n−k,b,

0 6 k 6 n, are a basis for the space of polynomials of degree 6 n in the
indeterminate x, see [13].) When (a, b; c0, c∞) = (0, 1; 1, 0), eq. (1.12) reduces
to the celebrated identity of Worpitzky,

n!xn =

n
∑

k=0

〈

n

k

〉

(x− k)n. (1.13)

Thus (1.12) is a generalized Worpitzky identity. Just as it is clear from (1.5)
that the generalized Stirling numbers Sn,k(a, b; r) are coefficients that connect
a factorial basis of the ring of polynomials (depending on a) to another one
(depending on b), so it is clear from (1.12) that for all n > 0, the generalized Eu-
lerian numbers En,k(a, b; c0, c∞), 0 6 k 6 n, relate the factorial element (x)n,a

of the (n+1)-dimensional space of polynomials of degree 6 n to a b-dependent
‘bifactorial’ basis of this space.

A rank-1 formula for these numbers will also be derived, applying when
b 6= 0, namely

En,k(a, b; c0, c∞) =

1

bkk!

k
∑

j=0

(−1)k−j
(

k

j

)

(bn+ c0 + c∞)k−j,b(c0 + c∞)j,b(bj + c0)
n,a.

(1.14)

When (a, b; c0, c∞) = (0, 1; 1, 0) this reduces to the classical formula [22, 33]

〈

n

k

〉

=

k
∑

j=0

(−1)k−j
(

n+ 1

k − j

)

(j + 1)n. (1.15)

The reader should notice that the five equations (1.11)–(1.15), dealing with the
new generalized Eulerian numbers, are bijective (by design) with (1.4)–(1.8),
which dealt with the Stirling numbers of Hsu and Shiue.

There are two subcases of the parametric En,k(a, b; c0, c∞), extending the
standard numbers En,k(0, 1; 1, 0) =

〈

n
k

〉

, which have been treated in the litera-
ture. The first is when c0 + c∞ = b. It could be called the single-progression
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subcase, because the expansion functions in (1.12) then simplify:

(x− c0)
k,b(x+ c∞)n−k,b = [x− c0 − (k − 1)b]n,b, (1.16)

with the two arithmetic progressions combining into one, as seen in (1.13). This
subcase includes the ‘degenerate’ Eulerian numbers of Carlitz [14, §8], which
are of the form En,k(λ, 1; c0, 1 − c0) and have recently been combinatorially
interpreted (when c0 = 1) by Herscovici [39]. It has been extensively treated
in [16] (see also [41]).

The second subcase is when a = 0, causing the function (x)n,a expanded
in (1.12) to reduce to the monomial xn, as seen too in (1.13). This could be
called the Carlitz–Scoville subcase. It can be traced to [15], in an equivalent
symmetric formulation, and also to the solution of a stochastic model of habitat
selection by certain insect larvae [17, 42].

Generalized Eulerian numbers of the a = 0 type have appeared in many ap-
plications. The numbers En,k(0, 1;u, v) are the (u, v)-Eulerian numbers, which
when u, v ∈ N have a combinatorial interpretation [5]. When u = 0 they reduce

to the order-v Eulerian numbers A
(v)
n,k of [25]. When v = 0 they are related by

scaling to the 1/K-Eulerian numbers [45], which are of the form En,k(0,K; 1, 0).
The numbers En,k(0, 1; r, 1− r) count the permutations of an ordered n-set

that have k r-descents [29], and are identical to the numbers En,k(0, 1; δ, 1− δ)
studied in [36]. They satisfy both of the preceding conditions: c0 + c∞ = b as
well as a = 0. The numbers En,k(0, 2; 1, 1) =:

〈

n
k

〉

B
count the number of signed

permutations of an ordered n-set which have k ‘signed descents.’ (See [1, 10] and
[52, A060187].) They are called the type-B Eulerian numbers or the MacMahon
numbers, and when (a, b; c0, c∞) = (0, 2; 1, 1), eq. (1.12) accordingly reduces
to the Worpitzky identity of type B [2, 10]. These numbers also satisfy both
conditions, as do the single-progression numbers of [66].

Restricted to the subcases c0 + c∞ = b and/or a = 0, the identities (1.12)
and (1.14) are known. (For instance, see [41, eq. (31)], [42, eq. (3.1)], and [5,
eq. 18].) But in their full generality, (1.12) and (1.14) appear to be new.

Many additional identities involving the new numbers En,k(a, b; c0, c∞) and
the Hsu–Shiue numbers Sn,k(a, b; r) are derived below. They include explicit
formulas holding for certain choices of parameter, including ones of combinato-
rial significance. A fundamental tool is the method of characteristics, applied
as a solution technique to the partial differential equation (PDE) satisfied by
the bivariate generating function of any GKP triangle

∣

∣

n
k

∣

∣.
This parametric PDE is acted upon by an order-6 transformation group iso-

morphic to S3, the group of permutations of 3 letters. On the triangle level,
this group is generated by two involutive transformations

∣

∣

n
k

∣

∣ 7→
∣

∣

n
k

∣

∣

∗
that act

row-wise: the reflection transformation (RT) k ← n− k, and a so-called upper
binomial transformation (UBT). They map between (respectively) case-(A I)
and case-(A II) triangles, and case-(A II) and case-(A III) ones. The two trans-
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formations are illustrated by (see Theorem 4.7)

En,k(a, b; c0, c∞) =

n
∑

j=k

(−1)j−k
(

j

k

)

(c0 + c∞)n−j,bSn,n−j(−a, b; c∞). (1.17)

This relates the new numbers En,k to those of Hsu and Shiue, and is an alter-
native to (1.14). One sees in (1.17) an initial reflection j ← n − j, performed

on a case-(A I) triangle (c0 + c∞)j,bSn,j(−a, b; c∞) and yielding a case-(A II)
one; and a subsequent binomial transformation, yielding the triangle En,k(a, b;
c0, c∞), which belongs to case (A III).

By applying the method of characteristics and well-known facts about the
Gauss hypergeometric function 2F1, it is possible to derive an explicit formula
for the bivariate exponential generating function G(t, z) of a GKP triangle not
merely in the generalized Stirling–Eulerian case (A), which subsumes cases (A I),
(A II),(A III), but also in two others: (B), called here the generalized Narayana
case, and (C), called the generalized secant–tangent case. If in a GKP re-
currence ββ′ 6= 0 and the pair (β, β′) is adjusted to equal (2,−2), which can
be done without loss of generality, then the corresponding cases (B I),(B II),
(B III) become (α, α′) = (1,−2), (−4, 3), (1, 3), and cases (C I),(C II),(C III) be-
come (α, α′) = (−1, 2), (0, 1), (−1, 1). Many explicit formulas for the triangle
elements

∣

∣

n
k

∣

∣ in these cases are derived; especially, in case (B). More than a

dozen GKP triangles of the generalized Narayana kind for which
∣

∣

n
k

∣

∣ can be
expressed as a hypergeometric term have been identified in the OEIS [52], and
are tabulated below. (See Tables 2 and 3.)

By following a context-free grammar approach to exponential structures [19,
26], some formulas for case-(C) GKP triangles are also derived, which justify
the ‘secant–tangent’ description. In fact, the approach leads to interesting for-
mulas in all the just-mentioned cases. It must be said that although cases (A),
(B),(C) are treated in isolation here, they are related: by quadratic changes of
variable, certain case-(A) generating functions can be reduced to case-(C) ones,
and certain case-(B) ones to case-(A) ones. This is illustrated by the combina-
torics of polytopes [30]. The f -vectors of n-dimensional permutohedra (of either
type An or type Bn) are the rows of a certain case-(A) GKP triangle, and the
corresponding γ-vectors (quadratically reduced) are the rows of a case-(C) one.
For associahedra, there is a similar reduction from case (B) to case (A). But
quadratic transformations of GKP triangles are left to another paper.

The body of this paper is structured as follows. GKP triangle EGF’s, and
the S3 transformation group acting on EGF’s or row-wise on triangles, are in-
troduced in Section 2. In Section 3 the method of characteristics is applied to
the EGF PDE, and a new GKP parametrization adapted to the S3-group and
the construction of 2F1-based solutions is introduced. The generalized Stirling–
Eulerian case (A) is treated in the multi-part Section 4. Many identities, in-
cluding contiguous function relations and explicit formulas, are derived. Results
on the generalized Narayana and secant–tangent triangles (cases (B),(C)) are
in Sections 5 and 6, the latter including some grammar-based identities.
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2. Generating functions

Suppose that a number triangle
∣

∣

n
k

∣

∣, 0 6 k 6 n < ∞, is a GKP triangle2:
it satisfies a GKP-type recurrence (1.1) with parameters α, β, γ;α′, β′, γ′ ∈ C,
and the initial condition

∣

∣

0
0

∣

∣ = 1. (By convention,
∣

∣

n
k

∣

∣ = 0 if k < 0 or k > n.)

The EGF (exponential generating function) G(t, z) =
[

α β γ
α′ β′ γ′

]

(t, z) defined

in (1.2c) equals unity at (0, 0) and is defined and analytic in a neighborhood of
(0, 0) in C×C; in fact, in a neighborhood of {t = 0}∪{z = 0}. It may be possible
to compute the EGF in closed form. The computation may involve solving from
scratch the PDE (partial differential equation) satisfied by the EGF, or showing
that the EGF is related to that of another GKP triangle. The latter relationship
may follow from the existence of a PDE-to-PDE transformation. ‘First degree’
transformation among the PDE’s satisfied by the EGF’s of GKP triangles form
a group, as is summarized in Theorem 2.8 below; quadratic transformations will
be explored elsewhere.

The following triangle-to-triangle transformations are elementary but useful.
They ‘trim’ a GKP triangle by removing its left or right edge, provided that the
edge consists only of zeroes (with the exception of the apex element

∣

∣

0
0

∣

∣ = 1).
This phenomenon occurs when γ = 0, resp. γ′ = 0.

Theorem 2.1. Suppose that a number triangle
∣

∣

n
k

∣

∣, 0 6 k 6 n <∞, satisfies a

GKP recurrence with parameter array
[

α, β γ
α′, β′ γ′

]

and EGF G(t, z). Then,

(i) If γ = 0, γ′ 6= 0, the left-trimmed triangle
∣

∣

n
k

∣

∣

∗
:= (γ′)−1

∣

∣

n+1
k+1

∣

∣, 0 6 k 6 n,

is a GKP triangle with parameter array
[

α, β α + β
α′, β′ α′ + β′ + γ′

]

. Its EGF

equals (γ′)−1(∂/∂z)G(t, z)/t.
(ii) If γ′ = 0, γ 6= 0, the right-trimmed triangle

∣

∣

n
k

∣

∣

∗
:= (γ)−1

∣

∣

n+1
k

∣

∣, 0 6 k 6 n,

is a GKP triangle with parameter array
[

α, β α + γ
α′, β′ α′

]

. Its EGF equals

(γ)−1(∂/∂z)G(t, z).

Proof. Both statements follow by elementary series manipulations. The factors
(γ′)−1, (γ)−1 are included to satisfy the normalization

∣

∣

0
0

∣

∣

∗
= 1.

Remark 2.2. A third type of trimming will be encountered below, in the proof

of Theorem 4.17 and elsewhere. Let the row polynomials
[

α β γ
α′ β′ γ′

]

n
(t) of a

GKP triangle be denoted by Gn(t), n > 0. The first two row polynomials are
G0(t) = 1 and G1(t) = γ + γ′t, and it can be shown by induction that if γ + γ′t
equals A(β + β′t) for some constant A, each Gn+1(t), n > 0, will be a multiple
of β + β′t; and if A 6= 0 and ββ′ 6= 0, the quotients Gn+1(t)/ [A(β + β′t)],
n > 0, will be the row polynomials of a new, ‘mid-trimmed’ GKP triangle, with

parameter array
[

α, β α + γ
α′, β′ α′ + β′ + γ′

]

.

2As is clear from (1.1), the convention of Spivey [59] on the definition of the GKP param-
eters γ, γ′ is adhered to here, rather than that of Barbero G. et al. [4]. In present notation,
the parameters γ, γ′ used in [4] would be written respectively as γ − α and γ′

− α′
− β′.
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Example 2.3. Three distinct EGF’s for the standard Eulerian numbers appear
in the literature [22], but Theorem 2.1 relates them.3 They are

∞
∑

n=0

n
∑

k=0

〈

n

k − 1

〉

tk
zn

n!
=

[

0, 1 0
1, −1 1

]

(t, z) =
1− t

1− te(1−t)z
, (2.1a)

∞
∑

n=0

n
∑

k=0

〈

n

k

〉

tk
zn

n!
=

[

0, 1 1
1, −1 0

]

(t, z) =
1− t

e(t−1)z − t
(2.1b)

∞
∑

n=0

n
∑

k=0

〈

n+ 1

k

〉

tk
zn

n!
=

[

0, 1 1
1, −1 1

]

(t, z) =
(1 − t)2e(1+t)z

(etz − tez)2
. (2.1c)

Left-trimming the triangle in (2.1a) and right-trimming the triangle in (2.1b)
both yield the triangle in (2.1c). From an analytic rather than a combinatorial
point of view, there is little to choose between the classical definition An,k =
〈

n
k−1

〉

and the modern shifted definition
〈

n
k

〉

of these numbers.

The following theorem was mentioned in the introduction and is also easily
proved.

Theorem 2.4. (i) Let
∣

∣

n
k

∣

∣ denote the GKP triangle with parameters (α, β, γ;
α′, β′, γ′), and let G(t, z) denote its EGF. Then, the GKP triangle with

parameters (Aα,Aβ,Aγ;Bα′, Bβ′, Bγ′) will be An−kBk
∣

∣

n
k

∣

∣, and if A 6= 0
the EGF of this triangle will be G(Bt/A,Az).

(ii) Let
∣

∣

n
k

∣

∣ denote the GKP triangle with parameters (α, β, γ; 0, 0, γ′). Then,

the GKP triangle with parameters (α, β, γ; 0, γ′, sγ′) will be sk
∣

∣

n
k

∣

∣.

Example 2.5. An illustration of part (ii) of the theorem, with s = 1, is provided
by the De Morgan numbers Surj(n, k), 0 6 k 6 n, which count the number of
maps from an n-set onto a k-set. By examination, they satisfy a recurrence of
GKP type and equal

[

0, 1 0
0, 1 1

]

n,k
. As

{

n
k

}

=
[

0, 1 0
0, 0 1

]

n,k
, one has Surj(n, k) =

(1)k
{

n
k

}

= k!
{

n
k

}

.

Many sophisticated transformations of GKP triangles or their EGF’s are
based on transformations of the parametric PDE satisfied by the latter.

Theorem 2.6. (i) The EGF G(t, z) =
[

α, β γ
α′, β′ γ′

]

(t, z) satisfies the first-order

PDE

[A(t)z − 1]
∂G

∂z
+B(t)

∂G

∂t
+ C(t)G = 0, (2.2)

where A(t) = α + α′t, B(t) = (β + β′t)t, and C(t) = γ + γ′t, with the

initial condition G(t, 0) ≡ 1.

3Traditionally the Eulerian numbers were denoted by An,k, and were defined and nonzero
for 1 6 k 6 n, with An,k = 0 if k > n by convention. To fit them into a GKP framework,
one must also set A0,0 = 1 and An,0 = 0, n > 1. In the modern indexing

〈n
k

〉

signifies

An,k+1, except that
〈0
0

〉

= 1; note also that when 0 6 k 6 n,
〈n+1

k

〉

equals An+1,k+1 without

exception. The occasionally used notation
〈 n
k−1

〉

should be understood as signifying An,k.
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(ii) The row polynomials Gn(t) =
[

α, β γ
α′, β′ γ′

]

n
(t) satisfy the differential recur-

rence

Gn+1 = [A(t)n+ C(t)]Gn +B(t)G′n (2.3)

and the initial condition G0(t) ≡ 1.

(iii) If ββ′ 6= 0, the row polynomials Gn(t) can be computed from

[

t1+α̂(β + β′t)1−α̂−α̂
′

Dt

]n tγ̂

(β + β′t)γ̂+γ̂′
=

tα̂n+γ̂ Gn(t)

(β + β′t)(α̂+α̂′)n+γ̂+γ̂′
, (2.4)

where α̂, α̂′, γ̂, γ̂′ signify α/β, −α′/β′, γ/β, −γ′/β′, and Dt = d/dt.

Proof. Substitute the definitions (1.2c) and (1.2b) of the EGF and row polyno-
mials into (2.2) and (2.3); and in both, use the triangular recurrence (1.1). By
examination, the formula for Gn(t) provided by (2.4) satisfies (2.3).

Consider the transformation induced by a lifting map or change of variables
(t∗, z∗) 7→ (t, z), which is of the form (t, z) = (R(t∗), S(t∗)z∗) where R,S are
rational functions of their argument. (R will be taken to be nonconstant.)
Substitution into (2.2) yields the following.

Theorem 2.7. The transformed EGF

G∗(t∗, z∗) := G(R(t∗), S(t∗)z∗) = G(t, z),

lifted from the EGF G(t, z) by the map (t∗, z∗) 7→ (t, z) specified by (R,S),
satisfies the first-order PDE

[A∗(t∗)z∗ − 1]
∂G∗

∂z∗
+B

∗(t∗)
∂G∗

∂t∗
+ C

∗(t∗)G∗ = 0, (2.5)

where

A
∗(t∗) = (α + α′R)S − (β + β′R)RṠ/Ṙ, (2.6a)

B
∗(t∗) = (β + β′R)RS/Ṙ, (2.6b)

C
∗(t∗) = (γ + γ′R)S, (2.6c)

or more compactly, A∗ = (A◦R)S−(B◦R)Ṡ/Ṙ, B∗ = (B◦R)S/Ṙ, C∗ = (C◦R)S.
An overdot indicates differentiation with respect to t∗.

For the lifted PDE (2.5) to be of the GKP type, like the original PDE (2.2),
its coefficient functions A∗(t∗), B∗(t∗)/t∗, C∗(t∗), must be degree-1 polynomials
in t∗. It should be noted that any two liftings can be composed. If the pairs
(R,S), (R∗, S∗) specify successive liftings, i.e., (t, z) = (R(t∗), S(t∗)z∗) and
(t∗, z∗) = (R∗(t∗∗), S∗(t∗∗)z∗∗), their composition (R,S) ◦ (R∗, S∗) is the pair

(R,S) := (R ◦R∗, (S ◦R∗)S∗) , (2.7)

10



which specifies the composite map (t∗∗, z∗∗) 7→ (t, z) = (R(t∗∗),S(t∗∗)z∗∗). Also,
liftings (R,S) in which R has a compositional inverse R̄ (which will be the case

if R(t∗) = λ+µt∗

ρ+σt∗ with λσ 6= µρ, i.e., if t∗ 7→ t is a degree-1 rational map) have
compositional inverses of the same form, i.e.,

(R,S)−1 =

(

R̄,
1

S ◦ R̄

)

, (2.8)

which specifies the inverse map (t, z) 7→ (t∗, z∗). Hence such liftings form a
group under composition.

Suppose that in a GKP recurrence, β′ = −β, which if ββ′ 6= 0 is a mere
matter of normalization. Such a restriction facilitates the study of the pairs
(R,S) that yield a lifted PDE which is of the GKP type, like the original. The
case when R,S are rational of at most degree 1 in t∗ is especially easy to treat.
By direct calculation, one finds that if (R,S) equals ( 1

t∗ , t
∗), resp. (1 − t∗,−1),

the lifted PDE will indeed be of the GKP type, having a lifted or transformed

parameter array
[

α, β γ
α′, β′ γ′

]∗

equal to
[

α′ − β, β γ′

α + β, −β γ

]

, resp.
[

−α − α′, β −γ − γ′

α′, −β γ′

]

.

Both these liftings preserve the property β′ = −β and in fact leave β, β′ un-
changed, though they transform in an affine-linear way the vector comprising
the other four parameters. Both liftings are involutions, as follows from either
(2.7) or (2.8). By (2.7), the composition of either ( 1

t∗ , t
∗) or (1 − t∗,−1) with

itself is the pair (t∗, 1), which specifies the identity transformation.
When acting on a GKP-type EGF, row polynomial, and number triangle,

these two liftings yield the involutive transformation identities
[

α′ − β, β γ′

α+ β, −β γ

]

(t∗, z∗) =

[

α, β γ
α′, −β γ′

](

1

t∗
, t∗z∗

)

, (2.9a)

[

α′ − β, β γ′

α+ β, −β γ

]

n

(t∗) = (t∗)n
[

α, β γ
α′, −β γ′

]

n

(

1

t∗

)

, (2.9b)

[

α′ − β, β γ′

α+ β, −β γ

]

n,k

=

[

α, β γ
α′, −β γ′

]

n,n−k

, (2.9c)

resp.

[

−α− α′, β −γ − γ′

α′, −β γ′

]

(t∗, z∗) =

[

α, β γ
α′, −β γ′

]

(1− t∗,−z∗) , (2.10a)

[

−α− α′, β −γ − γ′

α′, −β γ′

]

n

(t∗) = (−1)n
[

α, β γ
α′, −β γ′

]

n

(1− t∗), (2.10b)

[

−α− α′, β −γ − γ′

α′, −β γ′

]

n,k

= (−1)n−k
n
∑

j=k

(

j

k

)[

α, β γ
α′, −β γ′

]

n,j

.

(2.10c)

Each of (2.9a) and (2.10a) expresses a transformed EGF G∗(t∗, z∗), on the left,
in terms of an original EGF G(t, z), on the right; and is valid in a neighborhood
of (t∗, z∗) = (0, 0) in C×C, the trivial case t∗ = 0 not being covered by (2.9a).
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g ∈ S3 (R(t∗), S(t∗))
[

α, β γ
α′, β′ γ′

]∗
∣

∣

n
k

∣

∣

∗

(0)(1)(∞) (t∗, 1)
[

α, β γ
α′, −β γ′

]

∣

∣

n
k

∣

∣

(0∞)(1) ( 1
t∗ , t

∗)
[

α′ − β, β γ′

α + β, −β γ

]

∣

∣

n
n−k

∣

∣

(01)(∞) (1− t∗,−1)
[

−α− α′, β −γ − γ′

α′, −β γ′

]

(−1)n−k ∑n
j=k

(

j
k

)
∣

∣

n
j

∣

∣

(1∞)(0)
(

−t∗

1−t∗ , 1− t∗
) [

α, β γ
β − α − α′, −β −γ − γ′

]

(−1)k ∑k
j=0

(

n−j
n−k

)∣

∣

n
j

∣

∣

(0∞1)
(

−(1−t∗)
t∗ ,−t∗

) [

α′ − β, β γ′

β − α − α′, −β −γ − γ′

]

(−1)k ∑n
j=n−k

(

j
n−k

)∣

∣

n
j

∣

∣

(01∞)
(

1
1−t∗ ,−(1− t∗)

) [

−α− α′, β −γ − γ′

α + β, −β γ

]

(−1)n−k ∑n−k
j=0

(

n−j
k

)∣

∣

n
j

∣

∣

Table 1: Six degree-1 transformations of GKP triangles with β′ = −β, which preserve β

and β′. The first four are the identity transformation and the involutions RT, UBT, and
RT ◦UBT ◦ RT. The last two are the order-3 transformations UBT ◦ RT and RT ◦UBT.

The row-polynomial identities (2.9b) and (2.10b) come by expanding (2.9a)
and (2.10a). In general, if

∣

∣

n
·

∣

∣(t) denotes the n’th row polynomial and
∣

∣

n
·

∣

∣

∗
(t∗)

its transform, one can write

∣

∣

∣

∣

n

·

∣

∣

∣

∣

∗

(t∗) = S(t∗)

∣

∣

∣

∣

n

·

∣

∣

∣

∣

(R(t∗)) , (2.11)

which (2.9b) and (2.10b) exemplify. Identity (2.10c) comes by expanding bino-
mially the factor (1− t∗)k in the summation that defines the row polynomial on
the right-hand side of (2.10b).

Equation (2.9c) defines a reflection transformation (RT): it reverses each row
of a GKP triangle, yielding a triangle with altered GKP parameters. (A special
case was mentioned in the introduction.) Equation (2.10c) defines a (signed,
involutive) upper binomial transformation (UBT), which also acts row-wise on
any GKP triangle with β′ = −β. The appearance of a UBT in this context
was first pointed out in [59]. There is a literature on binomial transforms of
finite or infinite sequences, but most of it deals with lower rather than upper
transforms [9]. A lower binomial transform would be based not on the operator
∑n

j=k

(

j
k

)

× but on
∑k

j=0

(

k
j

)

×, as in (1.7) and (1.8).
The RT and UBT generate a group of transformations, all of which come

from liftings. By examination, this group is of order 6 and is isomorphic to S3,
the symmetric group on three letters. The action of the six transformations,
including the identity, RT, and UBT, can be summarized as follows.

Theorem 2.8. For each of the six rows in Table 1, there is a transformation

of the GKP triangle
∣

∣

n
k

∣

∣ =
[

α, β γ
α′, β′ γ′

]

n,k
with β′ = −β to a new GKP triangle

∣

∣

n
k

∣

∣

∗
=

[

α, β γ
α′, β′ γ′

]∗

n,k
with β∗ = β and β′∗ = β′, performed thus:

∣

∣

n
k

∣

∣

∗
, the
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parameter array of which is given in the third column, equals the expression

given in the fourth. For each n > 0, the new n’th row polynomial
∣

∣

n
·

∣

∣

∗
(t∗)

equals S(t∗)
∣

∣

n
·

∣

∣ (R(t∗)), and the new EGF G∗(t∗, z∗) comes from the old EGF

G(t, z) as G(R(t∗), S(t∗)z∗), in a neighborhood of (t∗, z∗) = (0, 0) in C× C.

For each of these six maps (t∗, z∗) 7→ (t, z) = (R(t∗), S(t∗)z∗), the map
t∗ 7→ R(t∗) is a degree-1 rational map that stabilizes the subset {0, 1,∞} of
the projective t-line, or equivalently permutes the points 0, 1,∞, which makes
concrete the isomorphism to S3. These permutations (elements g ∈ S3) are given
in cycle notation in the first column of the table. The permutation (0∞)(1)
specifies the RT, and (01)(∞) the UBT. In all cases the function S(t∗) is equal
to the denominator of R(t∗), up to sign. This order-6 group is quite different
from the known group of lower binomial transforms [31].

The transformation
∣

∣

n
k

∣

∣ 7→
∣

∣

n
k

∣

∣

∗
specified by the third involution (1∞)(0) is

conjugated to the UBT by the RT: it is the composition RT ◦UBT ◦ RT. It is
a variant form of a sequence transformation of Stanton and Sprott [61]. The
transformations specified by the cyclic permutations (0∞1) and (01∞), when
acting on (the rows of) any GKP triangle with β′ = −β, are not involutive:
they are sequence transformations of order 3, each being both the inverse and
the square of the other. They are the compositions UBT ◦ RT and RT ◦UBT.

This S3 transformation group can be extended in various ways. (Compare
Salas and Sokal [57].) One can append 6 additional elements, in each of which
S(t∗) is negated, relative to what appears in the table. This negation (in effect,
a negation of z∗) will multiply

∣

∣

n
k

∣

∣

∗
by (−1)n, and by Theorem 2.4(i), negate the

entire array
[

α, β γ
α′, β′ γ′

]∗

of transformed parameters. So, although the additional

6 elements will preserve the property that β′ = −β, they will negate both β
and β′. The extended group S3 × Z2 is isomorphic to the dihedral group with
12 elements.

One could also relax or alter the condition that the GKP triangle being
transformed satisfy β′ = −β. (The convention adopted here that the condi-
tion β′/β = −1 is fundamental is largely due to its holding for the Eulerian
triangles; recall Example 2.3.) For any specified β, β′ with ββ′ 6= 0, there is a
transformation group isomorphic to S3 which depends only on the ratio β : β′

and leaves β, β′ invariant. Each of its elements comes from a pair (R,S) in
which t∗ 7→ R(t∗) permutes the points 0,−β′/β,∞ of the projective line.

An example of this is the original Stanton–Sprott transformation [61, The-
orem 3], which in present notation is the involution

∣

∣

∣

∣

n

k

∣

∣

∣

∣

∗

=

k
∑

j=0

(

n− j

n− k

)

(−1)j
∣

∣

∣

∣

n

j

∣

∣

∣

∣

. (2.12)

It is similar but not identical to the transformation specified by (1∞)(0). By
examination, it can be viewed as acting on (the rows of) any GKP triangle with

β′ = β, and preserves both β and β′. Its effect is summarized by
[

α, β γ
α′, β′ γ′

]∗

=
[

α, β γ
−β + α− α′, β γ − γ′

]

, and it comes from the pair (R,S) =
(

−t∗

1+t∗ , 1 + t∗
)

. The

13



map t∗ 7→ −t∗

1+t∗ stabilizes not {0, 1,∞} but {0,−1,∞}: in cycle notation, it is
the permutation (−1,∞)(0).

3. The method of characteristics

The first-order PDE satisfied by the EGF G(t, z) of any GKP triangle having
been derived (see Theorem 2.6), it will be shown how in several interesting cases,
the PDE can be solved in closed form. The method of characteristics, which
has been applied previously to the problem of GKP triangles [4, 65], will be
exploited to the full. The key result is Theorem 3.2 below.

It was noted by Wilf [65] that this method leads to special functions, in
particular the Gauss hypergeometric function 2F1. It will be seen that in three
cases, the EGF is nonetheless an elementary function of its arguments. The
three could be called (A) the generalized Stirling–Eulerian case, (B) the gener-
alized Narayana case, and (C) the generalized secant–tangent case. Case (A)
was introduced in Section 1 and is relatively familiar. Like (A), cases (B) and (C)
have three subcases: (I), (II), and (III), which are related by transformations
that belong to the S3-group of the last section. (Recall Table 1 and Theo-
rem 2.8; also see Theorem 3.1 below.) In the present section only the EGF for
subcase (I) of each is computed, in Section 3.3. Cases (A), (B), and (C) are
treated in greater generality in the respective Sections 4, 5, and 6.

3.1. A new GKP parametrization

The six transformations of the S3 transformation group, in particular the

GKP parameter maps
[

α, β γ
α′, β′ γ′

]

7→
[

α, β γ
α′, β′ γ′

]∗

, can be written in a unified and

manifestly symmetric form, given in Theorem 3.1.
For this a new notation is needed, which as a matter of convention will

be centered on the putatively fundamental case when (β, β′) = (1,−1). The

parameter array
[

α, 1 γ
α′, −1 γ′

]

can be written alternatively as the tableau





0, 1, ∞
r0, r1, r∞
g0, g1, g∞



 , (3.1)

where
r0 = −α, r1 = α+ α′, r∞ = 1− α′,

g0 = γ, g1 = −γ − γ′, g∞ = γ′,
(3.2)

so that r0 + r1 + r∞ = 1 and g0 + g1 + g∞ = 0. (The ordering of the columns is
arbitrary: if the parameter-pair r0, g0 lie in that order below 0, etc., an array of
this kind has an unambiguous meaning.) Such new-style parameter arrays can
be used as specifications of GKP triangles, row polynomials, and EGF’s, much

as parameter arrays
[

α, 1 γ
α′, −1 γ′

]

or
[

α, β γ
α′, β′ γ′

]

are used. (Recall eqs. (1.2).)
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By Theorem 2.4(i), whenever ββ′ 6= 0, one can write

[

α, β γ
α′, β′ γ′

]

n,k

= βn−k(−β′)k
[

α/β, 1 γ/β
−α′/β′, −1 −γ′/β′

]

n,k

= βn−k(−β′)k




0, 1, ∞
r0, r1, r∞
g0, g1, g∞





n,k

,

(3.3)

where (in an extension of (3.2) to arbitrary nonzero β, β′)

r0 = −α/β, r1 = α/β − α′/β′, r∞ = 1 + α′/β′ = (α′ + β′)/β′,

g0 = γ/β, g1 = −γ/β + γ′/β′, g∞ = −γ′/β′. (3.4)

Inverting these, one has that for any (r0, r1, r∞) and (g0, g1, g∞) satisfying the
conditions r0 + r1 + r∞ = 1 and g0 + g1 + g∞ = 0, and β, β′ satisfying ββ′ 6= 0,
it is the case that





0, 1, ∞
r0, r1, r∞
g0, g1, g∞





n,k

= βk−n(−β′)−k
[

α, β γ
α′, β′ γ′

]

n,k

, (3.5)

and therefore




0, 1, ∞
r0, r1, r∞
g0, g1, g∞



 (t, z) =

[

α, β γ
α′, β′ γ′

]

(−βt/β′, z/β), (3.6)

where
α = −βr0, α′ = −β′(r0 + r1) = β′(r∞ − 1),

γ = βg0, γ′ = β′(g0 + g1) = −β′g∞.
(3.7)

Formula (3.6) expresses any new-style parametric EGF in terms of an old-style
one. The following theorem employs the new notation but is equivalent to
Theorem 2.8. That it does away with the intricate parameter transformations
of Table 1 justifies the new notation.

Theorem 3.1. For each of the six rows in Table 1, the corresponding lifting-

based transformation of GKP triangles acts as follows on EGF’s: the equality

G∗(t∗, z∗) = G(t, z), where (t, z) = (R(t∗), S(t∗)z∗), can be written as





0, 1, ∞
r0, r1, r∞
g0, g1, g∞



 (R(t∗), S(t∗)z∗) =





R−1(0), R−1(1), R−1(∞)
r0, r1, r∞
g0, g1, g∞



 (t∗, z∗),

(3.8)
where R−1(0), R−1(1), R−1(∞) is a permutation of 0, 1,∞. That is, in the new

notation, each element of the S3-group acts as a permutation of the parameter-

pairs (r0, g0), (r1, g1), (r∞, g∞).
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This is proved by rewriting the (β, β′) = (1,−1) case of each of the parameter

maps
[

α, β γ
α′, β′ γ′

]

7→
[

α, β γ
α′, β′ γ′

]∗

of Table 1 as a map from original parameter-

pairs (r0, g0), (r1, g1), (r∞, g∞), to transformed (in effect, lifted) parameter-
pairs (r0, g0)

∗, (r1, g1)
∗, (r∞, g∞)∗, with the aid of (3.2).

For instance, the RT (reflection transformation), specified by (0∞)(1) ∈ S3

and previously written as (2.9a), can be rewritten as





0, 1, ∞
r0, r1, r∞
g0, g1, g∞





(

1

t∗
, t∗z∗

)

=





0, 1, ∞
r∞, r1, r0
g∞, g1, g0



 (t∗, z∗) . (3.9)

The UBT (upper binomial transformation), specified by (01)(∞) ∈ S3 and
previously written as (2.10a), can be rewritten as





0, 1, ∞
r0, r1, r∞
g0, g1, g∞



 (1− t∗,−z∗) =





0, 1, ∞
r1, r0, r∞
g1, g0, g∞



 (t∗, z∗) . (3.10)

As before, these identities are valid in a neighborhood of (t∗, z∗) = (0, 0) in C×C,
the trivial case t∗ = 0 not being covered by (3.9). Both (3.9) and (3.10) are
consistent with the theorem, and because (0∞)(1) and (01)(∞) generate S3,
the theorem follows.

3.2. Integrating the PDE

The following theorem applies to any GKP triangle, parametrized as ex-
plained in Section 3.1 by r0, r1, r∞ and g0, g1, g∞ satisfying r0 + r1 + r∞ = 1
and g0+g1+g∞ = 0. It supplies a formula for the EGF which is implicit rather
than explicit, and is based upon a special function: the Gauss hypergeometric
function 2F1(w). But in several cases (see Section 3.3), the EGF can nonetheless
be computed in closed form.

The function 2F1(w) is parametric, with one lower and two upper parame-
ters. Its Maclaurin series is

2F1

(

A, B

C

∣

∣

∣

∣

w

)

=

∞
∑

k=0

Ak Bk

1k Ck
wk, (3.11)

and it is defined and analytic in a neighborhood of w = 0, provided that C is
not a non-positive integer. In this and the following subsection the alternative
in-line notation 2F1 (A,B;C | w) will be used, for compactness of expressions.

Theorem 3.2. In a neighborhood of (t, z) = (0, 0), at which it is analytic and

equals unity, the EGF

G(t, z) :=





0, 1, ∞
r0, r1, r∞
g0, g1, g∞



 (t, z) (3.12)
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of a GKP triangle is given by the formula

G(t, z) =
(s

t

)g0
(

1− s

1 − t

)g1

, (3.13)

where s = s(t, z) = t (1 + zO(t, z)), with s(t, 0) = t, is defined implicitly by

(s

t

)r0
(

1− s

1 − t

)r1

=
r0z + 2F1

(

r0 + r1, 1; 1 + r0
∣

∣ t
)

2F1

(

r0 + r1, 1; 1 + r0
∣

∣ s
) . (3.14)

This formula applies when r0 is not a non-positive integer.

Remark 3.3. Though the parametric function 2F1(A,B;C; ·) is not defined when
C is a non-positive integer, the EGF of any triangle with r0 = 0,−1,−2, . . .
can be computed by taking a limit. Alternatively, owing to the fact at least
one of r0, r1, r∞ must not be a non-positive integer (as r0 + r1 + r∞ = 1), one
can handle any case when r0 = 0,−1,−2, . . . by permuting the parameter-pairs
(r0, g0), (r1, g1), (r∞, g∞) with the aid of Theorem 3.1, to obtain a triangle EGF
which is covered by Theorem 3.2.

Proof. By (3.6),

G(t, z) =





0, 1, ∞
r0, r1, r∞
g0, g1, g∞



 (t, z) =

[

−r0, 1 g0
1− r∞, −1 g∞

]

(t, z), (3.15)

and by Theorem 2.6, G(t, z) satisfies the PDE

{

[−r0 + (1− r∞)t] z − 1
}∂G

∂z
+ (1 − t)t

∂G

∂t
+ (g0 + g∞t)G = 0, (3.16)

with the initial condition G(t, 0) = 1.
To this first-order PDE, the method of characteristics can be applied. For

all (t, z) in a neighborhood of (0, 0) in C × C, G(t, z) can be computed by
flowing the initial condition G = 1 from the z = 0 line to the point (t, z), along
the characteristic curve extending to (t, z). The Lagrange–Charpit equations
coming from (3.16) are

[

1

t(t− 1)
−
(

r0
t
+

r1
t− 1

)

z

]−1

dz = dt = −
(

g0
t
+

g1
t− 1

)−1
dG

G
, (3.17)

and it is convenient to parametrize each characteristic by t. By the equality
between the second and third members, G satisfies G ∝ t−g0(1 − t)−g1 along
each characteristic. If s = s(t, z) denotes the value of t at which the charac-
teristic extending to (t, z) leaves the z = 0 line, the initial condition becomes
G(s(t, z), 0) = 1 and can be imposed by expressing G(t, z) as in (3.13).

It remains to find s = s(t, z). It will turn out that u := s/t = 1 + zO(t, z),
by an application of the implicit function theorem. By the equality between the
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first and second members of (3.17), z as a function of t along any characteristic
satisfies the inhomogeneous first-order ODE

dz

dt
+

(

r0
t
+

r1
t− 1

)

z =
1

t(t− 1)
. (3.18)

The homogeneous solutions of (3.18) are of the form Kt−r0(1 − t)−r1 , where
K is arbitrary. A particular solution of (3.18) can be found by differentiating
(after multiplying by t(t− 1)). This yields the homogeneous second-order ODE

d2z

dt2
+

[

1 + r0
t

+
1 + r1
t− 1

]

dz

dt
+

r0 + r1
t(t− 1)

z = 0, (3.19)

which is a version of the Gauss hypergeometric equation. Provided that r0 is not
a negative integer, which holds by hypothesis, its solutions in a neighborhood
of t = 0 include the analytic functions

C 2F1(1− r∞, 1; 1 + r0 | t), (3.20)

C being arbitary. Substitution reveals that C must equal −1/r0 for (3.20)
to be a solution of (3.18). Combining the particular solution (3.20) with the
homogeneous solution, one finds that any characteristic must be of the form

z(t) = Kt−r0(1− t)−r1 + (−1/r0) 2F1(r0 + r1, 1; 1 + r0 | t) (3.21)

where K specifies the characteristic. If the characteristic is to extend to (t, z)
from (s, 0), it must be the case that

{

z = Kt−r0(1 − t)−r1 + (−1/r0) 2F1(r0 + r1, 1; 1 + r0 | t),
0 = Ks−r0(1 − s)−r1 + (−1/r0) 2F1(r0 + r1, 1; 1 + r0 | s).

(3.22)

This system determines the function s = s(t, z). Eliminating K yields

sr0(1 − s)r1 2F1

(

r0 + r1, 1; 1 + r0
∣

∣ s
)

=

tr0(1 − t)r1
[

r0 z + 2F1

(

r0 + r1, 1; 1 + r0
∣

∣ t
)]

,
(3.23)

which as an equation for u := s/t can be written as F(t, z;u) = 0, where

F(t, z; u) = ur0(1 − tu)r1 2F1

(

r0 + r1, 1; 1 + r0
∣

∣ tu
)

− (1 − t)r1
[

r0 z + 2F1

(

r0 + r1, 1; 1 + r0
∣

∣ t
)]

.
(3.24)

Clearly F(0, 0; 1) = 0, and the question is whether (3.24) defines a function
u = u(t, z) which is analytic in a neighborhood of (t, z) = (0, 0), at which point it
equals unity. By direct computation (∂F/∂u) equals r0 when (t, z;u) = (0, 0; 1),
and r0 6= 0 by hypothesis; so this follows by the analytic version of the implicit
function theorem. Equation (3.14) is a rewritten version of (3.23).
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Remark 3.4. The Gauss hypergeometric ODE (3.19) would be written in Rie-
mann’s P-symbol notation as

P





0, 1, ∞
0, 0, 1
−r0, −r1, 1− r∞

∣

∣

∣

∣

∣

t



 , (3.25)

which lists the two characteristic exponents of each of its singular points (the
points 0, 1,∞ on the projective t-line). (The exponent differences, important in
the construction of local series solutions, are −r0,−r1,−r∞.) By Fuchs’s rela-
tion, the sum of the six exponents equals unity. The new GKP parametrization
introduced in Section 3.1 was suggested by (3.25). However, it also lists the
parameters g0, g1, g∞, which do not appear in the ODE though they appear in
the PDE (3.16), from which the ODE was derived.

3.3. Some special cases

The EGF of a GKP triangle, parametrized by r0, r1, r∞ and g0, g1, g∞ with
respective sums 1 and 0, can in some interesting cases be computed in closed
form from Theorem 3.2. These include (A) when one of r0, r1, r∞ equals 1;
(B) when {r0, r1, r∞} = {− 1

2 ,− 1
2 , 2}; and (C) when {r0, r1, r∞} = { 12 , 1

2 , 0}.
In the following sections these are related to the generalized Stirling–Eulerian,
Narayana, and secant–tangent triangles. In each of (A),(B),(C), r0, r1, r∞ can
be permuted with the aid of Theorem 3.1. Hence without loss of generality, it
suffices to examine the cases (A I) when r∞ equals 1; (B I) when (r0, r1, r∞) =
(− 1

2 ,− 1
2 , 2); and (C I) when (r0, r1, r∞) = (12 ,

1
2 , 0).

The following three theorems evaluate

G(t, z) =





0, 1, ∞
r0, r1, r∞
g0, g1, g∞



 (t, z) (3.26)

in cases (A I), (B I), and (C I). The first two are especially easy to treat be-
cause when an upper parameter of the hypergeometric function 2F1 equals a
non-positive integer −N , the power series defining the function terminates and
becomes a degree-N polynomial.

Theorem 3.5. (A I) If r∞ = 1 (so that r0 + r1 = 0), the EGF is given in a

neighborhood of (0, 0) by

G(t, z) =
[

t+ (1− t)(1 + r0z)
−1/r0

]−g0 [

(1− t) + t(1 + r0z)
1/r0

]−g1

=
[

(1 + r0z)
1/r0

]g0 [

(1− t) + t(1 + r0z)
1/r0

]g∞
(3.27)

when r0 6= 0.

Proof. If r0 is not a non-positive integer, formula (3.14) of Theorem 3.2 applies,
and if r∞ = 1, each 2F1 in the formula degenerates to the unit (constant)
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function. Some algebra then yields

s = s(t, z) =
t(1 + r0z)

1/r0

(1− t) + t(1 + r0z)1/r0
, (3.28)

and (3.27) follows from (3.13). If r0 is a negative integer (though not if r0 = 0),
(3.27) holds by a limit argument.

The value r0 = 0 not covered by the theorem is handled thus: If (r0, r1, r∞) =
(0, 0, 1) then

G(t, z) =
[

t+ (1 − t)e−z
]−g0

[(1− t) + tez]
−g1

= eg0z [(1− t) + tez]
g∞ ,

(3.29)

by taking r0 → 0.

Theorem 3.6. (B I) If (r0, r1, r∞) = (− 1
2 ,− 1

2 , 2), the EGF is given in a neigh-

borhood of (0, 0) by

G(t, z) =

(

s+
t+

)g0 (s−
t−

)g1

, (3.30)

where

s± =
1

2
± 4(t− 1

2 ) + z

2
√

4 + 8(t− 1
2 )z + z2

,

with s+ + s− = 1, and t+ = t and t− = 1− t.

Proof. As r0 + r1 = −1, each 2F1 in (3.14) is a degree-1 polynomial function
of its argument, and (3.14) becomes a quadratic equation for s, the solutions of
which are s+ and s−. The one with the correct behavior as t, z → 0, satisfying
s = t(1 + zO(t, z)), is s+, so in (3.13), s and 1− s are respectively equal to s+
and s−. One can confirm that (3.30) satisfies the PDE (3.16).

It is clear from formula (3.14) that if r∞ is a positive integer and r0, r1
are nonzero rational numbers, s = s(t, z) will be an algebraic function, and if
moreover g0, g1, g∞ ∈ Q, the same will be true of G(t, z). But the polynomial of
which s is a root will typically be of higher degree than quadratic. The following
theorem deals with an inherently non-algebraic case (r∞ = 0).

Theorem 3.7. (C I) If (r0, r1, r∞) = (12 ,
1
2 , 0), the EGF is given in a neighbor-

hood of (0, 0) by

G(t, z) =

(

s+
t+

)g0 (s−
t−

)g1

, (3.31)

where

s± =
[

√

t± cos
(z

2

√

t+t−

)

±
√

t∓ sin
(z

2

√

t+t−

)]2

,

with s+ + s− = 1, and t+ = t and t− = 1− t.
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Proof. This comes from the known fact that in a neighborhood of t = 0,

2F1

(

1, 1; 32 ; t
)

equals sin−1(
√
t )/

√

t(1− t). Squaring both sides of (3.14), one
sees that s = s(t, z) is defined implicitly by

s(1 − s)

t(1 − t)
=

[

(z/2) + sin−1(
√
t )/

√

t(1 − t)

sin−1(
√
s )/

√

s(1− s)

]2

, (3.32)

which simplifies to the statement that

s = sin2
(z

2

√

t(1− t) + sin−1(
√
t )
)

, (3.33)

or equivalently to s = s+. By examination, 1− s equals s−, and (3.31) follows
from (3.13). One can confirm that (3.31) satisfies the PDE (3.16).

Cases (A I),(B I),(C I) can be converted to what will be called (A II),(B II),
(C II) and (A III),(B III),(C III) by applying respectively the elements (0∞)(1)
and (1∞)(0) of the S3-group, i.e., the sequence transformations RT and RT ◦
UBT ◦ RT. The resulting EGF formulas will appear in the following three
sections but can be summarized as follows.

Theorem 3.8. The statements of Theorems 3.5, 3.6, and 3.7 remain valid if

the parameter pairs (r0, g0) and (r∞, g∞) are interchanged, with t replaced by
1
t and z by tz; and similarly if (r1, g1) and (r∞, g∞) are interchanged, with t
replaced by −t

1−t and z by (1 − t)z.

However, each of the three theorems is unchanged (or is unchanged up to
parametrization, in the case of Theorem 3.5) by the remaining involution (01)(∞),
i.e., the UBT.

Barbero G. et al. [4], besides computing the bivariate EGF G(t, z) in the
three subcases of case (A), have treated the case when (in present notation) the
unordered set {r0, r1, r∞} equals {N, 1−N, 0}, for some N ∈ Z\{0, 1}. (See [4],
§§A.1.3, A.1.5, A.1.6.) This case also has three subcases, which are related
by the S3-group. But in each, the EGF turns out not to be an elementary
function, but rather to be expressible in terms of an implicitly defined tree
function (of combinatorial significance). Analytically, this can be attributed
in part to the 2F1’s in (3.14) not being elementary functions.

4. Generalized Stirling–Eulerian triangles

In GKP case (A I) of the last section, when r∞ = 1 or equivalently α′ = 0,
Theorem 3.5 supplies a closed-form expression for the EGF G(t, z). This case
leads naturally to the definition of the generalized Stirling and generalized Eu-
lerian numbers, Sn,k(a, b; r) and En,k(a, b; c0, c∞). The latter are characterized
by the similar condition r1 = 1, and in §4.2, they are alternatively interpreted
as connection coefficients. (The key result is Theorem 4.8, which also includes a
rank-1 formula for En,k(a, b; c0, c∞).) In §§4.3 and 4.4, some important parame-
ter choices when ‘rank-0’ formulas for Sn,k(a, b; r) and En,k(a, b; c0, c∞) exist are
examined. These may contain binomial coefficients and generalized factorials,
without much summation.
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4.1. Basic formulas

Applying the transformations RT and RT ◦UBT ◦RT to case (A I), as sum-
marized in Theorem 3.8, yields the two additional EGF formulas that appear
in the following three theorems. (Case (A II) is when α = −β and case (A III)

is when α
β = α′

β′
+ 1; as above, ββ′ 6= 0 is assumed.) The parameters (α, β, γ;

α′, β′, γ′) of each EGF have been computed from the new parameters (r0, r1, r∞;
g0, g1, g∞) with the aid of (3.6) and (3.7).

These three EGF formulas have been derived previously. (See [4, (A.8),
(A.4),(A.2)], and also [50, 63, 64].) But the present derivation, making explicit
use of the S3-group of sequence transformations to derive the latter two from
the first, seems the most efficient.

Theorem 4.1 ((A I), r∞ = 1, α′ = 0: generalized Stirling). If α′ = 0 then

G(t, z) equals (when α 6= 0)

(1− αz)−γ/α
{

1 + (β′/β)t
[

1− (1− αz)−β/α
]}−γ′/β′

,

which in the α→ 0 limit becomes

eγz
{

1 + (β′/β)t
[

1− eβz
]}−γ′/β′

.

Theorem 4.2 ((A II), r0 = 1, α = −β: generalized Stirling, reflected). If

α = −β then G(t, z) equals (when α′ + β′ 6= 0)

[1− (α′ + β′)zt]
−γ′/(α′+β′)

{

1 + (β/β′)t−1
[

1− (1− (α′ + β′)zt)
β′/(α′+β′)

]}γ/β

,

which in the α′ → −β′ limit becomes

eγ
′zt

{

1 + (β/β′)t−1
[

1− e−β
′zt

]}γ/β

.

Theorem 4.3 ((A III), r1 = 1, α
β = α′

β′
+1: generalized Eulerian). If α

β = α′

β′
+1

then G(t, z) equals (when α 6= 0, i.e., α′ + β′ 6= 0)

{

1− [β/(β + β′t)]
[

1−
(

1− αz
/

[β/(β + β′t)]
)β/α

]}−γ/β

×
{

1− [β′t/(β + β′t)]
[

1−
(

1− αz
/

[β/(β + β′t)]
)−β/α

]}γ′/β′

,

which in the α→ 0 or equivalently α′ → −β′ limit becomes

{

1− [β/(β + β′t)]
[

1− e−z(β+β′t)
]}−γ/β

×
{

1− [β′t/(β + β′t)]
[

1− ez(β+β′t)
]}γ′/β′

.
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Cases (A I) and (A II) are related by RT, the action of which is straightfor-
ward. (It reverses each row of a GKP triangle; see the second row in Table 1.)
The focus will therefore be on (A I) and (A III). In both, it is natural to reduce
the number of free parameters by defining a specialized or normalized version
of the GKP triangle. Case (A I) will be treated first.

Definition 4.4. The 3-parameter generalized Stirling triangle Sn,k(a, b; r) is
defined by

Sn,k = Sn,k(a, b; r) :=

[

−a, b r
0, 0 1

]

n,k

(4.1)

and satisfies Sn+1,k+1 = [−an+ b(k + 1) + r]Sn,k+1 + Sn,k.

The corresponding denormalization is

[

α, β γ
0, β′ γ′

]

n,k

=

(

γ′

β′

)k

(β′)k
[

α, β γ
0, 0 1

]

n,k

= (γ′)k,β
′

Sn,k(−α, β; γ) (4.2)

and a homogeneity property is

Sn,k(λa, λb; λr) = λn−kSn,k(a, b; r). (4.3)

The numbers Sn,k(a, b; r) are of course the generalized Stirling numbers of Hsu
and Shiue, which reduce to

{

n
k

}

and
[

n
k

]

when (a, b; r) = (0, 1; 0), resp. (−1, 0; 0).
When restricted to integer parameter values, they have been interpreted com-
binatorially [24, 46]. If b 6= 0 and a 6= 0, these numbers have the bivariate EGF

∞
∑

n=0

n
∑

k=0

k!Sn,k(a, b; r) t
k zn

n!
= (1 + az)r/a

{

1− t

b

[

(1 + az)b/a − 1
]

}−1

, (4.4)

which follows from (4.2) and Theorem 4.1 by choosing β′ = γ′ = 1, and the
equivalent but perhaps less useful EGF

∞
∑

n=0

n
∑

k=0

Sn,k(a, b; r) t
k zn

n!
= (1 + az)r/a exp

{

t

b

[

(1 + az)b/a − 1
]

}

, (4.5)

which follows from Theorem 4.1 by taking β′ → 0. Taking account of the
elementary t-dependence in (4.4), one has for all k > 0 the ‘vertical’ univari-
ate EGF

∞
∑

n=0

Sn,k(a, b; r)
k!

n!
zn = (1 + az)r/a

[

(1 + az)b/a − 1

b

]k

, (4.6)

which is of the simple form d(z)h(z)k; so irrespective of the choice of parameters,
k!
n!Sn,k is a Riordan array, and Sn,k itself is a so-called exponential Riordan
array [6]. Taking the a → 0 limit in any of the three preceding formulas is
straightforward (the b→ 0 limit is not considered here).

The following additional facts are well known but are proved for complete-
ness. In this, ∆x is the forward first difference operator with respect to x,
defined by ∆xf(x) = f(x+ 1)− f(x).
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Theorem 4.5. (i) When b 6= 0, Sn,k(a, b; r) is given by the rank-1 formula

Sn,k(a, b; r) =
1

bkk!

k
∑

j=0

(−1)k−j
(

k

j

)

(bj + r)n,a (4.7a)

=
1

bkk!
∆k

x

[

(bx+ r)n,a
] ∣

∣

x=0
. (4.7b)

(ii) In general the numbers Sn,k(a, b; r), 0 6 k 6 n <∞, satisfy

(x)n,a =

n
∑

k=0

Sn,k(a, b; r)(x − r)k,b, (4.8)

defining them as coefficients of connection between certain graded bases of the

space of polynomials in an indeterminate x.

Proof. The exponential Riordan array
∣

∣

n
k

∣

∣ specified by a pair of formal power
series d, h in z of respective orders 0, 1, i.e., d(z) = d0 + d1z + . . . with d0 6= 0
and h(z) = h1z + h2z

2 + . . . with h1 6= 0, denoted by eR(d, h) or [d, h], is the
infinite lower-triangular matrix defined by

[d, h]n,k =

∣

∣

∣

∣

n

k

∣

∣

∣

∣

=
n!

k!
[zn]d(z)h(z)k, (4.9)

where [zn] extracts the coefficient of zn. It is a fundamental fact [6] that if a
column vector uk has EGF u(t) =

∑∞

k=0 ukt
k/k!, the matrix–vector product

vn =
∑∞

k=0

∣

∣

n
k

∣

∣uk will have EGF v(z) =
∑∞

n=0 vnz
n/n! equal to d(z)u(h(z)).

In (4.8), the column vector uk = (x − r)k,b has EGF u(t) = (1 + bt)(x−r)/b

and vn = (x)n,a has EGF v(z) = (1 + az)x/a, consistent with this fact and the
functions d(z), h(z) appearing in (4.6). This proves (4.8).

From (4.8) with x replaced by bx + r, it follows by Newton’s interpolation
formula [49] that when b 6= 0, (4.7b) holds. Equation (4.7a) is an expanded
version of (4.7b).

Case (A III), when α
β = α′

β′
+ 1, can also be specialized or normalized to

reduce the number of free parameters.

Definition 4.6. The 4-parameter generalized Eulerian triangleEn,k(a, b; c0, c∞)
is defined by

En,k = En,k(a, b; c0, c∞) :=

[

−a, b c0
a+ b, −b c∞

]

n,k

, (4.10)

which if b 6= 0 comes equivalently from a tableau with r1 = 1, as

bn





0, 1, ∞
a/b, 1, −a/b
c0/b, −(c0 + c∞)/b, c∞/b





n,k

. (4.11)

It satisfies En+1,k+1 = [−an+ b(k + 1) + c0]En,k+1 + [(a+ b)n− bk + c∞]En,k.
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The corresponding denormalization is

[

α, β γ
(

α
β − 1

)

β′, β′ γ′

]

n,k

=

(−β′
β

)k

En,k(−α, β; γ,−βγ′/β′) (4.12)

and a homogeneity property is

En,k(λa, λb; λc0, λc∞) = λnEn,k(a, b; c0, c∞). (4.13)

The generalized Eulerian numbers En,k(a, b; c0, c∞) reduce to the standard num-
bers

〈

n
k−1

〉

:= An,k,
〈

n
k

〉

, and
〈

n+1
k

〉

= An+1,k+1 when (a, b; c0, c∞) is respectively
equal to (0, 1; 0, 1), (0, 1; 1, 0), and (0, 1; 1, 1); recall Example 2.3.

It is noteworthy that when b 6= 0, the En,k(a, b; c0, c∞) or the corresponding
row polynomials Gn(t) =

∑n
k=0 En,k(a, b; c0, c∞)tk, n > 0, can be computed by

repeated differentiation. According to the formula of Theorem 2.6(iii),

(bt1−âDt)
n

{

tĉ0

(1− t)ĉ0+ĉ∞

}

=
tĉ0−ân Gn(t)

(1− t)ĉ0+ĉ∞+n
, (4.14)

or equivalently

bn
∞
∑

k=0

(ĉ0 + k)n,â(ĉ0 + ĉ∞)k
tk

k!
=

Gn(t)

(1 − t)ĉ0+ĉ∞+n
, (4.15)

where â = a/b, ĉ0 = c0/b, ĉ∞ = c∞/b. These formulas subsume Euler’s ones for
the numbers An,k, to which they reduce when (a, b; c0, c∞) equals (0, 1; 0, 1).

Combinatorial interpretations of the numbers En,k(a, b; c0, c∞) for general
parameter values remain to be explored, though as mentioned in the introduc-
tion, some special cases (such as the Carlitz–Scoville a = 0 case) have appeared
in the literature. When b 6= 0 and a 6= 0 these numbers have the bivariate EGF

∞
∑

n=0

n
∑

k=0

En,k(a, b; c0, c∞) tk
zn

n!
=

{

1− (1− t)−1
[

1− (1 + az − atz)−b/a
]}−c0/b

×
{

1 + t(1− t)−1
[

1− (1 + az − atz)b/a
]}−c∞/b

,

(4.16)

which becomes

∞
∑

n=0

n
∑

k=0

En,k(0, b; c0, c∞) tk
zn

n!
=

{

1− (1 − t)−1
[

1− e−b(1−t)z
]}−c0/b {

1 + t(1 − t)−1
[

1− eb(1−t)z
]}−c∞/b

(4.17)
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when a → 0 (the b → 0 limit is not considered here). The EGF’s (4.16),(4.17)
are specializations of the EGF’s of Theorem 4.3. Note that by setting b = 1 with
(c0, c∞) = (0, 1), (1, 0), and (1, 1), one recovers from (4.17) the classical Eulerian
EGF’s of Example 2.3. More generally, by setting b = 1 with (c0, c∞) = (u, v),
one obtains an EGF for the (u, v)-Eulerian numbers of Barbero G. et al. [5].

These include the traditional order-v Eulerian numbers A
(v)
n,k defined in [25], for

which (c0, c∞) = (0, v).
The analogue of Theorem 4.5 for the new numbers En,k(a, b; c0, c∞), includ-

ing a rank-1 formula, will appear as Theorem 4.8 below. These numbers can also
be expressed in terms of the Hsu–Shiue numbers Sn,k(a, b; r), and vice versa,
by applying appropriate elements of the S3-group of sequence transformations
acting row-wise:

Theorem 4.7. For all n > 0 and choices of parameters (a, b; c0, c∞), one has

the UBT (upper binomial transform) pair

En,k(a, b; c0, c∞) =

n
∑

j=k

(−1)j−k
(

j

k

)

(c0 + c∞)n−j,b Sn,n−j(−a, b; c∞), (4.18a)

(c0 + c∞)n−k,b Sn,n−k(−a, b; c∞) =

n
∑

j=k

(

j

k

)

En,j(a, b; c0, c∞). (4.18b)

Proof. The first identity is an application of the composite sequence transfor-
mation UBT ◦RT, which is the order-3 transformation listed on the fifth line of
Table 1. Equation (4.18a) can be written as

[

−a, b c0
a+ b, −b c∞

]

n,k

= (−1)n−k
n
∑

j=k

(

j

k

)

Ŝn,j, (4.19)

where

Ŝn,j =

{

(−1)j(c0 + c∞)j,b
[

a, b c∞
0, 0 1

]

n,j

}

j←n−j

=

{

[

a, b c∞
0, −b −c0 − c∞

]

n,j

}

j←n−j

=

[

−b, b −c0 − c∞
a+ b, −b c∞

]

n,j

,

(4.20)
in which the final equality comes from the RT formula (2.9c). The identity now
follows by applying the UBT formula (2.10c). The second identity is inverse to
the first, and comes from the inverted group element RT ◦UBT.

When (a, b; c0, c∞) = (0, 1; 1, 0), the UBT pair in this theorem (incorporating
an initial j ← n− j reflection, resp. a final k ← n− k reflection) reduces to the
classical UBT pair [33] relating the Eulerian numbers En,k(0, 1; 1, 0) =

〈

n
k

〉

and
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the Stirling subset numbers Sn,k(0, 1; 0) =
{

n
k

}

:

〈

n

k

〉

=

n
∑

j=k

(−1)j−k
(

j

k

)

(n− j)!

{

n

n− j

}

, (4.21a)

(n− k)!

{

n

n− k

}

=
n
∑

j=k

(

j

k

)〈

n

j

〉

. (4.21b)

The sequence transformation performed in (4.21b) is an (unsigned and non-
involutive) UBT, and the transformation in (4.21a) is its inverse.

Slightly modified versions of the UBT pair (4.21) can be obtained by set-
ting (a, b; c0, c∞) equal to (0, 1; 0, 1) and (0, 1; 1, 1) in the theorem; again, recall
Example 2.3. Also, setting (a, b; c0, c∞) equal to (0, 2; 1, 1) yields an additional
known UBT pair with a combinatorial interpretation, which relates the type-B
Eulerian numbers En,k(0, 2; 1, 1) =:

〈

n
k

〉

B
(see [52, A060187]) and the type-B

Stirling subset numbers Sn,k(0, 2; 1) =:
{

n
k

}

B
(see [1] and [52, A039755]).

For each n, sequences (2)kSn,k(0, 1; 1) = (k+1)!
{

n+1
k+1

}

and En,k(0, 1; 1, 1) =
〈

n+1
k

〉

, resp. 2kk!Sn,k(0, 2; 1) and En,k(0, 2; 1, 1) =
〈

n
k

〉

B
, where 0 6 k 6 n, arise

combinatorially as the f -vector and h-vector of a simplicial complex dual to
the permutohedron of type An, resp. Bn [30]. In that context, the composite
transformation UBT ◦RT implicit in (4.18a) can be identified with the ‘reverse
Pascal’s triangle’ construction that maps the f -vector of a dual simplicial com-
plex to its h-vector [30, Example 5.6].

4.2. Connection coefficient interpretation

Now that the generalized Eulerian numbers En,k(a, b; c0, c∞) have been in-
troduced as the elements of a parametric GKP triangle, how they can be effi-
ciently computed will be explained. For general parameter values, it is difficult
to extract a useful closed-form expression from (4.16), their bivariate EGF.
They can be computed alternatively by (4.18a) from the Hsu–Shiue generalized
Stirling numbers, which in turn are given by the rank-1 formula (4.7a). But
the resulting formula for En,k(a, b; c0, c∞) is of rank 2: it involves a double
summation.

It may be possible to simplify this, but a formula without a multi-sum can
be worked out by another technique, which is of independent interest. Besides
yielding the following rank-1 formula, the technique provides a Worpitzky-like
interpretation of the En,k(a, b; c0, c∞) as connection coefficients.

Theorem 4.8. (i) When b 6= 0, En,k(a, b; c0, c∞) is given by the rank-1 formula

En,k(a, b; c0, c∞) =

1

bkk!

k
∑

j=0

(−1)k−j
(

k

j

)

(bn+ c0 + c∞)k−j,b(c0 + c∞)j,b(bj + c0)
n,a.

(4.22)
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(ii) In general the numbers En,k(a, b; c0, c∞), 0 6 k 6 n, satisfy

(c0+c∞)n,b(x)n,a =

n
∑

k=0

En,k(a, b; c0, c∞) (x−c0)
k,b(x+c∞)n−k,b, (4.23)

which if (c0 + c∞)n,b 6= 0, defines them as coefficients that express the

factorial polynomial (x)n,a with respect to a bifactorial basis of the (n+1)-
dimensional space of polynomials of degree 6 n.

Proof. LetG(t, z) denote the EGF of the GKP triangle defining En,k(a, b; c0, c∞),
and let Gn(t), n > 0, be its row polynomials. That is,

G(t, z) =

[

−a, b c0
a+ b, −b c∞

]

(t, z), Gn(t) =

[

−a, b c0
a+ b, −b c∞

]

n

(t), (4.24)

and the PDE satisfied byG(t, z) and the differential recurrence satisfied byGn(t)
are given in Theorem 2.6. The lifting transformations previously considered were
of the form G∗(t∗, z∗) = G(t, z) where (t, z) = (R(t∗), S(t∗)z∗). Consider the
more general transformation

G∗(t∗, z∗) = Q(t∗)G(R(t∗), S(t∗)z∗) (4.25)

specified by (Q,R, S), where Q satisfies Q(0) = 1. It may be possible to choose
(Q,R, S) so that G∗(t∗, z∗) is the EGF of an infinite array

∣

∣

n
k

∣

∣

∗
that satisfies a

triangular recurrence of GKP type, though the array will not be lower-triangular
if Q 6≡ 1.

Consider in particular the case when (R(t∗), S(t∗) =
(

t∗, (1− t∗)−1
)

and the

prefactor Q(t∗) equals (1− t∗)−(c0+c∞)/b, so that t = t∗ and

G∗n(t) = (1− t)−n−(c0+c∞)/bGn(t). (4.26)

The unlifted row polynomials Gn(t), n > 0 satisfy the recurrence

Gn+1 = {[−a+ (a+ b)t]n+ (c0 + c∞t)}Gn + b(1− t)tG′n, (4.27)

with G0(t) ≡ 1. By direct computation the lifted G∗n(t), n > 0, which by (4.26)
are not polynomials, satisfy the recurrence

G∗n+1 = (−an+ c0)G
∗
n + bt(G∗n)

′, (4.28)

with G∗0(t) = (1 − t)−(c0+c∞)/b. Substituting G∗n(t) =
∑∞

k=0

∣

∣

n
k

∣

∣

∗
tk into (4.28)

reveals that the lifted array coefficients
∣

∣

n
k

∣

∣

∗
satisfy a degenerate recurrence of

the GKP type, namely
∣

∣

∣

∣

n+ 1

k

∣

∣

∣

∣

∗

= (−an+ bk + c0)

∣

∣

∣

∣

n

k

∣

∣

∣

∣

∗

, (n, k) ∈ N2, (4.29)

with the non-GKP initial condition
∣

∣

∣

∣

0

k

∣

∣

∣

∣

∗

=

(

(c0 + c∞)/b− 1 + k

k

)

, k ∈ N. (4.30)
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The explicit formula

∣

∣

∣

∣

n

k

∣

∣

∣

∣

∗

=

(

(c0 + c∞)/b− 1 + k

k

)

(bk + c0)
n,a, (n, k) ∈ N2, (4.31)

follows by inspection.
Now consider (4.26) above. Expanding the prefactor and likewise its recip-

rocal in geometric series, and equating like powers of t, yields the pair

∣

∣

∣

∣

n

k

∣

∣

∣

∣

∗

=

k
∑

j=0

(

n+ (c0 + c∞)/b− 1 + k − j

k − j

)
∣

∣

∣

∣

n

j

∣

∣

∣

∣

, (4.32a)

∣

∣

∣

∣

n

k

∣

∣

∣

∣

=

k
∑

j=0

(−1)k−j
(

n+ (c0 + c∞)/b

k − j

)∣

∣

∣

∣

n

j

∣

∣

∣

∣

∗

, (4.32b)

holding for all (n, k) ∈ N2. Here,
∣

∣

n
k

∣

∣ signifies En,k(a, b; c0, c∞). Taking (4.31)
into account, one sees that (4.32b) is equivalent to the claimed formula (4.22)
for En,k(a, b; c0, c∞).

Continuing, let δ := (c0 + c∞)/b− 1, so that (4.32a) says that

(

δ + k

k

)

(bk + c0)
n,a =

k
∑

j=0

(

n+ δ + k − j

k − j

)

En,j(a, b; c0, c∞). (4.33)

If k 6 n the summation
∑k

j=0 can obviously be replaced by
∑n

j=0, and multi-

plying both sides by k! (δ + n)n−k then yields

(δ + 1)n(bk + c0)
n,a =

n
∑

j=0

(k)j(k + δ + 1)n−jEn,j(a, b; c0, c∞). (4.34)

By the formal substitution k = (x − c0)/b this becomes a statement that the
equality

(δ+1)n(x)n,a =

n
∑

j=0

((x− c0)/b)
j
((x−c0)/b+δ+1)n−jEn,j(a, b; c0, c∞) (4.35)

holds when x takes on any of the n+ 1 distinct values bk + c0, k = 0, 1, . . . , n.
But both sides are degree-n polynomials in x, so the equality must hold for
all x. This is equivalent to the claim (4.23), the b = 0 case following by taking
the b→ 0 limit.

An immediate corollary of the connection formula (4.23) is the involutive
identity

En,n−k(a, b; c0, c∞) = En,k(−a, b; c∞, c0). (4.36)

This also follows from the RT formula (2.9c), if one uses the definition (4.10)
of En,k as a GKP triangle. An instance of (4.36), coming from the choice
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(a, b; c0, c∞) = (0, 1; 1, 1), or equivalently (α, β, γ;α′, β′, γ′) = (0, 1, 1; 1,−1, 1)
as in (2.1c), is the classical Eulerian identity

〈

n+1
n−k

〉

=
〈

n+1
k

〉

, 0 6 k 6 n. In the
traditional indexing this is An+1,n−k+1 = An+1,k+1, 0 6 k 6 n.

Theorem 4.8(i) and its inverse, which comes from (4.32a) rather than (4.32b),
can be rephrased in the following way.

Theorem 4.9. For all n > 0 and choices of parameters (a, b; c0, c∞), one has

the binomial transform pair

b
k
k!En,k(a, b; c0, c∞) =

k
∑

j=0

(−1)k−j

(

k

j

)

(bn+ c0 + c∞)k−j,b(c0 + c∞)j,b (bj + c0)
n,a

,

(4.37a)

(c0 + c∞)k,b(bk + c0)
n,a =

k
∑

j=0

(

k

j

)

(bn+ c0 + c∞)k−j,b
b
j
j!En,j(a, b; c0, c∞).

(4.37b)

When (a, b; c0, c∞) = (0, 1; 1, 0), the formula (4.37a) reduces to the classical
formula (1.15) for

〈

n
k

〉

, which is well known [22, 33]. Slightly modified versions of
this formula can be obtained by setting (a, b; c0, c∞) = (0, 1; 0, 1) and (0, 1; 1, 1).
It must be mentioned that He and Shiue [38, eqs. (15),(17)] recently obtained
the (a, b; c0, c∞) = (θ, 1; 1, 0) specialization not only of (4.37a), but of the inverse
identity (4.37b) as well.

Theorem 4.9 should be compared with Theorem 4.7, which revealed that for

all n > 0, the row sequences En,k(a, b; c0, c∞), k = 0, . . . , n and (c0 + c∞)n−k,b

Sn,n−k(−a, b; c∞), k = 0, . . . , n, form a UBT pair; and also with the following.

Theorem 4.10. For all n > 0 and choices of parameters (a, b; r), one has the

LBT (lower binomial transform) pair

bkk!Sn,k(a, b; r) =

k
∑

j=0

(−1)k−j
(

k

j

)

(bj + r)n,a, (4.38a)

(bk + r)n,a =

k
∑

j=0

(

k

j

)

bjj!Sn,j(a, b; r). (4.38b)

Proof. The first identity is from Theorem 4.5, and the LBT is inverted in the
second. For the theory of LBT’s, see Boyadzhiev [9].

For any n > 0, the UBT pair in Theorem 4.7 and the LBT pair in Theo-
rem 4.10 are of the classical forms

vk =

n
∑

j=k

(−1)j−k
(

j

k

)

uj ⇐⇒ uk =

n
∑

j=k

(

j

k

)

vj (4.39)

and

vk =

k
∑

j=0

(−1)k−j
(

k

j

)

uj ⇐⇒ uk =

k
∑

j=0

(

k

j

)

vj , (4.40)
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respectively. In each, two sequences (uk)
n
k=0, (vk)

n
k=0 are related by a non-

involutive binomial transform, or equivalently by its inverse. But the LBT pair
in Theorem 4.9 is of a more general form than (4.40), namely

vk =

k
∑

j=0

(−1)k−j
(

k

j

)

(A)k−j,b uj ⇐⇒ uk =

k
∑

j=0

(

k

j

)

(A)k−j,b vj , (4.41)

where A 6= 0 and b are constants. (Actually, in the theorem A depends affine-
linearly on the row index n, but because these transformations act row-wise,
that is not a major matter.) When A = 1 and b = 0, (4.41) reduces to (4.40).
Unusual LBT pairs of the type (4.41), which have not appeared widely in the
literature, are briefly discussed at the end of the next subsection.

4.3. Generalized Stirling formulas

The generalized Eulerian numbers En,k(a, b; c0, c∞) can be computed by
Theorem 4.7 from the Hsu–Shiue Stirling numbers Sn,k, as well as by the rank-1
summation formula in Theorem 4.8 (when b 6= 0). Because of the existence of
the former method, some identities satisfied by the Sn,k in general, and explicit
formulas for certain Sn,k, will now be given. The formulas will incidentally lead
to some sequence transformations that generalize the classical Stirling trans-
form (for which see [9]). By exploiting the previously mentioned homogeneity
property

Sn,k(λa, λb; λr) = λn−kSn,k(a, b; r), (4.42)

additional explicit formulas can be generated.
Identities (i) and (ii) in the following theorem could be called ‘contiguous

function relations’ in the spirit of Gauss.

Theorem 4.11. For all n > 0, the numbers Sn,k satisfy

(i) Sn,k(a, b; r + a) = Sn,k(a, b; r) + anSn−1,k(a, b; r),

(ii) Sn,k(a, b; r + b) = Sn,k(a, b; r) + b(k + 1)Sn,k+1(a, b; r),

(iii) Sn,k(−a, b; r) = Sn,k (a, b; r + a(n− 1)),

(iv) Sn,k(a,−b; r) = Sn,k (a, b; r − bk),

(v) Sn,k(a, b; b− a) = Sn+1,k+1 (a, b; 0),

when 0 6 k 6 n, with k = −1 also allowed in (ii) and (v). In (i), (ii), and (v),
the convention that Sn,k = 0 if k < 0, k > n, or n < 0, is adhered to.

Proof. Each of (i),(ii),(iii) follows by elementary manipulation of the bivariate
EGF (4.4), the cases a = 0 and b = 0 holding by continuity; though (iv) follows
more easily from the finite-difference representation (4.7b). Identity (v) is an
example of the left-trimming of a GKP triangle, as in Theorem 2.1(i).

Example 4.12. The r-Stirling subset numbers
{

n
k

}

r
= Sn,k(0, 1; r) and cycle

numbers
[

n
k

]

r
= Sn,k(−1, 0; r) (where usually r ∈ N, see [11]), generalize

{

n
k

}
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and
[

n
k

]

. For an (n+ r)-set, they count restricted partitions with k + r blocks,
resp. permutations with k+r cycles, the restriction being that r distinguished el-
ements of the set must be placed in distinct blocks, resp. cycles.4 The r-Stirling
subset numbers can be computed by the rank-1 formula of Theorem 4.5. Addi-
tionally, setting (a, b) = (0, 1) in part (ii) and (−1, 0) in part (i) of Theorem 4.11
yields respectively that when 0 6 k 6 n,

{

n

k

}

r

=

{

n

k

}

r+1

− (k + 1)

{

n

k + 1

}

r

, (4.43a)

and
[

n+ 1

k

]

r

=

[

n+ 1

k

]

r+1

− (n+ 1)

[

n

k

]

r+1

. (4.43b)

These ‘cross’ recurrences are equivalent to known ones with combinatorial in-
terpretations [11, §3].

The following theorem says that in a sense, the parametric family of Hsu–
Shiue Stirling number triangles is closed under the taking of (row-wise) upper
binomial transforms.

Theorem 4.13. For all 0 6 k 6 n and δ, the Sn,k satisfy

δk,bSn,k(a,−b; r + δ) =

n
∑

j=k

(

j

k

)

δj,bSn,j(a, b; r).

Proof. This follows from the UBT formula (2.10c), if one views δk,bSn,k(a, b; r)
as the GKP triangle

[

−a b r
0 −b δ

]

n,k
. (See (1.9).)

To prove the next theorem, recall from (4.6) that the matrix S(a, b; r) =
(Sn,k(a, b; r)) is an exponential Riordan array:

S(a, b; r) =

[

(1 + az)r/a,
(1 + az)b/a − 1

b

]

, (4.44)

meaning that

Sn,k(a, b; r) =
n!

k!
[zn](1 + az)r/a

[

(1 + az)b/a − 1

b

]k

. (4.45)

(Taking the a → 0 limit, if desired, is straightforward.) It is a fundamental
fact [6] that (exponential) Riordan arrays form a group under matrix multipli-
cation: if di, hi are formal power series in z of respective orders 0, 1, for i = 1, 2,
then [d1, h1] [d2, h2] = [(d2 ◦ h1)d1, h2 ◦ h1] and [d1, h1]

−1 = [1/(d1 ◦ h̄1), h̄1],
where h̄1 is the compositional inverse of h1.

Of the following three identities, (i) is presumably well known and (ii) ap-
pears in [40]; (iii) extends a pair of identities of Can and Değlı [12, eqs. (30)–
(31)], and appears to be new.

4In present notation, the r-Stirling numbers of [11] would be written as
{n−r
k−r

}

r
and

[n−r
k−r

]

r
.
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Theorem 4.14. (i) The parametric, infinite lower-triangular matrix S(a, b; r),
i.e., (Sn,k(a, b; r)), satisfies the product formula

S(a, c; r1 + r2) = S(a, b; r1)S(b, c; r2);

and S(a, b; r)−1 = S(b, a;−r), as S(a, a; 0) = I, the identity matrix, for

any a.

(ii) For any non-negative n and k, k1, k2 satisfying k = k1 + k2, one has the

convolution formula

k!

k1! k2!
Sn,k(a, b; r1 + r2) =

∑ n!

n1!n2!
Sn1,k1

(a, b; r1)Sn2,k2
(a, b; r2),

the sum being over non-negative pairs n1, n2 satisfying n = n1 + n2, with

n1 > k1 and n2 > k2.

(iii) For any non-negative k and n1, n, k2 satisfying n1 = n+ k2, one has the

asymmetric convolution formula

n1!

n! k2!
Sn,k(a, b; r1 + r2) =

∑ k1!

k!n2!
Sn1,k1

(a, b; r1)Sn2,k2
(b, a; r2),

the sum being over non-negative pairs k1, n2 satisfying k1 = k + n2, with

n1 > k1 and n2 > k2. (Note the interchange of a, b in the summand.)

Proof. (i) These facts are immediate corollaries of the connection formula (4.8).
They also have a Riordan-array interpretation: as is easily verified, they come
from the just-stated formulas that express [d1, h1] [d2, h2] and [d1, h1]

−1 as Ri-
ordan arrays, when di, hi depend on z as shown in (4.44).

(ii) To prove this, substitute (n, k) = (ni, ki) in the vertical EGF formula
(4.6), and take the product of two copies of it: one with i = 1 and one with i = 2.
Then, equate the coefficients of like powers of z on the left and right sides.

(iii) Consider the infinite matrix B(a, b; r) = (Bn,w(a, b; r)) defined by

Bn,w(a, b; r) = n![zn](1 + az)r/a
[

bz

(1 + az)b/a − 1

]w

. (4.46)

This is an example of an improper Riordan array [3]. It is not a lower-triangular
matrix indexed by n, k > 0. Rather, it is indexed by n > 0, w ∈ Z. As a power
series in z, the quantity raised to the w’th power here is of order 0, not 1.

If r = r1 + r2, for any k > 0 one has by elementary manipulations

(1 + az)r/a
[

bz

(1 + az)b/a − 1

]w
1

k!

[

(1 + az)b/a − 1

b

]k

=
∞
∑

n=k





n
∑

j=k

1

j!(n− j)!
Bn−j,w(a, b; r1)Sj,k(a, b; r2)



 zn.

(4.47)
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If moreover k > w, this alternatively equals

zw

k!
(1 + az)r/a

[

(1 + az)b/a − 1

b

]k−w

=
zw(k − w)!

k!

∞
∑

n=k−w

Sn,k−w(a, b; r)
zn

n!

=

∞
∑

n=k

[

Sn−w,k−w(a, b; r)
(k − w)!

k!(n − w)!

]

zn.

(4.48)
Equating the coefficients of like powers of z yields the identity

(

n
k

)

(

n−w
k−w

)Sn−w,k−w(a, b; r) =

n
∑

j=k

(

n

j

)

Bn−j,w(a, b; r1)Sj,k(a, b; r2), (4.49)

which holds when n, k > max(w, 0).
In this, only the w’th column of B = (Bn,w) appears. Define a paramet-

ric, lower-diagonal Toeplitz matrix B(w)(a, b; r1) =
(

B
(w)
n,j (a, b; r1)

)

, indexed by

n, j > 0, which depends only on this column vector:

B
(w)
n,j (a, b; r1) =

{

(

n
j

)

Bn−j,w(a, b; r1), n > j,

0, otherwise.
(4.50)

The identity (4.49) can be rewritten as

(

n
k

)

(

n−w
k−w

)Sn−w,k−w(a, b; r) =

n
∑

j=k

B
(w)
n,j (a, b; r1)Sj,k(a, b; r2), (4.51)

in which each side is an element of a matrix indexed by n, k > max(w, 0), and
the right-hand side computes the product of two such matrices.

It is known that if g(z) = c0 + g1z + . . . is a formal power series and M =
M(g) is the lower-triangular Toeplitz matrix defined by Mn,j = gn−j , the map
g 7→ M(g) is an algebra isomorphism. It follows by examining (4.46) that
the inverse of B(w)(a, b; r1) is B(−w)(a, b;−r1), because negating w, r in (4.46)
replaces the power series in z to which [zn] is applied by its reciprocal.

Taking this into account and computing the matrix inverse of both sides
of (4.51) yields the inverted identity

(

n
k

)

(

n−w
k−w

)Sn−w,k−w(b, a; −r) =
n
∑

j=k

Sn,j(b, a; −r2)B(−w)
j,k (a, b; −r1), (4.52)

which again holds when n, k > max(w, 0). The case when w > 0 is of interest
here. Comparing (4.45) and (4.46) reveals that if w > 0,

Bn,−w(a, b; r) =

(

n+ w

w

)−1

Sn+w,w(a, b; r), (4.53)
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so that the inverted identity can be rewritten as

(

n

w

)

Sn−w,k−w(b, a; −r) =
n
∑

j=k

Sn,j(b, a; −r2)
(

j

k − w

)

Sj−k+w,w(a, b; −r1).

(4.54)
By negating r, r1, r2 and interchanging a, b, one sees that this is equivalent to
the claimed asymmetric convolution formula.

The following theorem lists formulas for certain Sn,k(a, b; r) Hsu–Shiue tri-
angles, parametrized by r. They may be known but seem not to have not been
assembled before in a single place. The notation used for a hypergeometric term
in parts (iv),(v), and in the sequel, is similar to that often used in the series
for 2F1:

2F1

(

A, B

C

∣

∣

∣

∣

w

)

=

∞
∑

k=0

Ak Bk

1k Ck
wk =:

∞
∑

k=0

[

A, B

1, C

]k

wk. (4.55)

That is,
[

A1, . . . , Ap

C1, . . . , Cq

]k

:=
(A1)

k · · · (Ap)
k

(C1)k · · · (Cq)k
. (4.56)

By exploiting homogeneity and the identities of Theorem 4.14, one can derive
formulas for additional triangles Sn,k(a, b; r).

Theorem 4.15. For all n, k with n > k > 0, and for all r,

(i) Sn,k(0, 0; r) =
(

n
k

)

rn−k,

(ii) Sn,k(1, 1; r) =
(

n
k

)

rn−k,

(iii) Sn,k(−1, 1; r) =
(

n
k

)

(n+ r − 1)n−k,

(iv)

Sn,k(1, 2; r) =

(

n

k

)

k!

(2k − n)!
2−(n−k)2F1

( −r, −n+ k

−n+ 2k + 1

∣

∣

∣

∣

2

)

= 2n−k
[−n

2 , −n
2 + 1

2

1

]n−k

2F1

( −r, −n+ k

−n+ 2k + 1

∣

∣

∣

∣

2

)

,

(v)

Sn,k(−2,−1; r) =
(

n

k

)

(2n− k)!

n!
2−(n−k)2F1

(

r − 1, −n+ k

−2n+ k

∣

∣

∣

∣

2

)

=

(

−1

2

)n−k [−n, n+ 1

1

]n−k

2F1

(

r − 1, −n+ k

−2n+ k

∣

∣

∣

∣

2

)

.

Proof. A unified version of (i),(ii), namely Sn,k(a, a; r) =
(

n
k

)

rn−k,a, appears
as [46, eq. (3.6)]. Also, (i),(ii),(iii) are valid because by examination, each sat-
isfies the appropriate GKP recurrence, given in Definition 4.4. Formulas equiv-
alent to (iv),(v) were derived by Cheon, Jung, and Shapiro [21, eqs. (11),(14)],
and each is restated here as a product of a (reversed) hypergeometric term and
a terminating hypergeometric series.
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The 2F1(2) series in parts (iv) and (v) must be interpreted with care. In (iv),
the lower hypergeometric parameter −n+ 2k + 1 may be non-positive, causing
a division by zero in the terms of the series, but the division by (2k − n)!
compensates for this.5 It turns out that Sn,k(1, 2; r) (when r ∈ N) is nonzero if
and only if 0 6 n − k 6

⌊

n+r
2

⌋

. When (n, k) = (0, 0), the 2F1(2) series in (v)
is troublesome also, and must be interpreted as signifying unity. It should be
noted that the r = 0 versions of the triangles Sn,k(1, 2; r) and Sn,k(−2,−1; r)
can be left-trimmed, yielding the r = 1 versions.

For all r ∈ N, the triangle Sn,k(1, 1; r) in part (ii) has a combinatorial in-
terpretation: its elements are rook numbers, which count the number of ways
of placing n− k non-attacking rooks on an r× n chessboard. Thus Sn,k(1, 1; r)
is nonzero only if 0 6 n − k 6 r. The r = 0 cases of the triangles Sn,k(a, b; r)
in parts (iii),(iv),(v) are classical also, and can be identified by examining the
corresponding GKP recurrences. The elements Sn,k(−1, 1; 0) are the (unsigned)
Lah numbers Ln,k (see [52, A271703]), and the Sn,k(1, 2; 0) and Sn,k(−2,−1; 0)
are the second-kind Bessel numbers Bn,k (see [52, A122848]), resp. the (un-

signed) first-kind ones b̂n,k (see [52, A132062]). The formulas for all three are
well known [22, p. 158]. They agree with the r = 0 cases of the formulas in
(iii),(iv),(v).

In fact for all r ∈ N, the generalized Stirling triangles in (iii),(iv),(v) have

combinatorial interpretations. The elements Sn,k(−1, 1; 2r) =: L
(2r)
n,k are the

r-Lah numbers, which count restricted partitions of an (n + r)-set into k + r
lists, the restriction being that r distinguished elements of the set must be placed

in distinct lists [51]. The elements Sn,k(1, 2; r) =: B
(r)
n,k and Sn,k(−2,−1; r) =:

b̂
(r)
n,k are the second-kind r-Bessel numbers, resp. the (unsigned) first-kind ones.

For an (n + r)-set, B
(r)
n,k counts partitions with each block having size 1 or 2,

subject to the restriction that r distinguished elements must be placed in distinct
blocks [21]. This interpretation provides a proof that Sn,k(1, 2; r) (when r ∈ N)
is nonzero if and only if 0 6 n− k 6

⌊

n+r
2

⌋

.
A notable feature of the hypergeometric series in parts (iv),(v) for Sn,k(1, 2; r)

and Sn,k(−2,−1; r) is that when r ∈ Z with r > 0, resp. r 6 1, they terminate
after 1 + min(r, n − k) terms, resp. 1 + min(1 − r, n − k) terms. That is, the
number of terms does not grow with n. For any such r, this yields a ‘rank-0’
formula involving no summation at all, as in parts (i),(ii),(iii).

For example, Sn,k(1, 2; r) equals

B
(r)
n,k =

(

n

k

)

k!

(2k − n+ r)!
2−(n−k) ×











1, r = 0,

n+ 1, r = 1,

n(n+ 1) + 2(k + 1), r = 2,

(4.57)

which holds when 2k − n + r > 0, i.e., 0 6 n − k 6
⌊

n+r
2

⌋

. Similarly,

5The useful notation introduced by Olver [53, Chapter 15] could be employed here. If C is
the lower parameter of a 2F1 function, 2F1 signifies Γ(C)−1

2F1. Unlike 2F1, 2F1 is defined
when C is any non-positive integer, by taking a limit.
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Sn,k(−2,−1; r) equals

b̂
(r)
n,k =

(

n

k

)

(2n− k)!

n!(2n− k)1−r
2−(n−k) ×











k(k + 1)− 2n, r = −1,
k, r = 0,

1, r = 1,

(4.58)

which holds when 0 6 k 6 n, though if 2n− k+ r 6 0 it must be interpreted in

a limiting sense: for instance, b̂
(r)
0,0 always equals unity. The curious identity

b̂
(r)
n+1,k+1 = B

(r)
2n−k,n, 0 6 k 6 n, (4.59)

holds not only when r = 0, as has been noted [34], but also when r = 1.
By applying the coefficient extraction operator [zn] to the vertical univariate

EGF (4.6), one can derive the alternative general formula

B
(r)
n,k =

2−(n−k)

(n− k)!

(

n+ r

r

)−1

(n+ r)2n−2k
r

∑

ℓ=0

(

k + ℓ

ℓ

)(

n− k

r − ℓ

)

=
2−(n−k)

(n− k)!

(

n+ r

r

)−1

(n+ r)2n−2k
r

∑

ℓ=0

(

k + ⌊ℓ/2⌋
⌊ℓ/2⌋

)(

n

r − ℓ

)

,

(4.60)

which holds for all r ∈ N when 0 6 k 6 n, and subsumes (4.57). Another

approach to deriving formulas for B
(r)
n,k and b̂

(r)
n,k would be to apply the identities

of Theorem 4.11, which allow the parameter r in Sn,k(a, b; r) to be incremented
repeatedly by a or by b.

For any r and (a, b), such as the various choices in Theorem 4.15, the Hsu–
Shiue array Sn,k(a, b; r) can be used to perform sequence transformations. By
Theorem 4.14(i), the infinite lower-triangular matrix S(a, b; r) has S(b, a;−r) as
its inverse. Hence one has a ‘lower’ transform pair

vk =
k

∑

j=0

Sk,j(b, a; −r)uj ⇐⇒ uk =
k
∑

j=0

Sk,j(a, b; r) vj , (4.61)

and an ‘upper’ transform pair

vk =

∞
∑

j=k

Sj,k(b, a; −r)uj ⇐⇒ uk =

∞
∑

j=k

Sj,k(a, b; r) vj . (4.62)

One may need to require convergence in the latter, unless the sequences termi-
nate.

Such Hsu–Shiue–Stirling transforms include binomial transforms (for which
(a, b; r) is (0, 0; 1)) and Stirling and r-Stirling transforms (for which it is (0, 1; 0)
or (0, 1; r)). Other choices of (a, b; r) seem not to have been much investigated,
such as the ones in parts (ii)–(v) of Theorem 4.15. The choice (a, b; r) = (1, 1; r)

37



in part (ii) is the most relevant here. When r 6= 0, it yields the pair of ‘lower
rook number transforms’

vk =
k
∑

j=0

(−1)k−j
(

k

j

)

rk−j,−1 uj ⇐⇒ uk =
k
∑

j=0

(

k

j

)

rk−j,−1 vj . (4.63)

which up to normalization is identical to the unusual LBT (4.41), an example
of which appeared in Theorem 4.9. The interplay between Hsu–Shiue–Stirling
transforms and the generalized Eulerian numbers remains to be fully explored.

4.4. Generalized Eulerian formulas

In several cases, it is possible to derive a formula for the generalized Eulerian
numbers En,k(a, b; c0, c∞) not based on a summation, or at least, not based on
one in which the number of terms grows with n or k. Several such cases will now
be explored. By exploiting the previously mentioned reflection and homogeneity
properties

En,k(a, b; c0, c∞) = En,n−k(−a, b; c∞, c0), (4.64)

En,k(λa, λb; λc0, λc∞) = λnEn,k(a, b; c0, c∞), (4.65)

additional ones can be generated.

Theorem 4.16. For all c0, c∞, one has

(i) En,k(0, 0; c0, c∞) =
(

n
k

)

cn−k0 ck∞,

(ii) En,k(−1, 1; c0, c∞) =
(

n
k

)

(c0 + k)n−k(c∞)k, and

(iii) En,k(a, b; c0,−c0) = (−1)k
(

n
k

)

(c0)
n,a, irrespective of b.

Proof. By examination, each of (i),(ii),(iii) satisfies the corresponding GKP re-
currence, given in Definition 4.6. Note that formulas (i),(ii) can be unified:

En,k(−a, a; c0, c∞) equals
(

n
k

)

(c0 + ka)n−k,a(c∞)k,a. Another approach to (ii)
and (iii) is to note that when the parameter vector (a, b; c0, c∞) of En,k equals
(−1, 1; c0, c∞), resp. (a, b; c0,−c0), the bivariate EGF (4.16) reduces to

(1 − z)−c0−c∞(1 − z + tz)c∞ , resp. (1 + az − atz)c0/a,

from which (ii) and (iii) follow by repeated differentiation. A short approach
to (ii) is to note that En,k(−1, 1; c0, c∞) and (c∞)k Sn,k(−1, 1; c0) are identi-
cal, as they are both solutions of the GKP recurrence with parameter array
[

α, β γ
α′, β′ γ′

]

=
[

1, 1 c0
0, −1 c∞

]

. Then, one refers to Theorem 4.15(iii).

A more sophisticated case when the En,k(a, b; c0, c∞) may be relatively easy
to compute is the important ‘single progression’ case when c0 + c∞ = b, the
first results on which were apparently obtained by Carlitz [14, §8], whose ‘de-
generate’ Eulerian numbers are of the innocuously normalized form En,k(λ, 1;
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c0, 1−c0). (When c0 = 1, these numbers have recently been placed in a combina-
torial setting [39].) Additional results are due to Charalambides [16]6, and Hsu
and Shiue [41]. As mentioned in the introduction, the single-progression case
includes the usual Eulerian triangle En,k(0, 1; 1, 0) =

〈

n
k

〉

, the type-B Eulerian

triangle En,k(0, 2; 1, 1) =
〈

n
k

〉

B
, and others.

One can write

En,k(a, b; c0, b− c0) =

[

−a, b c0
a+ b, −b b− c0

]

n,k

, (4.66)

and if b 6= 0,

En,k(a, b; c0, b− c0) = bn





0, 1, ∞
a/b, 1, −a/b
c0/b, −1 , 1− c0/b





n,k

, (4.67)

in the new parametrization of Section 3. (Recall eqs. (3.3),(3.4).) One sees
from the parameter-pair in the second column of this tableau how the single-
progression case is special: not only is r1 = 1, which is the sign of the generalized
Eulerian case (A III), but also g1 = −1.

When c0 + c∞ = b, the bivariate EGF (4.16) reduces to

∞
∑

n=0

n
∑

k=0

En,k(a, b; c0, b− c0) t
k zn

n!
=

(1− t)(1 + az − atz)c0/a

1− t(1 + az − atz)b/a
(4.68)

(if a 6= 0; taking the a→ 0 limit is straightforward). Moreover, Theorems 4.7(i)
and 4.8(i) reduce to

En,k(a, b; c0, b− c0) =

n
∑

j=k

(−1)j−k
(

j

k

)

bn−j(n− j)!Sn,n−j(−a, b; b− c0) (4.69)

and the rank-1 formula

En,k(a, b; c0, b− c0) =

k
∑

j=0

(−1)k−j
(

n+ 1

k − j

)

(bj + c0)
n,a (4.70a)

= ∇n+1
x

[

(

bx+ c0
)n,a

106x6k

] ∣

∣

∣

x=k
, (4.70b)

where ∇x is the backward first difference operator with respect to x, defined by
∇xf(x) = f(x)− f(x− 1), and 1 signifies an indicator function. The expression
(4.70b), a version of which was derived in [16], can be viewed as an unexpanded
version of the preceding one.

6In present notation, the composition number A(m, k, r, s) in [16] equals Em,k(1, s; r, s−r)
or Em,m−k(−1, s; , s − r, r), divided by m!. Some misprints in eqs. (2.26),(2.27) of [16] are
corrected in what follows.
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When (a, b; c0) = (0, 1; 1), resp. (0, 1; 0), (4.70a) and (4.70b) become known
formulas for the Eulerian numbers

〈

n
k

〉

, resp. the traditionally indexed numbers
〈

n
k−1

〉

:= An,k. Similarly, when (a, b; c0) = (0, 2; 1), they become formulas for
the type-B Eulerian numbers. Each of the formulas (4.69),(4.70a),(4.70b) is
useful, but certain restrictions on parameters may lead to alternative summation
representations in which the number of terms does not grow with n or k, as will
now be seen.

In the following theorem, parts (i) and (ii) are analogues for the En,k of the
contiguity relations of Theorem 4.11, which applied to the Sn,k. (Restricted
versions of (i) and (ii) were derived by Carlitz [14, §8].) Note that though
part (ii) relates a pair of single-progression En,k’s, (i) holds more generally; and
both can be iterated. Parts (iii), (iv), and (v) also relate parametric triangles
En,k which are not of the single-progression type. They indicate how generalized
Eulerian triangles can be left-trimmed (if c0 = 0), right-trimmed (if c∞ = 0),
and mid-trimmed (if c0 + c∞ = 0).

Theorem 4.17. For all n > 0, the numbers En,k satisfy

(i) En,k(a, b; c0+a, c∞−a) = En,k+an (En−1,k − En−1,k−1), the parameters

of each number on the right-hand side being (a, b; c0, c∞), when 0 6 k 6 n;

(ii) En,k(a, b; c0 + b,−c0) = En,k+1(a, b; c0, b− c0) + (−1)k(c0)n,a
(

n+1
k+1

)

,

when −1 6 k 6 n;

(iii) c∞En,k(a, b; b− a, c∞ + a) = En+1,k+1(a, b; 0, c∞), when −1 6 k 6 n;

(iv) c0 En,k(a, b; c0 − a, a+ b) = En+1,k(a, b; c0, 0), when 0 6 k 6 n.

(v) c [En,k+1−En,k](a, b; c−a, a−c) = En+1,k+1(a, b; c,−c), when −1 6 k 6 n.

In these, the convention that En,k = 0 if k < 0, k > n, or n < 0, is adhered to.

Proof. Identity (i) follows readily from the bivariate EGF (4.16), and (ii) from
its restriction (4.68) to the single-progression subcase, with the fact that the
EGF of the term (−1)k(c0)n,a

(

n+1
k+1

)

equals [(t − 1)/t](1 + az − atz)c0/a taken
into account. Identities (iii) and (iv) are specializations of Theorem 2.1, and
(v) follows from a fact indicated in Remark 2.2: the row polynomials Gn+1(t),
n > 0, of any GKP triangle with γ+ γ′ = 0 and β+β′ = 0 (with ββ′ 6= 0) have
1−t as a factor. This factor can be divided by, yielding (up to a constant factor,
here c) the row polynomials G∗n(t) of a new, ‘mid-trimmed’ GKP triangle.

The following is an interesting formula for a triangleEn,k of single-progression
type, having what amounts to a single discrete parameter: 1− ζ + 2p ∈ N.

Theorem 4.18. For all p ∈ N and ζ ∈ {0, 1},

En,k(−1, 2; 2− ζ + 2p, ζ − 2p) =

n!

(

n+ 1

2k + 2p+ 1− ζ

)

− (−1)k+p

p−1
∑

ℓ=0

(−1)ℓ(2 − ζ + 2ℓ)n
(

n+ 1

k + p− ℓ

)

.
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Proof. The ζ = 0, 1 versions are proved independently, by induction on p. The
inductive step uses Theorem 4.17(ii). The base (p = 0) cases are respectively
the triangles

En,k(−1, 2; 2− ζ, ζ) = n!

(

n+ 1

2k + 1− ζ

)

, ζ = 0, 1, (4.71)

which by examination satisfy the GKP recurrence of Definition 4.6. (These two
number triangles, normalized by division by n!, appear as A034839 and A034867

in the OEIS [52].)

The number of terms in this summation formula does not grow with n or k.
Besides applying Theorem 4.17(ii) to increment c0 and decrement c∞ repeatedly
(by b = 2), as was done in the proof, one could also apply Theorem 4.17(i) to
decrement c0 and increment c∞ repeatedly (by 1). The number of terms in the
resulting formula for any desired En,k(−1, 2; c0, 2 − c0), c0 ∈ Z, also will not
grow with n or k.

Another notable feature of the single-progression case c0 + c∞ = b is that in
this case, the connection formula of Theorem 4.8(ii) reduces to the identity

bn(x)n,a =
1

n!

n
∑

k=0

En,k(a, b; c0, b− c0) [x− c0 + b(n− k)]n,b , (4.72)

or equivalently

n! bn(x)n,a =

n
∑

k=0

En,k(a, b; b − c∞, c∞)(x + c∞ − bk)n,b. (4.73)

This is a generalized Worpitzky identity, as the a = 0 subcase makes clear.
When (a, b; c0, c∞) = (0, 1; 1, 0), it reduces to the classical Worpitzky identity
(1.13), and when (a, b; c0, c∞) = (0, 1; 0, 1), to a slightly modified version. Also,
when (a, b; c0, c∞) = (0, 2; 1, 1), it reduces to the Worpitzky identity of type B,
which displays the type-B Eulerian numbers

〈

n
k

〉

B
= En,k(0, 2; 1, 1) as connec-

tion coefficients [2].
The complementary subcase when a 6= 0 has its own logic. Setting a = 1

in (4.72) (which by homogeneity can be done without loss of generality), redefin-
ing the indeterminate x, and applying the reflection property (4.64), produces
the rather symmetric identity

(bx+ c∞)n =

n
∑

k=0

[

1

n!
En,k(−1, b; b− c∞, c∞)

]

(x+ k)n, (4.74)

which holds for arbitrary b and c∞.

For all n > 0 and b, let a matrix A(n,b) = (A
(n,b)
k,j ), 0 6 k, j 6 n, which is not

triangular, be defined by

A
(n,b)
k,j =

1

n!
En,j(−1, b; b− k, k), (4.75)
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Then (4.74), restricted to the case when c∞ ∈ {0, . . . n}, says that

(bx+ k)n =

n
∑

j=0

A
(n,b)
k,j (x+ j)n, 0 6 k 6 n, (4.76)

which extends to

∆r
x [(bx+ k)n] =

n
∑

j=0

A
(n,b)
k,j nr (x+ j)n−r, 0 6 k 6 n, r ∈ N. (4.77)

Note that A(n,1) equals In+1, the (n+ 1)-by-(n+ 1) identity matrix, as follows
from Theorem 4.16(ii).

Thus for all n > 0 and b 6= 0, the coefficients that connect the two fac-
torial bases [(bx + k)n]nk=0 and [(x + j)n]nj=0 of the (n + 1)-dimensional space
of polynomials of degree 6 n can be viewed as numbers in the n’th rows of
certain generalized Eulerian triangles of single-progression type, divided by n!.
Moreover, it follows from (4.76) that for all n > 0, the map b 7→ A

(n,b) is a
homomorphism from C∗, the multiplicative group of nonzero complex numbers,
to GL(n+1,C). This map and its image deserve further study; empirically, one
finds that the eigenvalues of A(n,b) are {1, b, b2, . . . , bn}.

When b is a positive integer, the preceding results make contact with known
identities, and b = 2 is illustrative. It follows from Theorem 4.18 that

A
(n,2)
k,j =

(

n+ 1

2j − k + 1

)

, 0 6 k, j 6 n. (4.78)

(It is assumed that 0 6 2j − k + 1 6 n + 1, otherwise A
(n,2)
k,j vanishes.) Hence

(4.76) reduces when b = 2 to

(2x+ k)n =

n
∑

j=0

(

n+ 1

2j − k + 1

)

(x + j)n, 0 6 k 6 n. (4.79)

(The summation includes only j for which 0 6 2j − k + 1 6 n + 1, i.e., terms
with

⌊

k
2

⌋

6 j 6
⌊

n+k
2

⌋

.) This identity exhibits the coefficients of connection as
binomial coefficients, and could be proved directly. When b = 3 the coefficients
of connection become trinomial coefficients, and so forth.

Because of the group homomorphism, for all b 6= 0 one has

A
(n,b)

A
(n, 1

b
) = In+1. (4.80)

The interesting pair of mutually inverse sequence transformations

vk =
1

n!

n
∑

j=0

En,j(−1, 1b ; 1
b − k, k)uj ⇐⇒ uk =

1

n!

n
∑

j=0

En,j(−1, b; b− k, k)vj

(4.81)
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follows from (4.80). Such pairs were first derived in [16]. However, deriving
satisfactory n-dependent expressions for the elements of the matrix A(n,b) when
b /∈ Z is difficult.

Even outside the single-progression case, i.e., even when c0 + c∞ 6= b, it
may be possible to find a formula for En,k(a, b; c0, c∞) that is not based on
a sum, or at most involves one in which the number of terms does not grow
with n or k. Consider for instance the parametric triangle En,k(−1, 2; c0, 0), for
which the bivariate EGF (see (4.16)) is a manageable function of its arguments.
Versions of this triangle arise in several combinatorial contexts, and formulas
for its elements when c0 = 3 and c0 = 1 were given by Ma, Ma, and Yeh [44].

En,k(−1, 2; 3, 0) is the number of leaf-labeled rooted binary trees with n+2
leaves and k + 1 cherries, i.e., interior vertices with exactly two descendant
leaves. (See [56, Table 6] and [52, A306364].) Also, the normalized version
4kEn,k(−1, 2; c0, 0)/(c0)n, when c0 = 3, resp. 1, has as its n’th row the γ-vector
of a simplicial complex dual to the associahedron of type An, resp. Bn. (See [30]
and [52, A055151,A105868].) The element 4n−kEn,n−k(−1, 2; 3, 0)/(3)n of the
reflected triangle is the number of Motzkin paths of semi-length n with k steps,
of types U = (1, 1) and H = (1, 0). (See [52, A107131].)

Theorem 4.19. The triangles En,k(−1, 2; c0, 0) and En,k(−1, 2; c0+1, 1) have
the hypergeometric term representations

(c0)
n

[

−n
2 , −n

2 + 1
2

1, c0
2 + 1

2

]k

, resp. (c0 + 1)n

[

−n
2 , −n

2 − 1
2

1, c0
2 + 1

2

]k

,

which are nonzero only if 0 6 k 6
⌊

n
2

⌋

, resp. 0 6 k 6
⌊

n+1
2

⌋

. Equivalently,

their n’th row polynomials have the hypergeometric representations

(c0)
n

2F1

(−n
2 , −n

2 + 1
2

c0
2 + 1

2

∣

∣

∣

∣

t

)

, resp. (c0 + 1)n 2F1

(−n
2 , −n

2 − 1
2

c0
2 + 1

2

∣

∣

∣

∣

t

)

.

Proof. The expressions for En,k(−1, 2; c0, 0) and En,k(−1, 2; c0 + 1, 1) can be
obtained by repeatedly differentiating the bivariate EGF (4.16), or verified by
by confirming that they satisfy the GKP recurrence of Definition 4.6. Also, the
two are equivalent: the second comes from the first by a single application of
Theorem 4.17(iv), the right-trimming identity.

Beginning with En,k(−1, 2; c0, 0), one can apply Theorem 4.17(i) repeatedly,
so as to decrement c0 and increment c∞ by any desired positive integer. In this
way, for all c∞ ∈ N one can obtain a formula for En,k(−1, 2; c0, c∞) in which
the number of terms increases with c∞, but not with n or k.

Experimentation along this line resulted in the following unusual conjecture,
which involves the Bessel numbers Bν,κ = Sν,κ(1, 2; 0) and the r-Bessel numbers

B
(r)
ν,κ = Sν,κ(1, 2; r), rank-0 formulas for which appeared in Theorem 4.15(iv) and

eq. (4.60). A proof and a combinatorial interpretation are currently lacking.
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Conjecture 4.20. For all p ∈ N and ζ ∈ {0, 1}, and all c,

En,k(−1, 2; c+ 2p+ ζ, 2p+ ζ) =

(c+ 2p+ ζ)n

(c+ 2p+ 2ζ)p,2

p
∑

ℓ=0

(c+ 1)p,2

(c+ 1)k+ℓ,2
B2p+ζ,2p+ζ−ℓB

(2p+ζ−2ℓ)
n,n−k .

In addition to En,k(−1, 2; c0, c∞), the parametric triangle En,k(−2, 1; c0, c∞)
may be worth investigating, though not many combinatorial applications of it
seem to be known. It is not difficult to derive the striking pair of identities

En+1,k(−2, 1; c0, 0) = c0 n! [t
k]P (c0+n+1,−c0−n−1)

n (−t), (4.82a)

En,k(−2, 1; c0 + 1,−1) = n! [tk]P (c0+n,−c0−n)
n (−t), (4.82b)

where P
(A,B)
n (t) is the degree-n Jacobi polynomial. The two are equivalent, as

the second is a right-trimmed version of the first (with c0 decremented by 1).
The second is proved by verifying that the GKP row polynomial coming from
its left-hand side,

Gn(t) =

[

2, 1 c0 + 1
−1, −1 −1

]

n

(t), (4.83)

satisfies the same differential recurrence on n (see Theorem 2.6(ii)) as the known

recurrence satisfied by n!P
(c0+n,−c0−n)
n (−t). Alternatively a generating func-

tion proof could be used, as the ordinary generating function of the sequence

P
(c0+n,−c0−n)
n (t), n > 0, is known [60].
It follows from the Jacobi-polynomial representation (4.82b) that if c0 = 1

2 ,
the generalized Eulerian row polynomial Gn(t) of (4.83) can be identified with
n!Pn(−t), where Pn is the n’th Boros–Moll polynomial, originally introduced
in the study of a quartic integral. (See [8] and [52, A223549].) But from a com-
putational point of view, (4.82a) and (4.82b) are weaker results than the row-

polynomial formulas of Theorem 4.19: the coefficient of tk in P
(c0+n,−c0−n)
n (t)

can only be expressed as a sum, the number of terms in which grows with k, as
n increases.

5. Generalized Narayana triangles

In Section 3, several cases when GKP recurrences can be solved in closed
form were introduced. Case (A) was the generalized Stirling–Eulerian case,
which gave rise in Section 4 to the generalized Stirling and Eulerian numbers,
and many related identities. Case (B) will now be examined. As will be seen,
the GKP triangles in case (B) include many triangles with combinatorial in-
terpretations, including two now-standard triangles of Narayana numbers [54].
This is the reason for calling (B) the generalized Narayana case.

In case (B I), when (r0, r1, r∞) = (− 1
2 ,− 1

2 , 2), Theorem 3.6 supplies an ex-
pression for the bivariate EGF G(t, z), based on a quadratic irrationality. Much
as in case (A), cases (B II) and (B III) are obtained from (B I) by applying the
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appropriate elements of the S3-group: the row-wise sequence transformations
RT and RT ◦UBT◦RT. The resulting vectors (r0, r1, r∞) are the permutations
(2,− 1

2 ,− 1
2 ) and (− 1

2 , 2,− 1
2 ). Due to the analogy with the subcases of case (A),

cases (B I), (B II), and (B III) will be called the Stirling, reversed Stirling, and
Eulerian subcases of the generalized Narayana triangle.

It will be recalled that the new-style parameters (r0, r1, r∞) and (g0, g1, g∞),
where the sums r0 + r1 + r∞ and g0 + g1 + g∞ are constrained to equal 1
and 0 respectively, can be converted to the traditional GKP parameters (α, β, γ;
α′, β′, γ′) and vice versa, by the formulas in (3.4) and (3.6). In the following,
3-parameter generalized Narayana triangles NX

n,k (where X = S, rS,E, referring
to (B I), (B II), (B III)) are defined, in both the traditional and new parametriza-
tions.

Definition 5.1.

(B I) The generalized Narayana triangle NS
n,k(b; c0, c∞), of Stirling type, is de-

fined by

NS
n,k = NS

n,k(b; c0, c∞) :=

[

b/2, b c0
−b, −b c∞

]

n,k

,

which if b 6= 0 equals

bn





0, 1, ∞
− 1

2 , − 1
2 , 2

c0/b, −(c0 + c∞)/b , c∞/b





n,k

.

(B II) The generalized Narayana triangle N rS
n,k(b; c0, c∞), of reversed Stirling

type, is defined by

N rS
n,k = N rS

n,k(b; c0, c∞) :=

[

−2b, b c0
3b/2, −b c∞

]

n,k

,

which if b 6= 0 equals

bn





0, 1, ∞
2, − 1

2 , − 1
2

c0/b, −(c0 + c∞)/b , c∞/b





n,k

.

(B III) The generalized Narayana triangle NE
n,k(b; c0, c∞), of Eulerian type, is

defined by

NE
n,k = NE

n,k(b; c0, c∞) :=

[

b/2, b c0
3b/2, −b c∞

]

n,k

,

which if b 6= 0 equals

bn





0, 1, ∞
− 1

2 , 2, − 1
2

c0/b, −(c0 + c∞)/b , c∞/b





n,k

.
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The GKP recurrences satisfied by these triangles are manifest in their defi-
nition. Their common homogeneity properties include

NX
n,k(λb; λc0, λc∞) = λnNX

n,k(b; c0, c∞), X = S, rS,E. (5.1)

On account of this homogeneity, one can restrict without loss of generality to a
single nonzero value of b. To facilitate comparison with the standard Narayana
triangles, the choice b = 2 will be convenient. In what follows, the bivariate
EGF’s G(t, z) of the three types will be denoted by NX(b; c0, c∞; t, z), and the
corresponding row polynomials Gn(t) by NX

n (b; c0, c∞; t).

Theorem 5.2. The following EGF formulas hold in a neighborhood of (0, 0).
(B I), i.e., (r0, r1, r∞) = (− 1

2 ,− 1
2 , 2), with b = 2:

NS(2; c0, c∞; t, z) =

[

1, 2 c0
−2, −2 c∞

]

(t, z) =

(

s+
t+

)c0/2 (s−
t−

)−(c0+c∞)/2

,

s± =
1

2
± (2t− 1) + z

2
√

1 + 2(2t− 1)z + z2
, t± =

1

2
±
(

t− 1

2

)

.

(B II), i.e., (r0, r1, r∞) = (2,− 1
2 ,− 1

2 ), with b = 2:

N rS(2; c0, c∞; t, z) =

[

−4, 2 c0
3, −2 c∞

]

(t, z) =

(

s+
t+

)c∞/2 (
s−
t−

)−(c0+c∞)/2

,

s± =
1

2
± (2− t) + t2z

2t
√

1 + 2(2− t)z + t2z2
, t± =

1

2
± 2− t

2t
.

(B III), i.e., (r0, r1, r∞) = (− 1
2 , 2,− 1

2 ), with b = 2:

NE(2; c0, c∞; t, z) =

[

1, 2 c0
3, −2 c∞

]

(t, z) =

(

s+
t+

)c0/2 (s−
t−

)c∞/2

,

s± =
1

2
± (1 + t)− (1− t)2z

2(t− 1)
√

1− 2(1 + t)z + (1− t)2z2
, t± =

1

2
± t+ 1

2(t− 1)
.

Proof. The formula for NS(2; c0, c∞; t, z) is that of Theorem 3.6, scaled by the
factor b = 2. The X = rS,E formulas come by replacing (t, z) by (1t , tz) and
(

−t
1−t , (1− t)z

)

respectively, as stated in Theorem 3.8.

For general c0, c∞, it is difficult to extract formulas for the generalized
Narayana numbers NX

n,k(2; c0, c∞) from the explicit EGF’s in this theorem.
However, each of the three EGF’s satisfies a ‘contiguity relation.’ For instance,
it follows by elementary algebra that

[(2t− 1) + z]NS(2; c0, c∞; t, z) =

2tNS(2; c0 + 1, c∞; t, z)−NS(2; c0 − 1, c∞ + 2; t, z).
(5.2)
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This relates the parametric triangle
∣

∣

n
k

∣

∣ = NS
n,k(2; c0, c∞) at three contiguous

values of the parameter-pair (c0, c∞). The space of such relations and the pos-
sibility of iterating them remain to be explored.7

By examination, there are three parametric restrictions (i.e., constraints on
the pair (c0, c∞)) which simplify each EGF NX(2; c0, c∞; t, z) sufficiently that a
closed-form expression for the triangle entries NX

n,k(2; c0, c∞) can be obtained.
They will be denoted by (a),(b),(c). The resulting specialized EGF’s are given
in Theorem 5.3 below.

Recall that cases (B I),(B II),(B III) are really the same, up to permutation
of the points 0, 1,∞ of the projective line: they constitute the case (B), when
the unordered set of parameters {r0, r1, r∞} is {− 1

2 ,− 1
2 , 2}. The restrictions

(a),(b),(c) can be viewed as constraining the unordered set of parameter-pairs
{(r0, g0), (r1, g1), (r∞, g∞)}. For (a), it must be of the form {(− 1

2 , g), (− 1
2 , g),

(2,−2g)}; for (b), of the form {(− 1
2 ,

1
2 + h), (− 1

2 ,
1
2 − h), (2,−1)}; and for (c),

of the form {(− 1
2 , h), (− 1

2 ,−h), (2, 0)}.
Theorem 5.3. The following parametrically restricted EGF formulas hold in a

neighborhood of (0, 0).
(B I), i.e., (r0, r1, r∞) = (− 1

2 ,− 1
2 , 2), with b = 2:

(a) g0 = g1: NS(2; c,−2c; t, z) = S−c,

(b) g∞ = −1: NS(2; c,−2; t, z) = S−1
[

−1+2t+z+S
2t

]c−1
,

(c) g∞ = 0: NS(2; c− 1, 0; t, z) =
[

(

t−1
t

)

1−2t−z−S
1−2t−z+S

](c−1)/2

,

where S :=
√

1 + 2(2t− 1)z + z2.

(B II), i.e., (r0, r1, r∞) = (2,− 1
2 ,− 1

2 ), with b = 2:

(a) g1 = g∞: N rS(2; −2c, c; t, z) = S−c,

(b) g0 = −1: N rS(2; −2, c; t, z) = S−1
[

2−t+t2z+tS
2

]c−1

,

(c) g0 = 0: N rS(2; 0, c− 1; t, z) =
[

(1− t)2−t+t2z+tS
2−t+t2z−tS

](c−1)/2

,

where S :=
√

1 + 2(2− t)z + t2z2.

(B III), i.e., (r0, r1, r∞) = (− 1
2 , 2,− 1

2 ), with b = 2:

(a) g0 = g∞: NE(2; c, c; t, z) = S−c,

(b) g1 = −1: NE(2; c, 2− c; t, z) = S−1
[

1+t−(1−t)2z−(1−t)S
2t

]c−1

,

(c) g1 = 0: NE(2; c− 1, 1− c; t, z) =
[

(

1
t

) 1+t−(1−t)2z−(1−t)S
1+t−(1−t)2z+(1−t)S

](c−1)/2

,

7Three-term relations resembling eq. (5.2) can be derived far more generally: in fact, from
any GKP recurrence in which one of the normalized parameters r0, r1, r∞ equals 1 or 2. An
explicit EGF is not needed. The derivation employs the PDE satisfied by the EGF, eq. (2.2).
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where S :=
√

1− 2(1 + t)z + (1− t)2z2.

The EGF formulas of this theorem are more manageable than the general
ones of Theorem 5.2. With some effort, one can extract from them the explicit
formulas for 1-parameter generalized Narayana numbers shown in Table 2.

Surprisingly, in each case the triangle entry NX
n,k can be represented as a

hypergeometric term, parametrized by n, k. Because of this, for any of the
parametric triangles of Table 2, each row polynomial is a Gauss-hypergeometric
polynomial, and could optionally be rewritten in terms of a Jacobi polynomial.
It is straightforward to confirm each formula in the table, by verifying that it
satisfies the appropriate GKP recurrence.

A few representations are omitted from the table because they are not ‘pure,’
in that they comprise more than a single hypergeometric term. For instance,
one can prove by induction that

N
E
n,k(2; c−1, 1−c) = (c−1)n

{

[

−n+ 1, −n+ c

1, c

]k

−

[

−n+ 1, −n+ c

1, c

]k−1
}

, (5.3)

when 1 6 k 6 n. This formula illustrates the operation of mid-trimming. The
n’th row polynomial of the parametric triangle on the left-hand side, for all
n > 1, is divisible by 1− t; whence the two terms on the right-hand side.

Many more trimming relationships could be mentioned. In each of the three
sections of the table, triangle (b) is a trimmed version of triangle (c); so the
formulas given for the latter could be viewed as redundant. The trimming
is respectively a right-, a left-, and a mid-trimming, and (5.3) is the identity
resulting from the last.

Moreover, in each of the three sections the c = 0 and c = 2 cases of the
(b) triangle can be trimmed into the c = 3 case of the (a) triangle. The trim-
mings are respectively left- and mid-trimming; right- and mid-trimming; and
left- and right-trimming. Also worth noting is that in each section, the c = 1
cases of the (a) and (b) triangles coincide.

A final observation regarding Table 2 is that the triangles in sections (B I),
(B II), and (B III) are respectively invariant under the involutive S3-group op-
erations UBT, RT ◦UBT ◦ RT, and RT, each of which acts row-wise. The last
invariance is manifest: the substitution k ← n−k leaves (B III)(a) invariant and
merely replaces c by 2− c in (B III)(b). Up to parametrization, RT acts in cycle
notation as the permutation (I,II)(III), UBT as (II,III)(I), and RT ◦UBT ◦RT
as (I,III)(II). Although these operations permute the three sections of the table,
they do not affect the specialization letters (a),(b),(c).

Many versions of the generalized Narayana triangles of Table 2 appear in
the OEIS [52], in normalized forms appropriate for combinatorial applications.
A list is given in Table 3, showing the value taken in each relevant OEIS entry by
the single parameter c of the corresponding Narayana triangle. As indicated, in
each OEIS entry the triangle elements

∣

∣

n
k

∣

∣ are divided by a certain rising factorial,
to reduce the triangle to lowest terms. For the (a) specializations, this factor is
(1)n, (1)n, (3)n when c = 1, 2, 3, and for the (b) ones, it is (2)n, (1)n, (2)n when
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c = 0, 1, 2. Also, when X = S, rS,E, the triangle elements NX
n,k have respective

signs (−)k, (−)n−k, (+), and in the OEIS the negative signs are omitted.
For each generalized Narayana triangle in the OEIS, a compact hypergeo-

metric representation of its n’th row polynomial is shown in the table. (It comes
from the hypergeometric term representation of

∣

∣

n
k

∣

∣ given in Table 2, altered to
agree with the normalization used in the OEIS.) The formulas listed for the
c = 0 cases of B I(b) and B II(b) require comment. In both, −2n is the lower
parameter of the 2F1, which would seem to cause a division by zero if n = 0;
but −n being an upper parameter, each 2F1 is interpreted as unity if n = 0.

From a combinatorial point of view, the most important triangles in Table 3
may be the c = 1 and c = 3 cases of B I(a) and B III(a). Explicitly, they are

(−1)k
[

(1)n
]−1

NS
n,k(2; 1,−2) =

(

n

k

)(

n+ k

k

)

, (5.4)

(−1)k
[

(3)n
]−1

NS
n,k(2; 3,−6) =

(

n

k

)(

n+ k + 2

k

)

/

(k + 1), (5.5)

and
[

(1)n
]−1

NE
n,k(2; 1, 1) =

(

n

k

)2

, (5.6)

[

(3)n
]−1

NE
n,k(2; 3, 3) =

(

n

k

)(

n+ 1

k

)

/

(k + 1). (5.7)

For each n, the n’th rows of these four triangles are respectively the f -vectors
of simplicial complexes dual to the associahedra of types Bn and An, and the
corresponding h-vectors [30]. As with the permutohedra briefly encountered
in §4.1, the f -vectors are mapped to the h-vectors by what is essentially UBT ◦
RT, or equivalently RT ◦UBT ◦RT, the h-vectors of these simplicial polytopes
being reflection-invariant (the Dehn–Sommerville symmetry). The invariance of
(5.6) and (5.7) under k ← n− k is evident.

The triangles (5.6) and (5.7) are known outside the combinatorics of poly-
topes: they are the now-standard Narayana number triangles of types B and A.
In the normalized triangle (5.7), the element

∣

∣

n
k

∣

∣ counts the non-crossing parti-
tions of an ordered (n+1)-set into k+1 blocks; in the normalized triangle (5.6),
it counts ‘signed’ or type-B non-crossing partitions [20, 30].
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NX
n,k(2; c0, c∞) 2F1 term representation reversed representation

(B I)

(a) NS
n,k(2; c,−2c) (c)n

[

−n, n+ c

1, 1
2
+ c

2

]k

(−2c)n,4

[

−n, −n+ 1
2
−

c
2

1, −2n+ 1− c

]n−k

(b) NS
n,k(2; c,−2) (c)n

[

−n, n+ 1
1, c

]k

(−2)n,4

[

−n, −n+ 1− c

1, −2n

]n−k

(c) NS
n,k(2; c− 1, 0) (c− 1)n

[

−n+ 1, n

1, c

]k

—

(B II)

(a) N rS
n,k(2; −2c, c) (−2c)n,4

[

−n, −n+ 1
2
−

c
2

1, −2n+ 1− c

]k

(c)n
[

−n, n+ c

1, 1
2
+ c

2

]n−k

(b) N rS
n,k(2; −2, c) (−2)n,4

[

−n, −n+ 1− c

1, −2n

]k

(c)n
[

−n, n+ 1
1, c

]n−k

(c) N rS
n,k(2; 0, c− 1) — (c− 1)n

[

−n+ 1, n

1, c

]n−k

(B III)

(a) NE
n,k(2; c, c) (c)n

[

−n, −n+ 1
2
−

c
2

1, 1
2
+ c

2

]k

(c)n
[

−n, −n+ 1
2
−

c
2

1, 1
2
+ c

2

]n−k

(b) NE
n,k(2; c, 2− c) (c)n

[

−n, −n− 1 + c

1, c

]k

(2− c)n
[

−n, −n+ 1− c

1, 2− c

]n−k

(c) NE
n,k(2; c− 1, 1− c) — —

Table 2: Certain 1-parameter generalized Narayana triangles with hypergeometric-term representations. There are three each of the Stirling, reversed
Stirling, and Eulerian kinds, i.e., three parametrically restricted versions of GKP cases (B I), (B II), and (B III).
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BI(a), c = 1 (−1)k[(1)n]−1NS
n,k(2; 1,−2) 2F1(−n, n+ 1; 1;−t) A063007

BI(a), c = 2 (−1)k[(1)n]−1NS
n,k(2; 2,−4) (n+ 1)2F1(−n, n+ 2; 32 ;−t) A053124

BI(a), c = 3 (−1)k[(3)n]−1NS
n,k(2; 3,−6) 2F1(−n, n+ 3; 2;−t) A033282

BI(b), c = 0 (−1)k[(2)n]−1NS
n,k(2; 0,−2) [(2)n,4/(2)n]tn2F1(−n,−n+ 1;−2n;− 1

t ) A086810

BI(b), c = 1 (−1)k[(1)n]−1NS
n,k(2; 1,−2) 2F1(−n, n+ 1; 1;−t) A063007

BI(b), c = 2 (−1)k[(2)n]−1NS
n,k(2; 2,−2) 2F1(−n, n+ 1; 2;−t) A088617

BII(a), c = 1 (−1)n−k[(1)n]−1N rS
n,k(2;−2, 1) tn2F1(−n, n+ 1; 1;− 1

t ) A104684

BII(a), c = 2 (−1)n−k[(1)n]−1N rS
n,k(2;−4, 2) (n+ 1)tn2F1(−n, n+ 2; 3

2 ;− 1
t ) A053125

BII(a), c = 3 (−1)n−k[(3)n]−1N rS
n,k(2;−6, 3) tn2F1(−n, n+ 3; 2;− 1

t ) A126216

BII(b), c = 0 (−1)n−k[(2)n]−1N rS
n,k(2;−2, 0) [(2)n,4/(2)n]2F1(−n,−n+ 1;−2n; t) A133336

BII(b), c = 1 (−1)n−k[(1)n]−1N rS
n,k(2;−2, 1) tn2F1(−n, n+ 1; 1;− 1

t ) A104684

BII(b), c = 2 (−1)n−k[(2)n]−1N rS
n,k(2;−2, 2) tn2F1(−n, n+ 1; 2;− 1

t ) A060693

BIII(a), c = 1 [(1)n]−1NE
n,k(2; 1, 1) 2F1(−n,−n; 1; t) A008459

BIII(a), c = 2 [(1)n]−1NE
n,k(2; 2, 2) (n+ 1)2F1(−n,−n− 1

2 ;
3
2 ; t) A091044

BIII(a), c = 3 [(3)n]−1NE
n,k(2; 3, 3) 2F1(−n,−n− 1; 2; t) A001263

BIII(b), c = 0 [(2)n]−1NE
n,k(2; 0, 2) tn2F1(−n,−n+ 1; 2, 1t ) A090181

BIII(b), c = 1 [(1)n]−1NE
n,k(2; 1, 1) 2F1(−n,−n; 1; t) A008459

BIII(b), c = 2 [(2)n]−1NE
n,k(2; 2, 0) 2F1(−n,−n+ 1; 2; t) A131198

Table 3: Generalized Narayana triangles in the OEIS [52], with hypergeometric-polynomial representations of their row polynomials.
(N.B.: Triangles A053124, A053125 in the OEIS are signed rather than signless, disagreeing with the convention adhered to here.)
(N.B.: When n = 0, each 2F1 equals unity, by convention if necessary.)
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6. Generalized secant–tangent triangles

In addition to the generalized Stirling–Eulerian case (A) and the generalized
Narayana case (B), there is a third case when a GKP recurrence can be solved
in closed form, or at least the bivariate EGF G(t, z) can be computed explicitly
by the method of characteristics. As noted in Section 3, this is the generalized
secant–tangent case, case (C).

The GKP triangles in case (C) include important ones with combinatorial
interpretations, but they are relatively few. The following treatment will briefly
relate their EGF’s to previous work. The term ‘generalized secant–tangent’
will be justified. It comes from an alternative method of generating the row
polynomials Gn(t), n > 0, of any GKP triangle. (See Theorem 6.4.) This
could be called the iterated derivation method, and is a specific application
of the context-free grammar approach taken by Chen [19] and Dumont [26]
to exponential structures in combinatorics. As another application, some final
identities involving the generalized Eulerian numbers En,k(a, b; c0, c∞) will be
derived.

In subcase (C I), when (r0, r1, r∞) = (12 ,
1
2 , 0), Theorem 3.7 supplies a tran-

scendental expression for the bivariate EGF G(t, z). Much as with cases (A)
and (B), subcases (C II) and (C III) are obtained from (C I) by applying the
appropriate elements of the S3-group: the row-wise sequence transformations
RT and RT ◦ UBT ◦ RT. The resulting vectors (r0, r1, r∞) are the permuta-
tions (0, 1

2 ,
1
2 ) and (12 , 0,

1
2 ). Due to the analogy with the subcases of case (A),

cases (C I), (C II), and (C III) will be called the Stirling, reversed Stirling, and
Eulerian subcases of the generalized secant–tangent triangle.

As always, the parameters (r0, r1, r∞) and (g0, g1, g∞), where the sums r0+
r1 + r∞ and g0 + g1 + g∞ are constrained to equal 1 and 0 respectively, can be
converted to the traditional GKP parameters (α, β, γ;α′, β′, γ′) and vice versa,
by the formulas in (3.4) and (3.6). In the following, 3-parameter generalized
secant–tangent triangles WX

n,k (where X = S, rS,E, referring to (C I), (C II),
(C III)) are defined, in both the traditional and new parametrizations. The
bivariate EGF’s G(t, z) of the three types will be denoted by WX(b; c0, c∞; t, z),

Definition 6.1.

(C I) The generalized secant–tangent triangle W S
n,k(b; c0, c∞), of Stirling type,

is defined by

W S
n,k = W S

n,k(b; c0, c∞) :=

[

−b/2, b c0
b, −b c∞

]

n,k

,

which if b 6= 0 equals

bn





0, 1, ∞
1
2 ,

1
2 , 0

c0/b, −(c0 + c∞)/b , c∞/b





n,k

.
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(C II) The generalized secant–tangent triangle W rS
n,k(b; c0, c∞), of reversed Stir-

ling type, is defined by

W rS
n,k = W rS

n,k(b; c0, c∞) :=

[

0, b c0
b/2, −b c∞

]

n,k

,

which if b 6= 0 equals

bn





0, 1, ∞
0, 1

2 ,
1
2

c0/b, −(c0 + c∞)/b , c∞/b





n,k

.

(C III) The generalized secant–tangent triangleWE
n,k(b; c0, c∞), of Eulerian type,

is defined by

WE
n,k = WE

n,k(b; c0, c∞) :=

[

−b/2, b c0
b/2, −b c∞

]

n,k

,

which if b 6= 0 equals

bn





0, 1, ∞
1
2 , 0, 1

2
c0/b, −(c0 + c∞)/b , c∞/b





n,k

.

These parametric triangles have the common homogeneity property

WX
n,k(λb; λc0, λc∞) = λnWX

n,k(b; c0, c∞), X = S, rS,E. (6.1)

To facilitate comparison with previous work, the choice b = 2 will now be made,
without loss of generality.

Theorem 6.2. The following EGF formulas hold in a neighborhood of (0, 0).
(C I), i.e., (r0, r1, r∞) = (12 ,

1
2 , 0), with b = 2:

W S(2; c0, c∞; t, z) =

[

−1, 2 c0
2, −2 c∞

]

(t, z) =

(

s+
t+

)c0/2 (s−
t−

)−(c0+c∞)/2

,

s± =
[

√

t± cos(z
√

t+t−)±
√

t∓ sin(z
√

t+t−)
]2

, t± =
1

2
±
(

t− 1

2

)

.

(C II), i.e., (r0, r1, r∞) = (0, 12 ,
1
2 ), with b = 2:

W rS(2; c0, c∞; t, z) =

[

0, 2 c0
1, −2 c∞

]

(t, z) =

(

s+
t+

)c∞/2 (
s−
t−

)−(c0+c∞)/2

,

s± =
[

√

t± cos(z
√

t−/t+)±
√

t∓ sin(z
√

t−/t+)
]2

, t± =
1

2
± 2− t

2t
.
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(C III), i.e., (r0, r1, r∞) = (12 , 0,
1
2 ), with b = 2:

WE(2; c0, c∞; t, z) =

[

−1, 2 c0
1, −2 c∞

]

(t, z) =

(

s+
t+

)c0/2 (s−
t−

)c∞/2

,

s± =
[

√

t± cos(z
√

t+/t−)±
√

t∓ sin(z
√

t+/t−)
]2

, t± =
1

2
± t+ 1

2(t− 1)
.

It should be noted that in each case, s+ + s− and t+ + t− equal unity.

Proof. The formula for W S(2; c0, c∞; t, z) is that of Theorem 3.7, scaled by the
factor b = 2. The X = rS,E formulas come by replacing (t, z) by (1t , tz) and
(

−t
1−t , (1− t)z

)

respectively, as stated in Theorem 3.8.

It has long been known that case-(C) GKP recurrences, in particular case-
(C II) ones, appear in the enumerative combinatorics of peaks and valleys of
permutations. (See the papers of Ma [43] and Zhuang [67], with earlier work
extending from André in the 1880’s through Entringer in the 1960’s and Gessel
in the 1970’s [32] remaining relevant.) W rS

n,k(2; 1, 0) counts the elements of the

group Sn that have k left (or right) peaks [52, A008971], and W rS

n,k(2; 2, 0) the
elements of Sn+1 that have k peaks [52, A008303]. (In [43], these are denoted
by W l

n,k and Wn+1,k.) Also, the triangle W rS

n,k(2; 0, 1) counts the elements of Sn

that have k left–right peaks [67], but left-trimming this triangle reduces it to
W rS

n,k(2; 2, 0). In a separate combinatorial application, the normalized triangle

2−n4kW rS

n,k(2; 2, 0), resp. 4
kW rS

n,k(2; 1, 0), has as its n’th row the γ-vector of a
simplicial complex dual to the permutohedron of type An, resp. Bn. (See [30]
and [52, A101280].)

Proposition 6.3. The following EGF formulas hold in a neighborhood of (0, 0).

W rS
n,k(2; 1, 0; t, z) =

[

0, 2 1
1, −2 0

]

(t, z)

=

√
1− t√

1− t cosh(z
√
1− t)− sinh(z

√
1− t)

,

(6.2)

and

W rS
n,k(2; 2, 0; t, z) =

[

0, 2 2
1, −2 0

]

(t, z)

=

[
√
1− t√

1− t cosh(z
√
1− t)− sinh(z

√
1− t)

]2

=
d

dz

{

[√
1− t coth(z

√
1− t)− 1

]−1
}

.

(6.3)

These EGF formulas follow by some trigonometric manipulation from the
one for W rS(2; c0, c∞; t, z) in Theorem 6.2. They agree with those previously
known [32, 43, 67], but the present derivation places them in analytic context
as individual EGF’s that belong to a family of EGF’s that can be computed
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by the method of characteristics. It should be noted that for case-(C) GKP
recurrences, it is the bivariate triangle EGF’s and not the triangle elements

∣

∣

n
k

∣

∣

for which explicit, closed-form expressions are currently available.
The iterated derivation method of solving a GKP recurrence with parameters

(α, β, γ;α′, β′, γ′), which is an instance of a more general grammar-basedmethod
of combinatorial enumeration, will now be summarized. Its applicability is not
restricted to case-(C) recurrences.

Let D be a formal derivation satisfying Leibniz’s rule, which acts on any
reasonable function of the variables or indeterminates x, y; such as a polynomial
or a formal power series, though non-integral powers are allowed. The following
is a known fact (cf. [35, Theorem 2.1] and [44, Lemma 8]), restated in present
notation. It is equivalent to the differential recurrence of Theorem 2.6(ii) and
the iterated operator formula of Theorem 2.6(iii).

Theorem 6.4. If the variables x, y have the respective derivations

D(x, y) = (x, y) ∗
(

xαyα
′

, xα+βyα
′+β′

)

, (6.4)

where ∗ signifies the elementwise product, then for all n > 0,

Dn
(

xγyγ
′)

=
(

xγyγ
′) (

xαyα
′)n

n
∑

k=0

[

α, β γ
α′, β′ γ′

]

n,k

(

xβyβ
′)k

, (6.5)

or equivalently

Dn
(

xγyγ
′)

=
(

xγyγ
′)(

xαyα
′)n

Gn(x
βyβ

′

),

where Gn = Gn(t) is the n’th row polynomial of the GKP triangle with parameter

array
[

α, β γ
α′, β′ γ′

]

.

It may be possible to realize x, y as functions of an independent variable w,
and D as the derivative Dw := d/dw. If so, the following is immediate: it comes
by exponentiating Dw.

Corollary 6.5. For all δ, or equivalently as an equality between formal power

series in δ,
(

xγyγ
′
)

(w + δ)
(

xγyγ′
)

(w)
= G

(

(

xβyβ
′)

(w), δ
(

xαyα
′)

(w)
)

,

where G = G(t, z) is the bivariate EGF of the GKP triangle with parameter

array
[

α, β γ
α′, β′ γ′

]

.

There is also an easily checked homogeneity property: if the pair x = x(w),
y = y(w) satisfy the differential equation (6.4), then for any λ, so do the pair
λpx(λw), λqy(λw), where

p =
β′

αβ′ − α′β
, q =

−β
αβ′ − α′β

, (6.6)
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it being assumed that αβ′−α′β 6= 0. If β′ = −β, these reduce to λ1/(α+α′)x(λw),
λ1/(α+α′)y(λw). Moreover, w can be shifted without affecting (6.4), as it is an
autonomous equation. Thus (6.4) has a 2-parameter space of solutions.

For the three case-(C) GKP triangles WX
n,k(b; c0, c∞) of Definition 6.1, solu-

tions x, y of (6.4) can be found by inspection. When b = 2, canonical ones are
the following.

∣

∣

n
k

∣

∣ (α, β; α′, β′) x, y

(C I): W S
n,k, b = 2 (−1, 2; 2,−2) x = tanw, y = secw

(C II): W rS
n,k, b = 2 (0, 2; 1,−2) x = secw, y = tanw

(C III): WE
n,k, b = 2 (−1, 2; 1,−2) x = coshw, y = sinhw

In each case the pair γ, γ′ equals c0, c∞, and Theorem 6.4 yields the three elegant
identities

(tanc0 w secc∞ w)
−1

Dn
w (tanc0 w secc∞ w)

= (secn w)

n
∑

k=0

W S
n,k(2; c0, c∞) cscn−2k w, (6.7a)

(secc0 w tanc∞ w)
−1

Dn
w (secc0 w tanc∞ w)

= (tann w)

n
∑

k=0

W rS
n,k(2; c0, c∞) csc2k w, (6.7b)

and

(coshc0 w sinhc∞ w)−1 Dn
w (coshc0 w sinhc∞ w)

= (tanhn w)

n
∑

k=0

WE
n,k(2; c0, c∞) coth2k w. (6.7c)

Under the reflection operation (RT), the parametric trianglesW S
n,k, W

rS
n,k are

interchanged, with c0 ↔ c∞. Also triangle WE
n,k is invariant, except that again,

c0 ↔ c∞. It should be noted that in (6.7c), sinh, cosh (and likewise tanh, coth)
could optionally be interchanged, because x(w) = coshw, y(w) = sinhw are
converted to x(w) = sinhw, y(w) = coshw by a complex shift of w.

As mentioned, the triangles W rS
n,k(2; 1, 0) and W rS

n,k(2; 2, 0) are of combinato-
rial significance. By (6.7b), their elements are the coefficients of trigonometric
polynomials obtained by repeated differentiation of secw and sec2 w, respec-
tively. This fact is known [43], but one now sees that by a straightforward
generalization one can generate any desired case-(C) GKP triangle, with or
without a combinatorial interpretation. This explains the term ‘generalized
secant–tangent triangle.’

Case-(A) and case-(B) triangles can also be generated by the iterated deriva-
tion method. It could be applied as follows in the generalized Stirling–Eulerian
case (A). To treat subcase (A I) similarly to (C I), one should generate not the
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Hsu–Shiue triangle Sn,k(a, b; r) but rather (s)kSn,k(a, b; r) for arbitrary s, be-
cause it is the latter which satisfies a GKP recurrence with ββ′ 6= 0. (Recall

eq. (1.9).) The matching (A II) triangle is the reflection (r)n−kSn,n−k(a, b; s),
and the (A III) triangle is the generalized Eulerian triangle En,k(a, b; c0, c∞).
The GKP parameters of these triangles, and canonical solutions x, y of (6.4)
when a 6= 0 and b 6= 0 that can be found by inspection, are as follows.

∣

∣

n
k

∣

∣ (α, β; α′, β′), (γ, γ′) x, y

(A I): skSn,k(a, b; r) (−a, b; 0, 1) x = (1 + aw)1/a

(r, s) y = b
[

1− (1 + aw)b/a
]

−1

(A II): rn−kSn,n−k(a, b; s) (1,−1; −a+ b,−b) x = b
[

1− (1 + aw)b/a
]

−1

(r, s) y = (1 + aw)1/a

(A III): En,k(a, b; c0, c∞) (−a, b; a+ b,−b) x =
[

1− (1− aw)−b/a
]

−1/b

(c0, c∞) y =
[

(1− aw)b/a − 1
]

−1/b

As in case (C), the parametric (A I) and (A II) triangles are interchanged by
the reflection operation, with r ↔ s, and so are the solutions x, y. The (A III)
triangle is invariant, with c0 ↔ c∞; and the solutions x, y could optionally be
interchanged, as in case (C III).

The three corresponding identities come at once from Theorem 6.4. The
(A II) identity is merely a reflected version of the (A I) one and is left to the
reader. The (A I) and (A III) identities are respectively
{

(1 + aw)r/a
[

1− (1 + aw)b/a
]

−s
}

−1

D
n
w

{

(1 + aw)r/a
[

1− (1 + aw)b/a
]

−s
}

= (1 + aw)−n
n
∑

k=0

b
k
s
k
Sn,k(a, b; r)

{

(1 + aw)b/a
[

1− (1 + aw)b/a
]

−1
}k (6.8a)

and
{

(1− aw)c0/a
[

(1− aw)b/a − 1
]

−(c0+c∞)/b
}

−1

×D
n
w

{

(1− aw)c0/a
[

(1− aw)b/a − 1
]

−(c0+c∞)/b
}

= (1− aw)−n
[

(1− aw)b/a − 1
]

−n
n
∑

k=0

En,k(a, b; c0, c∞) (1− aw)kb/a.

(6.8b)

In the a→ 0 limit (the b→ 0 limit is not considered here), these become
[

erw(1− ebw)−s
]

−1
D

n
w

[

erw(1− ebw)−s
]

=
n
∑

k=0

b
k
s
k
Sn,k(0, b; r)

[

ebw(1− ebw)−1
]k (6.9a)

and
[

e−c0w(e−bw
− 1)−(c0+c∞)/b]−1

D
n
w

[

e−c0w(e−bw
− 1)−(c0+c∞)/b]

= (e−bw
− 1)−n

n
∑

k=0

En,k(0, b; c0, c∞)e−kbw
.

(6.9b)
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By applying (6.8a) and (6.9a), the parameter s being arbitrary, one can com-
pute Hsu–Shiue numbers Sn,k(a, b; r) by repeated differentiation. For instance,

the De Morgan numbers Surj(n, k) = k!
{

n
k

}

= (1)kSn,k(0, 1; 0), which count the
number of maps from an n-set onto a k-set (see Example 2.5), satisfy

(1− ew)Dn
w

[

(1− ew)−1
]

=

n
∑

k=0

Surj(n, k)
[

ew(1 − ew)−1
]k

. (6.10)

The generalized Eulerian numbers En,k(a, b; c0, c∞) can be computed likewise
from (6.8b) and (6.9b), with the latter applying in the Carlitz–Scoville a = 0
case, examples of which were mentioned in the introduction.
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[51] G. Nyul, G. Rácz, The r-Lah numbers, Discrete Math. 338 (10) (2015)
1660–1666.

[52] OEIS Foundation, Inc., The On-Line Encyclopedia of Integer Sequences,
Published electronically at https://oeis.org, 2022.

[53] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (Eds.), NIST
Handbook of Mathematical Functions, U.S. Department of Commerce, Na-
tional Institute of Standards and Technology, Washington, DC, 2010.

[54] T. K. Petersen, Eulerian Numbers, Birkhäuser/Springer, New York, with
a foreword by Richard Stanley, 2015.

[55] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York,
1958.

61



[56] N. A. Rosenberg, Enumeration of lonely pairs of gene trees and species
trees by means of antipodal cherries, Adv. in Appl. Math. 102 (2019) 1–17.

[57] J. Salas, A. D. Sokal, The Graham–Knuth–Patashnik recurrence: Symme-
tries and continued fractions, Electron. J. Combin. 28(2) (article id P2.18)
(2021) 72 pp., available on-line as arXiv:2008.03070 [math.CO].

[58] R. C. Singh Chandel, Generalized Stirling numbers and polynomials, Publ.
Inst. Math. (Beograd) (N.S.) 22 (36) (1977) 43–48.

[59] M. Z. Spivey, On solutions to a general combinatorial recurrence, J. In-
teger Seq. 14(9) (article id 11.9.7) (2011) 19 pp., available on-line as
arXiv:1307.2010 [math.CO].

[60] H. M. Srivastava, J. P. Singhal, New generating functions for Jacobi and
related polynomials, J. Math. Anal. Appl. 41 (3) (1973) 748–752.

[61] R. G. Stanton, D. A. Sprott, Some finite inversion formulae, Math. Gaz.
46 (1962) 197–202.
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